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RESEARCH PAPER

Study of the improvement of the multifractal spatial
downscaling by the random forest regression

model considering spatial heterogeneity
Wei Zhang,a,* Chenjia Ji,a Shengjie Zheng ,b Hugo A. Loáiciga,c

Wenkai Li,d and Xiaona Suna

aChina University of Geosciences (Wuhan), School of Geography and Information Engineering, Wuhan, China
bChina Petroleum Pipeline Engineering Co., Ltd., Langfang, China

cUniversity of California, Santa Barbara, Department of Geography, Santa Barbara, California, United States
dChina Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, China

ABSTRACT. Regional hydrological analysis generally requires meteorological inputs with
adequate spatial resolution and coverage. Satellite-derived precipitation covers rel-
atively large areas at various temporal scales. The global precipitation measurement
(GPM) began releasing a new generation of global precipitation products in April,
2014, i.e., the integrated multi-satellite retrievals for GPM (IMERG), which has a
spatial resolution of 0.1 deg (latitude) × 0.1 deg (longitude). However, IMERG does
not have the sufficient resolution required by the most advanced fine-scale hydro-
logical models. Meanwhile, due to the randomness of daily precipitation, it is difficult
to obtain stable precipitation influence factors. The results of this work show that:
(1) The IMERG V06 shows obvious multifractal characteristics, which makes it pos-
sible to use the multifractal method to improve its spatial resolution without the help
of other elements. However, the accuracy of precipitation products will suffer a cer-
tain loss. (2) The downscaling method considering the influence factors of precipi-
tation did well on a monthly dataset, and the maximum CC can reach 0.911. At the
same time, the random forest regression model is significantly better than the tradi-
tional multiple linear regression model since the former is better matched with the
original monthly precipitation data and can produce more local details. (3) The down-
scaled monthly precipitation data are helpful to the spatial heterogeneity recovery of
daily precipitation. The recovery can enrich the spatial details of the daily precipi-
tation and improve the accuracy to a certain extent. Compared with the multifractal
(MF) downscaling results, the accuracy of the MF-RFR model was improved by
10.3%, whereas the MF-MLR model improved by only 4.6%. Among them, the accu-
racy of the MF-RFR model is higher than that of the original IMERG V06 product,
with an obvious increase in dry days. The MF-RFR model-derived precipitation
would lead to more accurate meteorological disaster assessments and hydrologic
analyses than would otherwise be.
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1 Introduction
Precipitation is a key climatic factor with high spatiotemporal heterogeneity affecting regional
ecology, hydrology, agriculture, and the economy. The resolution of precipitation datasets plays
a central role on distributed hydrological modeling.1,2

Regional hydrological model analysis generally requires precipitation datasets with a spatial
resolution higher than 10 km × 10 km, sometimes of 1 km × 1 km.3,4 Meteorological stations
and ground-based radar provide regional surface precipitation; yet, their distribution is uneven
on land.5 The limited number of observation sensors militate against the accurate estimation
of precipitation distribution over large areas.6 Satellite-derived precipitation products have
become the preferred data source for the large-scale synchronous reconstruction of precipitation.
This is so because of the spatial continuity, wide-coverage, and fine space–time resolution of
satellite measurements. Among the satellite-derived precipitation products, the Tropical Rainfall
Measurements Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 precipita-
tion data have relatively high accuracy due to the TMPA algorithm.7,8 However, the spatial
resolution of TMPA 3B42 is 0.25 deg× 0.25 deg, which at the equator defines spatial cells of
∼27.5 km × 27.5 km in size. The global precipitation measurement (GPM) is a new generation
of precipitation observation satellites with higher accuracy and increased coverage for more
refined hydrological studies.9 IMERG, the level 3 multi-satellite precipitation algorithm of
GPM, can achieve a spatial resolution of 0.1 deg× 0.1 deg, although the resolution is high com-
pared with other precipitation products, this cell size is not fine enough for regional hydrological
analyses, especially in applications involving other datasets featuring higher spatial resolution.
Therefore, it is necessary to downscale IMERG precipitation products accurately.

There are currently two types of downscaling methods: regional climate models (RCMs) and
statistical downscaling models (SDMs). RCMs provide initial and boundary conditions of cli-
mate simulations made with higher spatial resolution than that of atmospheric general circulation
models (GCMs). RCMs preserve the features of large-scale GCMs and simulate climate scenar-
ios at a higher resolution than GCMs. Wright et al.10 examined the frequency of tropical cyclones
and the characteristics of rainfall in the eastern United States with an 18-km resolution RCM.
SDMs rely on empirical mathematical functions between low-resolution dataset and other influ-
encing variables and apply those functions to the high-resolution dataset to make scale-based
calculations.11 Therefore, SDMs lack physical meaning and rely on observational data for fitting
purposes. However, SDMs have unique advantages, such as flexible structure, the multiplicity of
mathematical formulations, and relatively simple development. Following the survey in Maraun
et al.,12 SDMs are classified into perfect prognosis (PP), model output statistics, and weather
generators.

The spatial downscaling of GPM precipitation products has been studied by many scholars
at home and abroad. Using the Qilian Mountains as the study area, Wang et al.13 improved the
geographically weighted regression (GWR) model based on the stepwise regression analysis
method to achieve GSMaP precipitation products at a 0.1 deg× 0.1 deg scale, increasing the
spatial resolution to 1 km while ensuring the spatial distribution of precipitation, and obtaining
high-resolution annual and seasonal precipitation data. Zhan et al.4 constructed GWR models
and multiple linear regression (MLR) models by digital elevation model (DEM) and normalized
difference vegetation index (NDVI), respectively, to downscale the GPM annual and monthly
precipitation data to a spatial resolution of 1 km × 1 km. Shi et al.14 selected the water vapor
factor and vegetation index as influencing factors for the GPM-IMERG monthly precipitation
data to obtain high-precision (1 km) precipitation data for the Fujian, Zhejiang, and Jiangxi
regions of China.

