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Abstract We identify two issues with the reverse regression approach as implemented
in several classic reconstructions of past climate fluctuations from dendroclimatolog-
cical data series. First, instead of estimating the causal relationship between the proxy,
which is measured with significant error, as function of climate and formally inverting
the relationship, most papers estimate the inverted relationship directly. This leads
to biased coefficients and reconstructions with artificially low variance. Second, we
show that inversion of the relationship is often done incorrectly when the underlying
causal relationship is dynamic in nature. We show analytically as well as using Monte
Carlo experiments and actual tree ring data, that the reverse regression method results
in biased coefficients, reconstructions with artificially low variance and overly smooth
reconstructions. We further demonstrate that correct application of the inverse regres-
sion method is preferred. However, if the measurement error in the tree ring index is
significant, neither method provides reliable reconstructions.
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1 Introduction

Long run temperature records are of key importance in many fields, but maybe most
significant in climate science. Unfortunately, the longest instrumentally-measured
temperature series span just over three centuries (Jones and Hulme 1997; Jones et al.
1986; Hansen and Lebedeff 1987; National Research Council 1998). To supplement
the brief observed temperature series, paleoclimatologists have reconstructed long
histories of climate variables by using proxy data series including tree-ring indexes,
ice cores, pollen series, coral, and faunal and floral abundance in deep-sea cores. They
select these proxy data series for their length of sample span, sensitivity to climate vari-
ability, and relative lack of disturbance from non-climate factors. Examples of the vast
number of such reconstructions include Briffa et al. (1990, 1992, 1998, 2001), Scuderi
(1993), Hughes and Brown (1992), Bradley and Jones (1992), Mann (2002), Mann et
al. (1998, 1999), Salzer et al. (2009) and others surveyed in Jones et al. (1998, 2001).

Recently, the attention to statistical issues in dendroclimatology has resulted in a
rapidly growing literature examining the properties of reconstructions at single sites
and the combination of these individual series to time series at larger spatial scales
(Mann et al. 2008; National Research Council 2006; Jones et al. 2009). There is a
vibrant literature which approaches the issue of proxy based reconstruction using a
variety of approaches and methods. One commonly used approach is an application
of the regularized EM algorithm (Schneider 2001; Mann et al. 2005). A more recent
literature has focused on Bayesian approaches to reconstruction (Haslett et al. 2006;
Lee et al. 2008; Tingley and Huybers 2010; Li et al. 2010; Brynjarsdóttir and Berliner
2011; McShane and Wyner 2011).

In this paper1, we examine the statistical properties of a parametric method for
proxy based temperature reconstructions at a single site, called reverse regression.
This method is a straightforward application of the linear regression method. It is
an appealing choice of technique, both because of its simplicity in execution and
seemingly intuitive solution to the reconstruction problem. While it is just one of
many possible techniques, it has been widely applied in a number of classic papers
(see for example Graumlich and Brubaker 1986; Briffa et al. 1990; Till and Guiot
1990; Graumlich 1991; Scuderi 1993; Li et al. 2007). We examine two separate issues
stemming from the application of the “reverse regression method”. The first issue is
a classic statistical issue related to the methodology of estimation, where measure-
ment error in the proxy series leads to attenuation bias in the estimated parameter
and suboptimal reconstructions. The second issue has to do with the specification
of the estimated relationship between the climate and the paleoclimatic index if the
underlying relationship is dynamic. We show using theory, Monte Carlo simulation
and actual tree ring and climate data, that this reverse regression method will result in

1 For information on the history of this paper see http://climateaudit.org/2009/12/16/climategatekeeping/#
more-9569 Last accessed February 18, 2014.
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reconstructions, relative to the true series of the climate index, with a smaller variance
and very different time series properties. We examine an alternative reconstruction
methodology called the inverse regression method, which is just as easily applied, and
outperforms existing methods when the underlying tree ring data are relatively free of
measurement error and strongly correlated with observed temperature. We also show,
that in the absence of such quality data, neither method is capable of producing a
satisfactory reconstruction.

Via a series of realistic pseudoproxy experiments, Christiansen (2011) also demon-
strated that the inverse regression avoids the underestimation of low-frequency vari-
ability and suggested to use the inverse regression for the climate reconstruction. We
share the same conclusion as Christiansen, but our paper focuses more on the sta-
tistical properties of the prediction in comparing two types of regression models. In
addition to the mean and variance that are of Christiansen’s interest as well, we also
investigated the specification and estimation issues of a transfer function, and the
dependence structure of the time series derived based on an estimated transfer func-
tion. Those two issues have often been neglected while applying the reverse regression
to the paleoclimate reconstruction.

In the following section we describe the reverse regression method as well as the
inverse regression method. Section 3 provides a theoretical examination of reconstruc-
tions from both methods. Section 4 contains the Monte Carlo evidence and describes
the results from a reconstruction exercise using an actual sample of tree rings. Section 5
concludes.

2 Reconstruction of historical climate

Biological growth of trees, expressed in tree-ring width or latewood density is limited
by operational environmental factors including temperature, precipitation and CO2
content of the atmosphere (Fritts 1991). If climate has been limiting tree growth
in a systematic way, and the relation between climate and tree growth is stationary
through time, a very long history of tree growth can be employed to extend backward
the relatively brief recorded history of climate.

