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Enhancing Discovery of Genetic Variants for Posttraumatic 
Stress Disorder Through Integration of Quantitative Phenotypes 
and Trauma Exposure Information

A full list of authors and affiliations appears at the end of the article.

Abstract

BACKGROUND: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence 

of exposure to traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype 

measurement and incorporation of lifetime trauma exposure (LTE) information could enhance the 

discovery power of PTSD genome-wide association studies (GWASs).

METHODS: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-

effects meta-analysis (N = 182,199 European ancestry participants). A GWAS of LTE burden was 

performed in the UK Biobank cohort (N = 132,988). Genetic correlations were evaluated with 

linkage disequilibrium score regression. Multivariate analysis was performed using Multi-Trait 

Analysis of GWAS. Functional mapping and annotation of leading loci was performed with 

FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total 

symptoms.

RESULTS: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-

wide significant loci, respectively. There was a 72% genetic correlation between PTSD and LTE. 

PTSD and LTE showed largely similar patterns of genetic correlation with other traits, albeit 

with some distinctions. Adjusting PTSD for LTE reduced PTSD heritability by 31%. Multivariate 

analysis of PTSD and LTE increased the effective sample size of the PTSD GWAS by 20% and 

identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the Million 

Veteran Program.

CONCLUSIONS: Through using a quantitative trait measure of PTSD, we identified novel risk 

loci not previously identified using prior case-control analyses. PTSD and LTE have a high genetic 

overlap that can be leveraged to increase discovery power through multivariate methods.

Posttraumatic stress disorder (PTSD) may develop after exposure to traumatic life events. 

PTSD can severely impact the mental and physical health of affected individuals and impair 

their interpersonal relationships (1). While the estimated community prevalence of PTSD 

in the United States is 5% to 10% (2), the rate of PTSD differs based on the nature of 

trauma exposure (3) and other environmental (4) and genetic (5–7) factors. Identifying the 

biological mechanisms associated with the etiology of PTSD will facilitate the discovery 
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of biomarkers for screening and diagnostic purposes (7) and the development of new 

treatments.

Genome-wide association studies (GWASs) facilitate biological understanding of PTSD 

(8,9), but are well known to be limited by statistical power to identify risk variation (10). 

Quantitative measures of PTSD enhance discovery power over binary trait definitions (9,11). 

Appropriately accounting for trauma exposure hypothetically enhances power, as individuals 

will not develop the disorder unless they are exposed to trauma, regardless of high genetic 

vulnerability for PTSD (12,13). Moreover, the notion that genetic variants can pre-dispose to 

trauma exposure is only starting to be explored (14). As trauma exposure is a prerequisite for 

the development and manifestation of PTSD, investigating the genetics of trauma exposure 

will hypothetically lead to a clearer picture of PTSD genetics.

The Psychiatric Genomics Consortium (PGC)–PTSD is a global collaborative effort to study 

the genetic basis of PTSD through meta-analysis of diverse cohorts (13). Subsequent to a 

case-control GWAS (8), our collaborators have provided quantitative measures of PTSD and 

lifetime trauma exposure (LTE). To obtain genomic insights from the quantitative PTSD 

phenotyping, we performed a GWAS of PTSD symptoms in 182,199 participants from 

the PGC-PTSD Freeze 2 dataset. To determine if accounting for LTE would provide the 

hypothesized increase in discovery power, we performed a GWAS of PTSD with covariate 

adjustment for LTE, showing that it lowers PTSD signal. We investigated the possibility 

that multicollinearity arising from high genetic correlation (rg) of PTSD and LTE was 

responsible for this result. To perform this investigation, we performed a GWAS of LTE 

in the most powered and unbiased (15) subsample of the data, 132,988 participants from 

the UK Biobank (UKBB) (16), then evaluated the rg of PTSD and LTE. To explore the rg 

further, we contrasted the rgs that PTSD and LTE have with other traits. We showed that the 

high rg of PTSD and LTE can be leveraged to enhance the power of PTSD GWASs using 

multivariate methods. We replicated PTSD GWAS findings in the Million Veteran Program 

(MVP) GWAS of total PTSD symptoms (MVPTOT). We contextualized genomic findings 

through functional annotation, tissue expression analyses, and phenome-wide association 

study (PheWAS).

