UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Efficient Nonlinear Problem Solving using Casual Commitment and Analogical Replay

Permalink
https://escholarship.org/uc/item/4jh048vi

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Author
Veloso, Maniela M.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4jh048vr
https://escholarship.org
http://www.cdlib.org/

Efficient Nonlinear Problem Solving using Casual
Commitment and Analogical Replay *

Manuela M. Veloso
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

mmv@cs.cmu.edu

Abstract

Complex interactions among conjunctive go-
als motivate the need for nonlinear plan-
ners. Whereas the literature addresses least-
commitment approaches to the nonlinear planning
problem, we advocate a casual-commitment ap-
proach that finds viable plans incrementally. In
essence, all decision points are open to introspec-
tion, reconsideration, and learning. In the pres-
ence of background control knowledge — heuristic
or definitive — only the most promising parts of
the search space are explored to produce a solu-
tion plan efficiently. An analogical replay mecha-
nism is presented that uses past problem solving
episodes as background control guidance. Search
efforts are hence amortized by automatically com-
piling and reusing past experience by derivational
analogy. This paper reports on the full implemen-
tation of the casual-commitment nonlinear prob-
lem solver of the PRODIGY architecture. The prin-
ciples of nonlinear planning are discussed, the al-
gorithms in the implementation are described in
some detail, and empirical results are presented
that illustrate the search reduction when the non-
linear planner combines casual commitment and
analogical replay.

Introduction - Why Casual
Commitment

Nonlinear planning was developed to deal with prob-
lems like Sussman’s anomaly, which could not be solved
by rudimentary linear planners such as sTRIPS [Fikes
and Nilsson, 1971, Sussman, 1973). Least-commitment
planners handle this anomaly by deferring decisions

*This research was supported in part by ONR grants
N00014-79-C-0661 and N0014-82-C-50767, DARPA con-
tract number F33615-84-K-1520, and NASA contract NCC
2-463. The views and conclusions contained in this doc-
ument are those of the authors alone and should not be
interpreted as representing the official policies, expressed
or implied, of the U.S. Government, the Defense Advanced
Research Projects Agency or NASA.
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while building the plan [Sacerdoti, 1975]. These plan-
ners typically output a partially ordered plan as op-
posed to a totally ordered one, and consequently the
term nonlinear plan is used. However, the essence of
the nonlinearity is not in the fact that the plan is par-
tially ordered, but in the fact that a plan need not be
a linear concatenation of complete subplans, each for a
goal presumed independent of all others [Veloso, 1989).

We advocate a casual commitment approach
[Minton et al., 1989)], as opposed to a least commitment
approach, to the nonlinear planning problem. This
paper reports on the full implementation of a casual-
commitment nonlinear problem solver, which we refer
to as NoLIMIT, standing for Nonlinear problem solver
using casual commitment. This work takes context
within the PRODIGY integrated intelligent architecture
[Carbonell et al., 1990].

NOLIMIT reasons about totally ordered plans that
are nonlinear, 1.e., the plans cannot be decomposed
into a sequence of complete subplans for the conjunc-
tive goal set. At choice points, NOLIMIT commits to
a particular alternative, generating the planning steps
and testing their consequences, while searching for a
solution. All decision points (operator selections, goal
orderings, backtracking points, etc.) are open to intro-
spection and reconsideration. We claim that nonlinear
planning refers to searching to attain a sei of goals,
allowing interleaving of goals and subgoals at different
depths of search. Hence, reasoning about totally or-
dered plans is not, per se, a characteristic of a linear
planner, as reasoning about partially ordered plans is
not either, per se, a characteristic of a nonlinear plan-
ner [Rosenbloom et al., 1991]. In fact, NoLiMIT gen-
erates a partially ordered plan from a totally ordered
solution found, by simply analyzing the dependencies
among the steps, and relaxing unnecessary constraints
[Veloso et al., 1990].

In a least-commitment planning strategy [Sacerdoti,
1975, Wilkins, 1989], decisions are deferred until forced
by constraints. Typically conjunctive goals are as-
sumed to be independent and worked separately, pro-
ducing unordered sets of actions to achieve the goals.
From time to time, the planner fires plan critics that
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check for interactions among the individual subplans.
If conflicting interactions are found, the planner com-
mits to a specific partial ordering that avoids these
conflicts. In cases where actions stay unordered dur-
ing the entire planning process, a final partially ordered
plan is produced. In this strategy, it is NP-hard [Chap-
man, 1987] to determine if a given literal is true at a
particular instant of time while planning, when actions
are dependent on the state of the world, as all paths
through the partial order must be verified.