The biological causal relation between tree-ring growth and climatic factors that
are inputs to the growth process is known as the response function. This response
function relates an index of tree ring growth, Dt , to a climate index, Tt . Both indexes
are normalized to have mean zero and a unit variance. There are four potential sources
of uncertainty when writing down this causal relationship. First, there is model uncer-
tainty about how the two indexes are related. In practice there is some guidance based
on the biological relationship between the climate index and the tree ring growth,
yet there is significant uncertainty as to how many lags of the climate index causally
affect Dt and whether they enter in a linearly additive or nonlinear fashion. Second,
constructing a tree ring index is a complex and lengthy process (Fritts 1991). It is
commonly assumed that Dt is measured with error. Third, the observed tempera-
ture index Tt may also be measured with error as the monitoring station is likely not
located exactly at the location of the proxy sample. As is done in the literature, for the
remainder of this paper we assume the most simple and best case scenario. Finally,
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the stochastic process εt follows is unknown (e.g. whether it is serially correlated or
has constant variance). We assume that the true causal relationship between Dt and Tt

is linear and additive and the number of lags of Tt affecting Dt is known. Further, we
assume that Tt is measured without error and that εt is i.i.d. normal with mean zero and
constant variance. The simplest possible response function under these assumptions
is therefore given by:

Dt = βo · Tt + εt , (1)

where εt is the measurement error of Dt , which is assumed to satisfy E[εt |Tt ] = 0.
If this strict exogeneity assumption holds, given an appropriate sample of Tt and Dt

one can obtain a consistent and efficient estimate of βo by ordinary least squares.
Using this estimate for the population parameter, one can formally invert Eq. (1) and
calculate predictions for Tt in years where only Dt is available. The inverse function
of the response function, which has the climate indicator on the left hand side and is
used to construct historical climate out of sample predictions, is called the transfer
function. We refer to the approach of estimating the response function directly and
formally inverting it to obtain the transfer function as “inverse regression”.

As opposed to the inverse regression, the reverse regression method does not esti-
mate Eq. (1), but rather the transfer function directly:

Tt = γo · Dt + ηt .

Since Dt is measured with error, this creates a variety of estimation issues, which go
back in the statistics literature to Eisenhart (1939). As we show in the next section,
direct estimation of the transfer function causes the least squares estimator to be biased
in large as well as small samples. Bias of the estimator even in a large sample poses
a critical limitation in prediction or in reconstruction of temperature series in dendro-
climatology. In addition to the biased coefficient estimates, the reverse regression also
results in a downward bias in the variance of the reconstructed historical climate in
large and small samples, even when assuming a valid underlying response function
(Storch et al. 2004).

The second set of issues relates to the specification of the transfer function, when the
underlying response function is thought to be dynamic. Scuderi (1993), for example,
uses current temperature and two lagged years of temperature in the response function,
in which case the specification is given by

Dt = βo · Tt + β1 · Tt−1 + β2 · Tt−2 + εt . (2)

The inclusion of the lagged temperature variable is interpreted as reflecting year-to-
year persistence of the effect of climate variables upon the response of tree growth
(LaMarche 1974; Yoo and Wright 2000). In the standard application of the reverse
regression approach, the number of lags for Tt in the response function determines the
number of leads of Dt in the transfer function. This transfer function is then estimated
directly using ordinary least squares. Scuderi (1993), based on the response function
specified in Eq. (2) above, choses the transfer function
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Tt = γo · Dt + γ2 · Dt+1 + γ3 · Dt+2 + ηt .

It is standard practice in papers using this reverse regression method to use the directly
estimated transfer function coefficients (γ̂1, γ̂2, γ̂3) to reconstruct Tt back beyond the
horizon of observation. This reconstructed climate record can then be used to infer the
time series properties of climate, including the dynamics of baseline variation, counts,
and duration of climatic extremes such as severe droughts and heat waves.

This approach introduces two additional issues to the estimation stemming from
measurement error in Dt discussed above. First, the fact that current and lagged obser-
vations of the climate variable causally affect tree growth does not imply that current
and future tree growth should appear in the formal inversion of this relation. As we show
below, whether the leads or the lags of the index of tree ring growth should be included
as predictors in the transfer function for a given response function depends upon the
relative magnitude of the parameters in the response function. Even when leads should
be included in the transfer function, the number of leads is always greater than the
number of lags in the response function. Furthermore we show that when the inclusion
of leads is justified, current tree growth should be excluded from the transfer function.

Second, the misspecification of the transfer function results in an overestimate of
the order of the autoregressive process of the reconstructed temperature series. This
is consistent with the observation of very smooth reconstructions [e.g. Seater (1993)].
While empirically the estimated order of the AR process also depends on the selec-
tion criterion used, we argue based on theory and Monte Carlo evidence that direct
estimation of the misspecified transfer function tends to produce reconstruction with
artificially high autoregressive processes. This aspect of reconstruction is of crucial
importance in the analysis of climate change, since overestimation of the order of the
AR process of temperature underestimates the variability of the true temperature move-
ment so that inferences about the significance of observed temperature deviations in a
particular period prior to the availability of direct climate measurement are unreliable.