Machine learning regression models, such as artificial neural networks (ANNs), BP neural
network, and support vector machines (SVMs), have produced good results in terms of
downscaling.15 Shen et al.16 proposed a gradient-propelled decision tree (GBDT) downscaling
method to downscale the 2015–2018 GPM-IMERG annual precipitation data for mainland China
to 0.01 deg× 0.01 deg, and compared the analysis with RF and SVM. The latter authors
concluded that GBDT and RFs produce better downscaling results for IMERG precipitation
estimation in mainland China. Ma et al.3 applied a random forest regression (RFR) model to
downscale the IMERG and TRMM annual precipitation data and concluded that the RF produced
better downscaling results for IMERG precipitation. Furthermore, it can obtain a more accurate
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spatial distribution of precipitation compared to TRMM. However, these SDMs’ performance
varies across areas according to the choice of parameters. GWR features variable spatial param-
eters and can capture spatially local characteristics, thus reflecting the spatial heterogeneity of
precipitation.17–20 Numerous studies have shown that DEM and NDVI are explanatory factors
that are strongly correlated with rainfall.21 Xu et al.22 utilized the GWR model to downscale the
TRMM3B43 V7 precipitation data from 0.258 deg to 1 km resolution in the eastern Tibetan
Plateau and Tianshan Mountains, demonstrating the feasibility of employing NDVI and
DEM for monthly downscaling of TRMM products. Fan et al.23 conducted an analysis on the
impact of seven topographic factors on precipitation and concluded that the topographic relief
factor is the most suitable approach for precipitation downscaling in the Tianshan Mountains.
Overall, these environmental factors exhibit satisfactory performance in assessing both annual
and monthly precipitation patterns. However, it remains challenging to explain the significant
dynamic variations in precipitation events due to the temporal invariance of topographic
factors.24 Moreover, daily precipitation exhibits a high level of randomness, and conventional
environmental variables are inadequate in simulating its daily fluctuations. Consequently, SDMs
that rely on the relationship between these environmental variables and daily precipitation often
lack universality and accuracy in predicting precipitation.25

Several authors employed fractal theory and discovered multifractal (MF) characteristics in
the structure of rain and clouds.26–29 Lovejoy and Mandelbrot30 built a space–time rainfall model
based on the hyperbolic distribution characteristics of rainfall in time and space. The MF down-
scaling model is based on a random cascade process that employs the MF spectrum and a stat-
istical distribution model to downscale precipitation from large scale to small scale passing
through a sequence of scale levels.31 MF downscaling, unlike traditional methods, does not rely
on environmental factors and has the ability to capture complex rainfall processes using a limited
number of parameters. On the other hand, MF downscaling has a homogeneous random struc-
ture, which cannot capture the spatial heterogeneity of precipitation accurately. However,
Pathirana and Herath32 downscaled radar-based precipitation with the automated meteorological
data acquisition system and proposed a simple method to filter the spatial heterogeneity of pre-
cipitation. Posadas et al.33 successfully downscaled daily TRMM 3B42 data to a spatial reso-
lution of 0.875 km × 0.875 km. Xu et al.34 applied ANN regression and the MF model to
downscale the monthly TRMM 3B42 to 0.01 deg. The coefficient of determination, bias, and
root mean square error (RMSE) of the regressions established precipitation predictions consistent
with observational data. The studies cited above fitted precipitation with a lognormal distribution
at various time scales. However, the restoration of heterogeneity remains to be studied in depth.
Xu et al.22 showed that many SDMs can be applied, yet, the challenge is to downscale with a
suitable time scale while capturing the heterogeneity of rainfall.

This paper proposes a novel approach to downscale daily IMERG precipitation data. The
approach is demonstrated with data from Hubei province, China. The model combines the RFR
model with the MF model to overcome the limitations of the homogeneous MF model and intro-
duces high-precision monthly precipitation data after RFR downscaling to recover the spatial
heterogeneity of the precipitation field.

2 Study Area and Datasets

2.1 Study Area
Hubei province is located between longitudes 108° and 116°E, and between latitudes 29° and
33°N.35 Figure 1 shows the terrain elevation, the locations of 75 meteorological stations, and the
distribution of the average annual precipitation. It is evident from Fig. 1 that the topography of
the study area is complex and variable, with mountains in the northwest, hilly in the southeast and
northeast, and plains predominant in its central region. Hubei province has a humid subtropical
climate, with four distinct seasons. Equation (1) gives the calculation of average annual precipi-
tation. The average annual precipitation varies in the range of 770 to 1700 mm. Surface water
resources are plentiful in the central plains of the study area (within the Jianghan Plain) giving
Hubei the name of the “Province of Lakes.” Land surface temperature is highest in the
southeastern region and lowest in the southwestern and northwestern regions:
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EQ-TARGET;temp:intralink-;e001;114;515An ¼
P

m
y¼1 Pn

m
; (1)

where n denotes a site, with a total of 75 sites considered in this article. The variablem represents
the year, and Pn represents the annual precipitation of the n’th station.

2.2 Precipitation Products
This paper focuses on the downscaling of IMERG V06 precipitation products and uses precipi-
tation data from 75 meteorological stations for the years 2018 to 2020 as validation data. All the
validation data pertain to Hubei province and are aggregated to daily and monthly values.