Using a casual-commitment strategy, in the worst
case, also involves an exponential search over the space
of solutions. NOLIMIT uses control knowledge to re-
duce this exponential search. Provably incorrect alter-
natives are eliminated and heuristically preferred ones
are explored first.

The PRODIGY architecture is a testbed for exploring
machine learning approaches to automatically acquir-
ing control knowledge. Casual commitment provides a
framework in which it is natural to reason and learn
about the control decisions of the problem solver, as
successful and failed commitments are explored and
can be analyzed. The learned control knowledge trans-
forms a simple casual-commitment search strategy into
an efficient one.

In this paper we present how we automatically learn
control knowledge by combining the basic nonlinear
casual-commitment problem solver with an analogical
replay mechanism. The derivational analogy learn-
ing mechanism presented consists of organizing and
reusing derivational traces of search-intensive problem
solving episodes. These search traces are annotated
with explicit justifications of successful and failed con-
ditions explored by the casual-commitment problem
solver. Subsequent reasoning in similar new problems
is driven by the derivational analogy replay machinery.

NOLIMIT - The Problem Solving
Algorithm

In order to solve problems in a particular domain,
PRODIGY must first be given a domain theory, includ-
ing a set of operators. Each operator has a precon-
dition expression and a list of effects that describe
how the application of the operator changes the world.
Precondition expressions are well-formed formulas in
a form of predicate logic encompassing negation, con-
junction, disjunction, and typed-existential and uni-
versal quantification. Regular effects are atomic for-
mulas that describe the literals that are added or
deleted from the current state when the operator is
applied. Conditional effects represent changes to the
world that are dependent on the state in which the
operator is applied [Minton et al., 1989]. NoLimiT fol-
lows a means-ends analysis backward chaining search
algorithm. NoLIMIT’s nonlinear character stems from
working with a set of goals in this cycle, as opposed
to the top goal in a linearized goal stack.
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1. Check if the goal statement is true in the current
state, or there is a reason to suspend the current search
path.

If yes, then either, show the formulated plan,
backtrack, or take appropriate action.

2. Compute the set of pending goals G, and the set of
possible applicable operators A.

3. Choose a goal G from G or select an operator A from
A that is directly applicable.

4. If G has been chosen, then
e ezpand goal G, i.e., get the set O of relevant in-

stantiated operators for the goal G,
e choose an operator O from O,
e go to step 1.

5. If an operator A has been selected as directly appli-
cable, then
e apply A,

e go to step 1.

Figure 1: A Skeleton of NoOLMIT’s Search Algorithm.

The algorithm in Figure 1 describes the basic skele-
ton of NOLIMIT’s search algorithm. Dynamic goal se-
lection enables NoLIMIT to fully interleave plans, ex-
ploiting common subgoals and addressing issues of re-
source contention.

The different commitments along the search algo-
rithm as presented in Figure 1 may lead eventually into
dead-end situations. For example, a failure occurs if we
reach a subgoal that is unachievable for lack of any rel-
evant operators. NOLIMIT has several heuristics that
propose suspending a search path under various condi-
tions such as when a path becomes unpromising (goal
and state loop detections) or when a path becomes too
long or costly according to some threshold. Upon fail-
ure, NOLIMIT backtracks to a previous choice point. It
has the ability to call backtracking control knowledge
that select (or reject) particular backtracking points,
thus performing intelligent allocation of resources and
permitting dependency-directed backtracking or other
interesting disciplines [Drummond and Currie, 1989,
Anderson and Farley, 1990].

Control knowledge

The search algorithm described in Figure 1 involves
several choice points, to wit: the operator to choose
to achieve a particular goal; the bindings to choose
in order to instantiate the chosen operator; the goal to
select from the set of pending goals and subgoals; apply
an applicable operator or continue subgoaling; suspend
the search path being explored; upon failure, the past
choice point to backtrack to, or the suspended path to
reconsider for further search.

The casual-commitment problem solver produces a
complete search tree, encapsulating all decisions ex-
plored right and wrong ones as well as the fi-
nal solution. The analogical reasoner uses this in-
formation to automatically generate and store an-
notated problem solving episodes (cases) into a li-
brary of solved plans [Carbonell and Veloso, 1988,



Veloso and Carbonell, 1991b). This case-based ap-
proach combined with the nonlinear planner allows
past experience to guide the decision points in similar
new planning situations [Veloso and Carbonell, 1990).