METHODS AND MATERIALS

Study Population and Phenotyping

Participants were drawn from a collection of 51 cohorts within the PGC-PTSD Freeze 

2 dataset, as previously described in Nievergelt et al. (8). All participants included in 

the present study were of genetically estimated European ancestry. PTSD symptoms and 

LTE were measured within each cohort using structured clinical interviews, self-reported 

inventories, or clinical evaluation. A summary of the assessment and scoring methods for 

the various studies is presented in Table S1 in Supplement 2, and a complete description 

is available in Nievergelt et al. (8). All participants provided written informed consent, and 

studies were approved by the relevant institutional review boards and the University of 

California San Diego Human Research Protection Program.
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GWAS Quality Control

Genotyping, quality control (QC), and imputation methods for the included studies have 

been described in detail (8). In brief, participating cohorts provided phenotype and genotype 

data or GWAS summary statistics to the PGC-PTSD for quality control and analysis. For 

studies in which the PGC-PTSD analyst had direct access to genotype data, RICOPILI 

(17) was used to perform QC and imputation. QC included standard filters for single 

nucleotide polymorphism (SNP) call rates (exclusion of SNPs with call rate <98% or a 

missing difference >0.02 between cases and controls), call rate for participant genotypes 

(samples with <98% call rate excluded), Hardy-Weinberg equilibrium (p < 1 × 10−6 in 

controls), and heterozygosity (within ± 0.2). Datasets were phased using SHAPEIT (18) and 

imputed using IMPUTE2 (19) with the 1000 Genomes Phase 3 reference panel data (20). 

For the UKBB, QC and imputation were carried out centrally by UKBB investigators as 

previous described (16) and GWAS was carried out by the PGC-PTSD analyst. For cohorts 

with data-sharing restrictions, analyses were performed using similar protocols by the study 

team that had individual-level data access, and GWAS summary statistics were provided to 

the PGC-PTSD.

Genome-wide Association Study

Only unrelated (π < 0.2) participants were retained for analysis. Principal components (PCs) 

were calculated within each cohort using EIGENSOFT v6.3.4 (21). The PTSD GWAS was 

performed within cohorts using PLINK 2.0 alpha with the −glm option, with the exception 

of UKBB and VETSA (Vietnam Era Twin Study of Aging) data, which were analyzed using 

BOLT-LMM v2.3.4 (22). Where available, PTSD symptom scores were analyzed using 

linear regression (n = 36 cohorts); PTSD case-control status was used if symptom scores 

were not available, using logistic regression (n = 15 cohorts). In both cases, 5 PCs were 

included as covariates to account for population stratification and genotyping artifacts. The 

UKBB PTSD GWAS included an additional PC as well as batch and assessment center 

covariates. Studies providing summary data used similar analytic strategies, as previously 

described (8). For each GWAS, SNPs with minor allele frequency <1% or imputation 

information score <0.6 were excluded. To perform a GWAS of PTSD conditioned on LTE, 

the GWAS was performed with LTE included as an additional covariate as either a count 

of LTEs or a binary variable, depending on data availability. The GWAS of the LTE count 

phenotype in the UKBB sample was performed in BOLT-LMM using 6 PCs, batch, and 

assessment center as covariates.

PTSD Meta-analysis

Sample size–weighted fixed-effects meta-analysis was performed using METAL (23). To 

account for different analytic methods and measure scales, effect estimates were converted 

into z scores by dividing effect sizes by standard errors (24). Case-control and quantitative 

GWAS subsets were evaluated for rg to determine if they could be meta-analyzed. To 

account for differences in ascertainment, heritability, and power between case-control and 

quantitative subsets, modified sample size weights were derived as previously described 

(25), assuming 10% population prevalence of PTSD, the estimates of SNP-based heritability 

(h2
SNP), rg, and sample PTSD prevalence. Meta-analysis was conducted on the reweighted 
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z scores. Only SNPs available in >90% of all samples (N ≥ 163,979) were included in 

analyses. Regional annotation plots of genome-wide significant loci were produced using 

Locus-Zoom (26).

