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Interpoint Squared Distance as a Measure of Spatial Clustering 

ABSTRACT 

The expectation and variance for the mean interpoint squared distance are presented. In order to 
evaluate these expressions it is necessary to calculate the moments of a bivariate uniform distri­
bution defined for an arbitrary polygon. Expressions for these moments are also presented, 
allowing the mean interpoint squared distance to be used as a measure of spatial clustering. The 
distribution and power of this test statistic is explored on the unit square, and the spatial distribu­
tion of 11 cases of non-Hodgkin's lymphoma is investigated to illustrate an application of the 
technique. 

running head: Mean Interpoint Squared Distance 

key words: mean interpoint squared distance; moments; power; spatial analysis. 

1. INTRODUCTION 

The study of spatial distributions has produced a variety of statistical measures to examine 

possible clustering among a series of points. Some methods are based on measuring distances to 

the nearest neighbor (e.g., Ripley, 1981; Boots, 1988), others on specialized counts (e.g., Cuzick, 

1990; Cliff, 1988), and a few directly employ distance (e.g., Schulman, 1988; Whittemore, 1987). 

In general, these statistics reflect departure from a null hypothesis which states that the spatial 

distribution of the observed points arises from a homogeneous Poisson process. Measures of spa-

tial clustering are not equally useful. The utility of any measure of clustering depends on the 

configuration of the points that make up the spatial pattern (null hypothesis false). It is not 

difficult to postulate patterns where one method works well and another is ineffective. 

This paper describes the mean interpoint squared distance among all possible pairs of points 

as a test statistic for the analysis of spatial data, providing an additional approach to spatial 

analysis. Also included are simulation results that indicate the accuracy of a normal distribution 

as a way to assess this test statistic when the observed data are uniformly distributed on a unit 

square. A simple model is postulated to define the power of the interpoint squared distance and 

to compare its effectiveness as a measure of spatial clustering to the more usual Poisson and 

nearest-neighbor approaches. A small set of non-Hodgkin's lymphoma cases is used to illustrate. 
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2. MEAN INTERPOINT SQUARED DISTANCE 

Assume that n independent observations are selected from a predefined region, with loca-

tions denoted by (Xi, Yi)' A measure of spatial clustering based directly on distance is the mean of 

the interpoint squared distances among all possible pairs of n points or 

2 2 1:1: 2 2 d = [(x·-x·) +(y.-y.)] 
n (n - 1) I J I J 

(I) 

for all pairs i > j. Under the condition that the points (Xi, y;) arise independently from a homo-

geneous Poisson process associated with a defined region, the expectation and variance can be 

derived (Schulman, 1986). The expressions are 

(2) 

and 

variance (D2) =<1;= ~2(n -1)[EX4+Ey41 +4(n -1)[EX2y2-EX2Ey21(3) 
~ J J 

- 2(n - 3) [[EX2]2 + [Ey2f] + 8[EXYf} 

The symbol EXt and Eyt represents the kth central moment of the distribution of X and Y, 

rcspccti vel y. 

2.1 MOMENTS ASSOCIATED WITH AN ARBITRARY POLYGON 

To evaluate the expectation and variance given by expressions (2) and (3), it is necessary to 

) calculate the moments associated with the variables X and Y over the region of interest. Consider 
'.' 

an arbitrary polygon whose boundary is described by the sequence of m points 

(X\s\). (X2,y~.· .. • (x",.y",). The noncentral moments associated with random variables X and Y 

(denoted by subscript "0 ") when the point (X. Y) is uniformly distributed over this polygon are 

given by the following: 



and 
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1 '" area =A = -~Wi 
4 i=1 

4 1 ~ S 4 2S 2 2 1 4) EXo = -2A ~Wi( xi + xiDxi + -5 Dxi • 
19 i=1 

(4) 

(5) 

i = m, X",+I = XI' and Y",+I = YI' Counterclockwise ordering of the points implies A > O. The non-

central moments associated with the variable Y are achieved by replacing x with y in the four 

expressions for X (5). Furthermore, moments of the joint distribution of X and Y are 

(6) 

To obtain expressions (4) - (6), observe that the noncentral moment EX~Y& is the integral of 

a function xl: / over the polygon, divided by the polygon area A. By choosing an arbitrary point 

(Xo, Yo), one can consider an m -sided polygon as the sum of m triangles, where triangle i is 

formed by (Xi, Yi)' (Xi+b Yi+I), and (Xo. yo) for i = 1,2, ... , m. The point (X",+b Y",+I) is identical to 

The integral of xl: / over the polygon is equal to the sum over all m triangles, of the integral 

of xl: / over each triangle; the latter integral is easily evaluated analytically for various values of 

r 
I 

V 
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k and l. 

