
Lawrence Berkeley National Laboratory
LBL Publications

Title
Highly scalable distributed-memory sparse triangular solution algorithms.

Permalink
https://escholarship.org/uc/item/4jm4q6z6

ISBN
978-1-61197-521-5

Authors
Liu, Yang
Jacquelin, Mathias
Ghysels, Pieter
et al.

Publication Date
2018

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jm4q6z6
https://escholarship.org/uc/item/4jm4q6z6#author
https://escholarship.org
http://www.cdlib.org/

Highly scalable distributed-memory sparse triangular solution algorithms∗

Yang Liu† Mathias Jacquelin† Pieter Ghysels† Xiaoye S. Li†

Abstract

This paper presents a highly efficient distributed-memory

parallel sparse triangular solver. The triangular solution

phase is often performed following factorization phase in the

sparse linear solvers and has become increasingly computa-

tionally expensive for direct solvers with many right hand

sides (RHSs) or preconditioned iterative solvers. However,

the low arithmetic intensity and sequential nature of the

triangular solve algorithm pose performance challenges for

its large-scale distributed-memory parallelization. In this

work, we propose several strategies to enhance scalability

of an algorithm with 2D block cyclic process layout. First,

an asynchronous binary-tree-based communication scheme

implemented via non-blocking MPI functions is leveraged

to broadcast partial solutions and reduce partial updates

among a subset of processes for each block column and row

of the triangular matrix, respectively. This scheme reduces

message latency, improves communication load balance and

significantly accelerates asynchronous execution of the tri-

angular solve. In addition, efficient BLAS operations and

threading implementations are exploited to accelerate local

computations and further reduce process idle time. The pro-

posed strategies are implemented in SuperLU DIST and nu-

merical experiments show up to 4.4x improvement with one

right-hand side and up to 6.1x improvement with 50 right-

hand sides on 4096 processes, compared to the current re-

lease. This is the first time that sparse triangular solution

is demonstrated strong scaling on more than 4000 cores.

1 Introduction

Factorization based sparse solvers and preconditioners
are indispensable methods for solving large-scale al-
gebraic systems arising from multiphysics and multi-
scale simulations. Here, we focus on LU factorization
A = LU followed by triangular solutions with the lower
and upper triangular matrices L and U . For many typ-
ical sparse matrices from 3D discretized partial differ-
ential equations with n variables, the operation cost for
factorization is O(n2), and that for triangular solution

∗This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Depart-

ment of Energy Office of Science and the National Nuclear Secu-

rity Administration.
†Scalable Solvers Group, Lawrence Berkeley National Labora-

tory, (liuyangzhuan|mjacquelin|pghysels|xsli@lbl.gov)

is of lower order, O(n4/3), which is proportional to the
L factor size. In practice, one triangular solution of-
ten takes less than 5-10% of the factorization time. For
many years, most of the research efforts for high per-
formance direct solvers have been devoted to improving
factorization (see [4, 12] and references therein). In re-
cent years, we see more and more use of direct solvers
in the preconditioning context, for linear systems or for
eigen systems [1, 20, 21]. In these cases, many trian-
gular solutions are needed using the same factorization,
which often become a performance bottleneck for the
overall solver. Therefore, highly efficient parallel tri-
angular solutions are called for. However, it is more
challenging to optimize triangular solution than factor-
ization on large-scale distributed-memory machines for
at least the following reasons. 1) It has relatively lower
arithmetic intensity, about O(1), as measured by flops
per byte of DRAM access or of communication. As a
result, the parallel computation is strictly communica-
tion dominant, which gives little chance of overlapping
computation with communication. Reducing communi-
cation costs is critical for improving the overall trian-
gular solve performance, especially on large-scale high
performance computers. 2) It has stronger task depen-
dencies resulting from the sparsity pattern of the factor-
ized triangular matrices L and U . Such task dependency
sequentializes the solve algorithm and introduces paral-
lelization difficulties on distributed-memory machines.
Thus, better task scheduling and faster task execution is
critical to reduce synchronization and process idle time.

To the best of our knowledge, most existing par-
allel triangular solvers are targeting shared-memory
machines or GPU (see [2, 16, 17, 25] and references,
therein). These solvers often rely on well-known tech-
niques such as the level-set, color-set, or block schedul-
ing algorithms. However, the high inter-node commu-
nication costs associated with these techniques limit
their efficiency on distributed-memory machines. Con-
sequently, existing distributed-memory parallel triangu-
lar solvers generally exhibit limited strong scalability.
To name a few, a multifrontal triangular solver that dis-
tributes frontal matrices among processes was reported
in [19]. A non-blocked triangular solver with a 1D pro-
cess layout and improved computation load balance was
developed in [24]. Our previous supernodal triangu-

1
2

3
4

process grid

2

1

4

3

6

5

Figure 1: Distributed layout and data flow.

lar solver in the SuperLU DIST software [13, 14] relies
on 2D cyclic process layout to achieve improved com-
putation load balance. All these solvers show limited
scalability for large process counts (e.g., thousands of
processes), due to the aforementioned difficulties. Note
that it is also possible to factorize the inverse of tri-
angular matrix as multiple sparse factors to exploit
more parallelism across factors [5, 18]. In addition, a
communication-avoiding parallel algorithm is proposed
for dense triangular systems with multiple right hand
sides (RHSs) [26].