Heritability and Genetic Correlation Estimation With Linkage Disequilibrium Score 
Regression

Trait h2
SNP and rg were estimated from GWAS summary statistics using linkage 

disequilibrium score regression (27). The linkage disequilibrium score intercept was used 

to test for inflation of test statistics owing to residual population stratification or other 

artifacts, and the attenuation factor {[intercept − 1]/[mean (χ2) − 1]} was used to determine 

the proportion of inflation of test statistics owing to residual population stratification (Table 

S2 in Supplement 2). Heritabilities were contrasted using a z test where standard errors were 

estimated using the block-jackknife approach. To estimate rg with other disorders, the LD 

Hub web interface was used (28). To identify genetic differences between PTSD and LTE, 

the rgs observed for PTSD and LTE were contrasted using z tests, where significance level 

was determined using Bonferroni correction for the 772 traits tested (p < 6.47 × 10−5).

FUMA

FUMA v1.3.6a (29) was used with the default settings (Supplement 1) to visualize and 

annotate GWAS results. The FUMA pipeline integrates the MAGMA (30) tool to perform 

gene-based, gene-pathway, and tissue-enrichment analyses, with significance based on 

Bonferroni correction. 1000 Genomes Europeans were used as reference genotypes. Tissue-

enrichment analysis included Genotype-Tissue Expression (GTEx) v8 expression data (31).

Cis-Quantitative Trait Locus Mapping

The effects of GWAS loci on transcriptomic regulation of surrounding genes (locus within 

± 1 Mb of the gene transcription starting site) were tested for 49 tissues in GTEx v8 with 

genome-wide false discovery rate correction applied. Using the same criteria, GTEx v8 

data were also used to investigate the effects of GWAS loci on the regulation of alternative 

splicing isoforms. A detailed description regarding GTEx v8 quantitative trait locus (QTL) 

mapping data by the GTEx Consortium is available (32). Briefly, cis-expression QTL 

(eQTL) and cis-splicing QTL mapping was performed using FastQTL (33) including the top 

5 genotyping PCs, probabilistic estimation of expression residuals factors (34), sequencing 

platform, sequencing protocol, and sex as covariates.

Replication Analysis

Summary data from MVPTOT (dbGaP study accession phs001672.v4.p1) was used to 

replicate GWAS results. MVPTOT included 186,689 European ancestry participants who 

completed the PTSD Checklist–Civilian Version and passed QC. Details of MVPTOT have 

been published (35). SNPs were deemed replicated in MVPTOT if they had matching effect 

direction and were nominally significant after Bonferroni correction for the 9 SNPs tested (p 
< .006).
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Multi-Trait Analysis of GWAS

Multi-Trait Analysis of GWAS (MTAG) (36) performs multivariate analysis of genetically 

correlated traits to increase discovery power for each input trait, providing trait-specific 

effect estimates and p values. MTAG was used to perform multivariate analysis with PTSD 

and LTE GWASs. The maxFDR statistic was used to test for MTAG model assumptions 

(Supplement 1).

Phenome-wide Association Study

To understand further how functional changes of significant loci are associated with human 

traits and diseases, we conducted a PheWAS of leading SNPs from PTSD and LTE loci 

using data from the GWAS Atlas (available at https://atlas.ctglab.nl/) (37). Bonferroni 

correction was applied to account for the 4756 phenotypes available that were tested (p 
< 1.05 × 10−5).

RESULTS

The PTSD GWAS meta-analysis included 182,199 participants of European ancestry from 

51 cohorts (Table S1 in Supplement 2). The largest cohort was the UKBB (N = 134,586 

participants). Across the cohorts, PTSD was assessed using a variety of different methods (n 
= 19 methods); the most common methods were versions of the Clinician-Administered 

PTSD Scale (n = 18 studies) and PTSD Checklist (n = 14 studies). The majority of 

participants (91%, n = 165,825, 36 studies) were analyzed based on PTSD symptom scores; 

the remaining participants (9%, n = 16,374, 15 studies) did not have symptom scores 

available and were analyzed based on PTSD case-control status.

PGC-PTSD GWAS Meta-analysis

The h2
SNP of meta-analysis of cohorts analyzed by symptom scores was 0.0547 (SE = 

0.0042, p = 8.9 × 10−39) (Table S2 in Supplement 2). The h2
SNP was similar, albeit not 

significant, in the smaller meta-analysis of case-control cohorts (observed scale h2
SNP = 

0.0580, SE = 0.0259, p = .17). The rg between the symptom score and case-control analyses 

was very high (rg = 0.9646, SE = 0.36, p = .0074). Thus, symptom score and case-control 

GWASs were meta-analyzed. We identified 5 genome-wide significant loci (Table 1, Figure 

1A). Leading variants in significant loci mapped to an intergenic locus on chromosome 1, 

the intronic region of the GABBR1 gene on chromosome 6, the intronic regions of MPP6 
and DFNA5 on chromosome 7, an intron of FOXP2 on chromosome 7, and the intronic 

region of FAM120A on chromosome 9. Gene-based analysis identified 6 significant genes 

(DCAF5, EXD2, FAM120A, FOXP2, GALNT16, and PHF2) (Table S3 in Supplement 2).