3 Comparing inverse and reverse regression: theory

3.1 Bias and variance of temperature estimates

We have discussed two basic types of underlying models that have been typically
considered for estimating the temperatures from the proxy. One is directly regressing
the temperatures on proxies (reverse regression) and the other is regressing the proxies
on temperatures (inverse regression). The former corresponds to directly estimating
the transfer function and the latter to the inversion of the estimated response function.
In addition to reverse and inverse regression, these two methods have carried a variety
of names in the statistics literature. For example, they sometimes are called the direct
and indirect regression (Christiansen 2011), while at other times may have been called
the inverse and classical calibration (Krutchkoff 1967). The comparison between these
two statistical estimation methods has long been discussed going back to Eisenhart
(1939) and later reviewed in Brown (1993). Here we compare these two approaches
in the context of estimating temperatures using proxy data.
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Both temperatures and proxies are random variables and they are jointly distrib-
uted. In principle we can construct the conditional distribution of temperature given
proxies in order to estimate unknown temperatures at given proxies. However, from
a modeling perspective the inverse regression is preferred over reverse regression for
two reasons. First, the transfer function may not be the most appropriate model for
describing the relationship between temperatures and proxies. It is commonly agreed
that the proxy is noisy with the signal to noise ratio to be roughly 0.25 by variance
(Smerdon 2012), while the temperature measurements, though contain noise, are rel-
atively more accurate estimates. In this sense, it might be more appropriate to model
the linear relationship by having proxies as the response variable with temperature
as the predictor and to actually represent the source of errors. This seems to suggest
that estimation of the response function is more natural and sensible than the direct
estimation of the transfer function. Estimates of out of sample temperatures should be
obtained through the inversion of the estimated response function. Another disadvan-
tage of the reverse regression method is that it is unclear whether the past temperatures
are from the same population as the observed temperatures. With this uncertainty it
may be less risky to model temperatures as predictors.

In terms of statistical properties of the estimated temperatures, the two estimation
methods each have their own advantages and disadvantages. Direct estimation of the
transfer function encounters the classical problem of errors in variables (Klepper and
Leamer 1984). Ordinary Least Squares (OLS) estimators are biased and inconsistent
if the tree-ring index series used as a predictor in the transfer function is subject
to measurement error due to disturbances (εt ) in the response function. Therefore,
the estimates of the parameters of this direct estimation of the transfer function are
biased downward. However, compared to the inversion of response function, the direct
estimation reduces the variability. To demonstrate this, consider the simplest static
case below, which omits the issue of lags and leads discussed earlier, but can be easily
extended to the general case.

Specify the response, Dt , as determined by the contemporaneous impact of Tt with
measurement error εt |T empt ∼ N (0, σ 2):

Dt = βTt + εt . (3)

As is standard in the literature, both Dt and Tt are standardized to have mean 0 and
standard deviation 1. In Eq. (3) this implies a coefficient of determination (R2) of β2.
Given the standardization the OLS estimate of β based on a sample of size n is:

β̂ =
∑n

t=1 Dt · Tt
∑n

t=1 T 2
t

= cov(Dt , Tt ).

The specification of the reverse regression used to reconstruct Tt ’s from Dt ’s is

Tt = γ Dt + ηt . (4)
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Given the standardization, the OLS estimate of γ is given by:

γ̂ =
∑n

t=1 Dt · Tt
∑n

t=1 D2
t

= cov(Dt , Tt ).

The OLS estimate, γ̂ , of the reverse equation equals the OLS estimate of the response
function parameter β̂, because of the standardization of Dt ’s and Tt ’s. Given the causal
relation in (3), the matching transfer function to be used for reconstruction is given
by:

Tt = 1

β
(Dt − εt ) = 1

β
Dt + ηt ,

noting that ηt = − 1
β
εt . If we take the ratio of the coefficients on the tree ring index

from the reverse regression in (4) and the inverse regression in (3) and notice that for
|β| < 1, we get:

γ̂
1
β̂

= γ̂ 2 � 1.

Thus the OLS estimate of the coefficient of Dt in the reverse regression is biased
toward zero by a proportion (1 − β2). Since β2 is the coefficient of determination of
the OLS estimate of the response function, the bias grows as the fit of the response
function deteriorates. This corroborates the discoveries in Ammann et al. (2010).

The reverse regression is subject not only to bias of the estimated coefficient but
also to underestimation of the variance of the reconstructions, T̂ r

t :

var
(
T̂ r

t

) = γ 2var (Dt ) = γ 2β2var (Tt ) + γ 2var (εt ) = γ 2,

since var (εt ) = 1 − R2 = 1 − γ 2. The variability of the reconstruction by reverse
regression is determined by the estimate of the coefficient, γ , which equals β in
expectation. Hence the variability of the reconstruction is also biased downward and
decreases as the fit of the response function declines. This is consistent with the
observation made in Storch et al. (2004). On the other hand, if the transfer func-
tion is obtained by inversion of the estimated response function, the variance of the
reconstruction,T̂ i

t , in expectation is overestimated relative to the true (unobserved)
climate:

var
(

T̂ i
t

)
= var

(
1

β
Dt

)

= 1

β2 var (βTt + εt ) = var (Tt ) + 1

β2 var (εt ) = 1

β2 > 1.

The last equal sign in the above equation holds because var(ε) = 1 − β2. The
overestimation of the true variance of the climate series grows as the fit of the response
function declines. A noisy proxy therefore leads to a noisy reconstruction.
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In summary, the direct estimate of transfer function will yield biased parameter
estimates and thus bias predictions. However, these predictions have smaller variance
than those obtained from the inversion of response function.

