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Abstract

Human immunodeficiency virus (HIV) infection is potentially associated with premature aging, 

but demonstrating this is difficult due to a lack of reliable biomarkers. The mitochondrial (mt) 

DNA “common deletion” mutation (mtCDM) is a 4977-bp deletion associated with aging and 

neurodegenerative diseases. We examined how mtDNA and mtCDM correlate with markers of 

neurodegeneration and inflammation in people with and without HIV (PWH and PWOH). Data 

from 149 adults were combined from two projects involving PWH (n = 124) and PWOH (n 
= 25). We measured buccal mtDNA and mtCDM by digital droplet PCR and compared them 

to disease and demographic characteristics and soluble biomarkers in cerebrospinal fluid (CSF) 

and blood measured by immunoassay. Participants had a median age of 52 years, with 53% 
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white and 81% men. Median mtDNA level was 1,332 copies/cell (IQR 1,201–1,493) and median 

mtCDM level was 0.36 copies × 102/cell (IQR 0.31–0.42); both were higher in PWH. In the 

best model adjusting for HIV status and demographics, higher mtDNA levels were associated 

with higher CSF amyloid-β 1–42 and 8-hydroxy-2’-deoxyguanosine and higher mtCDM levels 

were associated with higher plasma soluble tumor necrosis factor receptor II. The differences 

in mtDNA markers between PWH and PWOH support potential premature aging in PWH. Our 

findings suggest mtDNA changes in oral tissues may reflect CNS processes, allowing the use of 

inexpensive and easily accessible buccal biospecimens as a screening tool for CSF inflammation 

and neurodegeneration. Confirmatory and mechanistic studies on mt genome alterations by HIV 

and ART may identify interventions to prevent or treat neurodegenerative complications.
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Introduction

One of the most widely accepted theories for how organisms age is progressive and 

cumulative damage to the mitochondrial (mt) genomes in cells (Harman 1956). Damage 

to mtDNA is at least partially mediated by reactive oxygen species (ROS) generated within 

the mitochondria themselves as a byproduct of cellular respiration (Harman 1956, 1972). 

While these molecules can damage all components of the cell, including lipids, proteins 

and nucleic acids, this study addressed damage to the mitochondrial genomes. Damage 

to mitochondrial DNA manifests as mutations and deletions which accumulate within the 

mitochondrial network, and then begin to adversely affect the function of the cell. Some 

mutations can be passed on to daughter cells upon cellular division, resulting in their 

propagation and accumulation throughout an organism’s lifetime (Fleming et al. 1982; 

Harman 1972; Miquel et al. 1980; Ludwig et al. 2019). ROS also induce the senescence-

associated secretory phenotype in cells, triggering the expression of inflammatory mediators 

that activate the innate immune system, which, over time, leads to additional tissue damage 

(Blaser et al. 2016; Martinon 2010).

Mounting evidence supports the notion that people with human immunodeficiency virus 

(HIV)-1 (PWH) exhibit evidence of premature aging, including those on suppressive 

antiretroviral therapy (ART)(Horvath and Levine 2015; Mackiewicz et al. 2019; 

Sundermann et al. 2019; Guarda et al. 1984; Levine et al. 2016; Scott et al. 2011). 

Depending on the age at which ART is initiated, life expectancy is 10–30 years less in PWH 

than persons without HIV (PWOH) (Lohse et al. 2007; Antiretroviral-Therapy-Cohort-

Collaboration 2008). Aging-related conditions including cardiovascular disease, diabetes 

mellitus, and osteoporosis are also more common and occur at younger ages in PWH than in 

the general population(Guaraldi et al. 2011; Deeks and Phillips 2009).

One important aging-related condition is dementia, which affects an estimated 44 million 

people worldwide (Lane et al. 2018). Alzheimer’s disease (AD) is the commonest form, 

accounting for 50–75% of all acquired dementias (Lane et al. 2018). Neurocognitive 

Solanky et al. Page 2

J Neurovirol. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impairment (NCI) in PWH is also well-described, ranging from mild to severe, and can 

be associated with limitations in everyday functioning and earlier mortality (Clifford and 

Ances 2013; Eggers et al. 2017). Over 40% of PWH in the United States (U.S.) are over 

the age of 55 (Smith 2005). In addition to risk of NCI, older PWH are also at risk for AD 

and its precursor, amnestic mild cognitive impairment (aMCI) (Tan et al. 2013). Evidence of 