PGC-PTSD GWAS Covariate Adjustment for LTE

We repeated the GWAS of PTSD with covariate adjustment for LTE. h2
SNP was 0.0389 

(SE = 0.00340, p = 2.6 × 10−30), 31% lower than the PTSD GWAS without LTE 

covariate adjustment (p = 8.6 × 10−20). There was a genome-wide significant locus in an 

uncharacterized region, CTC-340A15.2, on chromosome 5 that was not identified in the 

PTSD GWAS (Table S4 in Supplement 2). Effects changed slightly for the loci previously 
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identified in the unadjusted PTSD GWAS (Table S4 in Supplement 2). Gene-based analysis 

identified no significant genes.

UKBB LTE GWAS

We performed GWAS of LTE count in the UKBB subset of the PGC-PTSD GWAS data 

(132,988 UKBB participants). Of participants, 30.9% reported 1 LTE, 14.8% reported 2 

LTEs, 6.3% reported 3 LTEs, and 3.3% reported 4 or more LTEs (Table S5 in Supplement 

2). The h2
SNP of LTE count was 0.0734 (SE = 0.005, p = 8.7 × 10−49). Six loci showed 

genome-wide significance (Figure 1B, Table 2). Leading variants in significant loci mapped 

to an intron of PRUNE on chromosome 1, the intron of noncoding RNA AC068490.2 on 

chromosome 2, the intron of SGCD on chromosome 5, an intron of FOXP2 on chromosome 

7 (also identified in the PGC-PTSD GWAS), an intergenic region in chromosome 14 near 

MDGA, and upstream of CCDC8 on chromosome 19. Gene-based analysis identified SGCD 
(chromosome 5: 155,297,354–156,194,799 base pairs, 2965 SNPs, 99 parameters, z = 5.53, 

p = 1.5 × 10−8) and C20orf112 (chromosome 20:31,030,862–31,172,876 base pairs, 296 

SNPs, 21 parameters, z = 4.73, p = 1.13 × 10−6). GWAS of LTE count weighted by 

trauma-specific PTSD prevalences yielded highly similar results, being highly genetically 

correlated to the unweighted count (rg = 1, SE = 0.0016, p < 1.13 × 10−100).

Genetic Overlap Between LTE and PTSD

The rg between PTSD and LTE was high (rg = 0.7239, p < 1 × 10−100). To explore this 

genetic overlap, we contrasted patterns of rg of PTSD and LTE to other traits. Testing 

772 human traits and diseases, we observed 269 and 217 rgs that survived Bonferroni 

multiple testing correction (p < 6.47 × 10−5) for PTSD and LTE, respectively (Table S6 in 

Supplement 2). There was complete directional concordance between PTSD and LTE among 

the 187 rgs that were significant in both analyses. For several traits, while the effect direction 

was concordant, the magnitude of correlation with PTSD was significantly different from the 

correlation with LTE (p < 6.47 × 10−5) (Figure 2). Fifteen traits showed significantly higher 

genetic correlation with PTSD than with LTE (e.g., neuroticism score p = 2.74 × 10−24; 

fed-up feelings p = 1.83 × 10−15; mood swings p = 9.92 × 10−15; loneliness p = 8.07 × 10−8; 

depressive symptoms p = 1.94 × 10−7; irritability p = 2.27 × 10−7). Conversely, risk taking 

showed a significantly higher genetic correlation with LTE (rg = 0.55, p = 2.71 × 10−55) than 

with PTSD (rg = 0.33, p = 3.9 × 10−20; p = 8.09 × 10−6).

