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A B S T R A C T

Biospecimen collection in the Adolescent Brain Cognitive Development (ABCD) study – of hair samples, shed
deciduous (baby) teeth, and body fluids – will serve dual functions of screening for study eligibility, and pro-
viding measures of biological processes thought to predict or correlate with key study outcomes on brain and
cognitive development. Biosamples are being collected annually to screen for recency of drug use prior to the
neuroimaging or cognitive testing visit, and to store for the following future studies: (1) on the effects of ex-
posure to illicit and recreational drugs (including alcohol and nicotine); (2) of pubertal hormones on brain and
cognitive developmental trajectories; (3) on the contribution of genomics and epigenomics to child and ado-
lescent development and behavioral outcomes; and (4) with pre- and post-natal exposure to environmental
neurotoxicants and drugs of abuse measured from novel tooth analyses. The present manuscript describes the
rationales for inclusion and selection of the specific biospecimens, methodological considerations for each
measure, future plans for assessment of biospecimens during follow-up visits, and preliminary ABCD data to
illustrate methodological considerations.

1. Introduction

SU initiation typically begins in the teens. According to the 2016
Monitoring the Future Survey, 7.3% of 8th graders (13–14 years old)
have used alcohol, 5.4% have used marijuana, and 2.6% have used
tobacco within the last 30 days. Marijuana, alcohol and other sub-
stances of abuse are known to negatively impact neurodevelopment in
adolescents suggesting that the adolescent brain may have heightened
vulnerability to toxic substance effects (Gray and Squeglia, 2017). The
Adolescent Brain Cognitive Development (ABCD) Study is a large-scale,
prospective, longitudinal, multi-site project designed to study brain and
cognitive development in youth, as they transition into adolescence and
young adulthood, across the United States (see ABCDStudy.org). Par-
ticipating families are recruited through school and community events
at each respective ABCD study site, online and paper ads, and word of
mouth. This is the first study of its kind in the US to focus on factors of

critical importance to trajectories of developmental change in brain and
cognition during a period of vulnerability to substance use (SU) and
other mental health problems. Study outcomes will inform evidence-
based standards for normal cognitive and brain development, as well as
provide large repositories of data and bio-materials for the study of
experiential and environmental influences on brain and cognitive de-
velopment in youth. Focus on the contributions of pubertal hormones,
genomic and epigenomic factors, and the interactions across these
many influences, are serving as key biological measures for informing
our understanding of developmental and behavioral outcomes in the
ABCD study. To this end, along with brain imaging, neurocognitive, and
other measures, including a comprehensive battery of mental and
physical heath, history of SU, behavioral assessments and key bio-
samples (see Table 1) are being obtained from participating youth
(target sample: more than 10,000 children, initially 9–10 years of age at
enrollment, followed for up to 10 years). The present manuscript
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describes the rationales for inclusion and selection of the specific
biospecimens, methodological considerations for each measure, future
plans for assessment of biospecimens during follow-up visits, and pre-
liminary ABCD data for some example topics.

All procedures are approved by each site’s Institutional Review
Board, and all participants undergo verbal and written consent/assent
procedure. Participants are compensated for their time with cash and/
or gift cards. A description of the rationales for inclusion and selection
of the specific biospecimens, methodological considerations for each
measure, future plans for assessment of biospecimens during follow-up
visits, and preliminary ABCD data to illustrate methodological con-
siderations (see below sections) for all biological samples under col-
lection from youth. These include breath, saliva, urine, hair, blood and
baby teeth, collected for purposes of: (1) screening for SU; (2) mea-
surement of pubertal hormone levels; (3) characterization of genetic
and epigenetic factors, and (4) analyses of environmental exposures
during development from baby teeth. Biomaterial obtained from the
ABCD Study are being stored in repositories, such as the Rutgers
University Cell and DNA Repository (RUCDR), and baby teeth at the
Icahn School of Medicine at Mount Sinai in the laboratory of Dr. Manish
Arora. These stored biomaterials include measures from the assay of
biospecimens, genotyping, and biosamples collected for future research.
Preparation and processing of biosamples at the ABCD data collection
sites is occurring during or just following baseline assessment of youth,
and is planned for follow-up assessments for utilization by members of
the scientific community. Results from analyses of all ABCD biospeci-
mens will be made available through the ABCD Data Repository.
Although we anticipate core specimens to be the same across the ten
years of ABCD, the kinds and/or amounts of specimens to be collected
in subsequent follow-up years may be adjusted to account for: 1.
changes in technology; 2. shifts in the scientific questions being ad-
dressed (e.g, greater emphasis on environmental exposures); or addi-
tional funding for analyses. Given these considerations, future specimen
collections may include measures of the microbiome, parental

specimens, or other types of specimens in subsequent follow-up years.