Let σ 2
T = ∑

(Tt − T̄t )
2/n. Asymptotically, Brown (1993, p 32) gives

E(T̂ i ) = T, var(T̂ i ) = σ 2/β2;
E(T̂ r ) = ρ2T + (1 − ρ2)T̄ , var(T̂ r ) = ρ4σ 2/β2,

where ρ2 = β2σ 2
T /(σ 2 + β2σ 2

T ), 0 ≤ ρ2 ≤ 1.
The bias of T̂ r is small if the new T is close to T̄ , the mean of the temperature in the

training data. In general, T̂ r has smaller mean-squared error than T̂ i when T is close
to T̄ , particularly so if ρ2 or signal to noise ratio β2σ 2

T /σ 2 is small (Krutchkoff 1967),
otherwise T̂ i performs better by this measure. With T centered, E(T̂ r ) = ρ2T , and

MSE(T̂ i ) − MSE(T̂ r ) = σ 2/β2 − ρ4σ 2/β2 − (1 − ρ2)2T 2.

Then T̂ r is better than T̂ i if and only if T 2 < σ 2/β2 + 2σ 2
T = σ 2

T (1/ρ2 + 1). In
climatology, we mainly focus on the long term climate variability, so we would prefer
the unbiased estimation method regardless of the comparison in MSE. Tingley and
Li (2012) point out that in some settings a Bayesian framework can regularize the
instability problem of the inverse regression.

3.2 Specification of the transfer function

In this section we illustrate the specification and estimation issues in a simple case in
which the response function contains only the current value and one lag of the climate
variable (e.g. Briffa et al. 1992). The issue in this section generalizes to situations
with more complicated lag structures and is only applicable to settings where the
response function is not static. Let Dt be the annual increment of tree-ring width
and Tt temperature at date t . The regression equation of the response function of tree
growth on the temperature index is given by

Dt = βo · Tt − β1 · Tt−1 + εt = βo (1 − φL) Tt + εt , (5)

where φ = β1
βo

and the lag operator L is defined as L pTt = Tt−p, pε N . The measure-

ment error εt is assumed to be i.i.d. and εt |T empt ∼ N (0, σ 2). Inversion of Eq. (5)
will vary depending upon the ratio of the parameters, βo and β1. First consider the
case where |φ| < 1. Assuming that Tt is a bounded sequence, we can solve Eq. (5)
for Tt as follows (Hamilton 1994, page 19):

Tt = (βo (1 − φL))−1 (Dt − εt )

= 1

βo

(
Dt + φDt−1 + φ2 Dt−1 + φ3 Dt−3 . . .

)
+ νt

∼= 1

βo

(
Dt + φDt−1 + φ2 Dt−1 + φ3 Dt−3 . . . + φm Dt−m

)
+ νm

t (6)
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where νt = − 1
βo

(
1 + φL + φ2L2 + φ3L3 . . .

)
εt and νm

t = − 1
βo

(
1 + φL + φ2L2

+φ3L3 . . . + φm Lm
)
εt . If Dt is determined by the current and the first lagged value

of Tt in the response function, the corresponding transfer function should be defined
as the weighted sum of the lags of the tree growth measures and of the errors in the
estimated response function back to the distant past with geometrically decreasing
weights. Only then will it reflect the biological relation that specifies the direction of
causality in the response function. If |φ| < 1, the marginal effect of current temperature
is larger than that of the previous year. The above inversion shows that given response
relation (3), Tt in the transfer function should be regressed on the current observation
and previous observations of tree-ring growth, rather than on Dt and its first lead,
Dt+1, as is the standard approach.

Now consider the case where |φ| > 1. We can invert Eq. (5) using the lead operator,
which is the inverse of the lag operator L−pTt = Tt+p where p > 0, to get the transfer
function (Hamilton 1994, page 41):

Tt = (βo (1 − φL))−1 (Dt − εt )

= − 1

βo

(
φ−1 Dt+1 + φ−2 Dt+2 + φ−3 Dt+3 . . .

)
+ νt

∼= − 1

βo

(
φ−1 Dt+1 + φ−2 Dt+2 + φ−3 Dt+3 . . . + φ−(m+1) Dt+m+1

)
+ νm

t ,

where νt = − 1
βo

(
φ−1L−1 + φ−2L−2 + φ−3L−3 . . .

)
εt and νm

t = − 1
βo

(
φ−1L−1

+φ−2 L−2 + φ−3L−3 . . . + φ−(m+1)L−(m+1)
)
εt . For this parameterization of the

response function (5), where lagged climate has a larger impact on tree ring growth
than current climate, the matching transfer function is the one where current temper-
ature is not a function of current tree growth, but is a weighted sum of leads of tree
growth and the errors εt with geometrically declining weights.

It is common (e.g. Briffa et al. 1990, 1992) to estimate the transfer function directly,
after estimating the response function as a first step to determine the relevant number of
lags. This approach ignores the fact that a transfer function including one or two leads
of Dt is misspecified if the underlying response function that is correctly specified has
one or two lags. Assuming that climate is accurately measured by the climate index
in the sample period, the transfer function relating a climate variable to tree growth
should be generated by inverting the estimated response function. If tree growth is
generally limited by the current and previous years’ climatic conditions (LaMarche
1974) the climate measure in a given year should be calculated as a function of either
current and past tree growth if |φ| < 1, or of future tree growth excluding current year
tree growth if |φ| > 1. The relevant specification of the transfer function therefore
depends upon the relative size of the marginal effect of the current (βo) and the previous
year’s (β1) climate on current tree growth. Empirically, the weights of the lags/leads
should be calculated from the estimated response function parameters.