Multivariate Analysis of PTSD and Trauma Exposure

MTAG analysis that combined PTSD GWAS meta-analysis and UKBB LTE GWAS reported 

an effective sample size increase of PTSD GWAS from 182,199 to 217,491. There were 8 

genome-wide significant loci for the MTAG PTSD analysis, including 4 loci not identified in 

the PTSD GWAS meta-analysis (Table 1, Figure 1C). Leading variants from additional loci 

mapped to an intergenic region in chromosome 2, the intron of SGCD on chromosome 5, an 

intergenic region on chromosome 16 near ZKSCAN2 and AQP8, and the intron of STAU1 
on chromosome 20. In gene-based analysis, there were 8 significant genes, including 5 

genes not identified from the original GWAS gene-based analysis (CSE1L, DFNA5, FOXP1, 
SGCD, TRIM26) (Table S3 in Supplement 2).
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Cross-Replication in MVPTOT

Of the 9 loci identified across the PTSD GWASs (5 from the PGC GWAS and 4 from 

the MTAG), 4 replicated significantly in MVPTOT (p < .006) (Table 1, Figures S2–S10 in 

Supplement 1). Of the 11 genes identified in gene-based analyses (6 in the GWAS and 

5 in the MTAG), 7 replicated at least at a nominally significant level in MVPTOT (Table 

S3 in Supplement 2). Additionally, of 15 loci identified in MVPTOT GWASs, 9 nominally 

replicated in PGC-PTSD (Table S7 in Supplement 2). Overall, rg between PGC-PTSD and 

MVPTOT was high (rg = 0.8359, SE = 0.0376, p = 2.5 × 10−109).

Functional Consequences of Risk Loci

We examined the functional impact of the 9 GWAS variants associated with PTSD (5 from 

the GWAS and 4 from the MTAG) (Table 1). We observed that 7 loci were related to 

multiple tissue-specific eQTLs (Table S8 in Supplement 2), where 11% of false discovery 

rate–significant eQTLs were in brain regions. A similar trend was present for splicing QTLs 

(Table S9 in Supplement 2), where only 7% of gene-tissue combinations were related to 

brain regions. Further details of the eQTL analysis are provided in Supplement 1.

We found enrichment of genes involved in brain transcriptomic regulation in PTSD (Table 

S10 in Supplement 2). All brain regions tested were at least nominally significant, with 

several remaining significant after Bonferroni correction (MTAG: cortex p = 2.9 × 10−5, 

frontal cortex Brodmann area (BA) 9 p = 3.53 × 10−5, cerebellum p = 1.09 × 10−4, anterior 

cingulate cortex BA 24 p = 1.29 × 10−4, cerebellar hemisphere p = 1.43 × 10−3, nucleus 

accumbens/basal ganglia p = 3.6 × 10−4). There was no significant enrichment detected 

in any sets from the list of curated gene sets and Gene Ontology terms (Table S11 in 

Supplement 2).

Phenome-wide Association Study

We identified 200 phenome-wide significant associations (Table S12 in Supplement 2), with 

more than half of the significant associations related to two domains: psychiatry (34%) and 

metabolism (18%). The strongest PheWAS associations with PTSD and LTE loci included 

height and body mass phenotypes, educational attainment, social interaction, sexual activity, 

risk tolerance, and sleep phenotypes (Supplement 1). Several PTSD loci showed widespread 

pleiotropy across multiple psychiatric traits: rs10266297 (35 significant associations, 40% 

psychiatric domain, top psychiatric result: risk taking p = 1.27 × 10−11), rs10821140 (37 

significant associations, 38% psychiatric domain, top psychiatric result: loneliness p = 1.11 

× 10−11), rs146918648 (44 significant associations, 48% psychiatric domain, top psychiatric 

result: tenseness/restlessness p = 2.13 × 10−9).

DISCUSSION

Our GWASs aimed to advance understanding of PTSD genetics by integrating quantitative 

PTSD phenotypes and LTE exposure information in 182,199 participants of European 

ancestry from 51 cohorts. Overall, quantitative PTSD phenotyping captured similar genetic 

signal to our prior case-control analysis (rg = 0.92–1.14) (8), but with substantially 

higher power. However, by using LTE as a covariate, which hypothetically accounts for 
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unexpressed genetic vulnerability among unexposed participants (12), we found a significant 

reduction in heritability and gene discovery. As high rg between PTSD and LTE would 

be one hypothetical explanation for this result (i.e., multicollinearity), we performed a 

GWAS of LTE and contrasted it to GWAS results for PTSD. We found that LTE has h2
SNP 

comparable to PTSD and high rg compared with PTSD. We leveraged the rg to significantly 

enhance PTSD discovery power using a multivariate approach (36).

