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Changes in gene expression following long-term in vitro
exposure of Macaca mulatta trophoblast stem cells to
biologically relevant levels of endocrine disruptors

Uros Midicl, Benjamin Goheenl, Kailey A. Vincentl, Catherine A VandeVoort2, and Keith E.
Latham1:3

1Department of Animal Science, Department of Obstetrics, Gynecology and Reproductive
Biology, and Reproductive and Developmental Sciences Program, Michigan State University

2California National Primate Research Center and Department of Obstetrics and Gynecology,
University of California, Davis, California 95616

Abstract

Trophoblast stem cells (TSCs) are crucial for embryo implantation and placentation.
Environmental toxicants that compromise TSC function could impact fetal viability, pregnancy,
and progeny health. Understanding the effects of low, chronic EDC exposures on TSCs and
pregnancy is a priority in developmental toxicology. Differences in early implantation between
primates and other mammals make a nonhuman primate model ideal. We examined effects of
chronic low-level exposure to atrazine, tributyltin, bisphenol A, bis(2-ethylhexyl) phthalate, and
perfluorooctanoic acid on rhesus monkey TSCs in vitro by RNA sequencing. Pathway analysis of
affected genes revealed negative effects on cytokine signaling related to anti-viral response, most
strongly for atrazine and tributyltin, but shared with the other three EDCs. Other affected
processes included metabolism, DNA repair, and cell migration. Low-level chronic exposure of
primate TSCs to EDCs may thus compromise trophoblast development in vivo, inhibit responses
to infection, and negatively affect embryo implantation and pregnancy.

Key words/phrases
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Introduction

Endocrine disrupting chemicals (EDCs) are widespread in the environment and detectable in
serum, cord blood, placenta and other tissues, demonstrating chronic low-level exposure
outside of occupational exposures in at least some populations [1]. Animal model studies
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have revealed adverse effects of EDCs on fetal development [2], and on embryo
implantation, placental cells, and pregnancy [3]. Additional studies revealed adverse effects
on trophoblast cell viability, lipid metabolism, in vitro invasiveness, and steroid biogenesis,
along with disruptions in the expression of select genes examined [4-14]. EDCs can also
negatively affect the immune system, which is also crucial for embryo implantation and
defense of fetus and placenta against infection. Atrazine, for example, negatively impacts
immune systems in a range of organisms, including effects in developing fish and both age-
and sex-dependent effects in mammals [15, 16]. These adverse effects on placenta and
trophoblast are of concern due to the crucial role of the placenta in mammalian reproduction,
and the impact of placenta function on progeny health.

Investigating the effects of EDCs on early implantation and placenta formation presents
challenges because most animal models are phylogenetically distant from humans with
significant differences in anatomical structure [17, 18]. While Old World nonhuman
primates, such as rhesus monkeys, share many reproductive features with humans, in vivo
studies with this species can be prohibitively expensive. The function of trophoblast cells in
the rhesus placenta is very similar to humans, including the nature of the interhemal barrier
during trophoblast invasion [19]. Implantation and early placenta function are particularly
difficult to study in vivo due to relative inaccessibility of embryos and early implantation
sites for observation. Nonhuman primate cytotrophoblast cells recovered from term
placentas have been used for decades for in vitro studies to elucidate early placenta function
[20], but that model has limitations. More recently, trophoblast stem cells (TSCs) generated
directly from rhesus monkey embryos have been characterized and utilized to understand
better trophoblast function pathways [20, 21].

Developing an in vitro placenta model to test the effects of EDCs on early pregnancy faces
many challenges. Trophoblast cells display unique patterns of gene expression and
specialized modes of epigenetic gene regulation, including genome imprinting and X
chromosome dosage compensation [22-25], and a global pattern of DNA hypomethylation
relative to embryonic stem cells (ESCs) and somatic tissues [26]. These unique properties of
trophoblast cells limit the ability of data from somatic lineage tissues and cells to be
extrapolated to understand potential trophoblast sensitivities and responses to environmental
insults, such as EDC exposure. Additionally, in vitro studies employing either high
concentrations and/or short durations of EDC exposure do not accurately model actual
environmental exposure and do not capture potential long-term adaptive responses in target
cells. Similarly, studies employing transformed cell lines and rodent models do not precisely
model human trophoblast function and placentation. Moreover, studies that examine effects
of EDCs on limited sets of marker genes provide limited mechanistic understanding.