An Example in a Simple Transportation
Domain

Consider a generic transportation domain with three
simple operators that load, unload, or move a
ROCKET as shown in Figure 2. Of course NoLIMIT
solves much more complex and general versions of this
domain. The present minimal form suffices to illustrate
the casual-commitment strategy in nonlinear planning
allowing full interleaving of goals and subgoals. In
[Veloso et al., 1990] we show several examples in a com-
plex logistics transportation domain.

(UNLOAD-ROCKET (MOVE-ROCKET

(LOAD-ROCKET .
(params (params nil)

(params

((ob) Object) ((obj Object) (preconds
(loc Location))) (loc Location))) (at Rocket locA))
(preconds (preconds (effects
(and (and ((add
(at obj loc) (inside obj Rocket) (at Rocket locB))
(at Rocket loc))) (at Rocket loc))) (del
(effects (effects (at Rocket locA)))))
((add ((add

(inside obj) Rocket))
(del
(at obj loc)))))

Figure 2: The ONE-WAY-ROCKET Domain.

(at obj loc))
del

(inside obj Rocket)))))

The operator MOVE-ROCKET shows that the
ROCKET can move only from a specific location locA
to a specific location locB. This transforms this cur-
rent general domain into a ONE-WAY-ROCKET do-
main. An object can be loaded into the ROCKET
at any location by applying the operator LOAD-
ROCKET. Similarly, an object can be unloaded from
the ROCKET at any location by using the operator
UNLOAD-ROCKET.

Suppose we want to solve a simple two-object prob-
lem. In the initial state objl1, 0bj2, and the ROCKET
are at location locA. The problem consists in moving
the two objects objl and 0bj2 to the location locB.
So the goal statement is the conjunction (and (at obj!
locB) (at 0bj2 locB)). Without any analogical guidance
(or other form of control knowledge) the problem solver
searches for the goal ordering that enables the problem
to be solved. Accomplishing either goal individually,
as a linear planner would do, inhibits the accomplish-
ment of the other goal. A precondition of the operator
LOAD-ROCKET cannot be achieved when pursuing
the second goal (after completing the first goal), be-
cause the ROCKET cannot be moved back to the sec-
ond object’s initial position (i.e. locA). So interleaving
of goals and subgoals at different levels of the search is
needed to find a solution.

NoLiIMIT solves this problem, where linear planners
fail (but where of course other least-commitment plan-
ners also succeed), because it switches attention to the
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Figure 3: The Complete Conceptual Tree for a Successful
Solution Path. The numbers at the nodes show the erecu-
tion order of the plan steps.

conjunctive goal (at 0bj2 locB) before completing the
first conjunct (at obj! locB). This is shown in Figure 3
by noting that, after the plan step 1 where the operator
(LOAD-ROCKET objl locA) is applied as relevant to
a subgoal of the top-level goal (at 0bjI locB), NoLiMIT
suspends processing and changes its focus of attention
to the other top-level goal and applies, at plan step 2,
the operator (LOAD-ROCKET obj2 locA) which is rel-
evant to a subgoal of the goal (at 0bj2 locB). In fact
NoLinmiT explores the space of possible attention foci
and only after backtracking does it find the correct
goal interleaving. The idea is to learn next time from
its earlier exploration and reduce search dramatically.

A solution to this problem is the plan shown in
Figure 3: (LOAD-ROCKET objl locA), (LOAD-
ROCKET obj2locA) (MOVE-ROCKET), (UNLOAD-
ROCKET obj2 locB), (UNLOAD-ROCKET objl
locB3). In [Veloso et al., 1990] we show the algorithm
that NOLIMIT uses to further return the partial plan
embedded in this encountered totally ordered plan by
simply analyzing the dependencies among the plan
steps.

Replay by Derivational Analogy

Derivational analogy is a reconstructive method by
which lines of reasoning are transferred and adapted
from similar earlier problem-solving episodes to the
new problem to be solved [Carbonell, 1986]. The abil-
ily to replay previous solutions requires that the prob-
lein solver be able to introspect into its internal deci-
sion cycle, recording the justifications for each decision
during its extensive search process. These justifica-
tions augment the solution trace and are used to guide
the future reconstruction of the solution for subsequent
problem solving situations where equivalent justifica-
tions hold true.