2.2.1 IMERG precipitation products

The GPM, the successor to TRMM, uses satellites to measure Earth’s rain and snowfall for the
benefit of mankind. Launched by NASA and JAXA on February 27, 2014, GPM is an
international mission that sets the standard for spaceborne precipitation measurements. The
increased orbital inclination of the GPM allows for wider coverage of precipitation data than
the TRMM. The GPM has been adapted for the high-frequency channel, making it more sensitive
to observations of trace and solid precipitation and allowing for a more refined rainfall
distribution.36 The GPM-IMERG precipitation data are currently widely used in precipitation
studies.24,37 The IMERG includes three types of precipitation products: “early run,” “late run,”
and “final run.”8,38 Among these products, the first two are near-real time products, which are
delayed by 4 and 14 h, respectively, whereas the last one is the final product, which has a delay of
3.5 months. Currently, only the final precipitation products have undergone the final correction
process, making them the most accurate. It is widely recognized that the IMERG-final precipi-
tation product is the leading satellite grid-based precipitation product in the current stage.39

We selected the daily products of IMERG V06 (GPM IMERG final precipitation L3 1 day
0.1 deg× 0.1 deg V06) for the months of July and December from 2018 to 2020 as the target
data for spatial downscaling. In addition, we chose the monthly products of IMERG V06 (GPM
IMERG final precipitation L3 1 month 0.1 deg× 0.1 deg V06) for the months of July and
December from 2016 to 2020 to capture the heterogeneity of daily precipitation. These precipi-
tation products can be accessed on the website of the Goddard Earth Sciences Data and
Information Services Center.40

2.2.2 Meteorological stations data

This study was based on the three-hourly ground-truthed site precipitation data from 75 meteoro-
logical stations in Hubei Province provided by China Meteorological Data Service Centre,41

Fig. 1 Distribution of topography, meteorological stations, and precipitation in Hubei province,
China.
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which were processed to obtain daily cumulative precipitation and monthly cumulative precipi-
tation for the years 2018 to 2020. Figure 2 shows the cumulative precipitation for each month,
and it is seen that December, 2019, and July, 2020, exhibited the least and the most precipitation,
respectively. Therefore, December and July were used in this study as the dry and wet months,
respectively.

This work selected for analysis the days with a high number of stations with non-zero values
of precipitation. Rainfall was abundant in the wet months, with the average number of stations
with precipitation on the days selected being greater than 70% and the number of stations with
precipitation on each day being greater than 50%. Based on the above selection criteria, the
periods (i) July 3, 2020, to July 8, 2020, (ii) July 14, 2020 to July 15, 2020, and (iii) July
17, 2020, and July 21, 2020, were chosen as being representative of wet days. The dry months
have less rainfall, so the dates with a mean number of stations with precipitation greater than 50%
were selected for the study, such that December 16, 2019, to December 25, 2019, were deter-
mined to be representative of the dry days.

In addition, based on the monthly observation data from 75 meteorological stations in Hubei
Province spanning the period from 2016 to 2020, this study evaluates the accuracy of the monthly
precipitation downscaling results.

2.3 Environmental Variables
The selection of impact factors plays a crucial role in ensuring the effective performance of stat-
istical downscaling methods. At present, topography, NDVI, and LST are the mainstream influ-
encing factors, which are widely used in the spatial downscaling of satellite precipitation data at
the annual or monthly scale.4,42,43 The influence of topography on precipitation is highly intri-
cate, encompassing dynamic effects, such as topography-induced forced uplift and convergence,
as well as the interplay of cloud physics and friction.44 The topography in Hubei Province exhib-
its a relatively complex pattern, with a descending trend from west to east, which is closely
associated with precipitation patterns. Surface temperature also demonstrates a significant stat-
istical relationship with precipitation.45 The average temperature in the southeast of Hubei
Province is higher than that in the northwest. Correspondingly, precipitation levels tend to
be higher in the south and lower in the north, with the northwest exhibiting relatively lower
levels of precipitation. Furthermore, vegetation plays a significant role in capturing water vapor,
influencing precipitation dynamics. NDVI is often used to study the distribution of vegetation,
so NDVI is often used as a vegetation factor to consider the relationship between vegetation
and precipitation.44 In summary, the complex precipitation in Hubei Province is statistically
correlated with regional topography, surface temperature, and NDVI. Therefore, this study
selects topography, surface temperature difference between day and night, NDVI, latitude, and
longitude as input variables for the RFR model and the MLR model.

Fig. 2 The cumulative monthly precipitation from 2018 to 2020.
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The DEM data used in this study were all obtained from the SRTMDEM 90M resolution raw
elevation data provided by the Geospatial Data Cloud,46 and six images covering the topography
of Hubei Province were selected and resampled by ArcGIS with spatial resolutions of
0.1 deg× 0.1 deg and 0.01 deg× 0.01 deg.

The NDVI is an important parameter reflecting the relevant state of vegetation.47 The NDVI
data selected for this study were all taken from the MOD13A3 product from LAADS DAAC,48

and the outliers were removed in ArcGIS and then multiplied by 0.0001 to give NDVI values
between −1 and 1. Land surface temperature data were obtained from the MOD11A2 product
from LAADS DAAC,49 and these data were an eight-day synthetic product. These data were first
processed in ArcGIS as the land surface daytime temperature (LSTD) and the nocturnal land
surface temperature (LSTN), then spliced, cropped, and unit converted, and, lastly, the
Nibble tool was implemented to fill missing-data cells in land surface temperature data. Finally,
the NDVI and LST data need to be resampled in ArcGIS with a spatial resolution of
0.1 deg× 0.1 deg and 0.01 deg× 0.01 deg.

3 Methodology

3.1 Downscaling Method

3.1.1 Multifractal model for daily precipitation

MF analysis is a quantitative tool to describe the mass distribution of fractal spaces. Rainfall can
be represented as an MF process because of its spatial discontinuity and spatial variability
characteristics. The MF model describes the spatial variation characteristics of precipitation
as a random cascade process (Fig. 3).