To understand better the potential effects of chronic low-level exposure to EDCs on embryo
implantation and potential impact on pregnancy, we applied low, environmentally relevant
doses of five EDCs [atrazine (ATR), tributyltin (TBT), bisphenol A (BPA), bis(2-ethylhexyl)
phthalate (DEHP), and perfluorooctanoic acid (PFOA)] to a rhesus monkey trophoblast stem
cell (TSC) line in vitro for four weeks. These EDCs were selected because of their
prevalence in the environment and numerous reports of effects on developing systems
(reviewed, [1]). Atrazine is widely used as a pesticide, particularly in agricultural areas
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growing corn, detectable in some water supplies [27], is associated with CNS, endocrine,
obesity, insulin resistance, cancer, mitochondrial dysfunction, immune system, and other
effects, and may work through multiple mechanism, including epigenetic changes [28].
Perinatal and lactational ATR exposure also affects progeny immune function [16, 29].
Tributyltin use has been discontinued, but remains present in the environment, and has
obesogenic activities, in part attributable to transcriptional signaling and changes in DNA
methylation effects, and rts diverse effects on reproduction mediated by interference with
endocrine signaling (e.g., follicle stimulating hormone, testosterone, aldosterone, estradiol),
as well as carcinogenesis and respiratory system effects [33]. BPA is also widely used in
household products and prevalent in the environment, has been extensively studied for its
estrogenic effects, but impacts other endocrine pathways, and has non-estrogenic effects and
effects on DNA methylation [34, 35]. PFOA and other perfluoroalkyl substances are
widespread in the environment around the world, impact estrogen and thyroid signaling,
have immunotoxic effects, and are associated with negative effects on fetal growth and other
health effects [36]. The four-week treatment period was selected to encompass four passages
during treatment, in order to allow time for any DNA replication-dependent epigenetic
changes that would generate stable changes in gene expression and phenotype, and thereby
reveal potential effects of low-level, constant, environmentally relevant exposures on the
expression of genes contributing to trophoblast functions, without the complications of acute
toxicity. Because the intent was to assess effects of environmentally relevant exposures
without overt toxicity, a single comparatively low concentration was selected for each
compound. We then determined the global effects of these treatments on cellular phenotype
by RNA deep sequencing (RNAseq) followed by Ingenuity Pathway Analysis to identify
major affected biological pathways, processes and functions, and pertinent upstream
regulators associated with those effects. The combination of RNAseq and pathway analysis
thus provided a global assessment of altered functional states of TSCs following low level
chronic EDC exposure.

To our knowledge, this is the first systematic and in-depth analysis of the effects of chronic
low-level EDC exposure on trophoblast gene expression in an animal model closely related
to the human. The major outcomes of the analysis and the potential relevance of these results
to human reproductive health and risk assessment are discussed.

Materials and Methods

Cells and cell culture

TSCs (line 119-T) were isolated previously from rhesus monkey blastocysts and
characterized using a panel of antibodies to detect TSC biomarkers [21]. On the basis of X-
and Y-linked gene expression in this study (absence of expression of two Y-linked genes that
are expressed in male blastocysts, RPS4Y1, RPS4Y2, and biallelic expression of genes that
escape X chromosome inactivation), we determined that the 119-T TSCs were derived from
a female embryo. Additionally, to assess more thoroughly the transcriptional state of our
cells, RNAseq data acquired in this study were used to compare marker gene expression
profiles to those seen in rhesus monkey ORMES6 ESCs [37], and human embryo
trophectoderm and epiblast lineages [38], and trophoblast cells [39, 40]. This included
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examination of 14 genes expressed more highly in human blastocyst trophectoderm (TE)
cells compared to human epiblast, 15 additional genes reported as TE markers, and 13 genes
expressed more highly in human epiblast as compared to TE cells [38].

TSCs were maintained in DMEM/F-12 (Invitrogen) supplemented with 15% fetal bovine
serum (FBS; Hyclone), 1% minimum essential medium (MEM) nonessential amino acids
(Invitrogen), 1 mM glutamine (Sigma), 0.1 mM B -mercaptoethanol, and 1x penicillin/
streptomycin sulfate (Invitrogen) on plates coated with human placental collagen (Sigma)
[21]. Medium was changed daily. The cells were grown to confluence and passaged weekly
by rinsing wells with PBS, incubating with 1.0 mL trypsin-EDTA, and transferring 20% of
cell suspension to each new well. Treatments (see below) began when cells first reached
confluence and continued for 4 weeks, including during passage. Untreated and vehicle-
treated control cultures were also processed for analysis. Cells in the different groups grew
at the same rate. There was no apparent cell death and cultures in all groups reached
confluence as expected prior to passage. Because there were no obvious effects on cell
survival and because the levels of toxins applied were low and below toxic levels reported
elsewhere, no detailed measurements of cell survival were made. Expression of alpha
fetoprotein, CDX2, cytokeratin 7, vimentin and hCG were consistent between start and end
of study (data not shown).

After 4 weeks of treatment with the toxicant or control media, cells were detached with
0.25% trypsin-EDTA (Gibco). They were then centrifuged at 3000 x g for 3 min,
supernatant removed, and the cell pellet resuspended in 100 pL Picopure lysis buffer
(Applied Biosystems). Lysates were stored at -80°C until shipment.

The study design provides a relatively continuous low-dose toxicant exposure, which is
likely a more realistic model of implantation, as well as the fetal and placental compartments
during pregnancy. In the case of BPA, for example, urinary clearance occurs through liver
glycosylation, and thus the level of unconjugated BPA exposure is dependent on the route of
exposure. Non-oral exposure results in higher levels of unconjugated BPA than oral doses
that are passed through the liver after absorption in the gastro-intestinal track [41-43].
Human exposure to BPA through dermal, buccal and inhalation routes can lead to essentially
continuous levels of serum BPA. The levels of toxicants that may be present in the fetal and
placental compartments are even more complex. Very few studies have been performed that
compare maternal and fetal levels of toxicants over time. A recent study of BPA exposure in
rhesus monkeys showed that BPA quickly entered the fetal compartment and that rapid
maternal glycosylation of BPA did not prevent fetal exposure [44]. In fact, that study
supported the findings in other species that BPA metabolites may be trapped in the fetal
compartment and that the placenta may have the ability to de-conjugate and prolong fetal
exposure [45, 46]. Thus, the continuous level of exposure in this in vitro TSC model is likely
most relevant to real world human exposure.