In this work we introduce several techniques to ad-
dress the above issues. Although we implement these
techniques in the SuperLU DIST software, the ideas are
transferable to any other triangular solution software
that uses 2D block cyclic layout. The motivation is
as follows: the high communication cost is largely due
to the need to broadcast and reduce partial solutions
among processes along each block column and row,
respectively. It is possible to leverage standard col-
lective MPI functions, e.g., MPI Bcast/MPI Reduce,
to reduce message latency and balance communication
load in each collective operation. Unfortunately, these
functions cause high memory/communication overheads
due to their construction/synchronization. Here, we
exploit the binary-tree communication models imple-
mented in standard MPI functions to develop a light-
weight communication algorithm. As these operations
require asynchronous communications among a different
subset of processes per column/row, we efficiently con-
struct a binary communication tree per process group
and leverage non-blocking MPI functions to propagate
the messages asynchronously across different trees. An
optimized message priority condition is enforced inside
and among communication trees to enhance pipelining
of the computations. In addition, more efficient and
threaded implementations of local computation are de-
veloped to further reduce process idle time. Our numeri-
cal experiments show these techniques permit significant

Let PROCC(K)/PROCR(K) be processes for column/row K
1. Initialization: x := b; lsum := 0

/* —- Process leaf nodes —- */

2. for block K = 1 to N
3. if (I am diagonal process owning x(K)

4 and fmod(K) = 0)
5. x(K) = L(K,K)−1x(K)

6. Send x(K) to the column processes PROCC(K)

7. endif
8. end for

/* —- Process internal nodes —- */

9. while (I expect more arriving messages) do

10. Receive a message
11. if (message is x(K))

12. for (each of my L(I,K) 6= 0, I > K)

13. lsum(I) = lsum(I) + L(I,K)x(K)
14. fmod(I) = fmod(I)− 1

15. if (fmod(I) = 0)

16. Send lsum(I) to the diagonal process
owning x(I)

17. endif

18. end for
19. else if (message is lsum(K))

20. x(K) = x(K)− lsum(K);
21. fmod(K) = fmod(K)− 1

22. if (fmod(K) = 0)

23. x(K) = L(K,K)−1x(K)
24. Send x(K) to the column processes PROCC(K)

25. endif

26. endif
27. end while

Algorithm 1: Parallel lower triangular solve Lx = b.

scalability improvement across varieties of benchmark
matrices and large range of process counts.

The rest of the paper is organized as follows.
Section 2 briefly describes the sequential triangular solve
algorithm in SuperLU DIST and our baseline parallel
implementation [14]. Next, improved algorithms that
leverage binary-tree-based communication models and
efficient local computations are elucidated in Section 3.
Numerical results that demonstrate the superiority of
the proposed techniques are presented in Section 4.

2 Triangular solution and its baseline
parallelization

Consider the solution of a n × n linear system Lx = b,
where L is a lower triangular matrix, and b is a n × k
right-hand side (RHS) matrix or vector (k=1). The i-th
solution row of x is computed by recurrence

xi = (bi −
i−1∑
j=1

Lij · xj)/Lii .(2.1)

For a sparse matrix L, computation of xi needs
some or all of the previous solution rows xj , j < i,
depending on the sparsity pattern of the i-th row of L.
This computation dependency can be precisely modeled

by the directed acyclic graph (DAG) G(LT) as follows:
there are n vertices corresponding to n variables/rows
xi, i = 1 . . . , n. There is a directed edge from xj to xi if
Lij 6= 0. In a blocked algorithm, such as supernodal
or multifrontal algorithms, we work with a coarser
supernodal DAG where each vertex represents a group
of xi variables and an edge represents the dependency
between two groups of xi variables. In this work,
we always use supernodal representation. Note that
the proposed methodologies also apply to other non-
blocked and blocked algorithms. Let b(K) and x(K)
denote the subvector corresponding to supernode K and
L(I,K) denote the nonzero submatrix corresponding to
supdernodes I and K. The solution subvector x(K) is
computed as

x(K) = L(K,K)−1
(
b(K)−

K−1∑
I=1

L(K, I) · x(I)
)
.(2.2)

The distributed-memory parallel algorithm parti-
tions the matrix L among multiple processes, and each
process is in charge of a subset of solution subvectors
x(K). The solution subvectors and partial summa-
tion results in (2.2) are communicated during the solve
phase. Note that for simplicity we do not consider dis-
tributing the RHS b along its column dimension when
the number of RHS k > 1. Due to low arithmetic inten-
sity and high sequentiality, a process can stay mostly
idle when the process count becomes large. In what fol-
lows, we propose several techniques to alleviate these
scaling hurdles.