2. Screening for exposure to alcohol and drugs

The ABCD study baseline visits occur at 9–10 years of age, prior to
initiation of SU for most youth allowing for measures of brain, cogni-
tive, environmental, and genetic variability that may precede SU or
other negative developmental influences. The ABCD study uses a
combination of biospecimens and self-report to evaluate consistency
between biological testing, participant self-report and research assistant
assessment of intoxication. Self-report alone (e.g., tobacco use) may
lead to biases due to under-reporting related to individualized moti-
vations, or errors in recall (Connor Gorber et al., 2009; Morales et al.,
2013). Further, as seen with youth self-reporting risky sexual behaviors,
inaccurate self-reporting may vary as a function of race, gender or age
(Pflieger et al., 2013). However, biospecimen sampling itself is subject
to experimental error, and therefore reporting biospecimen measures in
a thorough and standardized manner across published ABCD studies is
important for accurate and reproducible results (Moore et al., 2011).

Self- and parent/guardian-report of SU is conducted through inter-
view and questionnaire survey. Biospecimens include the annual col-
lection of hair samples to evaluate recent and repeated use of alcohol
and other drugs during the 1–3 months prior to testing, and testing of
body fluids (saliva, urine) and breath prior to onsite assessment.
Because of the low levels of SU among 9–10 year olds, only a small
subset (10%) of youth participants are tested in the first two years of the
ABCD Study, with increasingly larger proportions of youth selected
randomly for testing as the cohort ages into adolescence, when ex-
perimentation, regular, and problem use with substances becomes more
prevalent (Table 1). Decisions regarding the portion of youth partici-
pants tested for recent SU is informed by national estimates of pre-
valence of use (Miech et al., 2017).

Youth must be naïve to alcohol and recreational drugs at in-person
study enrollment, while prescription drug use is permitted in youth
participants at the initial baseline visit (and at all annual follow-up
visits). Biospecimens addressing recent, past 3-month and lifetime SU
exposures are assessed. Tests of recent drug use (using specimens of
body fluids and breath) will provide the opportunity to evaluate the
reliability of self-reports of current drug use. Given potential alcohol or
drug effects on test results (e.g., neuro-cognitive and/or neuro-imaging
assessments), youth participants testing positive for recent drug ex-
posure (i.e., past day) at any follow-up onsite visit, will be asked to
reschedule, and to return for testing on another date, drug and alcohol
free. Youth reporting a history of non-prescription drug use, or parti-
cipants suspected of substance intoxication, once they arrive to the lab
for study assessments, will be tested for recent drug use, even if they
have not been selected randomly for testing before their arrival.
Because the effects of drug exposure and misuse of prescribed drugs on
brain and cognitive development in youth is a primary focus of the
ABCD Study, a reported history of use is not exclusionary at follow-up
annual visits, and the assessment of past 3-month and lifetime SU ex-
posures are of high value. The ABCD research team is in the process of
developing protocols for future biospecimen collection, but, have not
yet formalized additional biospecimens. Given the protocol for future
onsite visits beyond 1-year follow-up remains undetermined, it is not
included in this report.

2.1. Recent use of drugs and alcohol

Oral fluid will be collected for toxicology testing of 7 drugs. In
follow-up years, urine will be collected and tested at the beginning of
each onsite visit, supplemented by breathalyzer testing for a random
selection of subjects, to rule out recent (past 2-3 days, sometimes past
few hours) non-prescription drug, nicotine, and alcohol use prior to
neurocognitive assessment. Onsite drug testing will be completed for
alcohol use and a broad range of commonly used substances (see

Table 1
Biospecimen Samples.

Baseline
9–10 yrs

1 Year Follow-Up
10–11 yrs

Sample Type Purpose #/participant #/participant

Screening for Alcohol &
Drugs

Saliva (onsite Dräger)* Recent Substance
Use

1 1

Breath (onsite
Breathalyzer)*

Recent Alcohol
Use

1 1

Hair (Psychemedicsa)** Substance Use 1 1
Urine (NicAlert)** Recent Tobacco

Use
0 1

Pubertal Hormones
Saliva (Salimetricsb) Pubertal

Hormones
1 1

Genomics/Epigenetics
Saliva (RUCDRc) Genetics 1 0
Blood (RUCDRc) (saliva

if refuse blood)
Genetics 0*** 0

Timeline of Exposures
Baby teeth (Dr. Arora –

Mt. Sinaid)
Environmental
Exposures

1 1

a Samples sent to Psychemedics for analysis.
b Samples sent to Salimetrics for analysis.
c Samples stored at Rutgers University Cell and DNA Repository (RUCDR) for

future analysis.
d Samples stored at Mt. Sinai in laboratory of Dr. Arora for future analysis.
* Collect on 10% of participants at each site.
** Send 10 samples per site per year for analysis.
*** Future collection for twin sites only.
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Table 1) at 1-year follow-up. At baseline, a positive drug test (except for
prescription drugs) is exclusionary for initial enrollment into ABCD, as
are self or parent/guardian report of youth ingestion of more than 1
whole drink, more than one whole cigarette or the equivalent amount
of another tobacco product, any marijuana, or misuse of any drug
(including the misuse of prescribed medication).