AD-like pathology has been observed in some older PWH (Achim et al. 2009; Alisky 2007; 

Clifford et al. 2009; Esiri et al. 1998), and one study found that aMCI was more common 

among PWH than in the general population (Sheppard et al. 2017; Bhatia et al. 2012; Levine 

et al. 2016). Viral infection has long been suspected as a possible etiology of some cases of 

sporadic AD (Fulop et al. 2018; Gosztyla et al. 2018). Amyloid-β is a potent antimicrobial 

agent, spurring the hypothesis that amyloid-β may result from neurological infection rather 

than be the cause of AD (Gosztyla et al. 2018). While a single pathogen is unlikely to be 

responsible for AD, the combination of genetic predisposition, environmental factors, and 

repeated viral exposures could initiate inflammatory cascades upstream of AD pathogenesis, 

at least in some cases. The evidence for possible premature aging in PWH highlights a need 

to identify biomarkers that may indicate progression to aging-related diseases such as AD.

The mitochondrial DNA “common deletion” (mtCDM) is a 4977-base pair deletion that has 

been found at increasing frequency with older age in human tissue extracted from multiple 

sites, including the brain, heart, liver, kidney and skeletal muscle (Cortopassi and Arnheim 

1990; Linnane et al. 1990; Yen et al. 1991; Torii et al. 1992; Zhang et al. 1992), and likely 

affects mitochondrial function. Similarly, reduction in the number of mtDNA copies per cell 

is associated with impaired cellular and mitochondrial function (Jeng et al. 2008) as well 

as frailty(Ashar et al. 2015), cardiovascular disease (Fazzini et al. 2019; Koller et al. 2020), 

susceptibility to infection (Fazzini et al. 2019), and mortality (Ashar et al. 2015; Mengel-

From et al. 2014; Koller et al. 2020). The relationship between neurodegenerative disease 

(including AD and Parkinson disease) and mitochondrial dysfunction is also well-described 

(Hou et al. 2019), with evidence of deviations in mtDNA copy number in peripheral 

blood correlating with neurocognitive impairment in PWH (Hulgan et al. 2019). Given 

the association of AD, mitochondrial DNA damage, and potentially also HIV with aging, 

we investigated how mtDNA and mtCDM correlated with biomarkers of inflammation and 

degeneration in cerebrospinal fluid (CSF) from both PWH and PWOH.

Methods

Participants

Data from 149 adults were combined from two cross-sectional research projects. Data from 

78 PWH participants were from the CNS HIV Antiretroviral Effects Research (CHARTER) 

project, which examined PWH between May 2016 and April 2018 at university-based 

centers in six US cities (Baltimore, Galveston, New York, St. Louis, San Diego, and Seattle). 

Eligibility criteria for CHARTER were purposely limited and included only HIV infection 

and willingness to undergo the study assessments. For the present analysis, participants were 

excluded if they had a current substance use disorder, untreated hepatitis C infection, or a 

major neurologic diagnosis unrelated to HIV such as Parkinson disease. Additional details 

regarding the project have been previously published (Ellis et al. 2020). Data from another 
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71 participants (46 PWH, 25 PWOH) were from the Translational Methamphetamine 

AIDS Research Center (TMARC) project, which was a single-center cohort focused on 

understanding the combined effects of HIV and methamphetamine dependence on brain 

structure and function. Participants in TMARC included those with or without HIV 

infection, as well as those with or without methamphetamine use disorder as assessed by the 

Composite International Diagnostic Interview Version 2.1 (CIDI) (WHO 1997) and based 

on Diagnostic and Statistical Manual (DSM)-IV criteria. Exclusion criteria for TMARC 

included current intoxication or withdrawal from any addictive drug besides cannabis, and 

neurologic or psychiatric conditions known to affect cognitive function other than dementia 

(e.g., head injury with prolonged loss of consciousness, seizure, stroke, schizophrenia). 

Participants with current substance use disorders, including methamphetamine use, were 

also excluded from the present analysis.

Standard protocol approvals, registrations and patient consents

Both projects were approved by local institutional review boards and all participants 

provided informed consent for the study procedures.