Our starting point of this work is based on the ear-
lier parallel algorithm in SuperLU DIST, which first ap-
peared in [13], and had little update since then [14]. We
recall that SuperLU DIST uses a 2D block-cyclic distri-
bution for the factored L and U matrices. Figure 1 illus-
trates such a distribution and associated communication
requirements with a 2× 3 process grid. Processes own-
ing the diagonal blocks (called diagonal processes) are
responsible for computing the corresponding blocks of
the x components. When x(I) is needed in L(K, I)x(I),
and the owners of x(I) and L(K, I) are different, x(I)’s
process needs to send it to the process of L(K, I), see
©1 in Figure 1. Note that L(I, I) and x(I) are owned
by the same process. In case of ©2 , no communica-
tion is needed because both x(I) and L(K, I) reside on
the same process 5 (marked in green). After receiving
required x(I) entries, each process proceeds with local
summation, i.e., step ©3 in Figure 1. Finally, the local
sums are sent to the diagonal process which performs
the inversion, see ©4 in the figure.

For completeness, we list the pseudo-code for the
lower triangular solve in Algorithm 1 and describe the
details here. For illustration purposes, it is assumed

Matrix Comp Tot Tot (no DAG)
cage13 (1 RHS) 1.4E-01 3.7E-01 2.1E-01

Li4244 (50 RHSs) 1.8E-01 3.7E-01 1.9E-01

(a)

Matrix Comp Tot Tot (no DAG)
cage13 (1 RHS) 6.0E-03 2.3E-01 1.4E-01

Li4244 (50 RHSs) 1.1E-02 1.6E-01 3.6E-02

(b)

Table 1: Time (in seconds) of triangular solve in
SuperLU DIST with (a) 8x8 and (b) 45x45 grids. The
computation time is the maximum over all processes

that a diagonal process owns no off-diagonal blocks on
the same supernode row. Let PROCC(K)/PROCR(K)
denote the set of processes along block column/row K.
In this formulation, before the K-th subvector x(K) is
solved, the update from the inner product of L(K, 1 :
K−1) and x(1 : K−1) must be accumulated in lsum(K)
and subtracted from b(K). The diagonal process is
responsible for solving x(K). During the setup phase,
the dependency graph allows us to compute a counter
fmod(K) on the processes residing along block row K.
The counter counts how many local blocks L(I,K) will
contribute to lsum(K) and how many lsum(K) updates
the owner of x(K) will receive from a subset of the non-
diagonal processes along the block row K. During the
solve phase, fmod(K) is updated to keep track of when
dependency is met, enabling asynchronous executions.
Specifically, the counter is decremented whenever a local
contribution to lsum(K) is performed or an nonlocal
lsum(K) is received. Once fmod(K) reaches zero, the
non-diagonal process sends lsum(K) to the diagonal
process owning x(K); the diagonal process solves x(K)
and sends it to a subset of PROCC(K).

The execution of the program is message-driven.
A process may receive two types of messages, one
is the partial sum lsum(K), another is the solution
subvector x(K). Appropriate action is taken according
to the message type. Note that the messages are
communicated via MPI Isend and MPI Recv. The
asynchronous communication enables certain degree of
overlap between communication and computation, and
helps reduce process idle time. This is very important
for such communication-dominant applications.

To assess performance of Algorithm 1, we consider
the SuperLU DIST factored L matrices of two bench-
mark matrices with different densities (defined in Table
2 caption), cage13 and Li4244 (see Table 2). Matrix
cage13 with density 2.36% is run with k = 1 RHS; ma-
trix Li4244 with density 19.2% is run with k = 50 RHSs.
When executed with a 8×8 process grid (see Table 1a),
the computation time (corresponding to lines 5, 13 and
23 of Algorithm 1) of both runs are comparable to the

(a) (b)

Diagonal Process

D
iag

o
n
al P

ro
cess

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

5p¢ 4p¢ 3p¢ 2p¢ 1p¢

5p¢ 4p¢ 3p¢ 2p¢ 1p¢

Figure 2: Comparison between flat and binary trees: (a)
broadcast tree, (b) reduction tree.

communication and idle time. However when executed
with a 45 × 45 process grid (see Table 1b), more than
90% of the total time is spent in communication and
waiting. This is due to the low arithmetic intensity per
message (note that matrix Li4244 has higher density
and hence higher arithmetic intensity than cage13). In
addition to low arithmetic intensity, another bottleneck
is the sequentiality associated with the sparsity pattern.
To illustrate the effect of sequentiality, both matrices are
run with fmod(K) = 0 for all K to remove the DAG
dependency while keeping the same amount of commu-
nication, thus ignoring the correctness of the solution
(see last columns of the two tables). When removing de-
pendencies, the runs become entirely computation dom-
inant with the 8×8 process grid but still communication
dominant with the 45× 45 process grid.

It is also worth-mentioning that the solve phase
becomes comparable to or dominant over factorization
phase in direct solvers with many RHSs or precondi-
tioned iterative solvers. Take the example of cage13
with the 45 × 45 process grid, factorization and solve
(per RHS) require 59.25s and 0.23s, respectively. This
clearly demonstrate the need for better triangular solve
algorithms.

In the following section, we propose several strate-
gies including efficient communication algorithms and
faster local computation to reduce communication la-
tencies and process idle time.