2.2. Past 3-month use of alcohol and drugs

Hair samples will be collected from youth subjects during each
annual onsite visit for future confirmation of the presence or absence of
SU. Hair provides an extended window of drug metabolite detection
(several months compared to days prior to collection), and therefore
can help confirm drug use despite irregular and/or infrequent drug
ingestion. While not without some disadvantages (e.g., expensive, hair
availability), hair is relatively easy to handle and store, less susceptible
to adulterants, and provides longer detection times compared to other
biological matrices (e.g., oral fluid, urine) that have shorter detection
windows (Curtis and Greenberg, 2008). By banking hair samples for
future testing, results can be used in combination with oral fluid and
self-report to ensure that a ‘clean’ baseline is confirmed. This is espe-
cially important for the subsample of individuals who escalate to sub-
stantial levels of drug use by an early age (e.g., by age 14), as these
individuals will provide the most crucial test for neurocognitive and
brain structure/function differences predating their escalation, or
emerging after that escalation.

2.3. Methods of collection and analysis

2.3.1. Oral fluid
Oral fluid will be collected for toxicology testing using a Draeger

5000 Drug Test Unit, which provides a qualitative test for 7 drugs. Oral
fluid drug screening has advantages over conventional methods (i.e.,
blood, urine) including reduced biohazard generation, ease of collec-
tion, and less susceptibility to adulteration (Bosker and Huestis, 2009).
Oral fluid concentrations are also more tightly correlated to blood than
urine concentrations (Choo and Huestis, 2004; Lee et al., 2013) al-
lowing inferences of impairment and flexible detection windows. The
Dräger DrugTest 5000 screening device is used to test oral fluid (i.e.
saliva/oral cavity secretions) at baseline and each follow-up year to
identify recent use of amphetamine, benzodiazepines, cannabis (D9-
tetrahydrocannabinol), methamphetamine, cocaine, methadone, and
3,4-methylenedioxymethamphetamine (MDMA) (Niedbala et al.,
2001a,b; Verstraete, 2004) (Table 2). The Draeger unit was selected
over other on-site testing devices because of the high sensitivity for
THC, one of the most common substances of abuse. The Draeger pro-
vides a lower THC cut-off concentration (i.e., 5 ng/mL) compared to
other testing devices (e.g., 25 ng/mL) and therefore higher sensitivity
and detection accuracy. The Dräger DrugTest 5000 is increasingly uti-
lized for roadside testing (Desrosiers et al., 2014).

The Dräger system consists of an analyzer, test cassette oral fluid
collector, and buffer cartridge. To perform a screening test, the parti-
cipant refrains from eating or drinking for 10min. The test cassette
contains a cellulose pad that is moved from one side of the mouth to the

other for approximately one minute until the volume adequacy in-
dicator turns blue to confirm a sufficient volume. The sample is then
inserted into the Dräger analyzer with 3mL buffer for drug stabiliza-
tion. The cassette and buffer are placed in the chamber of the analyzer
for lateral flow immunoassay. All drug results are displayed on the
analyzer device within 5–8min as “positive” or “negative.” The test is
repeated for cases in which the results are unexpected based on self-
report and/or clinical observation; repeat test results, and whether re-
sults are in-line with self-report and clinical observation are coded. Oral
fluid drug testing can be influenced by several factors, including fre-
quency of SU, body fat, and method of ingestion, however work by
Huestis and colleagues suggest that 5 ng/mL concentration cut-off
provides high diagnostic sensitivity, specificity, and efficiency (gen-
erally> 80%) for oral fluid cannabinoid detection (Desrosiers et al.,
2014; Newmeyer et al., 2017).

2.3.2. Breath
The Dräger Alcotest 5510 is used for breath alcohol detection and

confirmation of sobriety from alcohol. Detection times vary based on
blood alcohol concentration and hours since last drink (< 24 h fol-
lowing consumption at maximum) (Jones, 1996). Participants are in-
structed to take a deep breath and blow into the mouthpiece as if
blowing out “12 birthday candles.” The electrochemical fuel cell draws
in breath for breath alcohol concentrations analysis and breath alcohol
results are displayed immediately. The test is repeated for cases in
which the results are unexpected based on self-report and/or clinical
observation; all positive results (≥0.001mg/L) are exclusionary at
baseline. Follow-up appointments are rescheduled to ensure no youth is
tested while under the influence of alcohol.

2.3.3. Hair
In addition to the screening measures for SU at the time of lab visits,

the ABCD consortium is also collecting hair samples (100mg) from all
participants at each on-site lab visit for a wider detection window (∼3
months prior to hair collection) to provide longer-term information on
history of drug consumption. Approximately 10 percent of participants
will have hair analysis conducted at baseline, as the cost would be
prohibitive to analyze every sample at every time-point. However, all
hair samples are archived for each participant at each site, and future
analyses can be done on hair samples for participants who endorse drug
use as it becomes more prevalent as the ABCD cohort progresses
through adolescence.

Participants are instructed that we will cut a sample that is ½ inch
wide by two strands deep (about the same size as the tip of a shoelace)
from the back of the head below the crown. After collection, the sample
is placed in foil tightly and sent to Psychemedics. Gas chromatography-
mass spectrometry (GC/MS/MS) and liquid chromatography-mass
spectrometry (LC/MS/MS) procedures are used to test for the following
parent drugs and metabolites: alcohol ethyl glucurolide (ETC), cannabis
(11-Nor-9-carboxy-THC (THCCOOH) and cannabidiol (CBD)), me-
thamphetamine and methylenedioxy-methamphetamine (MDMA), am-
phetamine, opiates (codeine morphone, hyrdomorph, oxycodone, hy-
drocodone), and cocaine/benzoylecgonine (BE). Commonly used hair
procedures (e.g., shampoo, dyeing) do not impact quantitative results,
and samples are relatively easy to collect and store compared to other
biological matrices. Limitations include hair that is too short (e.g., crew
cuts). This is particularly a challenge in testing pre-pubertal children,
where hair on other parts of the body (e.g., legs and/or underarms) are
less available than in older youth and young adults.