Mitochondrial DNA variables and biomarkers

mtDNA and mtCDM were quantified in copies per cell by DNA extraction from buccal 

swabs and digital droplet PCR. Specifically, we quantified 1) mtDNA by measuring the 

copy numbers of the mitochondrial NADH dehydrogenase 2 (MT-ND2) gene, 2) the cellular 

control gene ribonuclease P protein subunit p30 (RPP30) which is present in two copies per 

cell, and 3) the relative proportion of mtDNA carrying the “common deletion” by designing 

a primer–probe combination that targets the bridge region on the mitochondrial chromosome 

before and after the 4,977 bp “common deletion”, as described in our previous work (Var et 

al. 2016).

Soluble biomarkers in cerebrospinal fluid (CSF) and blood plasma were measured by bead 

suspension array (Millipore, Billerica, MA) or traditional immunoassay. The biomarkers 

analyzed were as follows: amyloid β 1–42 (CSF), neurofilament light chain (CSF), 

8OH2’-deoxyguanosine [8-OHdG] (CSF and plasma), C-reactive protein [CRP] (plasma), 

interleukin-6 [IL-6] (CSF and plasma), monocyte chemoattractant protein [MCP] (CSF 

and plasma), soluble tumor necrosis factor receptor II [sTNFR-II] (CSF and plasma) 

and soluble cluster of differentiation [sCD-14] (CSF and plasma). This list represents 

a subset of standard biomarkers of inflammation and neurodegeneration (Simrén et al. 

2020; Forloni and Balducci 2018) that were measured in participants across both projects. 

Biomarkers such as sCD14 and sTNFRII were analyzed for their role in microglial signaling 

and response to neuronal injury (Probert 2015; Janova et al. 2016). Plasma and CSF 

8-OHdG and plasma CRP were analyzed given their associations with dementia, AD and 

neurocognitive impairment (Beydoun et al. 2018; Ng et al. 2018; Koyama et al. 2013; 

Engelhart et al. 2004; Mecocci et al. 2002; Gackowski et al. 2008; Kallianpur et al. 2016). 

Amyloid β 1–42 and neurofilament light chain were analyzed in CSF due to previous 

findings by our group and others demonstrating association between CSF oxidative damage 

and these two biomarkers in the CSF, but not in plasma(Ellis et al. 2020; Mehta et al. 2000).
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Additional clinical and laboratory assessments

In CHARTER participants, HIV RNA were quantified in CSF and plasma by real-time 

PCR with a lower limit of 50 copies/mL (Abbott Diagnostics, Des Plaines, IL, USA). HIV 

serostatus in TMARC participants was confirmed by the MedMira Rapid HIV Antibody Test 

(MedMira, Halifax, Canada).

Statistics

Demographics, mtDNA, and medical and HIV disease characteristics were summarized 

using means and standard deviations (SDs), medians and interquartile ranges (IQRs), or 

counts and percent. Biomarker concentrations were transformed (e.g., base 10 logarithm) to 

improve distribution symmetry. Correlations among biomarkers were assessed by Pearson r. 
The effect size of the difference between means was quantified using Cohen’s d (“d”). A 

series of multivariable linear regression were conducted to examine associations between 

mtDNA and mtCDM and soluble plasma and CSF biomarkers after adjusting for the 

following covariates which were selected using Akaike Information Criterion (AIC): age, 

sex, ethnicity, education and then, among PWH only, additionally nadir CD4 + T-cell count, 

estimated duration of HIV infection, and ART exposure, and current CD4 + T-cell count. All 

associations were corrected using the false discovery rate (FDR) method to account for type 

1 error. All statistical analyses were carried out using JMP, Version 14.2.0 (SAS Institute 

Inc., Cary, NC, USA). Figures were constructed using GraphPad Prism, Version 8.4.3 (La 

Jolla, CA, USA).

Results

Study participant demographic and HIV characteristics

A total of 149 participants were included (124 PWH, 25 PWOH, Table 1). Among PWH, 

96% took antiretroviral therapy (ART, median duration 13.6 years); plasma HIV RNA was ≤ 

200 cp/mL in 91%; and median CD4 + T-cell count was 593/μL.