One explanation for h2
SNP of PTSD adjusted for LTE being lower than the unadjusted 

estimate is that it may have removed genetic effects on PTSD mediated by trauma exposure 

(12,13). Given that trauma is a prerequisite for PTSD, genetic effects on trauma exposure 

can have mediated (i.e., indirect) effects on PTSD. Indeed, this seems plausible, as our LTE 

GWAS suggested a substantial amount of h2
SNP related to trauma exposure. Therefore, the 

estimated h2
SNP of PTSD conditional on LTE would theoretically reflect only nonmediated 

(i.e., direct) effects and thus would be smaller.

We used rg to quantify the genetic overlap between LTE and PTSD, finding similar 

magnitude to findings from twin studies (5,6). At the same time, incomplete rg between 

these two phenotypes also suggested meaningful genetic differences. To investigate this, we 

contrasted the magnitudes of rg that PTSD and LTE shared with other traits. For most traits, 

rg with PTSD was quite similar in magnitude to rg with LTE. However, we also found that 

negative affect traits, such as neuroticism and irritability, were more strongly correlated with 

PTSD than LTE, whereas risk-taking behavior showed higher correlation with LTE than 

PTSD. This suggests that some variants influence PTSD and LTE through somewhat distinct 

psychological and behavioral mechanisms (5).

The high rg between PTSD and LTE facilitates the application of multivariate approaches 

to PTSD GWASs. Whereas the rg between PTSD and LTE induces loss of power in the 

PTSD analysis when conditioned on LTE, a multivariate approach can benefit from it. 

Our multivariate (36) analysis resulted in a 19% increase in the effective sample size by 

adding LTE count data from the UKBB and identified replicable loci and patterns of tissue 

expression not identified in a standard PTSD GWAS.

The biological mechanisms associated with several of the protein products of identified 

genes have been linked to PTSD pathophysiology in animal and cell models: amygdala-

mediated fear extinction [FAM120A (38)], neuronal transcriptional regulation [FOXP2 

(39)], brain excitatory/inhibitory balance [ARFGEF2, GABBR1, STAUI1 (40)], intracellular 

vesicular trafficking and other synaptic activities [ARFGEF2 (41), MPP6 (42), SEMA6C 

(43), SGCD (44)], and inflammation [HIATL1, TRIM26 (45), TRIM27 (46), ZMYM4, 

ZNF165 (47)]. Blood and brain transcription-wide association and differential gene 

expression studies of PTSD have also implicated some of these genes, including a blood-

based prediction of downregulation of ARFGEF2 in the dorsolateral prefrontal cortex 

(48) and a postmortem study of human PTSD cortex indicating downregulation of CTSS 

expression in the dorsal anterior cingulate cortex and downregulation of OSBPL3 expression 

in the dorsolateral prefrontal cortex (49).
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Interestingly, PTSD loci show widespread pleiotropic associations in PheWAS (50–52). 

Some loci point to factors associated with existing clinical presentations of PTSD (e.g., 

sleep), while others point to potential risk/protective factors for PTSD, such as educational 

attainment and cognitive functioning. Loci may affect PTSD through their direct influence 

on these risk/protective factors. Alternatively, the high degree of pleiotropy shown by 

these loci suggests that they could influence PTSD risk through a more general alteration 

of biological function (37), such as general predisposition to psychiatric illness (53). 

In particular, metabolic phenotypes such as height and body mass also appeared to be 

enriched in our PheWAS. This could be the influence of these loci on previously implicated 

inflammatory mechanisms for PTSD (8) or simply an artifact of their overrepresentation 

in the GWAS Atlas. Nevertheless, the broad variety of behavioral and clinical domains 

associated with these loci suggest complex etiologic heterogeneity of PTSD that could relate 

to subtypes (54).

Further characterization of significant loci via eQTL analyses identified expression across a 

variety of tissue types. Given the high degree of shared eQTL architecture between tissues, 

the presence of some of these tissues might not be directly related to PTSD pathogenesis. 