The homogeneous MF precipitation is expressed as

EQ-TARGET;temp:intralink-;e002;114;436Ml
ði;jÞ ¼

8<
:

Ml−1
ðbi∕2c;bj∕2cÞ ×Wði;jÞ; l > 0

M0

ði;jÞ; l ¼ 0
; (2)

in which i denotes the row index in the grid, whereas j denotes the column index in grid, and
i; j ¼ 0;1; 2; : : : ; 2l − 1; Ml

ði;jÞ denotes the value of l’th homogeneous MF precipitation in cell

ði; jÞ; Wði;jÞ denotes the random cascade weight applied to the cell ði; jÞ precipitation to obtain

level l homogeneous precipitation; M0
ði;jÞ denotes the homogeneous MF precipitation grid of the

first level with cell size equal to 0.1 deg.
The random cascade weightsWði;jÞ in Eq. (1) influence the downscaling results directly, and

they are calculated by Eqs. (3)–(5):30,32

EQ-TARGET;temp:intralink-;e003;114;291Wði;jÞ ¼ BYði;jÞ; (3)

EQ-TARGET;temp:intralink-;e004;114;255P½B ¼ 0� ¼ 1 − b−β; P½B ¼ bβ� ¼ b−β; (4)

EQ-TARGET;temp:intralink-;e005;114;236Yði;jÞ ¼ b−δ
2ln b

2
þδXði;jÞ ; (5)

Fig. 3 The random cascade processes. See Eq. (12) for Rl
ði ;jÞ, the l ’th level estimated precipitation

in cell ði ; jÞ.
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where β and δ are the parameters of the β-lognormal model; b denotes the branching number
with value of 4 in this paper. Xði;jÞ denotes the random variable following a standard normal
distribution according to classical MF theory.

Combining Eqs. (3)–(5), and the Mandelbrot–Kahane–Peyriere equations,28,29,32,50,51 Wði;jÞ
yields the set of Eqs. (6)–(10):

EQ-TARGET;temp:intralink-;e006;117;674P½Wði;jÞ ¼ 0� ¼ 1 − b−β; (6)

EQ-TARGET;temp:intralink-;e007;117;637P
h
Wði;jÞ¼ bβ−δ

2ln b
2
þδXði;jÞ

i
¼ b−β; (7)

EQ-TARGET;temp:intralink-;e008;117;611β ¼ 1þ τ 0ðqÞ
2

− δ2
ln b
2

ð2q − 1Þ; (8)

EQ-TARGET;temp:intralink-;e009;117;582τðqÞ ¼ lim
l→∞

log2 MlðqÞ
−log2 λl

; (9)

EQ-TARGET;temp:intralink-;e010;117;550λl ¼ b−l∕2; l ¼ 0;1; 2; : : : :; (10)

where λl represents the level l scale ratio; MlðqÞ denotes the q’th order statistical moment of
Ml

ði;jÞ, and q is in the range ½−10;10� in this work; τðqÞ denotes the quality index describing

the fractal characteristic of precipitation; and τ 0ðqÞ and τ 00ðqÞ denote the first and second
derivatives of τðqÞ, respectively. The parameter δ is defined as

EQ-TARGET;temp:intralink-;e011;117;492δ2 ¼ τ 00ðqÞ
2 ln b

: (11)

The homogeneous MF precipitation fields Ml
ði;jÞ are calculated with Eq. (12):

EQ-TARGET;temp:intralink-;e012;117;441Rl
ði;jÞ ¼ Ml

ði;jÞ · G
l
ði;jÞ; (12)

in which Rl
ði;jÞ∕G

l
ði;jÞ denotes the value of the l’th level estimated heterogeneous precipitation in

cell ði; jÞ; Eq. (13) calculates the level 3 heterogeneous precipitation corresponding to the
IMERG precipitation:

EQ-TARGET;temp:intralink-;e013;117;375G3
ði;jÞ ¼ N3 ×

Aði;jÞP
i;j
Aði;jÞ

; (13)

in which Aði;jÞ denotes the monthly precipitation value of RIMERG in cell ði; jÞ in a specific month
during the period of analysis; N3 denotes the total number of level 3 grid cells.

From Eqs. (12) and (13), it is possible to calculateM3
ði;jÞ from the IMERG data. The expected

value ofWði;jÞ equals 1; therefore, M0
ði;jÞ equals the average ofM

3
ði;jÞ from Eqs. (8) and (11) with

which to calculate the higher resolution homogeneous precipitation (Ml
ði;jÞ).

The recovering of level l precipitation’s heterogeneity is achieved with Eq. (14):28,29,32,50,51

EQ-TARGET;temp:intralink-;e014;117;245Rl
ði;jÞ ¼ Tl

ði;jÞ ×
Ml

ði;jÞG
l
ði;jÞP

i;j M
l
ði;jÞG

l
ði;jÞ

; (14)

in which Tl denotes the large-scale forcing factor, which is calculated with Eq. (15):

EQ-TARGET;temp:intralink-;e015;117;189Tði;jÞl ¼ Nl × R3
ði;jÞ i ¼ ½i∕2l−3�; j ¼ ½j∕2l−3�: (15)

3.1.2 Random forest regression model for monthly precipitation

The random forest (RF) algorithm is a machine learning algorithm that integrates multiple trees
based on the idea of integrated learning, with the basic building blocks being decision trees that
can be used for classification and regression.43,52 The RFR model is a multiple regression tree
constructed for continuous random variables, where the final prediction is the average of the
outputs of all the decision trees. The selection of features for each tree at each step is random,
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so each tree corresponds to multiple random vectors. Assume that the original training set is K,
the model is divided into the following main steps.52

Boostrap sampling with put-back was applied to the original training set K to introduce
randomness in the model and improve model diversity. Ultimately, multiple sampling is per-
formed to generate different training sets depending on the number of regression trees to be
constructed. The resulting training set is Kf, f ¼ 1;2; 3; : : : ; S.

Regression trees are constructed separately for each sub-sample set. In the split construction
process of each regression tree,M number of features are randomly selected from all the attribute
features, and the optimal feature is chosen among them based on the minimum mean squared
error until the tree grows to the maximum.

The final regression result is calculated with Eq. (16):

EQ-TARGET;temp:intralink-;e016;114;604gðxtÞ ¼
1

S

XS
f¼1

hfðxtÞ; (16)

where xt, hfðxtÞ, and S denote the sample to be tested, the predicted results for each regression
tree, and the number of trees, respectively. Figure 4 shows the prediction process of the RFR
model.