2.3.4. Urine
Starting at the first follow-up onsite visit, urine will also be collected

from 10% of the sample for a semi-quantitative test (NicAlert) for co-
tinine, the principal metabolite of nicotine. The presence of cotinine
suggests the subject has been exposed to, or used smoked tobacco
products within the past several days (Benowitz et al., 2009; Raja et al.,

Table 2
The Dräger DrugTest 5000 screening test.

Drug Type Cut-off concentration Detection time

Amphetamine 50 ng/mL ∼20–50 h
Benzodiazepines 15 ng/mL ∼12–24 h
Cannabis 5 ng/mL ∼4–16 h
Cocaine 20 ng/mL ∼5–12 h
MDMA 75 ng/mL ∼24 h
Methadone 20 ng/mL ∼15 h
Methamphetamine 35 ng/mL ∼24 h
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2016). The NicAlert urine test system includes the specimen collection
cup and NicAlert test strip that uses immunochromatographic assay to
identify cotinine concentrations (0- > 1000 ng/mL) within 10–15min.
The sample is coded as positive when the concentration is> 100 ng/mL
(NicAlert level 3 or higher), which suggests a high likelihood the par-
ticipant is a user of tobacco products. Published literature suggests that
the NicAlert system provides the most sensitive and reliable method of
cotinine detection, and this is especially true with urine, which contains
more cotinine than oral fluid, which translates into higher levels of
sensitivity at lower levels of exposure to nicotine (Acosta et al., 2004;
Marrone et al., 2011).

3. Pubertal hormones

A hallmark of adolescence is reproductive maturation, known as
puberty. Puberty heralds the onset of adolescence, and the hormonal
surges that occur during this period of time impact the ‘environment’ of
the developing brain. Pubertal maturation influences trajectories of,
and sex differences in, brain development and behavior (Herting et al.,
2014, 2012; Neufang et al., 2009; Nguyen et al., 2013; Paus et al., 2010;
Peper et al., 2009, 2011; Perrin et al., 2008; Spielberg et al., 2015),
including SU during adolescence (Andersen, 2016a; La Grange et al.,
1995; Tschann et al., 1994; Witt, 2007). While much has been dis-
covered in the last decade about the impact of pubertal hormones on
adolescent brain and cognitive development (for a review, see (Herting
and Sowell, 2017)), much is yet to be learned, particularly in connec-
tion with resilience or risk for SU during adolescence, and related
mental health problems. To the best of our knowledge, the ABCD study
is the largest most comprehensive study collecting pubertal hormone
data longitudinally across adolescence, and the ability to connect them
to brain development, cognition, behavior, genetics and SU.

Differences in onset of pubertal timing and maturation, and asso-
ciations with SU and mental health vary as a function of sex, race and
region (Leonard et al., 2010). Thus, investigating these important
hormone associations with neurodevelopment across the United States
in a representative sample, both racially and regionally, is essential.
Important to the ABCD project, behavioral risk factors begin to emerge
during pubertal onset and do so in a sex-specific fashion, with an in-
creased prevalence of SU and externalizing disorders in boys compared
to girls (Federal Interagency Forum on Child and Family Statistics,
2009). Adolescence is a period of prolonged sensitivity to environ-
mental factors, when the maturing central nervous system is particu-
larly sensitive to insult (Andersen, 2016b). How SU impacts the re-
lationships between pubertal onset, mental health, and
neurodevelopment remain unclear, and is therefore an objective of the
ABCD Study. DHEA, testosterone and estradiol (girls only) is being as-
sessed each year spanning across both pre- (e.g., 9–10 yrs) and well past
post- (e.g., 19–20 yrs) pubertal stages of development. It is important to
note that pubertal maturation is assessed independently of gonadal
hormone measures (e.g., presence of physical markers of advanced
pubertal maturation), and is a key interacting factor for understanding
relationships between hormone levels, brain development and SU.

3.1. Methods and analysis for salivary hormones

Pubertal hormones are assessed in participating adolescents through
the collection of a single salivary biospecimen (e.g., passive drool
method) each year throughout the 10-year duration of ABCD. This
method provides a quick, accurate and reliable method for measuring
numerous key gonadal hormones from a single sample. The source of
pubertal hormones found in saliva come from several glands in or near
the mouth (Voegtline and Granger, 2014). Compared to collecting
blood, the non-invasive nature of the salivary method requires less
training for the administer, and eliminates the need for coordination
with a phlebotomist. Saliva contains lower levels of pubertal hormones
compared to levels found in blood, yet saliva levels are highly

correlated with the free blood serum levels that typically exert bio-
physiological effects (Gröschl, 2008).