Indeed, on the genome-wide level, our tissue enrichment analysis suggests that only brain 

tissues are relevant. The brain regions implicated are consistent with functional magnetic 

resonance imaging and structural magnetic resonance imaging findings of PTSD. BA 24 

(as part of the ventral anterior cingulate cortex) is implicated in PTSD response to trauma-, 

fear-, and threat-related stimuli (55,56). BA 9 (as part of the dorsomedial prefrontal cortex) 

reflects response to self-referential thought, theory of mind, empathy, and moral judgments 

and shows greater engagement in people with PTSD and trauma-exposed individuals 

(55,57,58). Nucleus accumbens expression is consistent with the neuroimaging evidence 

of its role in the reward system, which is prominently affected with emotional numbing 

symptoms of PTSD (59–62).

Limitations

Stress-related disorders are phenotypically complex and heterogeneous (63), which limits 

discovery power and complicates translation to clinical application. The strategies proposed 

for understanding and addressing heterogeneity in major depressive disorder, such as 

harmonization of measures, additional phenotypic measures, and investigations of subtypes, 

could be applied to PTSD as additional avenues to enhance discovery power (64). Sex 

differences may also contribute a significant source of heterogeneity (8,65–68). Our analyses 

were restricted to participants of European ancestry given power limitations for other 

ancestry groups. However, urgent scientific and ethical reasons call for extending analyses 

to individuals of non-European ancestry (69). The PGC-PTSD group has actively been 

gathering data to increase representation from diverse ancestry and developing methods 

to optimize analyses in admixed populations (70). As sample sizes increase, future 

investigations will be powered to investigate ancestry and sex-specific genetic influences 

on PTSD and trauma exposure. In performing a GWAS of cumulative LTE, we identified 

several significant loci, including loci previously identified in GWASs of childhood trauma 

exposure (14). A full investigation of the genetic basis of LTE is clearly warranted. Future 

work could also examine the relationship between PTSD and specific types or numbers 
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of trauma exposure, as they plausibly have different relationships with PTSD (6) and may 

therefore be more informative than our cumulative measure for LTE. Finally, trauma was 

assessed via participant self-report, which may vary with mood and PTSD symptoms at the 

time of reporting (71) and could inflate genetic associations with PTSD.

Conclusions

Novel replicable risk loci for PTSD identified by incorporating quantitative symptom data 

and trauma exposure information into GWASs offer us new insights into the genetic 

architecture of PTSD. Beyond the nature of LTE as an environmental exposure, there is 

a heritable component to LTE that overlaps highly with PTSD to impart an enhanced 

understanding of PTSD genetics. In future investigations, the genetic architectures of 

PTSD and LTE could be further delineated using causal mediation analysis (72), which 

can provide estimates of LTE-related mediation and gene-by-environment interaction. Our 

results reinforce the notion that in addition to larger samples, more detailed phenotyping 

and sophisticated modeling are needed to account for the role of environmental exposure 

in developing PTSD, as these influence GWAS discovery power. Widespread pleiotropy of 

significant loci suggests that cross-disorder analysis with PTSD (73,74) will enhance our 

understanding of how these loci modify risk for PTSD and related disorders.
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Figure 1. 
Manhattan plots of genome-wide association study (GWAS) associations. The x-axis is the 

position on the genome, ordered by chromosome and base-pair position. The y-axis is the 

−log10 p value of association. Each dot represents the association between a given single 

nucleotide polymorphism and the trait. Colors alternate between chromosomes, with odd 

chromosomes colored blue and even chromosomes colored teal. (A) Results of posttraumatic 

stress disorder GWASs. (B) Results of lifetime trauma exposure GWASs. (C) Posttraumatic 

stress disorder–specific results of MTAG (Multi-Trait Analysis of GWAS) analysis of 

posttraumatic stress disorder and lifetime trauma exposure.
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Figure 2. 
Comparison of the genetic correlations of posttraumatic stress disorder (PTSD) and lifetime 

trauma exposure (LTE) with other traits. The x-axis is the genetic correlation between LTE 

and a given trait from the LD Hub. The y-axis is the genetic correlation between PTSD and 

a given trait. Each dot depicts a given trait. Colored (black, red, or blue) dots indicate traits 

with significant genetic correlation to both PTSD and LTE after Bonferroni adjustment. 

Noncolored (gray) dots indicate traits where genetic correlation is not significant after 

Bonferroni adjustment. Blue dots indicate traits with significantly higher genetic correlation 

with PTSD than with LTE. Red dots indicate traits with significantly higher correlation with 

LTE than with PTSD. The top 5 traits with a significantly higher correlation to PTSD than 

LTE and top trait with significantly higher correlation to LTE than PTSD have been labeled.
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