The random forest model typically involves adjusting two parameters: the number of deci-
sion trees in the forest and the number of predictor variables randomly selected on each node of
the trees (mtry).53,54 In this study, following the parameter settings proposed by Guan et al.,55 an
initial RFR model is constructed with 100 trees, and the value of M (mtry) is set as the square
root of the number of features. The accuracy of the model is then evaluated based on site data to
identify the months with the highest accuracy for wet months (July) and dry months (December)
during 2016 to 2020. Subsequently, the parameters of the RFR model for these two months are
further adjusted using cross-validation. The optimal number of trees in the forest is determined as
433 for the wet month and 42 for the dry month. The model implementation is carried out using
the scikit-learn package in Python.

Fig. 4 Schematic of the RFR model.
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3.1.3 Multiple linear regression model for monthly precipitation

The MLR model is a widely used regression model that involves analyzing the correlation
between two or more independent variables and a dependent variable to establish a prediction
model. Jia et al.56 were among the first to apply the MLR model in the context of precipitation
downscaling. The MLR model can be described by Eq. (17):

EQ-TARGET;temp:intralink-;e017;117;669P ¼ aþ b1 � x1þ b2 � x2þ b3 � x3; (17)

where P represents the precipitation, x represents the environmental variable that has a linear
relationship with precipitation, b represents the coefficient of the variable, and a represents the
intercept of the linear regression model.

3.1.4 Recovering the heterogeneity of the MF model with monthly
precipitation

It is seen in Eq. (14) the MF model requires the l’th level heterogeneous precipitation to recover
heterogeneity. The high spatial resolution monthly precipitation is essentially representative of
the spatial distribution characteristics of precipitation for that month. Therefore, the MF-RFR
model introduces high resolution (0.01 deg× 0.01 deg) monthly precipitation after RFR down-
scaling to improve the heterogeneity of high resolution daily precipitation. Recall in Eq. (14)
Gl

ði;jÞ denotes the value of l’th level heterogeneous precipitation in cell ði; jÞ, and it equals
the monthly precipitation downscaled with the RFR at a 0.01 deg× 0.01 deg spatial resolution.
A flowchart of the MF-RFR downscaling process is displayed in Fig. 5.

Fig. 5 Flowchart of the MF-RFR downscaling process.
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The model construction approach for the MF-MLR model is identical to that of the MF-RFR
model. In other words, the high-resolution monthly precipitation data obtained after the MLR
model are incorporated into the MF model to restore the heterogeneity of daily precipitation.

3.2 Validation
Most of the existing methods for evaluating the accuracy of precipitation data rely on using
observed precipitation data from meteorological stations as reference data. The evaluation of
accuracy is then performed by considering multiple evaluation indices.13,57

This work was conducted to evaluate the experimental results based on precipitation data
from 75 meteorological stations in Hubei Province. This paper adopts the RMSE, bias, mean
absolute error (MAE), and the correlation coefficient (CC) to measure the accuracy of precipi-
tation predictions. CC close to 1 (or 0) indicates linear statistical relation (or no relation). The
bias, MAE, and RMSE close to zero are desirable from the perspective of calculating predictions
nearly identical to observations. These performance criteria are given by Eqs. (18)–(21):

EQ-TARGET;temp:intralink-;e018;114;568CC ¼
P

Z
z¼1ðDz −DÞðEz − EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Z
z¼1 ðDz −DÞ2 PZ

z¼1 ðEz − EÞ2
q ; (18)

EQ-TARGET;temp:intralink-;e019;114;510RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Z
z¼1 ðDz−EzÞ2

Z

s
; (19)

EQ-TARGET;temp:intralink-;e020;114;472Bias ¼
P

Z
z¼1ðEz −DzÞP

Z
z¼1 Dz

× 100%; (20)

EQ-TARGET;temp:intralink-;e021;114;439MAE ¼
P

Z
z¼1 jDz−Ezj

Z
; (21)

where z and Z denote the index of the validation data and the total gauge number; Di and Ei

denote the predicted and gage-measured precipitation, respectively; D and E represent the aver-
age predicted precipitation and average measured precipitation, respectively.

4 Results and Discussion

4.1 Analysis of Multifractal
This work selected the IMERG data for Hubei province with 90 × 55 cells for downscaling
analysis of daily precipitation. The spatial distribution of precipitation is commonly modeled
with a logarithmic normal distribution. The same phenomenon has been reported by Kedem and
Chiu,58 who reported the lognormal distribution fits well the daily precipitation.

First, calculate log2 λ, log2 Mðλ; qÞ, τðqÞ, fðαÞ, α, andDðqÞ from the daily precipitation after
homogenization. According to MF theory, a regional process that obeys the power law is called
non-scaling, which is a requirement of fractal phenomena, in which case the log2 λ and
log2 Mðλ; qÞ plot linearly in a log–log diagram. For the quality index τðqÞ versus q, the relation-
ship is not a simple linear. fðαÞ is the continuous spectrum and reflects the dimension of MF
subsets. When the object is MF, fðαÞ is a single peak and a convex function of α. The generalized
dimension DðqÞ decreases as q increases.

This work subjected the daily precipitation data for a total of 20 days in the wet and dry
months to MF analysis, and the variation pattern of each parameter indicates that the daily pre-
cipitation conforms to the MF characteristics. Figure 6 shows the MF feature analysis for July 5,
2020. It shown in Fig. 6 that there is essentially a good linear statistical association in the log–log
diagram, and variation of the quality index τðqÞ with respect to q reveals the basic characteristics
of the MFs. The rest of the parameters are also consistent with multiple fractal phenomena.
Figure 7 displays the MF analysis for December 25, 2019. It is shown in Fig. 7 that there is
a single peak in the MF spectra and the generalized dimensionDðqÞ is monotonically decreasing,
which means the daily precipitation is non-scaling within the scale range. This means the daily
precipitation conforms to the fractal structure. These findings suggest plausible downscaling of
daily precipitation characterized by the random cascade process.
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The random variables of the MF model obey the standard normal distribution. This work
simulated the MF downscaling model 20 times and employs the average of the results as the
downscaling result. Figure 8 shows the original IMERG product for a wet day (July 17,
2020) and its high-resolution precipitation obtained with the MF model. Figure 9 shows the
original IMERG product for a dry day (December 18, 2019) and its high-resolution precipitation
obtained with the MF model. The downscaled image has a distinct mosaic-like appearance
despite the presence of detailed features. This is mainly because of the size of each image element
after the MF downscaling model is independent of the size of the neighboring image elements
and only changes within its image element. Precipitation after downscaling is closely related with
the initial precipitation according to Eqs. (3)–(5). The average precipitation remains the same no
matter how many downscaling levels are employed.