Mitochondrial DNA and “Common Deletion” copies per cell vs. soluble biomarkers

Median mtDNA level was 1,332 copies/cell (IQR 1,201–1,493) and was higher in PWH 

(d = 1.45, p < 0.001) (Fig. 1). In the best model testing of all soluble biomarkers and 

accounting for demographics (i.e., age, sex, ethnicity, and education) as well as HIV status, 

higher mtDNA levels were associated with higher CSF Aβ 1–42 levels (p < 0.001) as well 

as HIV infection, fewer years of education, and non-Hispanic ethnicity (model R2 = 0.43, 

p<0.0001, Table 2). Higher mtDNA levels also trended with higher CSF 8-OHdG (p=0.035, 

p=0.06 after FDR correction, Table 2). Median mtCDM was 0.36 copies × 102/cell (IQR 

0.31–0.42) and was also higher in PWH (d=0.75, p<0.001) compared to PWOH. In the 

best model, higher mtCDM was associated with higher plasma sTNFR-II levels (p=0.036), 

with HIV infection, older age, and non-Hispanic ethnicity as significant covariates (model 

R2=0.28, p<0.001, Table 3). Unless otherwise noted, significant associations held after FDR 

correction. The AIC selection method retained CSF IL-6 in the best model even though the p 

value was 0.11.
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In the best model analyzing only the PWH subgroup and adjusting for age, absolute and 

nadir CD4 + T-cell count, duration of HIV infection, duration of ART use, and lifetime 

dideoxynucleoside analogue exposure, higher mtDNA was again significantly associated 

with higher CSF Aβ 1–42 (p = 0.005) and longer duration of HIV infection, although the 

latter weakened below statistical significance after FDR correction. Higher mtCDM trended 

with higher CSF sTNFR-II, but this relationship was also not significant following FDR 

correction.

Discussion

In this cross-sectional study, we investigated the relationship between mtDNA and mtCDM 

copy number in buccal swabs with plasma and CSF biomarkers of CNS inflammation and 

neurodegeneration in PWH and PWOH. We hypothesized that lower levels of mtDNA and 

higher levels of mtCDM would be associated with higher levels of biomarkers reflective 

of CNS inflammation and neurodegeneration. Combining data from two well-characterized 

cohorts, we showed that PWH had higher levels of both mtDNA and mtCDM copies/cell 

than PWOH and that higher mtDNA were associated with higher Aβ 1–42 levels in the CSF 

in the total study population. Higher mtCDM levels were also associated with greater levels 

of plasma sTNFR-II, and trended with other biomarkers of CNS inflammation (CSF IL-6) in 

the total study population and CSF sTNFR-II among PWH.

One of the pathophysiologic hallmarks of AD is the intracerebral accumulation of amyloid-β 
plaques which are associated with neuronal and synaptic loss, thereby leading to cerebral 

atrophy and manifesting as progressive memory impairment (Serrano-Pozo et al. 2011). 

Accumulation in the brain translates to reduced levels of amyloid-β proteins in CSF—a 

reflection of decreased clearance from the brain (Tarasoff-Conway et al. 2015). While the 

exact pathogenesis of AD is unknown, ROS likely play an important role. Oxygen free 

radicals and peroxides are generated out of proportion to antioxidant defenses in AD, 

leading to neuronal damage (Harman 1993; Volicer and Crino 1990; Benzi and Moretti 

1995). Multiple studies of AD brains have demonstrated preferential accumulation of radical 

adduct 8-hydroxy-2′-deoxyguanosine (8-OHdG) and oxidized bases in mtDNA over nuclear 

DNA (Mecocci et al. 1994; Wang et al. 2005; Cheignon et al. 2018), and significantly higher 

levels overall in AD brains over control brains. The presence of intracellular amyloid-β 
and its precursor protein can produce mitochondrial structural abnormalities, impairments in 

mitochondrial metabolism, and increased ROS production (Askanas et al. 1996; Caspersen 

et al. 2005; Apelt et al. 2004).

Consistent with our hypothesis, higher mtDNA copy number significantly correlated with 

higher amyloid-β in CSF, which has been associated with reduced Aβ accumulation in the 

brain in several studies (Andreasen et al. 1999a, b; Hulstaert et al. 1999). This finding of an 

inverse relationship between brain and CSF Aβ levels has led to the theory that increased 

clearance of Aβ from the brain leads to higher levels of Aβ in the CSF.