If the order of lags of Tt on Dt is not known a priori, the order of lags of the
temperature series can be estimated ex post and utilized in inverting the response
function into the transfer function, as illustrated above for the one-lag case for |φ| < 1
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or |φ| > 1. In the following section we discuss an additional statistical problem that
arises if the transfer function is misspecified as described above.

3.3 Time series properties of climate reconstructions

The autocorrelation order of long run history of the reconstructed climate series is
another important characteristic in making inferences about its baseline fluctuation.
When the dependent variable (Dt ) is caused by the lagged and the current realizations
of Tt , the dependent variable exhibits time dependent behavior (even without serial
correlation of εt ). Let us consider the implications for the autoregressive order of
the estimated climate series from the two estimation approaches using the following
simple response function equivalent to (5) as an example:

Dt = βoTt + β1Tt−1 + εt , (7)

where both Dt and Tt are standardized to have mean zero and unit variance and εt ∼
N (0, σ 2). Applying reverse regression the following transfer function is estimated
directly:

Tt = γo Dt + γ1 Dt+1 + ηt . (8)

Since the variables are standardized we can represent the OLS estimates in (7) as a
function of the OLS estimates in (8):

γ̂o =
β̂o

(
1 − β̂2

1

)

1 − β̂2
o β̂2

1

and γ̂1 =
β̂1

(
1 − β̂2

o

)

1 − β̂2
o β̂2

1

.

Then the reconstruction of the climate series using reverse regression, T̂ r
t , is given by

T̂ r
t = γ̂o Dt + γ̂1 Dt+1. To focus on the problem caused by estimating a misspecified

transfer function, abstracting from the errors-in-variables problem discussed above,
we remove the unobserved factor, εt , from Dt , resulting in a perfect fit for the response
function. Recognizing that β̂i is an unbiased estimate of βi for i = 0, 1, and using the
true relation between β’s and γ ’s, we obtain:

T̂ r
t = 1

1 − β2
oβ2

1

[
β2

o

(
1 − β2

1

)
+ β2

1

(
1 − β2

1

)]
Tt

+ 1

1 − β2
oβ2

1

[
βoβ1

(
1 − β2

1

)
Tt−1 + βoβ1

(
1 − β2

o

)
Tt+1

]
.

The reconstructed T̂ r
t is the weighted sum of the lag and lead of Tt as well as the

current value. Reconstructions show dependency across time even if they are recon-
structed from error-free variables. This is due to the misspecified transfer function,
which does not reflect the physical causal relationship given by the response function.
On the other hand the reconstruction by inversion of the response function will only
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exactly match the true Tt if Dt is free from errors, εt , as assumed in this illustra-
tion. When there are errors in the response function, its inversion also introduces time
dependent behavior in the reconstructed series—even if the errors, εt , are i.i.d.

In summary, a noisier response function will result in noisier reconstructions, with
potential time dependence, even if the response function is correctly inverted. But the
estimation of a misspecified transfer function induces time dependency due not only
to the errors in the response relation but also to the misspecification of the transfer
function. The limitations of this method of reconstruction do not disappear if the fit of
the response relation is perfect. For high-quality data, for which the response relation
has high explanatory power, the inversion method is superior. For low-quality data,
little can be expected from either method.

4 Performance comparison

In order to more fully investigate the issues of specification estimation addressed
above, we conduct several Monte Carlo experiments as well as a reconstruction using
an actual tree ring index.

4.1 Monte Carlo experiment

In the first experiment, we choose βo and β1 so that their ratio is equal to the ratio of the
values found by estimating the response function from the data by Briffa et al. (1992).
A set of independent Tt ’s is generated from the standard normal distribution and held
constant for the experiment. The i.i.d. disturbances, εt , were repeatedly drawn from a
mean zero normal with the variance chosen so that the variance of the Dt ’s is 1 given
the values of βo and β1. For each experiment we chose the sample size T = 1, 000,
and we replicated the sample 1,000 times.

To apply the inversion method, we estimated the response function (5) for the
last 100-year subsample, and reconstructed the series Tt for the whole sample from
the series for Dt via Eq. (6) using m = 10. The reverse regression method was
implemented by estimating the transfer function (8) from the last 100-year subsample,
and reconstructing the whole sample from this estimated regression relation. As an
initial comparison of the two methods of reconstruction we take an average of the
reconstructions for each year across the 1,000 experiments. If a reconstruction method
produces unbiased reconstructions, the mean reconstruction should be very close to the
true value for any given year. Hence, we plot the difference of the mean reconstruction
from the true Tt for each year in Fig. 1 over the whole sample period for both methods.

Figure 1 shows that the deviations of the averaged reconstructions for each year
produced via the inversion method from the true generated time series of Tt ’s are dense
around 0, indicating that the mean reconstruction is quite accurate. On the other hand,
the averaged reverse regression method result in a much noisier estimate of the true
mean reflected in the larger variance of the series plotted in Fig. 1. It is important to note
the order of magnitude difference in the vertical scale, and it is important to differentiate
the variance of the series plotted here form the variance of a single reconstruction.
What this figure shows is the difference between the average reconstruction (across
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Fig. 1 Difference of the Mean Annual Reconstruction from the True Temperature (βo = 0.68; β1 = 0.10).
The top panel plots the difference of the mean reconstruction from the true Tt for each year in the sample
period using the reverse regression method. The bottom panel plots the difference of the mean reconstruction
from the true Tt for each year in the sample period using the inverse regression method. The scale for the
bottom panel is compressed