3.2. Limitations of salivary hormones

3.2.1. The participant
Like serum hormone levels, salivary hormone levels exhibit circa-

dian patterns, making participant waking time (Fig. 1), and time of day
of saliva collection important variables for statistical analyses and in-
terpretation of results. Oral hygiene, injury resulting in bleeding or
inflammation, and food particles can alter levels of hormones in the
sample, and/or interfere with accuracy of the assays to assess hormone
levels. To adjust for these confounds, notes on the color of the sample
(e.g., saliva should be clear) should be taken into consideration when
running statistical analyses with salivary hormone data (e.g., blood
often results in yellow-brown hue, and particles of food are often
visible). The amount of time it takes a participant to produce a saliva
sample (duration of time from first to last saliva drop) can influence the
concentrations of hormone levels. The duration of collection time can
be impacted by the flow rate of saliva production, which may vary as a
function of certain medications, making duration of sample collection
an important factor to consider for analyses and interpretation of re-
sults. The average sample collection time for the ABCD cohort of
9–10 year olds is approximately 5.25min (Fig. 2). For girls, additional

Fig. 1. Variations in waking time across ABCD participants and sites. Salivary
hormone levels are influenced by circadian patterns in hormone secretion,
which is largely impacted by time of waking.

Fig. 2. Variations in duration of saliva collection times across ABCD partici-
pants and sites. The amount of time it takes a participant to complete the
passive drool sampling process can influence the concentration of pubertal
hormone levels.
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fluctuations in gonadal hormones occurring across the menstrual cycle
are captured by collecting key factors, such as: age of onset of men-
struation, type of contraceptives used, regular or irregular cycles,
length of cycles, and date of last menstrual cycle. Given the cyclic
nature of estradiol, factors relating to menstruation are key for under-
standing possible (and unexpected) decreases in estradiol levels across
years.

3.2.2. Experimental error
Researchers examining ABCD hormone data should be aware that

approximately 4% of the currently existing hormone data is affected by
some type of experimental error. Many of these errors can be found
within the ABCD data set under the research associates’ notes, or be-
come obvious upon close inspection of the data entered relating to
factors described in above sections. Bacterial growth in the saliva
sample is blocked upon freezing of the sample. However, logistical
challenges can sometimes prevent immediate freezing (e.g., mal-
functioning freezer, not enough time to place sample in freezer during a
testing day, or forgetfulness). Errors in data entry occur. As can be seen
in Fig. 3, some participants are listed as waking up after 15:00 (e.g.,
3pm); however participants typically arrive much earlier in the day for
testing/scanning, making this a data entry error. All saliva samples are
stored at −20 to −80 °C before shipping on dry ice for analyses. The
deep freezers are subject to malfunctioning (e.g., 2 ABCD freezers have
lost power sources with samples inside); thus notes about samples
thawing, which can significantly impact hormone levels, need to be
considered. Upon receipt of frozen samples shipped from each ABCD
site, Salimetrics completes all notes on sample quality and thawing,
conducts assays, and the initial data entry of hormone levels. Samples
are run in replicates, and key details of each hormone assay can be
found on their website (https://www.salimetrics.com). Given the sheer
quantity, saliva samples shipped from each site every 2 months, and
subsequently analyzed in batches at Salimetrics; thus initial assessment
for possible batch effects should be conducted before moving on with
further analyses within a selected ABCD sub-sample.

4. Genomics/Epigenetics

Genetics plays a crucial role in personality traits (Lo et al., 2017),

psychiatric illness, including substance abuse disorders (e.g.,
(Hagenaars et al., 2016; Heath et al., 1997; Kendler et al., 2003a;
Kendler and Prescott, 1998; Kendler et al., 2003b; Schizophrenia
Working Group of the Psychiatric Genomics, 2014)), and cognition
(Plomin et al., 2013). While estimates of heritability have often been
derived from familial studies, work over the past 5–10 years has in-
creasingly demonstrated that a substantial proportion of heritability is
instantiated in common genetic variation captured by whole-genome
genotyping arrays across a broad swath of anthropomorphic and neu-
ropsychiatric traits (Boyle et al., 2017; Hibar et al., 2015; Rietveld
et al., 2013; Schork et al., 2016; Vogler et al., 2014; Yang et al., 2010).
Thus, a comprehensive understanding of both normative brain and
cognitive development and their relation to early SU and abuse requires
genetically-informed approaches, including both familial studies of
heritability and molecular genetic studies. The ABCD study will take
both approaches. Another paper in this issue describes the twin com-
ponent to ABCD.