3 Improved Algorithms

3.1 Asynchronous binary-tree-based collective
communications. As discussed, Algorithm 1 involves
an excessive amount of communication but little com-
putation. Recall that there are two types of communi-
cations along the column and row dimensions. When-
ever a subvector x(K) is solved, its diagonal process
sends it to the column processes PROCC(K) that own
nonzero blocks in supernode column K (lines 6 and
24 in Algorithm 1). Similarly, whenever a local sum

Let BT (K)/RT (I) be the broadcast/reduction process
tree for column/row K

1. Initialization: x := b; lsum := 0

/* —- Process leaf nodes —- */
2. for block K = 1 to N

3. if (I am diagonal process owning x(K)

4 and fmod(K) = 0)
5. x(K) = L(K,K)−1x(K)

6. Forward x(K) in broadcast tree BT (K)
7. endif

8. end for

/* —- Process internal nodes —- */

9. while (I expect more arriving messages) do
10. Receive a message

11. if (message is x(K))

12. Forward x(K) in broadcast tree BT (K)
13. for each of my L(I,K) 6= 0, I > K

14. lsum(I) = lsum(I) + L(I,K)x(K)

15. end for
16. for each of my L(I,K) 6= 0, I > K

17. fmod(I) = fmod(I)− 1

18. if (fmod(I) = 0)
19. Forward lsum(I) in reduction tree RT (I)

20. endif
21. end for

22. else if (message is lsum(K))

23. if (I am diagonal process owning x(K))
24. x(K) = x(K)− lsum(K)

25. fmod(K) = fmod(K)− 1

26. if (fmod(K) = 0)
27. x(K) = L(K,K)−1x(K)

28. Forward x(K) in broadcast tree BT (K)

29. endif
30. else

31. add message to local lsum(K)

32. fmod(K) = fmod(K)− 1
33. if (fmod(K) = 0)

34. Forward lsum(K) in reduction tree RT (K)
35. endif

36. endif

37. endif
38. end while

Algorithm 2: Binary-tree-enhanced parallel lower trian-
gular solve Lx = b.

lsum(I) finishes accumulation, its off-diagonal process
sends it to the diagonal process owning x(I) (line 16 in
Algorithm 1). The diagonal process receives local sums
from a subset of row processes PROCR(I) that own
nonzero blocks in supernode row I. Note that these
communications are collective in nature: the column-
wise one is a broadcast operation, the row-wise one is
a reduction operation. These communications are im-
plemented with MPI Isend and MPI Recv. (Note that
we do not use non-blocking MPI Irecv as there is little
room for overlapping message receiving with computa-
tions). The implementation in Algorithm 1 is essen-
tially based on a flat-tree communication model. It is
thus clear that a single such operation involving p pro-

Matrix Size n Nonzeros Nonzeros in L Density Description

nlpkkt80 1,062,400 28,704,672 1,641,731,498 0.29%
Optimization problem,
Symmetric indefinite KKT matrix

cage13 445,315 7,479,343 2,338,129,041 2.36%
DNA electrophoresis,
13 monomers in polymer

Geo 1438 1,437,960 63,156,690 2,426,672,664 0.23%
Structural problem,

Geomechanical model of earth crust

atmosmodj 1,270,432 8,814,880 968,674,795 0.12%
Fluid dynamics,

Atmospheric modeling

StocF-1465 1,465,137 21,005,389 1,054,880,448 0.09%
Fluid dynamics,

Flow in porous medium

A22 519,552 127,135,918 1,782,722,012 1.32%
Magnetohydrodynamics,
Magnetized toroidal plasma

tdr455k 2,738,556 112,756,352 1,328,776,490 0.04%
Electromagnetics,

Eigenmode for accelerator cavity

LU C BN C 263,328 190,859,344 1,785,728,803 5.15%
Electronic structure theory,

C-BN sheet with 20256 atoms

Ga19As19H42 133,123 8,884,839 810,605,750 9.15%
Quantum chemistry theory,

Real-space pseudopotential method

Li4244 72,000 258,880,000 498,596,000 19.2%
Electronic structure theory,
3D lithium system with 4244 atoms

DG Graphene 327,680 238,668,800 966,000,640 1.8%
Electronic structure theory,
Graphene with 8192 atoms

DNA 715 459,712 224,055,744 425,579,006 0.4%
Electronic structure theory,

DNA molecule with 45760 atoms

Table 2: Test matrices. Density := {nonzeros in L}×2 / n2

cesses will yield a communication latency of p and the
communication load is imbalanced across each process
group (the root/diagonal process communicates exces-
sively more messages than non-diagonal processes). For
example, suppose a process requires a certain message
in a broadcast operation to activate a leaf supernode in
the reduced DAG. If the process is the last receiver from
the root, it is more likely that the following computa-
tions will be blocked. Moreover in practice, any network
has variation in the communication bandwidth and la-
tency among different nodes. If the diagonal processes
have lower bandwidth or higher latency than others, the
communication performance will be further degraded.