1,000 runs) and the truth (which is the same in each run) for each year. This number
should be close to zero if the estimator performs well on average. Without surprse, it
shows that the reverse regression reconstruction performs very poorly so the bias of
this reconstruction is very noisy, but the inverse regression is very close to the target
value so the variance of the difference from the inversion regression reconstruction
is very small. We have verified this by looking at the absolute value of the deviation
for each run from the truth for both methods and averaged that across runs. For the
inverse regression for the average year this deviation is about 70 % smaller than that
of the reverse regression.
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To further compare the performance of the two reconstruction methods, we perform
additional Monte Carlo experiments for different sets of parameter values for βo and
β1. For the first set of experiments we hold βo fixed and explore the performance of
the two reconstruction methods for a range of β1 such that |φ| < 1, given that the Tt ’s
and Dt ’s are again normalized. As a first measure of performance, we use the mean
absolute deviation of reconstructions from the generated “true” value for each of the
two reconstruction methods, which is defined as

MAD =
∑T

t=1 | ft − Tt |
T

,

where ft is the average of the reconstructions from 1,000 replications. The quality of
the reconstruction of Tt depends on two factors, the explanatory power of Tt in the
response function and the ratio of the current impact of climate to its lagged impact.
Figure 2 shows the MAD performance of the two methods for three different levels
of βo across the valid range of β1. Reconstruction either by inversion of the estimated
response function or by estimation of the transfer function improves as the explanatory
power of the climate variable in the response function increases. If the response variable
is severely contaminated by measurement error, high quality reconstructions of climate
variables from the respondent variable are not possible with either method.

Irrespective of the explanatory power of climate variables in the response function,
the inversion method proves superior in reproducing the true Tt ’s. As the ratio of βo

to β1 of the response function decreases, the relative role of the lagged explanatory
variables increases and the accuracy of the reconstructions by inversion deteriorates.
The average of the mean absolute deviation from the true values of reconstructions by
reverse regression is almost an order of magnitude higher than that of the inversion
method even when the current effect of Tt on Dt compared to the lagged impact is
dominant, for example βo = 0.9, β1 = 0.01. Reverse regression bias makes the
reconstruction less accurate.

Table 1 shows results from Monte Carlo experiments of reconstructions for seven
combinations of (βo, β1). For each experiment, the true standard deviation of Tt is
exactly 1 for the sample period. The top row in the table indicates the magnitude of
the coefficients of the response function. The share of the variance in temperature
coming from a signal instead of noise (εt ) increases as we go to the right in the table,
as indicated by the implicit variance of εt .

It should be emphasized that the deviations of the variance of reconstructions in
the inversion approach are not due to a problem with the method, but are an inevitable
consequence of the low explanatory power of climate in the determination of tree
growth. Consistent with Fig. 2, the table indicates that the MAD of the reconstructions
using the inverse regression methods is consistently smaller than that of the reverse
regression method and converges towards zero as the response function becomes less
noisy. The reverse regression reconstructions never become unbiased. The mean of the
estimated standard deviation (SD) of reconstruction is biased upwards for the inver-
sion approach and biased downwards for the reverse regression approach. When the
explanatory power of Tt is 0.99 as in the case with (βo, β1) equal to (0.8, 0.59) or
(0.9, 0.42), the means of the estimated standard deviation for the reconstructions from
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Fig. 2 Mean Absolute Deviations of Reconstructions. The three panels above show the MAD performance
of the two methods for three different levels of βo across the valid range of β1. Reconstruction either
by inversion of the estimated response function or by estimation of the transfer function improves as the
explanatory power of the climate variable in the response function increases
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Table 1 Summary of Monte Carlo experiment

var(εt ) β0 β1 β0 β1 β0 β1 β0 β1

0.4 0.1 0.4 0.2 0.6 0.2 0.8 0.2
0.83 0.8 0.6 0.32
Inv. Rev. Inv. Rev. Inv. Rev. Inv. Rev.

MAD 0.10 0.66 0.12 0.65 0.04 0.50 0.02 0.30

SD 2.84 0.47 3.13 0.49 1.75 0.67 1.26 0.85

RE 0.15 −3.39 0.12 −2.79 0.35 −0.45 0.66 0.50

CE 0.15 −3.42 0.12 −2.81 0.35 −0.46 0.66 0.49

AR(0) 19 % 18 % 5 % 2 % 15 % 1 % 53 % 0 %

AR(1) 80 % 46 % 87 % 23 % 78 % 59 % 47 % 95 %

AR(2) 1 % 20 % 9 % 31 % 7 % 30 % 1% 5 %

AR(3) 0 % 9 % 0 % 16 % 0 % 7 % 0 % 0 %

AR(4) 0 % 4 % 0 % 14 % 0 % 3 % 0 % 0 %

AR(5+) 0 % 3 % 0 % 14 % 0 % 0 % 0 % 0 %

var(e) β0 β1 β0 β1 β0 β1

0.9 0.1 0.8 0.59 0.9 0.42
0.18 0.0119 0.0136
Inv. Rev. Inv. Rev. Inv. Rev.