Chemicals for testing and treatment groups

The chemicals were purchased from Sigma (DEHP: Bis(2-ethylhexyl) phthalate — 47994;
PFOA: Perfluorooctanoic acid — 171468; ATR: Atrazine — 45330; TBT: Tributyltin chloride
— 442869; BPA: Bisphenol A — 133027). Treatment groups included a vehicle control
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(methanol) and each of five EDCs at environmentally relevant doses [10 nM BPA, 5 uM
DEHP, 30 uM ATR, 100 nM PFOA, and 25 nM TBT], as described in our previous studies
of rhesus monkey embryonic stem cells [37]. The vehicle treated cultures, receiving equal
amounts of vehicle as toxicant treated cultures, were controls for possible effects of vehicle
and other characteristics of the culture system. EDCs for testing were made as 1000 stocks
in methanol and were added to aliquots of DMEM/F12 medium up to 48 hours before use
and stored at 4°C until use. The above concentrations are generally within the ranges
reported for human serum and drinking water, and in studies of responses of mammalian
oocytes, preimplantation stage embryos, or pluripotent cells to the chemicals in vitro
[47-52]. The ATR concentration is higher than the maximum concentration reported in one
study for drinking water [53] and human serum level (up to 245 nM) [54], but affects
placenta cell gene expression in vitro [55] and is much lower than the doses (200-300
mg/kg) typically applied in rodent studies to test for reproductive effects. The EDCs selected
for study affect rhesus monkey gonads, embryo or fetal development, and progeny
phenotype, as well as human reproductive tissues or stem cells. For example, 10-15 nM BPA
affects fetal lung and mammary gland development [56, 57], DEHP at 25 uM affects
monkey Sertoli cell development [58], TBT (100 nM) modifies human embryonal carcinoma
cells [59, 60], and ATR (200 mg/kg) broadly affects vertebrate gonadogenesis [61]. It should
also be noted that the concentrations of EDCs applied were chosen to avoid overt toxicity.
For example, ATR shows only limited toxicity to human trophoblast cells (30%) at 1 mM
concentration [62]. For each treatment, an assessment of toxicity and cell death is also
achieved in the course of the transcriptome analysis.

Preparation and sequencing of libraries for RNAseq

Six replicate cultures of untreated control, vehicle treated control, and EDC treated cells
were treated in parallel during a single treatment period. Each replicate culture was
maintained in a separate well, even after passage and was never mixed or pooled with cells
from any other well throughout the experiment. The replicate cultures were processed for
RNA extraction and RNAseq analysis. RNA was isolated following the PicoPure™ RNA
Extraction kit manufacturer protocol, with DNAse digestion to remove any contaminating
DNA. To produce libraries for sequencing, 100 ng of each RNA sample were processed first
using a mixture of random and oligo(dT) primers and reverse transcription to generate
double stranded cDNA using the Ovation Universal RNA-Seq System (NuGen, San Carlos,
CA). This was followed by cDNA fragmentation to an average of 300 bp using a Covaris-2
sonicator, and then a brief S1 nuclease digestion as described [63]. After purification, the
cDNA was processed further through the Ovation Universal RNA-Seq System (NuGen) for
end repair, barcoding, INDA-C mediated ribosomal RNA depletion, and final library
production with the addition of unique nucleotide barcodes to each library. Barcoded
libraries were pooled and sequenced with an Illumina HiSeq 4000 to generate 50 nt single
end reads. The total numbers of PF (passed-filter) reads ranged from 17.2 M to 55.0 M, the
fraction of Q30 bases from 96.6% to 97.0% and average Q from 39.3 to 39.4 (Table S1).
Sequencing data will be available in Gene Expression Omnibus (GSE103033) and at our
Primate Embryo Gene Expression Resource (Www.preger.org).
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RNAseq data analysis and Ingenuity Pathway analysis

Results

Reads were aligned to the rhesus monkey genome (MacaM v7, [64]) using HISAT2 [65].
Reads aligned to ribosomal RNA (rRNA) or rRNA-like genes were removed, as were the
“ExAmp” duplicates — caused by the sequencing technology — which were defined as one
read in a pair of identical reads found within the distance of 2500 units on the same tile of a
sequencing lane. After analysis of clusters using Multidimensional Scaling (Figure S1),
libraries considered to be outliers in their respective treatment groups (one Control, one
DEHP, three PFOA and one TBT) were removed from further analyses. A total of 3.2M to
14.2M reads per library were successfully aligned to unique non-rRNA gene transcript
sequences (Table S1). Cuffdiff [66] was used for quantification and differential expression
analyses between the vehicle and five EDC treatment groups. Differentially expressed genes
(DEGS) were defined as those with g-value (false discovery rate) < 0.05.