Therefore it is beneficial to reshape the message
routing patterns based on so-called binary-tree com-
munication models. Binary-tree communication models
only require log2p latency and balance the communica-
tion loads among all p processes. A natural way to lever-
age these communication models is to use MPI Bcast
and MPI Reduce available in standard MPI libraries.
However, such option is infeasible for the following rea-
sons: 1) The MPI Bcast and MPI Reduce operations
are blocking in nature, which degrades the performance
of the asynchronous algorithm in Figure 1 particularly
when one process is involved in multiple broadcast and
reduction operations. Since the diagonal process sends
x(K) only after it is solved and a non-diagonal process
sends lsum(I) only when local accumulation finishes,
the collective communication algorithm should also be
asynchronous in nature. 2) Note that each collective
operation very likely involves a different subset of pro-

cess group PROCC(K) or PROCR(K). Even two col-
lective operations involve the same subset of process
group, each process can take charge of different su-
pernode columns/rows. This requires construction of
one communication group per supernode column/row
either in the setup or solve phase, which turns out to
be memory or computation inefficient. Therefore, even
asynchronous MPI Ibcast and MPI Ireduce operations
cannot be used. 3) The order of processes in the tree
constructed by standard MPI libraries may not be op-
timal for pipelining the triangular solve algorithm. It is
worth-mentioning that similar observations have been
reported for the matrix factorization phase in [6, 22].

The aforementioned drawbacks of flat-tree and stan-
dard binary-tree communication algorithms motivate us
to develop a low-overhead asynchronous tree-based com-
munication algorithm specially tailored for the triangu-
lar solve algorithm. In what follows, we present the
flat-tree and the binary-tree communication models and
describe the modified triangular solve algorithm in de-
tail.

Consider one broadcast operation as depicted in
Figure 2(a) where the diagonal process p1 sends the
solved subvector x(K) to a subset of p − 1 processes
in PROCC(K). In the flat-tree model as implemented
in Algorithm 1, the diagonal process sends x(K) one-by-
one for p−1 times. In the binary-tree model, in contrast,
each process receives at most one message from its par-
ent and forwards at most two messages to its children.
This clearly reduces the latency of the broadcast oper-
ation from p − 1 to log2p and reduces maximum com-

munication volume per process from O(p) to O(1). On
the other hand, the reduction operation in Figure 2(b)
is more subtle. In the flat-tree model of Algorithm 1,
the diagonal process receives p− 1 messages one-by-one
once they become ready-to-send (when local accumu-
lation finishes) on non-diagonal processes. In contrast,
each process in the binary-tree model receives at most
two messages from its children and forwards at most
one message (when local accumulation finishes and all
children messages have been received) to its parent. By
reducing the number of messages communicated with
the root from p − 1 to two, the binary-tree model effi-
ciently reduces the chance of instantaneous hotspots in
the presence of network bandwidth and latency varia-
tions and facilitates pipelining communication and com-
putation tasks across multiple trees. Also, it is worth-
mentioning that the ordering of processes in a broad-
cast/reduction tree plays a critical role in reducing the
overall communication cost. For example in a broadcast
tree BT (K), each participating process owns multiple
blocks in the supernode column K. It is assumed that
blocks with smaller supernode row numbers are likely
to activate the row as leaf nodes earlier in the DAG.
Therefore these blocks should have higher priority to
receive the message so as to start computation or for-
warding earlier. In our proposed models, processes in a
broadcast tree are ordered such that a process owning
smaller block row numbers appears closer to the root.
For similar reasons, processes owning larger block col-
umn numbers appear closer to the root in a reduction
tree. Note that one can also attempt to construct the
trees with random process orders as proposed in a se-
lected inversion code [6], however, our study shows that
tree models with carefully ordered processes work better
for the triangular solve algorithm.

To implement these models efficiently, we construct
one broadcast tree BT (K) per supernode column K
out of PROCC(K) processes and one reduction tree
RT (K) per supernode row K out of PROCR(K) pro-
cesses during the setup phase. Note that each process
in a tree only keeps track of its parent and children.
Such construction consumes only negligible CPU and
memory resources. As in the flat-tree-based algorithm,
a counter fmod(K) is computed per supernode row K
to record the number of local inner-products and non-
local messages for their contribution to lsum(K). The
number of local updates equals the number of blocks in
row K one process owns; the number of non-local up-
dates equals the number of children in reduction tree
RT (K). As opposed to the flat-tree algorithm that
expects much higher fmod(K) on diagonal processes
than non-diagonal ones, the binary-tree algorithm ex-
pects similar fmod(K) values on all processes.

The solve phase of the modified triangular solve al-
gorithm is outlined in Algorithm 2. Just like the flat-
tree-based algorithm, the leaf supernode rows are pro-
cessed first. Once solved, the root process in BT (K) for-
wards x(K) to its children via non-blocking MPI Isend.
The rest of the algorithm is message-driven. If a re-
ceived message is x(K), the process forwards the mes-
sage in broadcast tree BT (K) (line 12 in Algorithm 2)
before performing local sum accumulation. Otherwise if
the message is lsum(K), the process accumulates it to
local sums. Once fmod(K) becomes zero, non-diagonal
processes forward lsum(K) in reduction tree RT (K)
(lines 19 and 34 in Algorithm 2); the diagonal process
solves x(K) and forwards the results in broadcast tree
BT (K) (line 28 in Algorithm 2).

Recall that our assumption that blocks with smaller
row number are likely to activate leaf node rows earlier,
local sum messages with smaller row numbers should
have higher message forwarding priority given that there
are multiple messages ready-to-send. Therefore, we
reorder the loop at lines 16-21 such that lsum(I) with
smaller I is sent first. Indeed this also helps pipelining
the overall algorithm.