Paradoxically, higher—not lower—levels of mtDNA in buccal swabs were associated 

with HIV infection in our study. This finding is supported by results from previous cross-

sectional studies examining 1) mtDNA from brain tissue from PWH and PWOH (Var et al. 

Solanky et al. Page 6

J Neurovirol. Author manuscript; available in PMC 2022 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2016) and 2) cell-free mtDNA from CSF in PWH with or without AIDS (Pérez-Santiago 

et al. 2017). In both cases, higher mtDNA trended with HIV, HIV copy number (Var et al. 

2016) and AIDS diagnosis(Pérez-Santiago et al. 2017). In contrast, a study by our group 

found that mtDNA was lower in brain tissue from the frontal cortex in PWH who had 

neurocognitive deficits as compared with PWH who did not have neurocognitive deficits 

(Swinton et al. 2019). Overall, this suggests that the progressive burden of HIV infection 

and its treatment relates to higher levels of mtDNA, which, in our case, was observed in 

buccal swabs. The mechanism for this relationship is not entirely clear but may reflect a 

compensatory response to impaired mitochondrial function due to HIV infection, similarly 

described in individuals with mitochondrial diseases (Chinnery and Samuels 1999; Durham 

et al. 2007; Sitarz et al. 2012). The relatively younger median age (52 years) of our cohort 

may have also influenced our findings, as significantly faster declines in mtDNA have been 

reported in PWH above age 50 (Sun et al. 2019).

Elevated sTNFR-II is associated with HIV infection and is thought to reflect the degree 

of activation of the TNFα cytokine system in response to the virus (Aukrust et al. 1994), 

which predicts rapid disease progression and death (Stein et al. 1997; Godfried et al. 1994). 

Numerous cytokines, including TNFα and IL-6, have been clearly linked to Aβ-associated 

neurocognitive disorders such as Alzheimer’s disease (Rubio-Perez and Morillas-Ruiz 

2012). Multiple studies have also associated TNFα with generation of reactive oxygen 

species and associated mtDNA damage (Suematsu et al. 2003; Nagakawa et al. 2005; Kim 

et al. 2010). However, the relationship between the TNF pathway and the mitochondrial 

“common deletion” mutation in the setting of HIV infection is relatively novel. Here, we 

found that higher mtCDM copies per cell were associated with higher plasma levels of 

sTNFR-II, which remained significant after adjusting for HIV status. MtCDM also trended 

with plasma IL-6 levels. Among PWH, sTNFR-II in the CSF trended with higher mtCDM 

independent of CD4 + T-cell count and other HIV characteristics. Similarly, in previous 

work we observed a significant, AIDS-independent, positive association between increased 

CSF mtDNA content and plasma TNFα levels (Pérez-Santiago et al. 2017) in PWH; 

however, soluble TNF receptor levels were not examined in that study. In other work on 

the white and gray matter from brains from the National NeuroAIDS Tissue Consortium, 

we found that higher relative proportions of mtCDM and lower mtDNA in brain cells 

was associated with worse neurocognitive performance (Var et al. 2016) and NCI in PWH 

(Swinton et al. 2019). Our findings here complement these prior investigations and further 

characterize the systemic inflammatory profiles associated with mtDNA damage in the 

setting of HIV.

This study also carries implications for the utility of buccal swabs as a non-invasive 

sampling method for mtDNA. While mitochondrial DNA in the buccal mucosa tends to 

exhibit less heteroplasmy than other tissues (e.g., muscle, liver, or brain) due to its greater 

turnover (Naue et al. 2015), it appears to still reflect other tissues in the body. Evidence 

already shows that mtDNA derived from buccal swabs can be successfully used in place of 

peripheral blood to identify mutations associated with hearing loss (Fan et al. 2017; Wang 

et al. 2018). The relationships observed between soluble biomarkers of CNS inflammation 

and mtDNA and mtCDM obtained from buccal swabs in this study mirror findings seen 

in previous studies examining mtDNA in the brain (Volmering et al. 2016) and CSF (Pérez-
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Santiago et al. 2017). Further, reductions in mtDNA copy number measured in peripheral 

blood has been linked to a variety of neuropsychiatric conditions in PWOH, including 

worse neurocognitive function (Lee et al. 2010), Parkinson disease (Pyle et al. 2016) and 

depression (Kim et al. 2011). This is consistent with our finding of higher mtDNA content 

associated with a biomarker profile reflective of decreased neurodegeneration (i.e., more Aβ 
in the CSF), as well as higher mtCDM content associated with more CNS inflammation 

(greater plasma sTNFR-II). Overall, the congruence of our findings with previous work 

on mtDNA sampled from CSF, and brain tissue indicate that buccal swabs can potentially 

serve as a non-invasive yet effective sampling source for evaluating relationships between 

mtDNA and CNS inflammation. Future studies directly comparing associations of soluble 

CNS biomarkers with mtDNA obtained from the brain or CSF, versus those from buccal 

tissue, will be necessary to validate this finding.