QIAGEN Ingenuity Pathway Analysis® (IPA) was used to analyze the biological relevance
of DEGs. Analysis tools applied from IPA included Canonical Pathway (CP), Disease and
Functions (DF), and Upstream Regulator (UR). For CP analysis, IPA calculates overlap p-
values, taking into account the number of DEGs and the number of molecules in the
knowledge database associated with that pathway, and the number of DEGs and the number
of molecules in the knowledge database. For DF analysis, overlap p-values are based on the
number of DEGs associated with increase or decrease of a given DF. For UR analysis,
results are based on the number of DEGs regulated by a given UR. In addition to overlap p-
values, z-scores are calculated for CPs, DFs, and URs. The z-score reflects activation (z>0)
or inhibition (z<0) of CPs and URs, or increase (z>0) or decrease (z<0) of DFs, and is based
on the number of associated DEGs for which the direction of regulation (up- or down-) is
consistent with activation/increase or with inhibition/decrease. Because P(|z|>1.96) ~ 0.05
for normal N(0,1) distribution, we consider CPs, URs and DFs with z>1.96 to be
significantly activated or increased, and those with z < -1.96 to be significantly inhibited or
decreased.

Overview of TSC gene expression characteristics and their responses to treatments

No changes were noted in growth rate or morphology characteristics of TSCs during
treatment, which demonstrates that the doses selected were low enough to avoid acute
toxicity. Comparisons of expression of human embryo trophectoderm and epiblast marker
genes between our rhesus monkey TSC line and rhesus monkey ORMESG in (Table S2)
revealed that the 119-T TSCs closely resemble the human TE cells. Of the 29 TE marker
genes, 22 displayed higher expression values in control TSCs as compared to control ESCs
(2 qualitative differences). CLDN10, FHL1, HIP1, HMGCS1, TIPIN, ELF5, and EOMES
were expressed at lesser levels in TSCs than ESCs among the TE markers. CGB mRNA was
low but detectable in both cell types, as was £ESRZ. Excluding the above 9 markers, the
median ratio of TSC:ESC mRNA expression was 10.1, with a maximum of >2000-fold
higher expression in TSCs. All of the 13 markers of human epiblast were expressed at lower
levels in TSCs. None of the marker genes was significantly affected by vehicle control
treatment. We noted a high level of expression of fibronectin 1 (FN1) mRNA (a possible
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survival factor in trophoblast) across all samples, and this was also unaffected by EDC
treatment (data not shown).

Because in female embryo-derived cells X-chromosome inactivation can be disrupted by a
loss of DNA methylation, and the EDCs might affect DNA methylation, we examined the
DEG lists from all five EDCs for possible over-representation of genes on the X
chromosome. We used chi-square test to compare the fractions of X-chromosome genes in
the sets of DEGs to the fraction of X-chromosome genes in the set of expressed genes (with
FPKM = 1). While for most EDCs (all except PFOA), the fraction of X-chromosome genes
in the set of DEGs was slightly increased compared to the set of expressed genes (average of
4.4% vs. 3.5%), none of these differences were statistically significant at a = 0.05; the
lowest p-values were obtained for TBT (p = 0.056) and ATR (p = 0.085).

The effects of low-level chronic exposure to the five EDCs on TSC gene expression profile
and cell functions were determined (Supplemental Tables S3-S26). The number of genes
with significantly (g < 0.05) affected expression differed widely with the EDC applied
(Figure 1). The numbers of affected genes with statistical significance (q < 0.05) were
modest for BPA, DEHP, and PFOA (n = 115, 112, & 32 total, and n=6, 50, & 14 at FC <
1.5, respectively). Observed effects were much greater with ATR and TBT. ATR treatment
significantly altered the expression of 1491 genes (431 > 1.5-fold). TBT treatment
significantly altered the expression of 1961 genes (623 > 1.5-fold). A lack of toxicity was
confirmed by IPA results for all five treatments, showing either no change or a decrease in
cell death-related pathways (Table 1, excerpted from Tables S4, S8, S12, S16, and S20).
With the exception of a result of reduced cell viability results for two IPA DF annotations for
DEHP treatment, IPA results generally yielded no significant negative effects indicating
increased cell death. For both ATR and TBT, which had the largest overall effects on cells,
two or more IPA results indicated reduced cell death, and one IPA result for ATR indicated
increased viability. Details of the effects for each treatment are provided in the sections
below.

Effects of PFOA

PFOA treatment yielded the smallest number of significant differences in gene expression
(32 genes, highest fold-change 1.74) (Figure 1, Table S3). The small number of PFOA
treated libraries included in the analysis may have limited detection of some gene expression
effects. The IPA results for affected diseases and biological functions (DFs) revealed
significant decreases in several biological functions including cell movement, epithelial
tissue growth, and vasculogenesis (Table S4). No significant z-scores were returned for CP
analysis (Table S5), but pathways with significant overlap of PFOA affected DEGs were
seen related to cysteine metabolism, and signaling through interleukins 6, 10, and 17A,
Tolllike receptor, TGF-B, PDGF, PPAR, MAPK, Endothelin 1, TNRF2, and tight junctions.
Upstream regulators (UR) analysis of the observed effects indicated significant inhibition of
actions of several cytokines including IFNy and IFNa (Table S6). UR analysis also revealed
potential inhibition (z-score -1.407) related to FOS signaling (a regulator of trophoblast
function, [67]), but note that FOS mRNA expression itself is increased by PFOA treatment.
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Effects of BPA