The integration of light-weight non-blocking collec-
tive communication schemes into Algorithm 2 facilitates
its asynchronous execution. By balancing communica-
tion volume per process and improving message latency,
the process idle time is greatly reduced (line 10 in Al-
gorithm 2). Recall our earlier discussions in Section 2,
the lack of parallelism due to the DAG structure also
poses unique challenges to minimize process idle time.
To this end, one process should perform local computa-
tion faster and start message forwarding earlier to facil-
itate the traversal of the DAG. In addition to the tree-
based communication model that improves the commu-
nication cost, several techniques are proposed next to
further alleviate the lack of parallelism.

3.2 Efficient local computations. Recall that the
computation tasks consist of matrix-vector multiplica-
tions involving L(I,K) (line 14 of Algorithm 2) and
triangular solve involving L(K,K) (lines 5 and 27 of Al-
gorithm 2). Notice that under 2D block cyclic layout,
the matrix-vector multiplication becomes more compu-
tationally intensive than the triangular solve. To accel-
erate this computation task, the L(I,K), I > K are
grouped into a tall-and-skinny block that leverages fast
(e.g. Intel MKL) GEMV (k = 1) or GEMM (k > 1)
BLAS operations (lines 13-15). Moreover, the trian-
gular solve is also implemented as GEMV/GEMM via
pre-computed L−1(K,K) to achieve better flop rate.

We also leverage hybrid OpenMP/MPI program-
ming models to further improve the computation and

communication efficiency. The motivation is two-fold:
first, faster local computation, as already discussed, en-
ables earlier message forwarding; second, low-latency
intra-node communication can be reduced via launch-
ing fewer MPI processes per node. In what follows,
we briefly describe the threading component of the tri-
angular solve in the context of Algorithm 2. We ex-
ploit two types of node-level concurrency, the first is
the loop (lines 2-8) that processes all local leaf supern-
ode rows; the second is the loop (lines 13-15) that per-
forms GEMV operations for local sum accumulation.
Note that during processing of the leaf nodes, a process
will likely incur GEMV operations similar to lines 13-
15 after solving one x(K) and generate more leaf nodes
recursively without communication. We employ a task-
based threading model that hybridizes parallelization
of the aforementioned loops. One OMP task is gen-
erated for several initial leaf nodes and each new leaf
node. All threads update the counter fmod(K) atom-
ically without synchronization. This threading scheme
is essentially an asynchronous level scheduling based
scheme. In addition, the GEMV operations are paral-
lelized among threads (as OMP tasks) once the merged
block dimension is large enough. Note that the block
dimension oftentimes becomes larger when the solve
phase approaches its end. When executed with one
MPI process, i.e., pure multi-threading, the proposed
algorithm achieves similar threading performance than
that of the hybrid level-scheduling and blocking algo-
rithm proposed in [2]. When using more MPI processes,
the algorithm leverages both MPI and OpenMP paral-
lelization consistently. Although it is expected that the
threading performance will degrade with large numbers
of MPI processes, it should still improve computation
time and thus enable earlier message forwarding.

4 Numerical Results

In this section, we present several numerical experi-
ments to demonstrate the scalability of the proposed
communication efficient triangular solve algorithm. The
experiments are organized into three groups. First, the
enhanced scalability of binary-tree-based communica-
tion algorithms is demonstrated. Second, the improve-
ment in the local computation is validated. Finally, we
present a set of benchmark matrices to test the overall
algorithm.

We selected 12 benchmark matrices arising from
various application domains as listed in Table 2. Sev-
eral matrices are coming from collaborative research
projects across U.S. Department of Energy laborato-
ries and research institutes. Matrix A22 is generated
from the M3D-C1 software [7] for magnetohydrodynam-
ics modeling of plasma fusion. Matrix tdr455k is gen-

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

ce
ss

o
r

ro
w

 i
n
d
ex

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

ce
ss

o
r

ro
w

 i
n
d
ex

(MB)Flat-tree Binary-tree

(a) communication volume

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

c
e
s
s
o
r

ro
w

 i
n
d
e
x

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

c
e
s
s
o
r

ro
w

 i
n
d
e
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10
4

(b) message count

Figure 3: Communication heat map of tdr455k matrix
with a 64× 64 process grid. k = 1 RHS

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

ce
ss

o
r

ro
w

 i
n

d
ex

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

ce
ss

o
r

ro
w

 i
n

d
ex

Flat-tree Binary-tree (MB)

(a) communication volume

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

c
e
s
s
o
r

ro
w

 i
n
d
e
x

0 5 10 15 20 25 30 35 40 45 50 55 60

Processor column index

0

5

10

15

20

25

30

35

40

45

50

55

60

P
ro

c
e
s
s
o
r

ro
w

 i
n
d
e
x

0.5

1

1.5

2

2.5

10
4

(b) message count

Figure 4: Communication heat map of atmosmodj
matrix with a 64× 64 process grid. k = 50 RHSs

erated from the Omega3P software [11] for electromag-
netic eigenmode analysis of accelerator cavities. Matri-
ces LU C BN C, Li4244, DG Graphene, and DNA 715
are coming from practical large scale electronic struc-
ture calculations. More precisely, these matrices are
generated from SIESTA [23] and DGDFT [15], two soft-
ware packages for performing Kohn-Sham density func-
tional theory [10] calculations using two different types
of basis sets. All other matrices are publicly available
through the SuiteSparse Matrix Collection [3], a widely
used benchmark set of problems for testing sparse direct
methods.