In a casual-commitment search approach these jus-
tifications arise in a natural way, covering the set of
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successful decisions, and pointing out other failed al-
ternatives also explored [Veloso and Carbonell, 1990].
Decision choices according to the algorithm in Figure |
involve creating goal or operator decision nodes. No-
LIMIT may either apply an operator whose precondi-
tions are satisfied (if any), i.e. its left hand side is true
in the current state, or continue subgoaling in an un-
matched precondition of a different chosen operator.
Figure 4 shows the skeleton of the different decision
nodes. The different justification slots capture the con-
text in which the decision is taken and the reasons that
support the choice.

Goal Node Applied Op Node Chosen Op Node
step :step step
:sibling-goals :sibling-goals :sibling-relevant-ops

:sibling-applicable-ops :sibling-applicable-ops :why-this-operator

why-subgoal ‘why-apply relevant-to
‘why-this-goal :why-this-operator
:precond-of

(a) (b) (<)

Figure 4: Justification Record Structure: (a) At ¢ Goal
Decision Node; (b) At an Applied Operator Decision Node;
(c) At a Chosen Operator Decision Node.

The step slots show the selection done. The sibling-
slots enumerate the alternatives to the choice made.
NoLIMIT annotates the reason why these alternatives
were not pursued further according to its search expe-
rience (either not tried, or abandon due to a described
failure reason). The why- slots present the reasons (if
any) the particular decision was taken. These reasons
can range from arbitrary choices to a specific control
rule or guiding case that dictated the selection. These
reasons are tested at replay time and are interpretable
by NoLiMmiT. Finally the subgoaling structure is cap-
tured by the slots precond-of at a goal node and the
slot relevant-to at a chosen operator node.

The problem and the generated annotated solution
become a case in memory. The case corresponds to
the search tree compacted into the successful path as
a sequence of annotated decision nodes as presented in
Figure 4. As we describe below, a case is not used as
a simple “macro-operator” [Fikes and Nilsson, 1971,
Minton, 1985] as it guides and does not dictate the
reconstruction process. Intermediate decisions corre-
sponding to steps internal to each case can be bypassed
or adapted, if their justifications do not longer hold.

The general replay mechanism involves a complete
interpretation of the justification structures in the new
context, and development of adequate actions to be
taken when transformed justifications are no longer
valid. We follow a satisficing paradigm where planning
effort is minimized by recycling as much of the old so-
lution as possible. The syntactic applicability of an
operator is always checked by simply testing whether
its left hand side matches the current state. Seman-
tic applicability is checked by determining whether the
justifications hold (i.e. whether there is still a reason to

apply this operator). In case the choice remains valid
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in the current problem state, it is merely copied, and in

case it is not valid the system has three alternatives:

1. Replan at the particular failed choice by estab-
lishing the current subgoal by other means sub-
stituting the new choice for the old one in the
solution sequence.

2. Re-establish the failed condition by adding it as
a prioritized goal in the planning and, if achieved,
simply insert the extra steps into the solution se-
quence.

3. Attempt to perform the partially unjustified ac-
tion anyway; if it is successful, the system inter-
acts with the experimentation module to refine its
knowledge according to the experiment.

The replay mechanism in the context of casual com-
mitment as opposed to least commitment [Kambham-
pati, 1989] allows naturally to combine guidance from
several past problem solving episodes. Replicated
adapted decisions can be interleaved and backtracked
upon within the totally ordered reasoning plan. We
now provide examples that illustrate the derivational
analogy replay mechanism in terms of its effect in prob-
lem solving search reduction.

Pursuing the One-Way-Rocket Example

Let us return to the ONE-WAY-ROCKET problem to
illustrate the derivational replay process. While solv-
ing the two-object problem, NOLIMIT automatically
annotates the decisions taken with justifications that
reflect its experience while searching for the solution.
As an example, suppose that the correct decision of
choosing to work on the goal (inside obji ROCKET)
was taken after having failed when working first on (at
ROCKET locB). The decision node stored for the goal
(inside objl ROCKET) is annotated with sibling goal
failure as illustrated in Figure 5. (at ROCKET locB)
was a sibling goal that was abandoned because No-
LIMIT encountered an unachievable predicate, i.e. (at
ROCKET locA), as there is no operator that moves
the ROCKET back to locA.