Fig. 6 MF characteristics of wet daily IMERG precipitation (July 5, 2020). (a) Log–log diagram,
(b) quality index, (c) convex function, and (d) generalized dimension.

Fig. 7 MF characteristics of dry daily IMERG precipitation (December 25, 2019). (a) Convex func-
tion and (b) generalized dimension.
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This work evaluates the accuracy of daily precipitation and the average accuracy is obtained
for 10 wet days and 10 dry days. The accuracy evaluation of the MF downscaling model is
presented in Table 1. The precipitation with 0.01 deg× 0.01 deg resolution on wet days is some-
what more accurate than on dry days. This means that the MF downscaling model has better
applicability on wet days, but the overall accuracy is poor for both wet and dry days. This work
employed heterogeneous precipitation with low-resolution to recover the spatial heterogeneity
of high-resolution precipitation according to Eq. (14). This affects the overall accuracy of the
calculated results.

Fig. 9 Precipitation maps corresponding to two stages on the dry day (December 18, 2019).
(a) IMERG precipitation and (b) downscaled results with the MF model.

Table 1 Average of accuracy assessments of wet and dry daily precipitation downscaled with
the MF model.

Model Time CC Bias MAE RMSE

IMERG Wet day 0.694 0.282 13.078 21.184

Dry day 0.467 5.524 2.131 3.097

MF Wet day 0.681 0.296 13.426 21.594

Dry day 0.426 5.744 2.140 3.149

Fig. 8 Precipitation maps corresponding to two stages on the wet day (July 17, 2020). (a) IMERG
precipitation and (b) downscaled results with the MF model.
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To further confirm the MF characteristics of precipitation data, this study conducted the MF
downscaling experiments on IMERG monthly precipitation data from July and December span-
ning the years 2016 to 2020. The analysis revealed that the variation of parameters across all
months aligns with MF characteristics. Figure 10 takes July 2016 (wet month) and December
2016 (dry month) as examples to show the changes of some parameter characteristics. The dia-
gram demonstrates a strong linear relationship between log2 λ and log2 Mðλ; qÞ, indicating that
the monthly precipitation exhibits scale-free properties and adheres to MF characteristics within
the specified range of scale variations. Table 2 presents the average accuracy for wet and dry
months from 2016 to 2020. Compared to the original IMERGmonthly precipitation data, the MF
downscaling results show a slight improvement in data deviation, with an average enhancement
of 0.25%. However, they exhibit poorer performance in terms of CC, MAE, and RMSE. Among
them, the average loss of CC for wet and dry months amounts to 6.25%. In summary, IMERG
precipitation data demonstrate favorable MF characteristics at both daily and monthly scales, and
the MF model can be used to improve the spatial resolution of precipitation data. The overall
accuracy of the MF downscaling approach is comparable to the original data, albeit with varying
degrees of loss. Therefore, it is necessary to introduce high-precision monthly precipitation data
to restore the heterogeneity within the MF model.

4.2 Analysis of the RFR and MLR Models
The statistical data from meteorological stations revealed that July, 2020, are the month with the
heaviest precipitation and December 2019 is the month with the lowest precipitation. Therefore,
in this work, July and December represent the months with most and least precipitation, respec-
tively. Monthly precipitation has a more stable spatial distribution, and it is suitable to represent
the spatial distribution of daily precipitation within the same month. Therefore, this paper uses
downscaled high-precision monthly precipitation to restore the spatial heterogeneity of daily
precipitation. Monthly data from 2016 to 2020 were used in the RFR model, increasing the
spatial resolution of monthly precipitation from 0.1 deg× 0.1 deg to 0.01 deg× 0.01 deg.
The monthly downscaling results with the highest accuracy were then used to restore the

Fig. 10 MF characteristics of July, 2016, (wet month) and December, 2016, (dry month). (a) July
2016 and (b) December 2016.

Table 2 Average of accuracy assessments of wet and dry monthly precipitation downscaled with
the MF model.

Model Time CC Bias MAE RMSE

IMERG Wet month 0.697 0.154 70.349 87.631

Dry month 0.757 0.418 10.285 13.001

MF Wet month 0.602 0.151 77.537 96.792

Dry month 0.727 0.416 11.096 14.760
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MF heterogeneity. July, 2019, (wet month) and December, 2018, (dry month) were selected as
the research period. The MLR method was also applied for monthly downscaling during these
two months, and its results were compared with the RFR model method.

Figure 11 shows the comparison of downscaling results from various models in July 2019.
As observed in the figure, the spatial distribution characteristics of the monthly precipitation data
obtained after downscaling with the RFR model are more similar to the original data when com-
pared with the MLR model. The correspondence of high-value precipitation regions is more
accurate in the RFR downscaling results, and local details are more prominent. Figure 12 show-
cases the comparison of downscaling results from different models in December, 2018. The map
reveals that both the RFR model and the MLR model are capable of improving the spatial res-
olution of the IMERG data. However, the RFR model preserves the original spatial distribution
characteristics of precipitation to a greater extent and provides richer local detail information,
particularly in the southwestern mountainous areas. These findings indicate that, in terms of
spatial distribution, the downscaled precipitation data obtained through the RFR model outper-
form that of the MLR model.