Cultures treated with BPA displayed significant effects on gene expression of 115 genes,
with highest fold-change of 1.77 (Figure 1, Table S7) and more than twice as many genes
being upregulated than downregulated. The IPA DF analysis revealed significant decreases
for cancer, cell death, cell proliferation, cell viability, and protein translation (Table S8). A
significant z-score was obtained for EIF2 signaling, and other significantly affected (p <
0.05) CPs included regulation of EIF4 and p7056k signaling, MTOR signaling, oxidative
phosphorylation, mitochondrial dysfunction, and nucleotide excision pathway (Table S9).
UR analysis indicated significant activation of gene regulation by MYCN, MYC, MAPK1,
MTOR, GATA1, and CEBPA, and inhibition of gene regulation by RICTOR, IFN+y IFNL1,
and CD28, and lesser effects related to other regulators, including XBP1, PPARGC1A,
NUPR1, NKX2-3, TGFBL, FOS, HRAS, and others (Table S10).

Effects of DEHP

DEHP treatment yielded significant effects on 112 genes, with over 70% of them being
downregulated (Figure 1, Table S11). Unlike for PFOA and BPA treatment, 13% of genes
were affected by more than 2-fold, and the highest change was 3.98-fold. Genes with the
largest fold-changes included genes related to trophoblast development and implantation
(e.9., FOSB, EGR1, WNT7A, HANDI, INHBA, keratins) and immunomodulation (e.g.,
CEACAMES, and interferon-regulated genes). The IPA DF analysis revealed a significant
decrease of cell growth and proliferation, cell invasion, endothelial development, and
inflammatory response (Table S12). Canonical Pathway analysis revealed no significantly
activated or inhibited pathways, but significant overlap (p < 0.05) for Toll-receptor signaling,
and TNF and cytokine signaling (Table S13). The CP effects were also evident in the UR
analysis, which revealed significant inhibition for gene regulation by TNF, TGFB1, PDGF,
interferons and cytokines, and LPS (Table S14).

Effects of ATR

Our analysis revealed effects on ten times as many genes with ATR treatment than with
BPA, PFOA, or DEHP, with effects ranging to as high as 8.62-fold (Figure 1, Table S15).
The most prominent effects included reduced expression of interferon-regulated and anti-
viral genes (e.g., IF144, IF127, IFI144L, IFI35, IFITM1, OASL, APOBEC3G), TNF and
cytokine signaling related genes (e.g. TAVFSF18), immunomodulation genes (e.g.,
CEACAMB), genes related to trophoblast function (e.g., HAND1, MAMUF, INHBA) and
other signaling pathway genes. Among top DF analysis results from IPA were decrease of
metabolic disease, cell death (including cell death of immune cells) and cell movement, and
increase of viral replication, cell division, cell viability, and protein synthesis (Table 2, S16).
The z-scores from the IPA CP analysis revealed significant activation for EIF2 signaling
(protein synthesis), embryonic stem cell pluripotency, spingosine-1-phosphate signaling, and
mitotic role of PLK1, and significant inhibition of DNA damage checkpoint and interferon
signaling (Table 3, S17). High z-scores below the 1.96 significance threshold were also seen
for STAT3 signaling, VDR/RXR activation, and other key signaling pathways. The upstream
regulator analysis revealed strong inhibition of responses driven by interferon signaling, LPS
signaling, TNF signaling, anti-viral functions, and immune function (Table 4, S18). These
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effects encompassed strong inhibition of signaling through multiple pro-inflammatory and
anti-inflammatory mediators, such as IFNG, LPS, IFNA, IFNB, TNF, multiple IRFs,
multiple interleukins, STAT1, and OSM, as well as inhibition of signaling through
immunomodulatory TLR3. Many of the implicated upstream regulators related to cytokine
signaling and inflammatory response were themselves partially repressed at the mRNA level
by ATR, including /RF7, TNF, IFNL1%* IL1B* IFNB1, STAT1%* IRF1, TLR3%
TMEM173* DDX58% and STATZ (* denotes statistically significant reduction in
expression). Regulators of other functions also displayed repression, such as MYD88
(cytokine and TOLL receptor signaling), and PTGER4 (possible role in implantation, and
itself significantly downregulated) (Table S18). There was also activation of genes regulated
by TRIM24 (itself significantly increased in expression), a mediator of estrogen signaling.
Overall, these results indicate a sweeping repression of cytokine signaling mechanisms in
ATR treated trophoblast cells, with additional compromise in other trophoblast-related
functions and marker genes.