MAD 0.01 0.16 0.03 0.44 0.00 0.34

SD 1.13 0.94 1.04 0.85 1.03 0.92

RE 0.82 0.78 0.96 0.57 0.98 0.78

CE 0.82 0.78 0.96 0.56 0.98 0.78

AR(0) 93 % 28 % 100 % 0 % 100 % 0 %

AR(1) 7 % 72 % 0 % 0 % 0 % 0 %

AR(2) 0 % 0 % 0 % 0 % 0 % 0 %

AR(3) 0 % 0 % 0 % 0 % 0 % 20 %

AR(4) 0 % 0 % 0 % 0 % 0 % 80 %

AR(5+) 0 % 0 % 0 % 100 % 0 % 0 %

This table shows the results from the Monte Carlo experiment discussed in Sect. 4.1 We use a time series
of length T = 1, 000 with 1,000 iterations. Inv. stands for the Inverse Regression Method and Rev stands
for the Reverse Regression Method. The coefficients β0 and β1 correspond to the estimated parameters in
Briffa et al. (1992). The εt is chosen to give the temperature series a variance of 1. MAD the mean absolute
devation as defined in Sect. 4.1. SD is the standard deviation of the reconstructions, which if unbiased
should be equal to 1. RE and CE are measure of fit as given in Mann and Rutherford (2002). The AR( )
rows indicate which order autoregressive process is chosen for the reconstructions based on the Schwarz
Information Criterion

reverse regression (T̂ r
t ) are 0.85 and 0.92 while the reconstructions from the inversion

method (T̂ i
t ) have an estimated standard deviation of 1.04 and 1.03 respectively, which

is close to the true value of 1. The bias in variance reduces dramatically going from
left to right as the explanatory power of the Tt ’s increases (as var(εt ) goes to 0.01) and
almost disappears for the inverse regression method, but not so for the reverse regres-
sion method. The latter technique’s bias, given a valid response function with high
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explanatory power, is predominantly due to misspecification of the transfer function -
not to the error in Dt .

Since MAD is only one measure of performance, we calculate the mean “Reduc-
tion of Error” (RE) and the “Coefficient of Efficiency”, which range from −∞ to 1.
RE is zero if the reconstruction is set equal to the mean of the target series over the
calibration interval, while the CE is zero if the reconstruction is set equal to the mean
of the target series over the validation interval. Both of the measures are standard
in the dendroclimatology literature and described in detail in Cook et al. (1994) and
National Research Council (2006). For each statistic, a value of zero indicates that the
reconstruction method is equivalent in performance to using the sample mean. Values
less than zero indicate that the mean outperforms the reconstruction. Values greater
than zero and less than one indicate the superior predictive ability of the model relative
to simply using the mean. As Table 1 indicates, the inverse regression method for both
statistics always outperforms the mean. For inverse regression, both RE and CE come
close to the theoretical maximum of 1 for the last two low noise scenarios. The reverse
regression method has negative values for both statistics for the first two scenarios.
Further, for the reverse regression method neither the RE nor the CE is greater than
those of the inverse regression method for any of the considered coefficients.

The bottom six rows of Table 1 show supporting Monte Carlo evidence of our
theoretical claim from the previous section, that the reverse regression method will
overestimate the order of the autoregressive process. In each experiment above we have
generated Tt as an independent process over time, which implies that Tt is AR(0). For
each iteration and reconstruction method, we use the Schwarz criterion to render a
consistent estimate of the order of the process. (Note that using the inconsistent AIC
would further increase the estimated order of the autoregressive process). As above,
the success of each method in correctly identifying the order of the autoregressive
process depends on the explanatory power of the series Tt in determining Dt . When
explanatory power is very low, neither method is successful at correctly identifying
the correct order. When the variances of errors, εt , are less than 0.2, the reconstruc-
tions by inversion of the response function are successfully identified as independent
processes over time in most of the cases. For the response function, which contains
the least degree of noise (β0 = 0.8;β1 = 0.59), the inverse regression method based
reconstructions are correctly identified as following an AR(0) process for 100 % of
the reconstructions, while the autoregressive order of the reverse regression method
based reconstructions is identified as higher than AR(5) 100 % of the time.

The reconstructions by reverse regression yield consistently erroneous, positive
orders of the autoregressive process. This is one likely reason that Seater (1993) iden-
tified the underlying process of the reconstructed temperature series of Briffa et al.
(1992) as AR(17). The second Monte Carlo (II) uses parameters whose ratio is equal
to that of those estimated in Briffa et al. (1992) and shows that the reconstructions
from reverse regression indicate an AR(5) or higher order AR process in 14 % of the
cases even though the true process is AR(0). Storch et al. (2004) have pointed out this
underestimation of the variability of the climate reconstructions, looking at studies
using principal components of the proxy data series as predictors of the instrumental
temperature series. Above we formalize this notion and show an additional method-
ological issue contributing to the underestimate of variability in the reconstruction.
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4.2 Estimation and reconstruction: Briffa et al. (1992)

To provide a concrete example of the consequences from reconstructing a climate
index using a proxy index, we estimate the response function using the 1876–1974
temperature and latewood density index used by Briffa et al. (1992), and reconstruct
the climate series for a 1,524 year time span. For the reverse regression we estimate
the first model given in Table 2 in Briffa et al. (1992) using one lead of the tree ring
and maximum latewood density index via least squares, which corresponds to Eq. (7)
above. For the inverse regression method we only use the maximum latewood density
index with one lag, which is significant in the response function using Newey and
West (1994) standard errors. The fit of the response function in this example is very
good for this given data set (similar to the 4th and 5th example in Table 1). The results
from the two reconstruction methods are summarized in Table 2. Figure 3 plots the
actual temperature and reconstructions using both methods.