Table 3 presents the accuracy evaluation of the RFR model and the MLR model for
July 2019 (wet month) and December 2018 (dry month). The evaluation results for July 2019
demonstrate that the RFR downscaling results exhibit higher fitting accuracy compared to the
non-downscaled data. The deviation between the monthly precipitation and ground station obser-
vations decreases, indicating improved accuracy of the downscaled data. The MLR model does
not perform as well as the RFR model, with lower accuracy indicators compared to the original
IMERG data. Regarding the evaluation results for December, 2018, the RFR model shows vary-
ing degrees of improvement in the accuracy indicators after downscaling. The MLR model
also demonstrates some improvement in bias, RMSE, and MAE; however, its CC is lower than
that of the original data. In summary, the RFR model outperforms the MLR model in both wet
and dry months, demonstrating higher accuracy in generating high spatial resolution monthly
precipitation data.

Fig. 11 (a) Original precipitation, (b) downscaled precipitation by the RFR model, and (c) down-
scaled precipitation by the MLR model in the wet month (July, 2019), Hubei province.
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4.3 Analysis of the MF-RFR Model

4.3.1 Comparative analysis of downscaling results from different models

Based on the selection of wet days (10 days) and dry days (10 days) outlined in Sec. 2.2.2, this
study further chose representative days from each category. Ultimately, July 5, 2020 (the day
with the highest rainfall) and December 22, 2019 (the day with the lowest rainfall) were selected
as the research period. The spatial resolution of IMERG daily precipitation data was enhanced to
0.01 deg by the MF-RFR and MF-MLR models.

Figure 13 shows the comparison between the original precipitation field and the downscaled
precipitation fields using different models. In terms of the spatial distribution trend, all three
downscaled precipitation fields generally preserve the overall distribution characteristics of the
original IMERG precipitation field and accurately depict the spatial distribution of strong and
weak precipitation. Regarding local detail features, both the MF-RFR and MF-MLR models

Fig. 12 (a) Original precipitation, (b) downscaled precipitation by the RFR model, and (c) down-
scaled precipitation by the MLR model in the dry month (December, 2018), Hubei province.

Table 3 Accuracy assessment of the RFR and MLR models.

Time CC Bias MAE RMSE

Wet month precipitation downscaled by RFR 0.520 0.054 39.610 51.365

Wet month precipitation downscaled by MLR 0.200 0.376 61.757 69.644

Original wet month precipitation 0.484 0.060 41.342 52.757

Dry month precipitation downscaled by RFR 0.911 0.155 15.270 18.675

Dry month precipitation downscaled by MLR 0.899 0.110 14.489 18.105

Original dry month precipitation 0.907 0.155 15.379 19.194

Zhang et al.: Study of the improvement of the multifractal spatial downscaling. . .

Journal of Applied Remote Sensing 034510-15 Jul–Sep 2023 • Vol. 17(3)



Fig. 13 Precipitation maps corresponding to several stages on the wet day (July 5, 2020) and the
dry day (December 22, 2019). (a), (e) IMERG precipitation, (b), (f) downscaled precipitation with
the MF model, (c), (g) downscaled precipitation with the MF-RFR model, and (d), (h) downscaled
precipitation with the MF-MLR model.
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exhibit more spatial details compared to the MF model, particularly in the southeastern hilly
areas. This further emphasizes the importance of using high-precision monthly precipitation data
to restore the heterogeneity of daily precipitation, which plays a crucial role in the downscaling
process. Furthermore, the comparison of precipitation fields indicates that the overestimation in
the MF-MLRmodel is significantly greater than that of the MFmodel and the MF-RFRmodel on
the wet day. Overall, the MF-RFR model developed in this study yields more accurate precipi-
tation distribution.

Table 4 provides the accuracy for the original IMERG, the MF, the MF-MLR, and the MF-
RFR models. On the wet day (July 5, 2020), both the MF-RFR and MF-MLR models outperform
the MF downscaling model. The MF-RFR model enhances the accuracy of the original IMERG
precipitation data. Specifically, the CC remains relatively unchanged, whereas the bias is reduced
by 3.6%, the MAE is reduced by 0.601 mm∕d, and the RMSE is reduced by 1.063 mm∕d. The
downscaling effect of the MF-MLR model is notably inferior to that of the MF-RFR model, with
lower accuracy indicators compared to the original precipitation data. However, the MF-MLR
model does improve the accuracy of the MF model to some extent, emphasizing the importance
of restoring heterogeneity. On the dry day (December 22, 2019), the downscaled results from the
MF-RFR model exhibit the best performance across the four accuracy indicators compared to the
original IMERG data. The CC increases by 5.3% and the bias, MAE, and RMSE decrease to
varying degrees. The accuracy of the MF-MLR downscaling model is very similar to that of the
MF model, which significantly improves the CC of the MF model. In addition, the MF-RFR
model demonstrates better applicability on the dry day, and the overall accuracy is improved
more. However, it is important to note that the CC of dry days remains low, indicating that further
verification of the applicability of this method in dry weather is necessary in future research.
In addition, it is worth exploring the potential impact of the accuracy of the original IMERG
precipitation data on the results. Future studies could consider integrating correction techniques
with the downscaling model to improve the overall accuracy and applicability of the approach.

Overall, the introduction of high-resolution monthly precipitation data can enhance the
numerical accuracy of the MF model to some extent. Among the three models, the MF-RFR
model exhibits the highest numerical accuracy. This signifies that the MF-RFR model provides
improved predictions of high-resolution precipitation, which are valuable for meteorological
disaster assessment, hydrological analysis, and other applications.

4.3.2 Stability analysis of the MF-RFR model

To further validate the applicability of the MF-RFR downscaling model, this study performed
daily downscaling using the MF-RFR model for the months of July and December in each year
from 2018 to 2020.

Table 5 presents the percentage of days in both wet and dry months where the MF-RFR
model outperforms the MF model and the MF-RFR model surpasses the original IMERG daily

Table 4 Accuracy assessment of wet and dry daily precipitation downscaled with different
models.