Effects of TBT

The largest number of significantly affected genes was achieved with TBT treatment, with
effects ranging as high as 17-fold (CDH13) (Table S19). Many of the genes, DFs, CPs, and
URs affected by ATR were also affected by TBT (Tables 2-4, S20-S22). As with ATR, many
of the implicated upstream regulators related to cytokine signaling and inflammatory
response were themselves repressed at the mRNA level by TBT, including /RF7* IFNL1*
IFNBI1, TNF* STAT1* TLR3* ILIRN, IL1B, TMEM173* STATZ2* DDX58% Other
regulators also significantly reduced in expression included NFATCZ (cell invasion), as well
as MYD88and PTGER4. Subtle differences between ATR and TBT were evident in the IPA
DF analysis, such as a stronger decrease of muscle formation, free radical scavenging and
G1 phase categories. The CP analysis for TBT treatment yielded a positive z-score for
embryonic stem cell pluripotency genes, below the level of significance but indicating a
possible trend toward activation of pluripotency-related genes. Notable z-scores, although
below the 1.96 significance threshold, also indicated potential decreases in death receptor
signaling, VDR/RXR signaling, and IRF signaling, and increases in IL-8 and a.-adrenergic
signaling, and SAPK/JINK signaling. As with ATR treatment, TBT treatment yielded an
overall repression of cytokine signaling mechanisms (see UR analysis), changes of gene
expression consistent with increase of viral infection, and a decrease in other trophoblast-
related functions and marker genes.

Overlap in EDC effects

The foregoing summaries of effects of the five EDCs on trophoblast cells indicate substantial
overlap in effects. A summary of these overlaps is provided (Table 5, Tables S23, S24). A
total of 892 genes were affected similarly (same direction) by ATR and TBT, accounting for
62 % of the 1491 genes affected by ATR (53% of upregulated and 66% of downregulated
genes). Additionally, there were 27 genes affected oppositely between ATR and TBT. Three
of the 32 genes affected by PFOA were increased by all five EDCs, six genes were
decreased by all five EDCs, and two showed mixed effects. The greatest percentage overlaps
in effects (>80%) were observed between ATR and DEHP, and between ATR and PFOA. A
small number of genes were affected by multiple treatments but displayed differences in

Reprod Toxicol. Author manuscript; available in PMC 2019 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Midic et al.

Page 10

effects (increase or decrease) between the different treatments, particularly FOS, FOSB,
MME, CAV1, and ATP6VOA4.

Substantial overlap was also evident in the IPA analysis. As indicated above, ATR and TBT
displayed very similar effects in DF, CP and UR results. There are also features shared
across all five or a majority of the five EDCs tested. This becomes most apparent in
comparing the results of the UR analysis (Tables 6 and S25), as different subsets of
downstream mediators may be affected by different treatments but impact a common process
controlled by specific upstream regulators. IFNy emerges as the top UR for all five
treatments, with poly-rl:poly-rC RNA (activator of antiviral response), TGFB, NFKB, and
FOS also showing inhibition for all five EDCs, albeit with some z-scores below the +/- 1.96
threshold. UR analysis further revealed some level of inhibition of downstream functions
mediated by TNF, LPS, IFNL1, IL1B, STAT1, OSM, NFKB, IL1, and LPS in four of the
five treatments, and TLR3 emerged for three of the EDCs. Suppression of PRL and TRIM24
response genes was also seen in four of the five treatments, and MY D88 regulated genes
were affected in three of the treatments. Overall, sweeping inhibition in cytokine signaling,
repression of pro-inflammatory and anti-inflammatory pathways, and suppression of anti-
viral defense gene expression were the major effects of EDC treatment of trophoblast cells
in vitro. This was accompanied by increased expression of genes associated with viral
replication and infection in TBT and ATR treatments. Comparing the expression of genes
regulated by specific upstream factors across the five treatments further emphasizes
conservation of effects across the EDC treatments. Figure 2 shows the effects of five
treatments on genes downstream of predicted upstream regulators, representing significant
downregulation (q < 0.05) of a gene with green, significant (q < 0.05) upregulation with red,
genes with reduced expression (blue) or increased expression (orange) expression for which
the change was not statistically significant (g > 0.05), and overall activation/inhibition states
of upstream regulators (+ and — annotations below heatmaps) Scanning left to right across
the heat maps highlights that many of the UR effects are shared across two, three or more of
the treatments. There is a substantial overlap of genes affected by ATR and TBT, and for
most of these genes the direction of change is the same for TBT and ATR treatments.
Furthermore, many of the genes that are significantly affected by ATR and/or TBT treatment
show modulations in the same direction with the other treatment groups, some with large
fold-changes. Specific z-scores for the upstream regulators in Figure 2 are provided in Table
6, which shows top ranked results for UR analysis ranked by sum of z-score. Z-scores
exhibit consistent sign (positive or negative) for majority of the upstream regulators, further
highlighting that these effects are shared across treatments. These results also highlight the
shared aspect of strong downregulation of genes related to cytokine signaling, also seen in
Table S25. Those effects on cytokine signaling may be functionally linked to effects on
responsiveness to infection. Indeed, the effects evident in shared DFs (Table S26) are also
consistent with increased viral replication (or susceptibility thereto), as well as decreased
expression of genes associated with cell migration, cell death, inflammatory response, and
immune function. Examining individual genes with common effects across treatments
(Tables 5, S23 and S24) also highlights the categories of cytokine signaling and cell
adhesion, among others. Of further note is that the expression of mMRNAs encoding several
of the upstream regulator genes identified in the UR analysis are themselves moderately
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elevated in cells treated with ATR, TBT or both, including TNF, IFNL1, IRF7, ILIB, STAT1,
MYD88, and IL1RN (Tables 6, S15, S19).