4.1. Assessing saliva and blood samples

Briefly, as shown in Table 1, a saliva sample is collected at the
baseline visit and shipped from the collection site to RUCDR, where the
sample is stored and the DNA is isolated. Blood sample will also be
requested of twin pairs at baseline assessment. Saliva is being collected
from twin pairs regardless of provision of blood samples at baseline.
Genotyping to be conducted on saliva and blood DNA sources will be
used to provide zygosity information on pairs of twins. On all subjects
the Smokescreen™ Genoyping array (Baurley et al., 2016) will be as-
sayed (https://grants.nih.gov/grants/guide/notice-files/NOT-DA-16-
013.html), consisting of over 300,000 SNPs. SNPs will be QC’d,
phased, and imputed using state-of-the field methods and software, e.g.,
SHAPEIT3 (https://jmarchini.org/shapeit3/) and impute2 (http://
mathgen.stats.ox.ac.uk/impute/impute_v2.html). Resulting genotyped
and imputed SNPs will then be available for genome-wide associations
studies (GWASs), as well as a host of other methods recently developed
for assessing associations, heritability and co-heritability, polygenic risk
scores, and functional assessment and pathway analysis (Fan et al.,
2015; Schork et al., 2016; Thompson et al., 2017, 2015; Yang et al.,
2010). Epigenetic studies such as those involving DNA methylation and

Fig. 3. Percentage of parents/guardian of over 2000 ABCD participants studied so far who endorse use of Alcohol, Cocaine, Marijuana and Tobacco both before and
after pregnancy recognition.
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histone modification data will be pursued in the future using stored
samples at RUCDR from both baseline and longitudinal samples.

5. Assessing neurotoxin exposure with deciduous “Baby” teeth

Human and animal studies document that early life exposures to
environmental neurotoxicants including heavy metals (e.g., lead,
manganese, and cadmium), and prenatal exposure to drugs of abuse
(e.g., alcohol, tobacco smoke, cocaine, and marijuana) can negatively
impact brain development, leading to maladaptive and persistent al-
terations in brain structure and function and cognitive and behavioral
development. Despite numerous studies describing the neurodevelop-
mental toxicity of early life environmental exposures, documenting
associations between in utero and early life exposures with adverse
health effects is hindered by the absence of direct fetal biomarkers that
can be used safely to measure exposure in large study populations. Most
associations between prenatal chemical exposure and neurodevelop-
mental outcomes are based on the analyses of maternal samples (e.g.,
maternal blood and/or urine) obtained at the time of birth, and perhaps
at one to two time points during pregnancy. This timing may be months
after the exposure occurred and the pharmacokinetic and tissue dis-
tribution of various chemicals may be quite different at different stages
of fetal and child development (Makri et al., 2004). Documenting pre-
natal exposure to drugs of abuse is further compounded by social stigma
associated with reporting licit and illicit drug use during pregnancy
(Charness et al., 2016). To address this gap in our understanding of fetal
and early life exposures, Dr. Manish Arora and colleagues have recently
developed a novel methodology to retrospectively and objectively
quantify the dose and timing of environmental exposures throughout
pregnancy and early childhood using naturally shed deciduous “baby”
teeth (Arora and Austin, 2013). In the following sections we briefly
summarize the literature demonstrating associations between early life
exposure to environmental toxicants (e.g., metals) and drugs of abuse
on developmental outcomes, describe the novel approach to detecting
exposures to some of these toxicants in shed deciduous “baby” teeth,
and present the protocol for baby tooth processing and archival. By
collecting teeth and leveraging the novel tooth biomarker described
below, the ABCD Study is building a valuable repository that provides a
unique, exciting and valuable opportunity to study the individual, in-
teractive and/or additive effects of early life environmental exposures
on childhood neurodevelopmental outcomes.

5.1. Environmental toxicants

A growing population of children around the world is exposed to
various neurotoxicants present in urban and rural environments, which
may damage their developing brains. Within the last several decades,
strong evidence suggests that infants and children are uniquely vulner-
able to environmental toxicants due to disproportionally higher ex-
posures, immature metabolic pathways, and rapid growth and devel-
opment (i.e., brain development) (Landrigan, 2004). It is now well
accepted that low-level chronic exposure to environmental chemicals
may contribute to the growing epidemic of childhood neurodevelop-
mental disorders worldwide (Grandjean and Landrigan, 2014). In
adults, exposure to metals has been shown to induce psychotic beha-
viors or depressive symptoms and emotional instability in adults (re-
viewed in (Orisakwe, 2014)). In children, epidemiologic studies de-
monstrate associations between early life exposure to metals with poor
cognitive, emotional and behavioral functioning in children (reviewed
in (Sanders et al., 2015; Wright and Baccarelli, 2007)). Notably, current
knowledge of the neurodevelopmental health risks associated with
environmental chemical exposure has been derived mainly from the
study of single agents; however, no human is exposed to just one che-
mical at a time. Evidence suggest combined effects of multiple chemi-
cals might occur at levels far below those observable for any one
component (reviewed in (Claus Henn et al., 2012; von Stackelberg

et al., 2015)).
Notably, an individual’s risk of exposure to neurotoxicants, as well

as the risk of adverse outcomes associated with exposure, may vary
based on socio-economic status (SES) (reviewed in (Rauh and Margolis,
2016)). Childhood socioeconomic status (SES) is characterized by a
combination of factors, including family income, parental educational
attainment and occupational status (McLoyd, 1998), and is known to be
an influential factor for brain development and cognitive function
(Noble et al., 2012, 2005). Such associations could stem from ongoing
disparities in postnatal experience or exposures, such as family stress,
cognitive stimulation, environmental toxicants, or nutrition, or from
corresponding differences in the prenatal environment. Given SES-re-
lated differences in brain development (Chaddock et al., 2010), and,
observed relationships between brain structure and function and en-
vironmental toxicants (Peterson et al., 2015; Pujol et al., 2016), low SES
youth may be at increased risk for negative outcomes from a multitude
of environmental factors. Interactive and/or additive effects of various
neurotoxicants and other environmental factors can be examined in the
baby tooth biomarker as part of the ABCD study.