Interestingly, higher—not lower—mtDNA levels were associated with higher CSF 8-OHdG, 

and there was no significant association between plasma 8-OHdG and mtDNA or mtCDM 

after controlling for demographic and HIV-specific variables (data not shown). These 

findings may be due to a compensatory increase in mtDNA genome production to replace 

damaged mtDNA as reflected by increased mtDNA in PWH in these cohorts. This proposed 

compensatory mechanism is tangentially supported by our finding that plasma 8-OHdG 

was inversely associated with CSF Aβ 1–42 (p = 0.01), which is consistent with previous 

analyses from the CHARTER cohort (Ellis et al. 2020). This previous study also noted the 

association of CSF biomarkers of neurodegeneration with oxidative markers of DNA—but 

not protein—damage, suggesting mitochondrial dysfunction as a preceding factor (Ellis 

et al. 2020). Our findings support the possibility that increased mtDNA is a response to 

neurodegeneration mediated by oxidative stress downstream of mitochondrial dysfunction.

We also found that participants identifying as Hispanic had lower mean mtDNA compared 

to black and white ethnicities. This was true in individuals both with and without 

HIV infection on stratified analysis. Mitochondrial DNA haplogroups corresponding to 

individuals of genetically determined Hispanic ancestry among PWH have been associated 

with worse neurocognitive outcomes compared to those of European or African ancestry 

(Hulgan et al. 2015). The results of our study suggest that this association seen in prior work 

may be in part mediated by mtDNA copy number, but with only 34 individuals in our cohort 

identifying as Hispanic, our study was not powered to answer this question.

We recognize several limitations to our study. First, our sample size was relatively small, 

particularly with regard to the number of people without HIV infection. While the effect 

sizes were large, this still limits our ability to draw robust conclusions regarding the effects 

of HIV infection on mtDNA and mtCDM. Also, the cross-sectional, observational nature 

of our study makes it inherently more prone to bias than longitudinal studies. We lacked 

simultaneous measure of mtDNA and mtCDM in the plasma, brain and CSF of participants 

to evaluate for congruence with findings seen with mtDNA and mtCDM from buccal swabs. 

Lastly, the described relationships lack mechanistic data and are unable to support causal 

inferences. Future longitudinal studies combined with in vitro and animal experiments will 

better address these limitations.
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In conclusion, this is the first investigation in PWH of the relationships between 1) easily 

accessible buccal mtDNA levels and CSF Aβ 1–42 protein as well as 2) the mtDNA 

“common deletion” mutation and biomarkers of neuroinflammation and neurodegeneration. 

Our data support the conclusions that a) HIV is associated with higher buccal mtDNA, 

which in turn correlates with higher Aβ 1–42 in the CSF and increased clearance from the 

brain, and b) accumulation of the “common deletion” is associated with modulation of the 

TNFα cytokine system. Our findings also support the use of buccal swabs as a non-invasive, 

informative biospecimen for assessing mtDNA. Additional confirmatory and mechanistic 

studies on the mitochondrial genome alterations by HIV and ART that build on this work 

may identify interventions to prevent or treat the neurodegenerative complications of HIV 

infection.
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Fig. 1. 
PWH had higher buccal mitochondrial DNA copies per cell. Violin plots comparing the 

distribution of mitochondrial DNA copies per cell (panel A) and common deletion copies 

per cell (panel B) in participants with and without HIV infection. Data were transformed by 

Box-Cox transformation and groups were compared using a Student’s t-test and the effect 

size of the difference between means is indicated by Cohen’s d (“d”). Abbreviations: HIV 

= human immunodeficiency virus; DNA = deoxyribonucleic acid; mtDNA = mitochondrial 

DNA
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