The benchmark matrices are first factorized via
SuperLU DIST with METIS ordering for fill-in reduc-
tion [8]. The L-factors are used with the proposed

at
m

os
m

od
j

G
eo

_1
43

8

Sto
cF

-1
46

5
A

22

LU
_C

_B
N

_C

Li4
24

4

D
G

_G
ra

ph
en

e

D
N

A
_7

15

2

3

4

5

6

7

8
T

h
re

ad
in

g
 s

p
ee

d
u
p

4 threads

8 threads

16 threads

(a)

at
m

os
m

od
j

G
eo

_1
43

8
A

22

D
G

_G
ra

ph
en

e

LU
_C

_B
N

_C

G
a1

9A
s1

9H
42

Li4
24

4
1

1.5

2

2.5

T
h

re
ad

in
g

 s
p

ee
d

u
p

4 MPI

16 MPI

256 MPI

(b)

Figure 5: Threading performance w.r.t. single-threaded
implementations with same number of MPI processes.
(a) 1 MPI process with up to 16 threads per process.
(b) 4, 16, 256 processes with 4 threads per process

16 64 256 1024 2025 4096

#MPI processes

10
-2

10
-1

S
o
lv

e
ti

m
e

Li4244 (binary)

atmosmodj (binary)

Ga19As19H42 (binary)

Geo_1438 (binary)

Li4244 (flat)

atmosmodj (flat)

Ga19As19H42 (flat)

Geo_1438 (flat)

(a)

16 64 256 1024 2025 4096

#MPI processes

10
-1

10
0

10
1

S
o
lv

e
ti

m
e

A22 (flat)

DG_Graphene (flat)

nlpkkt80 (flat)

Ga19As19H42 (flat)

A22 (binary)

DG_Graphene (binary)

nlpkkt80 (binary)

Ga19As19H42 (binary)

(b)

Figure 6: Scaling results for (a) 1 RHS and (b) 50 RHSs

triangular solve algorithms. We choose matrices with

nl
pk

kt
80

ca
ge

13

at
m

os
m

od
j

G
eo

_1
43

8

Sto
cF

-1
46

5
A

22

td
r4

55
k

LU
_C

_B
N

_C

G
a1

9A
s1

9H
42

Li4
24

4

D
G

_G
ra

ph
en

e

D
N

A
_7

15

0

0.05

0.1

0.15

0.2

0.25

0.3

S
o

lv
e

T
im

e
(s

)

Flat-Tree

Binary-Tree

(a)

nl
pk

kt
80

ca
ge

13

at
m

os
m

od
j

G
eo

_1
43

8

Sto
cF

-1
46

5
A

22

td
r4

55
k

LU
_C

_B
N

_C

G
a1

9A
s1

9H
42

Li4
24

4

D
G

_G
ra

ph
en

e

D
N

A
_7

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
o

lv
e

T
im

e
(s

)

Flat-Tree

Binary-Tree

(b)

Figure 7: Solve time with 4096 MPI processes for (a)
k = 1 RHS and (b) k = 50 RHSs

different dimensions and densities to demonstrate the
efficiency of the proposed algorithm. Note that the al-
gorithm also applies to the U factors with minor modi-
fications.

All experiments are performed on the “Cori
Haswell” system at NERSC. Cori Haswell is a Cray
XC40 system and consists of 2388 dual-socket nodes
with Intel Xeon E5-2698v3 processors running 16 cores
per socket. The nodes are configured without Hyper-
Threading, run at frequency of 2.3 GHz, and are
equipped with 128 GB of DDR4 memory at 2133 MHz.
The nodes are connected through the Cray Aries inter-
connect with Dragonfly topology [9]. Unless otherwise
stated, all experiments use one thread per MPI process.

4.1 Binary-tree algorithm. In the first set of nu-
merical experiments, the communication load balance
of the parallel triangular solve algorithms is analyzed
using the flat-tree and binary-tree models. The al-
gorithms are first applied to matrix tdr455k with di-
mension 2, 738, 556 and L-factor density 0.035% using
a 64× 64 process grid. The supernode sizes range from
20 to 128. The triangular system is solved with k = 1
RHS. Figure 3 depicts the communication volume (in
MB) and message count heat maps for the flat-tree and
binary-tree communication models. For the flat-tree
model, the communication volume and message counts
are highly imbalanced. The maximum message volume
and message count along diagonal processes are 18 MB
and 17, 355. It is easy to see that the imbalance will

deteriorate as the process count increases. This imbal-
ance causes network contention close to diagonal pro-
cesses and leads to higher message latencies. In stark
contrast, the heat maps for the proposed binary-tree
model are well-balanced with maximum message vol-
ume 4.3 MB and message count 4, 186. As a result, the
improved communication model reduces the solve time
from 84 ms to 26 ms.