Frame of class goal-decision-node
:step (inside objl ROCKET)
:sibling-goals
(((inside obj2 ROCKET) not-tried)
({at ROCKET locB) (:no-relevant-ops (at ROCKET locA))))
:sibling-applicable-ops NIL
‘why-subgoal NIL
:why-this-goal NIL
precond-of (UNLOAD-ROCKET objl locB)
ctep of next-decision-node (LOAD-ROCKET objl locA)

Figure 5: Saving a Goal Decision Node with its Justifica-
tions.

Let NoLIMIT use the two-object problem to guide
similar problems, namely moving three and four ob-
jects. We show the empirical results in Table 1. The
solution is replayed whenever the same step is a pos-
sible step and the justifications hold. For example, in
using the two-object case as guidance to the three- (or



four-) object problem, the failure justification for mov-
ing the rocket - “no-relevant-ops (at ROCKET locA)”
is tested and this step is not replayed until all the ob-
jects are loaded into the rocket.

Replayed cases
New Base | Case | Case | Case
Prob || Search | 20bjs | 3objs | 4objs
[20bjs 4.5s 2s 2s 2s
3objs || 14.75s | 4.75s | 3.25s | 3.25s
4objs 117.5s | 7.75s | 7.75s | 5.75s

Table 1: Replaying a Justified Past Solution.

The improvements obtained are high as the new
cases are extensions of the previous cases used for guid-
ance. Maximal improvement is achieved when the case
and the new problem differ substantially (two-objects
and four-objects respectively). We further show exper-
iments from other two substantially more complicated
domains.

Process-Job Planning and
Extended-STRIPS Examples

We ran NoLiMIT without analogy over a set of prob-
lems in the process-job planning and in the extended-
STRIPS domains !. We accumulated a library of cases,
i.e. annotated derivational solution traces. We then
ran again a new set of problems using the case library
organized as a linear sequence of past problem solv-
ing episodes. We used a direct rudimentary similar-
ity metric [Veloso and Carbonell, 1991a) that matched
the goal predicates, allowed substitutions for elements
of the same type, and did not consider any relevant
correlations. Figures 6(a) and (b) show the results for
these two domains. We plotted the average cumulative
number of nodes searched.

We note from the results that analogy showed an im-
provement over basic search both for the process-job
planning and scheduling domain, and for the extended-
sTRIPS domain. The test problems in these domains
are considerably more complex than in the simple
transportation problems shown above. However even
the simple similarity metric used can lead to search im-
provements in the problem solver. In [Veloso and Car-
bonell, 1991a] we show results of further search reduc-
tion upon using a more sophisticated similarity metric.
These results illustrate the point that learning from an-
alyzing successful and failed choice points reduces the
search effort of the casual-commitment problem solver.

Conclusions and Future Work

In this paper we reported on NoLIMIT as a completely
implemented nonlinear problem solver that uses an in-
formed casual-commitment strategy to guide its search
process. NOLIMIT has the ability to call user-given

!This set is a sampled subset of the original set used by
[Minton, 1988].
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or automatically learned control knowledge in all its
choice points. NoLIMIT efficiently solves problems
in several other different domains, e.g. multi-agent
stripsworld, blocksworld, matrix-algebra, transporta-
tion, and process-job planning worlds. The system has
additional features not reported here, such as a so-
phisticated TMS that enables deduction and control
of beliefs, and a type hierarchy to organize the objects
of the world.

We showed how the casual-commitment planner be-
comes more efficient by learning by derivational anal-
ogy. We only covered in this paper very briefly the
derivational analogy full mechanism. We focused on
showing the results obtained in terms of search reduec-
tion. Our current work in analogical problem solving
has new contributions beyond the original derivational
analogy framework as presented in [Carbonell, 1986).
Besides the memory model under development [Veloso
and Carbonell, 1991a] we refined the initial framework



in the context of a nonlinear planner. We deal there-
fore with a considerably larger space of decisions and
with more complex planning problems.

Previous work in the linear planner of PRODIGY used
explanation-based learning (EBL) techniques [Minton,
1988] to extract from a problem solving trace the ex-
planation chain responsible for a success or failure and
compile search control rules therefrom. The axioma-
tized domain knowledge was also used to learn abstrac-
tion layers [Knoblock, 1991], and statically generate
control rules [Etzioni, 1990]. We are in the process of
extending the nonlinear planner into a hierarchical one
by using Knoblock’s abstraction hierarchies. We are
also analyzing the extension of the EBL and STATIC
modules to the nonlinear framework. The use of ca-
sual commitment as in the linear planner makes the
extension look promisingly successful.
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