5.2. Prenatal exposure to drugs of abuse

Human studies of prenatal exposure to drugs of abuse such as al-
cohol (Donald et al., 2015; Gautam et al., 2015a), tobacco smoke
(Gautam et al., 2015b; Tiesler and Heinrich, 2014), cocaine (McCarthy
et al., 2014), and marijuana (Alpár et al., 2016) have shown brain and
cognitive abnormalities among offspring of mothers who reported use
during pregnancy. Most human studies on the impact of prenatal drug
exposure on brain and cognitive development utilize retrospective
samples and rely on mothers’ recollection of drug consumption patterns
years after pregnancy (and, likely under-reported given stigma) (Moore
et al., 2014), and/or select prospective samples of children with
“heavy” exposure vs. low or no exposure. Validity of retrospective re-
ports on maternal life style during pregnancy 10–12 years post-partum,
including SU, has been shown to be sub-optimal (Cohen’s
kappas= 0.03–0.11) (Jaspers et al., 2010).

The ABCD protocol includes a developmental history where par-
ents/guardians are asked to recall SU patterns both before pregnancy,
and after pregnancy recognition. While data collection is on-going in
the ABCD study, maternal self-report in a sample of over 2000 parti-
cipants studied as of the end of May 2017, when questioned about SU
prior to pregnancy most report no SU, but, approximately 25% report
use of alcohol, 0.6% cocaine, 5% marijuana, and 13.6% tobacco
(Fig. 3). These percentages substantially decreased when parents/
guardians were asked about their post-pregnancy recognition SU, but
some continued after pregnancy recognition. Of course, we do not know
how many, if any, parent/guardians of ABCD participants denied SU
when there actually was use, but, given social stigma in many com-
munities, it is unlikely that individuals would report drug use during
pregnancy if there was none. However, as described below, some of
these substances can be measured using novel assays of baby teeth.

5.3. Deciduous (Baby) teeth analyses

As discussed above, determining exposure to environmental tox-
icants during the prenatal period has been hampered by the lack of
appropriate biomarkers to measure direct fetal exposure. Further, until
recently, no single biomarker could provide continuous, time-resolved
documentation of exposure throughout the fetal and early childhood
period. Common biomarkers used for environmental assessment in-
cluding maternal blood and urine are often not optimal matrixes for
determining prenatal and early life exposure due to the timing and
invasiveness of collection. Further, maternal biomarkers are not always
a reliable measure for fetal exposure (Arora et al., 2014). For prenatal
exposure to drugs of abuse, there are additional complications with
parent self-report of licit and illicit drug use during pregnancy due to
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social stigma and length of time since pregnancy in remembering use
patterns ∼9 to 10 years prior as will be the case in the ABCD cohort.

Establishing timing of exposures, especially over the prenatal
period, is a major challenge in environmental epidemiologic studies.
Teeth have long been used to estimate long-term cumulative exposure,
including prenatal exposure, to environmental and other substances
(Needleman et al., 1979). Notably, much of our knowledge of the im-
pact of early life lead exposure on cognition was gained by examining
associations between higher lead levels in children’s teeth and reduced
IQ (Gulson and Wilson, 1994; McMichael et al., 1994; Needleman et al.,
1972; Rabinowitz, 1995). However, previous tooth biomarker methods
examined lead (or other bone-seeking toxicants) in the whole tooth
providing a cumulative exposure of lifetime measure. Dr. Arora’s
method incorporates laser ablation and micro-dissection techniques
that leverages the physiology of tooth development to provide finely
time-resolved assessments of exposure from the beginning of the 2nd
trimester through the time the tooth is lost. Deciduous “baby” teeth
growth proceeds in an incremental pattern, forming rings and layers
similar to the rings of a tree. Toxicants circulating in the fetal blood
stream (i.e., metals) are captured in the layers and measuring the
amount of toxicant in the layers provides information about exposures
dose and timing. These newly developed high-dimensional analytical
methods combine sophisticated histological and chemical analyses to
precisely sample tooth layers and have the potential to reconstruct a
timeline of exposures during early development (Andra et al., 2015;
Arora and Austin, 2013). These methods have been tested extensively in
prior research (Arora et al., 2012, 2006; Austin et al., 2013; Hare et al.,
2011), and hold promise for establishing timelines of exposures to en-
vironmental toxicants and drugs of abuse in the ABCD sample. In ad-
dition to fine-grained timelines of exposure spanning the pre- to post-
natal periods, advantages to using baby teeth as biomarkers of toxic
exposures is that shed teeth can be stored relatively easily at room
temperature, and does not require any invasive procedures such as
blood draw.