Model Time CC Bias MAE RMSE

IMERG Wet day 0.585 0.109 37.061 58.277

Dry day 0.051 9.674 0.060 0.144

MF Wet day 0.569 0.140 38.206 61.442

Dry day −0.001 9.722 0.060 0.154

MF-RFR Wet day 0.585 0.073 36.460 57.214

Dry day 0.104 8.339 0.052 0.124

MF-MLR Wet day 0.579 0.139 38.350 60.902

Dry day 0.047 10.202 0.062 0.170
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precipitation data. In wet months, compared to the MF model, the MF-RFR model performs
better on the four indicators, with over 50% of the days showing improved accuracy or a gap
within 0.05. Notably, the most significant improvements are observed in CC and bias, where over
80% of the days exhibit enhanced accuracy or a gap within 0.05. These results demonstrate the
ability of the MF-RFRmodel to enhance the accuracy of the MFmodel. When compared with the
original IMERG precipitation data, the CC, bias, and MAE of the precipitation field after MF-
RFR downscaling have more than 70% of the days with better effect or the gap is only within
0.05. Among them, 90% of the days exhibit enhanced data consistency. However, the improve-
ment in RMSE is slightly lower compared to the other three indicators. This discrepancy may be
attributed to the influence of heavy precipitation and frequent rainstorms, which aligns with the
findings of Gu et al.21 Nevertheless, nearly half of the days still demonstrate an improvement in
the downscaling effect. Overall, the proposed MF-RFR model performs well during wet months,
as it either improves or basically maintains the numerical accuracy of the original precipitation
data. Furthermore, it enhances the performance of the MF model to varying degrees.

The accuracy statistics for dry months are presented in Table 5. The MF-RFR model pro-
posed in this paper significantly enhances the data accuracy of the MF model. The four indicators
have more than 50% of the days better than the MF model or the gap is within 0.05. Notably,
CC exhibits the most significant improvement, with over 86% of the days demonstrating higher
data consistency compared to the MF model or a gap within 0.05. When compared to the original
IMERG precipitation data, the MF-RFR model outperforms in CC, BIAS, MAE, and RMSE.
Over half of the days exhibit improved accuracy or maintain the accuracy of the original data.
These findings highlight the overall superiority of the MF-RFR model in dry months, with
stronger stability and higher accuracy indices. Overall, the MF-RFR model can obtain daily
precipitation with higher spatial resolution and accuracy in both wet and dry months.

5 Conclusions
This paper introduced a downscaling model called MF-RFR to create high-resolution daily pre-
cipitation from the IMERG dataset. The models were applied to Hubei province precipitation
(China). The RFR model was employed to downscale the IMERG monthly precipitation data
from 0.1 deg× 0.1 deg to 0.01 deg× 0.01 deg. The selected influencing factors include DEM,
LSTD, LSTN, NDVI, latitude, and longitude. The downscaling effect was compared and ana-
lyzed with the MLR model. In addition, the IMERG daily precipitation data were downscaled
from 0.1 deg× 0.1 deg to 0.01 deg× 0.01 deg using the random cascade process of the MF
model. The monthly precipitation data after downscaling with the RFR and MLR models
were introduced to restore the spatial heterogeneity of daily precipitation. Finally, based on site
observation data, a comparison of the downscaling effects of the MF, MF-MLR, and MF-RFR
models was conducted, along with an analysis of the stability of the MF-RFR model. The main
conclusions include the following:

Table 5 Percentage of days with improved performance by the
MF-RFR model.

Compared with the
MF model (%)

Compared with
IMERG (%)

CC Wet day 85 90

Dry day 86 86

Bias Wet day 83 73

Dry day 57 60

MAE Wet day 68 76

Dry day 76 73

RMSE Wet day 54 43

Dry day 69 50
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(1) IMERG precipitation products exhibit evident MF characteristics at both daily and
monthly scales, suggesting the feasibility of downscaling precipitation using the random
cascade process. In comparison to the original IMERG precipitation field, the MF down-
scaling model increases the spatial resolution by 10 times. However, some degree of
numerical accuracy loss was observed. On average, the daily-scale correlation experi-
enced a loss of 2.7%, whereas the monthly scale correlation experienced a loss of 6.25%.

(2) Regarding monthly precipitation data, the downscaling results of the RFR model showed
higher data quality. Compared to the traditional MLR model, the RFR model preserved
the spatial distribution characteristics of precipitation before and after downscaling,
enhancing the accuracy of the original precipitation products in both dry and wet months,
with an overall accuracy improvement. The CC can reach up to 0.911. Consequently,
the RFR model can further enhance the performance of the MF model.

(3) This paper proposes the use of high-precision monthly precipitation data to restore the
spatial heterogeneity of daily precipitation, which is a crucial step in the downscaling
process. Both the MF-RFR model and the MF-MLR model improve upon the traditional
MF model, enhancing its accuracy and the ability to capture local details. Among them,
the MF-RFR model demonstrates significantly better downscaling performance than the
MF-MLR model, with accuracy improvements of up to 10.3%. Moreover, the MF-RFR
model achieves higher accuracy compared to the original precipitation data, providing
high-resolution precipitation data of superior quality. This is particularly beneficial during
the dry day, where substantial overall accuracy improvements are observed.

(4) Considering the statistical analysis results across multiple research periods, the MF-RFR
model exhibits good stability in both wet and dry months. The accuracy evaluation after
downscaling shows that over 50% of the days demonstrate improved accuracy or maintain
the accuracy of the original IMERG precipitation data. Notably, over 86% of the days
show improvements in CC. Furthermore, over 54% of the days outperform the MF model
in terms of accuracy indicators. These findings indicate that the MF-RFR downscaling
method is well-suited for the downscaling of satellite daily precipitation data and holds
promising application prospects.
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nasa.gov/search/). Land Surface Temperature data were obtained from the MOD11A2 product
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