Matching the results from the Monte Carlo experiment, the estimated standard devi-
ation of the reconstructions from the inversion method is 1.45 times the true standard
deviation, thus overestimating the climate variability. The reconstruction via the inver-
sion method results in a reconstruction with an autoregressive process matching the
order of original series—AR(0). On the other hand, estimation of the reverse regression
underestimates the standard deviation by 29 %, resulting in an overly smooth series.
It follows an AR(3) process, not matching the order of the actual temperature series.
These results provide supporting evidence of what Storch et al. (2004) noted—namely
that traditional reconstruction methods result in an overly smooth historical climate
record. Here we show that this excessive smoothing is a consequence of the statistical
estimation issues pointed out above as well as the misspecification of the transfer func-
tion. We further conducted calibration/verification exercise using the year 1925–1976
as a calibration period and the year 1876–1924 as a verification period. As Table 2
shows, the inverse regression method outperforms the reverse regression method using
the commonly used RE and CE measures of fit that we have also employed earlier.

Table 2 Comparison of the reconstructions for the in sample period using the Fennoscandia sample used
by Briffa et al. 1992

Actual temperature Reconstruction
by inversion
method

Reconstruction
by reverse
regression

Average 0 0 0

Standard deviation 1.01 1.46 0.71

Order of AR process 0 0 3

Correlation with temperature 1 0.71 0.72

RE** – 0.52 0.2

CE** – 0.52 0.21

The series were normalized to have mean zero and standard deviation 1 for the entire sample. We used the
years 1925–1976 as a calibration period and 1876–1924 as the verification period. RE and CE are calculated
using the formulas given in Mann and Rutherford (2002) with N = 101
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Fig. 3 Reconstruction of the Observed Temperature Record in Briffa et al. (1992). The top panel plots
the the actual temperature data from Briffa et al. (1992), which are normalized to mean 0 and standard
deviation 1. The middle panel displays the reconstructions from the reverse regression method. The bottom
panel displays the reconstructions from the inverse regression method

5 Conclusion

In this paper we investigate the adequacy of a simple, intuitive but traditional recon-
struction method of past climate fluctuations from paleoclimatic data series such as
tree-ring index series, ice cores, pollen series, assuming that the response function
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relating the chosen paleoclimatic index to the climate measure is correctly specified
and the temperature index is free of measurement error. We identify two problems
with the traditional approaches, one with the estimation methodology, the other with
the specification of the estimated relationship between climate and the paleoclimatic
index. We demonstrate that reconstruction from the correctly specified inversion of
the estimated response function is preferred, from a statistical point of view, to direct
estimation of a transfer function relating the climate index to a paleoclimatic index.

We show that the specification of the transfer function should be determined by the
specification of the response function. Whether leads and/or lags of the environmental
factors should be included as predictors in the transfer function depends on the relative
size of the parameters of the response function. Whether or not the transfer function
is correctly specified, direct estimation of the transfer function is a classic example of
the reverse regression problem, which causes the estimators to be biased in large as
well as small samples.

Further, we have explored the underlying causes of the issue raised by Storch et al.
(2004): The estimated degree of variation of reconstructed climate, which is central
to the climate change debate, is underestimated by the standard approach as measured
by the standard deviation of the reconstructions. Further, the method proposed in this
study improves the accuracy of a climate reconstruction found in the literature (Briffa
et al. 1992) on average by an order of 3 or 4, measured by mean absolute deviations,
in our Monte Carlo experiment.

In addition, the misspecification of the transfer function results in overestimation of
the order of the autoregressive process of the reconstructed series. The reconstructions
by the direct estimation of a misspecified transfer function yield consistently erroneous
and positive orders of the autoregressive process in Monte Carlo experiments and
the empirical example. As a result of misspecification of the transfer function, and
the bias induced by the reverse regression estimation procedure, fluctuations of the
reconstructed climate series are underestimated. Inferences from such series regarding
the existence of abnormalities in particular periods, including the most recent period,
are unreliable.

The quality of the paleoclimatic data series, the specification of the response rela-
tion, and its explanatory power, are of course crucial issues in reconstruction of the
history of climate change. What we show here is that even if the data are excel-
lent, and the response relation is correctly specified and has high explanatory power,
direct estimation of a correctly or incorrectly specified transfer function can produce
highly unreliable information about the history of climate. The inversion of the esti-
mated response function is the preferred method for reconstruction of climate history.
It generally generates more reliable information, given the quality of the available
data and the specification of the response relation. It will inevitably tend to overstate
the variation of climate due to the errors in the noise component in the underlying
response function, but the bias is small when the underlying response function has
high explanatory power. If the underlying response function is noisy, neither method
provides reconstructions of sufficient quality.

This article mainly attempts to illustrate the problem with reverse regression in the
paleoclimate reconstruction, but it by no means indicates that inverse regression is the
optimal method. Indeed, the Bayesian hierarchical modeling (BHM) framework has
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many advantages except that it often requires heavy computation. The BHM typically
sets the response function at one level, and then it can include other information
from other sources, such as the dynamics of the physical process, climate models or
energy balance equations (Li et al. 2010; Tingley and Huybers 2010). In addition,
Tingley and Li (2012) showed that the inverse regression becomes unstable when the
response function is noisy, while the BHM can potentially ameliorate this problem by
introducing only a weakly informative prior. Recently, Tingley et al. (2012) provides a
detailed review of the paleoclimate reconstruction and discusses the modeling of each
hierarchy and challenges when using a BHM model for the reconstruction.
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