5.3.1. Tooth development and methodology
During development, enamel and dentine deposition occurs in a

rhythmic manner, forming incremental lines akin to growth rings in
both enamel and dentine (Fig. 4) (Berkovitz et al., 2009). At birth, an
accentuated incremental line, the neonatal line, is formed due to

disturbances in the secretory cells during protein matrix deposition
(Sabel et al., 2008). This line forms a clear histological landmark that
demarcates pre- and postnatally formed parts of teeth. Beyond the
neonatal line teeth manifest daily growth lines, which allow chron-
ological ages to be determined at various positions within tooth crowns
and roots. The analytical approach involves sampling the growth rings
of teeth using laser and other microdissection methods. Analyzing the
sampled layers using mass spectrometers can yield time resolved in-
formation on organic and inorganic environmental compounds and
their metabolites (Andra et al., 2016). Dr. Arora and colleagues have
previously validated this biomarker for certain metals (Mn, Pb, Ba, Sr)
(Arora et al., 2014, 2012, 2004, 2011; Austin et al., 2013) and vali-
dation for a range of organic targets is also underway in that laboratory.

By collecting multiple baby teeth from individuals enrolled in the
ABCD cohort, we are building a repository that may be leveraged in the
future to measure not only the validated metals but also early life ex-
posure to organics, maternal stress, (Austin et al., 2013) and licit and
illicit substances. Many other substances should be possible to measure
on a detailed timeline during pre and post-natal development using
baby teeth. Previous research has shown that metabolites of licit sub-
stances, such as alcohol and tobacco, and illicit substances, such as
cocaine and marijuana have been measured in the teeth of adults,
though, most of these studies have been done with ground adult teeth
using material from dental extractions, and do not allow for timeline of
exposure in earlier development (Andra et al., 2016). To our knowl-
edge, these biomarkers have not yet been validated using shed decid-
uous teeth, which would require contemporary measurements of more
conventional biomarkers, such as maternal, newborn, and childhood
urine/blood samples at various points during pregnancy and childhood.
Nonetheless, there is potential for measurements of these substances in
deciduous teeth by adapting existing assays, but using methods which
allow timelines of exposure during development (reviewed in (Andra
et al., 2016)).

5.3.2. Tooth biomarker collection
Participants’ parents are asked for 5 baby teeth shed between the

ages of 6–13 years old. Parents either bring the teeth in during a lab
visit, or mail shed teeth into the lab with provided kits (5 plastic pro-
tective vials for each individual tooth inside a padded envelope to
prevent damage to the teeth). Teeth may become brittle in very cold or

Fig. 4. Schematic of tooth development (Arora et al., 2012). (a) Earliest deposition of dentine (grey area) at DEJ at cusp tip (b) Continued extension of dentine (and
enamel) towards the tooth cervix. (c) Neonatal line (NL), a histological feature, formed at the time of birth (d) Completion of enamel and primary dentine formation
between 2–11 postnatal months depending on tooth type. Secondary dentine continues forming at pulpal margin (not shown). (e) Confocal laser scanning micrograph
of NL in enamel.
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hot temperatures, thus shipping and storage of shed teeth occurs at
room temperature. Data collection sheets completed by the parents
include information about how each tooth was shed (e.g., naturally,
accident, removed), and how it was stored (e.g., dry, in liquid).

5.3.3. ABCD tooth collection status
As of November 21, 2017, 4524 ABCD participants have been re-

cruited and enrolled across all data collection sites, and the overall goal
is to recruit 11,500 participants by September 2018. Of those 4524
participants, 833 have already donated baby teeth, and an additional
225 families have said that they have saved baby teeth at home and will
donate them (by mail or at 1 year ABCD in-person follow-up visit), and
over 1200 families have stated that they have not saved previous teeth,
but will save the next to fall out and donate to ABCD. Of participants
tested thus far, only 7% have refused to donate a tooth.

6. Overall summary

The ABCD Study is collecting a plethora of biospecimens for as-
sessment of SU, hormones, genetic/epigenetic markers, and develop-
mental exposures. Some biospecimens will be analyzed in real time (on-
site SU assessment), shortly afterward (hormones), or biobanked for
future analysis with additional focused funding (DNA, baby teeth,
stored saliva/blood/hair). This variety of stored biological samples al-
lows interested investigators to select specific subgroups of ABCD par-
ticipants as a function of their factor of interest (e.g., high and/or early
onset of adolescent SU, early/late puberty, high/low hormone levels,
high/low-SES, positive maternal endorsement of prenatal SU, positive
adolescent endorsement of mental health problems, twins, etc.). Given
the complex convergence of key developmental factors that shape an
individual’s development, a large cohort, such as the ABCD cohort, is
well suited for allowing investigators to perform highly focused ana-
lyses with biomarkers that are difficult to execute with smaller studies
that are often statistically underpowered. For example, investigators
will be able to include multiple covariates, multiple group comparisons
and within-subject measures within a single analysis across the whole
ABCD cohort, or vice-versa, select a highly specific subsample of ABCD
across sites that is generally difficult to collect within a single geo-
graphical region. Discussions for biospecimen collection beyond the 1-
year follow-up visit are ongoing, and have included parent DNA from
blood, microbiome assessments from participant stool samples, and
other measures that could include exposure to toxic substances such as
air pollution and toxic metals from urine.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.dcn.2018.03.005.
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