Expression of /1F127, DTX3L, CEACAMS6, INHBA, KRT17,and /ILIRLI mRNAs was
significantly reduced with all five EDCs (Table S24). In addition to these, expression of
SCEL, MME, OASL, GPRC58, Clorf116, MAP18, PPP1RIC, ZFP36L2, PARPY, EDNI,
AQPEF, F3,and CXCL2was reduced in four of the five treatments. Expression of HMCNI,
C10orf116, and FOXO4 was significantly increased in all five treatments and additionally
expression of SMARCAI, CD36, FOSB, and FRASI was elevated in four of the five
treatments. Some of these genes are related to cytokine signaling, but some are not. This
further demonstrates the sensitivity of TS cells to chronic low-level exposure to a variety of
EDCs, with effects on a range of trophoblast functions.

Several other overlapping IPA results related to apparent disruption in metabolic processes,
quantity of cells, and cell invasion. Both ATR and TBT treated cells displayed significant
decrease (z < -1.96) for glucose metabolism disorder in the DF analysis; ATR treatment also
yielded significant decrease for diabetes mellitus, and TBT treatment yielded a significant
decrease for carbohydrate metabolism (Table S26). Synthesis of reactive oxygen species was
significantly decreased for ATR and TBT with non-significant decrease (-1.96 < z < 0) for
DEHP and PFOA treatment. The DF category for invasion of cells tended to be reduced in
all but BPA treatments with strongest z-scores for DEHP and PFOA. There were additional
overlaps in effects with z-scores below the level of significance but with significant over-
representation of affected genes (p < 0.05), indicating that the different treatments likely
shared other effects on the cells but with greater variability in outcomes. Comparing the
expression of genes associated with specific DFs or CPs across the five treatments further
emphasizes conservation of effects across the EDC treatments. As with the UR analysis,
there is a substantial overlap of genes affected by ATR and TBT, and many of these genes
show modulations in the same direction with the other treatment groups, some significantly
altered, and others with large fold-changes, but with g values > 0.05.

Discussion

The results presented here demonstrate for the first time that long-term exposure of
nonhuman primate trophoblast stem cells to comparatively low concentrations of five EDCs
leads to significant disruption in the expression of genes related to cytokine signaling and
antiviral mechanisms. Both pro-inflammatory and anti-inflammatory pathways are affected,
including genes regulated by multiple interferons, interleukins, tumor necrosis factor, LPS
stimulation, viral infection, Oncostatin M, and STAT1, and NFKB signaling. This indicates
suppression of response to viral infection. This effect was seen to varying degrees with all
five EDCs tested. This discovery is significant because it highlights a previously
unrecognized risk to human pregnancy of chronic exposures to low, environmentally
relevant concentrations of multiple EDCs. Adverse effects in women exposed to these EDCs
could include greater susceptibility of the embryo and placenta to maternal viral infection.
Additionally, disruptions in cytokine signaling could inhibit embryo hatching, attachment,
invasion, and implantation into the uterus, and increase the risk pregnancy loss due to
insufficient vasculogenesis or maternal tolerance of the conceptus.
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Fetal membranes produce a wide array of pro- and anti-inflammatory cytokines, and this is
regulated by a number of physical and physiological factors or stimuli, and by pathological
factors such as viral infection [68]. Viral infection can lead to cellular apoptosis and
following induction of pro-inflammatory cytokines as part of a natural defense mechanism
in the placenta against infection [68]. However, this can have negative consequences, such as
preterm birth.

Although high circulating levels of cytokines, infections, and uterine inflammation are
associated with pregnancy loss [69-71] and failure in implantation [72, 73], other studies
point to crucial roles for local cytokine signaling between the uterine endothelium and the
embryo (trophoblast cells) in facilitating embryo attachment and implantation, and local
remodeling of vascular supply [57, 74-83]. These local effects at the site of implantation
have been most thoroughly studied in rodents but have also been seen in humans, indicating
that although the details of placentation differ markedly between humans and rodents, this
crucial role for local cytokine signaling in the maternal-embryo dialog is conserved.
Additionally, autocrine cytokine signaling participates in blastocyst hatching [84]. The
importance of cytokine signaling in embryo implantation and pregnancy across mammalian
species coupled with the strong negative effects of low-level chronic exposure to EDCs on
cytokine signaling shown here raise new concerns about the effects of environmental EDCs
on human reproduction as well as propagation and breeding in other species.

Other effects of EDCs on reproduction have been reported. PFOS (perfluorooctanesulfonic
acid) and PFOA inhibit prolactin signaling [5, 85], inhibit aromatase activity [4], and affect
lipid metabolism [4] in placental cells. Organotin compounds induce progesterone synthesis
in Jar cells [6]. TBT mediates intrauterine growth and post-natal growth restriction in rats
[86], and inhibits aromatase activity in the placenta. Phthalates inhibit trophoblast invasion
via PPARY inhibition [7], disrupt placentation [8], and modify expression of lipid
metabolism genes and fatty acid placental transport [9, 87]. BPA reduces invasiveness of
trophoblast [10] and alters trophoblast cell proliferation even at concentrations that do not
produce overt toxicity [11]. Some of these effects were also detected in our RNAseq data.
Our data substantially extend what is known about effects of these EDCs on trophoblast
stem cells, but using long-term low-level dosing and whole transcriptome analysis in a
nonhuman primate cell that closely resembles human trophoblast, to discover the long-term
effects on trophoblast stem cell properties.