Due to cancellation of tenns, the final expression for the integral of Xk/ over the polygon 

does not depend upon the arbitrarily chosen point (xo~ Yo). Each of the moments is equal to a sum 

of m tenns, divided by the area A which is also a sum of m tenns. Each tenn in either the 

numerator or denominator depends only on the two adjacent points (Xi' Yi) and (Xi+!' Yi+!), which 

correspond to a single directed line segment. 

It is frequently convenient to store an entire map file not as polygons, but as an unsorted 

collection of directed line segments. Each line segment has an arbitrary direction; namely, a 

"from" point and a "to" point, and a "left" polygon and a "right" polygon. With such a map file, 

expressions (4), (5), and (6) are easily evaluated as sums (in any order) over line segments. For a 

given polygon, one uses only those line segments which lie on the polygon boundary (Le., which 

have the desired polygon on one side but not the other). The contribution from each line segment 

is either added or subtracted depending on whether the polygon lies to the left or right of the 

directed line segment; this convention implies that A > O. In the calculation, care must be taken 

so that cancellation of nearly equal tenns does not lead to imprecise results. 

A. simple example is provided by applying these moment expressions to the unit square 

(Le., [0,0], [1,0], [1,1], [0,1 D. Table 1 shows the specific values of S, D, and w. 

Table 1 
Example moments for a unit square 

i Xi Yi Szi Syj Dzi Dyj 

1 0 0 1 0 1 0 
2 1 0 2 1 0 1 
3 1 1 1 2 -1 0 
4 0 1 0 1 0 -1 

Using the values in Table 1 and expressions (4) - (6), then 

area = A = 0 + 2 + 2 + 0 = 1 
4 

EX = 0(1) + 2(2) + 2(1) + 0(0) =1. 
o 12 2 

Wj 

0 
2 
2 
0 

EX 2 = 0(1 + 113) + 2(4 + 013) + 2(1 + 1/3) + 0(0 + 0/3) =1. 
o 32 3 

" 
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EX Y = 0(0 + 0/3) + 2(2 + 013) + 2(2 + 0/3) + 0(0 + 013) = 1. 
o 0 32 4 

. etc. 

The moments of the bivariate unifonn variable (X. y) for any polygon (degree < 5). regular 

or arbitrary. can be calculated from expressions (5) and (6). To further illustrate. Table 2 gives 

the central moments, the expected interpoint squared distance, and its variance for five polygons 

each with centroid at (0. 0) and with area = 1 (a square. a right triangle. an equilateral triangle. a 

circle and an irregular polygon). 

Table 2 
Central moments for uniformly distributed variable (X. y) 

square right equilateral circle S.F. 
EX 0.0 0.0 0.0 0.0 0.0 
EY 0.0 0.0 0.0 0.0 0.0 
EX2 0.0833 0.0555 0.0962 0.0796 0.0756 
Ey2 0.0833 0.2222 0.0962 0.0796 0.0941 
EXY 0.0 0.5555 0.0 0.0 -0.0075 
EX2y 0.0 -0.0074 -0.0169 0.0 0.0031 
Exy2 0.0 0.0148 0.0 0.0 0.0004 
EX 3 0.0 -0.0074 0.0 0.0 -0.0009 
Ey 3 0.0 0.0593 0.0169 0.0 -0.0051 

EX2y2 0.0069 0.0148 0.0074 0.0422 0.0057 
EX4 0.0125 0.0074 0.0222 0.1266 0.0116 
Ey4 0.0125 0.1185 0.0222 0.1266 0.0172 
1L- 100 100 100 100 100 

ED2 0.3333 0.5555 0.3849 0.3183 0.3396 
CJ; 0.0004 0.0022 0.0009 0.0003 0.0004 
CJd 0.0213 0.0470 0.0301 0.0187 0.0211 

* approximated by a 360 sided regular polygon 
*II< = the outline of San Francisco city/county nonnalized to have area = 1 (Figure 1) 

Central moments can be calculated from noncentral moments (Kendall. 1963); specifically 

(7) 

More simply. the central moments can be calculated directly from expressions (5) and (6) by 

shifting the coordinate system so that EX = 0 and EY = O. That is. the nonccntral moment expres-

sions applied to X - EXo and Y - EYo yield values for the central moments of the distribution of 

(X. Y) over the bounded region (e.g .• Figure 1). 
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2.2 RESULTS FROM SIMULA nON ON A UNIT SQUARE 

The mean interpoint squared distance d2 can be readily evaluated since a version of the cen-

trallimit theorem applies (Silvennan, 1976). The test statistic 

z= (8) 

has an approximate standard nonnal distribution under the null hypothesis when ED2 and crJ are 

calculated from expressions (2) - (6). The test statistic represented by z has an approximate nor-

mal distribution when the sample size n is large. 

To get some idea of the accuracy of this approach for small sample sizes, samples of n = 5, 

10, 15,20, and 50 were selected from a uniform distribution over the unit square and the distribu-

tion of z simulated. From expressions (2) and (3), the expectation and variance when no spatial 

pattern exists are ED2 = 1/3 and cr;=(2n -3)1[45n(n-l)lwhere EX~ =EY~ = lI(k+I). Simulation 

results based on these two values and 10,000 iterations for each value of n are given in Table 3. 

J 

Table 3 
Percentiles from simulation results on a unit square 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
n=5 0.003 0.008 0.017 0.044 0.964 0.991 0.998 1.000 
n=lO 0.006 0.015 0.031 0.067 0.934 0.975 0.991 0.998 
n=15 0.007 0.018 0.037 0.081 0.924 0.966 0.985 0.995 
n=20 0.007 0.019 0.040 0.085 0.917 0.960 0.981 0.993 
n=50 0.009 0.024 0.047 0.094 0.905 0.955 0.980 0.993 

The normal distribution is not an accurate approximation for the distribution of the mean 

interpoint squared distance for sample sizes less than 15, but steadily improves as n increases. 

For n = 50, the percentiles obtained from the simulated data are close to the expected values from 

a standard normal distribution. 
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3. APPLIED EXAMPLE 

Data for non-Hodgkin's lymphoma (International Classification of Disease for Oncology, 

code 169.1) were abstracted from the Surveillance, Epidemiology and Erid Results cancer registry 

for the city/county of San Francisco, California. Eleven cases were observed over a 16-year 

period (1973-88) among individuals under 21 years of age. Based on the 1980 U.S. Census 

counts, an estimate of 50,086 white individuals were at risk for this period, corresponding to an 

incidence rate of 1.36 cases per 100,000 person-years. These incident cases are plotted on a 

transformed map, shown in Figure 1. The map is transformed so that the population at risk is uni-

formly distributed over San Francisco city/county (Selvin, 1988); the transfonned map area is 

nonnalized to the area of the original map. When a map is transfonned so the the population at 

risk is uniformly distributed, then the spatial distribution of cases of a specific disease will also be 

uniformly distributed when no spatial pattern exists. Since the exact geographic location of each 

was not available, each case was plotted at the centroid of the census tract of residence. Table 4 

summarizes the observed data. 

I 2 3 
x -0.998 -0.950 -2.075 
y 4.031 1.999 -5.288 

Table 4 
Non-Hodgkin's lymphoma 

locations (km) 

4 5 6 7 
-2.008 -2.368 -2.506 -4.001 
-2.536 3.779 -0.530 -2.730 

Summary values 

n 11 
PW 55 

d!.... 33.002 km 2 

ED2 36.624 km 2 

(Jd 7.639 km 2 

z -0.474 
p-value 0.318 

8 9 10 11 
-3.574 -5.102 2.769 3.008 
3.883 -2.248 -1.877 0.184 

Using the mean intercase squared distance (33.002 km~ as a measure of clustering produces 

no strong evidence of a nonrandom spatial panern. The probability of observing a smaller inter-

r-
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point squared distance when no spatial pattern exists is approximately 0.318. The moments used 

to calculate this approximate p-value come from expressions (4) - (6). Note that the moments 

associated with the polygon describing the outline of the San Francisco transformed map are 

close to those of a square (Table 2). 