In addition to the pronounced effects on cytokine signaling and antiviral pathways, our
analysis revealed other less pronounced effects, such as diminished DNA damage
checkpoint signaling, a marginally increased expression of ESC pluripotency-related genes,
disruptions in metabolic processes, and disruptions of cell movement and invasion. These
effects could also compromise embryo viability and embryo implantation.

The effects of the five EDCs shown here when applied to a rhesus monkey TSC line are
substantially greater than when the same treatments were applied to a rhesus monkey ESC
line [37]. This suggests that the TSCs are much more sensitive to EDCs than ESCs. This
may reflect the generally lower state of DNA methylation in trophoblast lineage (placental)
cells [26]. Because some of the effects of these EDCs include epigenetic effects at the level
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of DNA methylation [88, 89], TSCs may be more susceptible to gene expression changes.
Effects on DNA methylation of the X chromosome could be especially noticeable in TSCs,
given plasticity of X chromosome inactivation in these cells [90]. Additionally, trophoblast-
specific variation and change in DNA methylation [22] and X-chromosome inactivation [91]
may be more susceptible to disruption. The elevated sensitivity of primate TSCs to EDC
effects suggests that strategies for screening of compounds for reproductive toxicity may be
improved by including long-term exposures of primate TSCs. Studies of EDC toxicity to
TSCs may be essential to detect potential toxic effects on conception and pregnancy.

The broader impact of chronic low-level EDC exposure on human reproduction via effects
on TSCs remains to be assessed. Our results indicate that environmentally relevant levels of
EDC exposures may contribute to diminished pregnancy rates by inhibiting embryo
implantation and interfering with other processes. The magnitude of effects may depend on a
range of maternal, genetic, and other environmental factors, particularly factors related to
pro-inflammatory and anti-inflammatory signaling, reproductive tract infection, and control
of maternal immune function in response to the invading embryo. Further functional studies
to assess changes in protein expression and specific cellular activities (e.g., anti-viral
responsiveness, cytokine signaling), and epigenetic changes would be useful future areas of
study. Additionally, studies of low level exposures to combinations of EDCs should be
pursued, as many such chemicals co-exist in the environment. The extensive data set
presented here provides a broad foundation to warrant many future studies targeting specific
endpoints to better understand the impact of low-level chronic EDC exposure on trophoblast
function and pregnancy. Greater awareness of maternal EDC exposures, monitoring maternal
serum EDC levels, or strategies to modulate embryonic cytokine signaling activity in vitro
could provide useful components of enhanced strategies for increasing rates of embryo
implantation, particularly in assisted reproduction programs.
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bisphenol A

canonical pathway
differentially expressed gene
di-(2-ethylhexyl) phthalate
disease and function
endocrine disrupting chemical
embryonic stem cell
trophoblast stem cell
QIAGEN Ingenuity Pathway Analysis®
perfluorooctanoic acid

RNA sequencing

tributyltin

upstream regulator
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Highlights

Effects of chronic exposure to low concentrations of five endocrine disrupting
chemicals (EDCs) were examined in rhesus monkey trophoblast stem cells

RNA sequencing revealed largest numbers of affected genes following
tributyltin and atrazine treatment, with substantial overlap in effects between
these two toxicants

The most prominent effect for all five compounds was the suppression of
pathways related to cytokine signaling and anti-viral response

Other effects observed predominantly with tributyltin or atrazine included
diminished DNA damage repair and cell movement functions, increased cell
viability and proliferation functions, and disruption of metabolic processes.

These results from an animal model closely related to humans indicate that
chronic low-level exposure to EDCs could impair trophoblast stem cell
function and diminish human pregnancy outcomes by compromising
trophoblast invasiveness, embryo implantation and placenta defense against
viral pathogens.
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Figure 1.

Summary of differential gene expression in toxicant treated samples: A) Volcano plots
showing g-values (false discovery rate; genes above the dashed lines are considered

differentially expressed) and fold-change (positive for upregulated, negative for
downregulated genes); B) Number of differentially expressed genes (DEGS) for five toxicant
treatments, broken down by direction (upregulated and downregulated) and magnitude of

fold change (FC).
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Figure 2.

Heat maps summarizing differential expression of genes downstream of the indicated (above
heat maps) upstream regulators. Each heat map illustrates the degree to which effects on
individual gene expression (increase or decrease) are shared by two or more treatments, for
downstream genes affected by at least one toxicant. Green and red denote genes that are
significantly (g < 0.05) downregulated (green) or upregulated (red). Blue and orange
indicate genes with reduced (blue) or increased (orange) expression that was not statistically
significant (g > 0.05). Overall predictions of activation or inhibition of upstream regulator
actions are indicated by annotations below each map, with (+) indicating activation (z >
1.96) and (-) indicating inhibition (z < - 1.96). Details of effects are provided in Tables 6 and
S25.
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