4. POWER AGAINST A SPECIFIC AL TERNA TIVE 

ON THE UNIT SQUARE 

The following simple model is postulated to explore the statistical power of using the mean 

interpoint squared distance to evaluate possible clustering within the unit square. A series of n 

independent points (Xi, Yi) is generated, where a fraction q are chosen from a bivariate circular 

normal distribution with center located at (xo = 0.4, Yo =0.4) and the remainder uniformly distri-

buted over the unit square. The variance of the bivariate normal distribution is set at three illus­

trative values, a; = a; == c:J2 = 0.01, 0.00 I, and 0.0001. Each point in the power calculation is 

based on a sample size of n = 50 points with 1000 iterations (one tail, ex = 0.05; displayed in Fig-

ure 2a). Little difference in power exists when the variance is ,less than 0.001 (both dotted lines). 

A typical power curve emerges for c:J2 = 0.01 (solid line) showing, for example, that q must be 

greater than 0.33 to achieve a power greater than 0.90. Also, to illustrate the power characteris-

tics of d 2, Figure 2b shows the difference in power for four sample sizes (n = 10,20,50, and 100) 

generated under the postulated unit-square model when c:J2 = 0.01. Not surprisingly, the sample 

size greatly affects the power to detect a nonuniform spatial pattern. For example, when n = 20 

the power is 0.23 and when n = 100 the power increases to 0.80, for q = 0.2. 

A typical approach to analyzing spatial data is to divide the region under study into a 

number of sub-areas of equal size and count the number of points falling into each of these 

regions. When no spatial pattern exists among a series of independent points, these counts have a 

Poisson distribution. A series of data sets consisting of n = 50 random points were generated 

under the conditions of the unit-square model, and the power was calculated for a range of q-

values. Specifically, the unit square was divided into 25 equal sub-squares and the expected 
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counts (expected points per sub-unit = 2) were compared to the observed counts with the use of a 

chi-square statistic for varying degrees of clustering. The results of 5000 samples of n = 50 

points for each value of q are shown in Figure 3 (cr'- = 0.01). The power associated with the mean 

interpoint squared distance is superior to that of the chi-square statistic. for all values of q . 

The power to detect a nonrandom spatial distribution using a nearest-neighbor approach 

was also computed for the unit-square model and contrasted to the power of d2 (n = 50 and cr'- = 

0.01) in Figure 3. The expectation and variance for a mean estimated from a set of nearest-

neighbor data are quoted by various authors (e.g .• Ripley, 1981; Boots 1988) and can be corrected 

for edge effects (Donnelly, 1978). A corrected test statistic is 

r -[.51"ii +ctl 0.206+0.1641"ii and c __ 0.148 
z = with Cl = 2 

...j0.0683/n + C2 n ..r,;s 

where r is the IJlean nearest-neighbor distance among n points. Again, z is assumed to have at 

least approximately a standard normal distribution when no spatial pattern exists. Donnelly 

(1978) demonstrated that the normal distribution adequately serves as an approximation for the 

distribution of r for samples sizes greater than six (Donnelly, 1978). For the specific comparison 

shown in Figure 3, the mean interpoint squared distance again has uniformly greater power. 

The fact that the interpoint squared distance has uniformly more power than either the Pois-

son or nearest neighbor methods is not surprising since d 2 more appropriately reflects a continu-

ous measure of distance. The Poisson approach looses power by categorizing a continuous vari-

able and the power of the nearest neighbor method is strongly influenced by noninformative 

points. As mentioned, the power of a spatial statistic depends critically on the spatial pattern 

underlying the data; other models can be envisioned that would produce different results. For 

example, a mean distance measure is a poor choice to evaluate a spatial distribution containing 

several discrete clusters. 

r 
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Figure 1. Eleven cases of non-Hodgkin's lymphoma plotted on a transformed 
map of the city/county of San Francisco, Califonia. 
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Figures 2a and 2b. Power curves (smoothed) for d:2 from simulated data sampled 
from the unit-square model for three variances (figure 2a; 
cr:2 = 0.01, 0.001, and 0.0001 with n = 50) and four sample sizes 
(figure 2b; II = 10,20,50, and 100 with cr 2 = 0.01). 
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Figure 3. 
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Power curves (smoothed) associated wth three methods of spatial 
analysis (if, Poisson counts, and nearest-neighbor) using data 
sampled from the unit square with (j 2 = 0.01 and n = 50 for varying 
degrees of clustering (q). 
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