Similarly, the algorithm is applied to matrix at-
mosmodj with dimension 1, 270, 432 and L-factor den-
sity of 0.12% for k = 50 RHSs using a 64 × 64 process
grid. With 50 RHSs, each message size becomes much
larger than with 1 RHS and can incur different commu-
nication protocols at the MPI level. As can be seen from
Figure 4, the proposed communication model reduces
the maximum volume and message count from 1.43 GB
and 27, 964 to 280 MB and 5464. Consequently, the
solve time is reduced from 0.8 s to 0.31 s.

The above numerical examples demonstrate the ef-
fectiveness of binary-tree communication models in bal-
ancing communication loads and reducing message la-
tencies for different message sizes with large process
counts. It is also worth mentioning that the improve-
ment using the binary-tree model over the flat-tree is
less significant when process count is relatively small
(e.g., less than 32). This is because flat-tree-based intra-
memory communications benefit more from low memory
latency and better cache reuse. Therefore in the pro-
posed algorithm, binary-tree models are enabled when
process count in a supernode row/column is larger than,
say, core count per socket.

4.2 Faster computation. In this subsection, the ef-
fects of more efficient local computations are demon-
strated for the binary-tree-based parallel triangular
solve algorithm. First the locally improved algorithm
is tested with a single MPI process. We observed that
upon grouping matrix-vector products and precomput-
ing inverses of diagonal blocks, the algorithm achieves
2-3x speedups for k = 1 RHS and 1.2-1.4x speedups for
k = 50 RHSs. Building upon these improvements, we
now focus our experiment on threading enhancement
of local computation. Figure 5a depicts the threading
speedups with 4, 8, and 16 threads for different bench-
mark matrices with k = 1 RHS. Irrespective of spar-
sity and dimension of the matrices, our algorithm can
achieve up to 8x speedups with 16 threads.

Next, we report the performance of the hybrid
OMP/MPI implementation of triangular solve. Fig-
ure 5b shows threading speedups with 4 threads per
MPI processes with fixed process grids. As MPI pro-
cess count increases, the threading performance starts
to degrade. This is due to a decreased degree of both

leaf-node concurrency (lines 2-8 of Algorithm 2) and lo-
cal sum concurrency (lines 13-15 of Algorithm 2), i.e.,
decreased computation-to-communication ratios. That
said, the proposed algorithm can still achieve 1.3x
threading speedups with 256 MPI processes. Also note
that matrices are sorted roughly based on their nonzero
ratios. As the matrices become denser and exhibit
higher computation-to-communication ratios, the algo-
rithm exploits more local sum parallelism (lines 13-15
of Algorithm 2) and hence achieves better speedups.

4.3 Overall performance. In the last set of exper-
iments, we compare the overall performance of Algo-
rithm 2 and Algorithm 1 for matrices with varying
dimensions and sparsity patterns. First, we plot the
strong scaling results for k = 1 RHS in Figure 6a
and k = 50 RHSs in Figure 6b. Each data point
is generated by averaging multiple run results of the
same matrix and CPU configuration to take account
of network bandwidth and latency variations. One
thread is launched per process. For many matrices, e.g.,
Geo 1438, Ga19As19H42, Li4244, Algorithm 1 stops
scaling beyond 1, 024 processes. In contrast, Algo-
rithm 2 is able to scale to 4, 096 processes. For all test
matrices, Algorithm 2 achieves better performance than
Algorithm 1 for the same number of processes. When
the process count is small, the proposed algorithm al-
lows more efficient local computations to achieve signif-
icant speedups; when the process count is large (for in-
stance, beyond 256), the proposed algorithm relies more
on binary-tree-based communication models to achieve
better scaling performance.

Finally, we report the performance improvement of
Algorithm 2 over Algorithm 1 for all benchmark matri-
ces in Table 2 on a 64 × 64 process grid. Algorithm 2
achieves 1.7-4.4 fold speedups for k = 1 RHS (Fig. 7a)
and 2.7-6.1 fold speedups for k = 50 RHSs (Fig. 7b),
respectively.

5 Conclusion

This paper presents several techniques to improve scal-
ability of distributed-memory parallel triangular solve
algorithms. A binary-tree-based communication model
with standard MPI implementations is proposed to re-
duce message latency and improve load balance for com-
municating partial solutions. In addition, the algorithm
leverages efficient BLAS operations and threading ac-
celerations to achieve faster local computations. These
strategies alleviate high communication costs and re-
duce process idle time that plague all parallel triangular
solve algorithms. We observed up to 6 fold speedups
with 4, 096 processes in solving lower triangular sys-
tems generated by the SuperLU DIST supernodal pack-

age, which clearly demonstrates superiority of the pro-
posed strategies compared to our baseline implementa-
tion.

The proposed algorithms can be applied to both
lower and upper triangular systems arising in any su-
pernodal, multifrontal or nonblocked triangular solve
algorithms. The improved parallel efficiency suggests
its applicability in accelerating preconditioned iterative
and direct solvers with both single and multiple RHSs
for large-scale algebraic systems.

References

[1] M. Benzi, Preconditioning techniques for large linear
systems: a survey, J. Comput. Phys., 182 (2002),
pp. 418 – 477.

[2] A. M. Bradley, A hybrid multithreaded direct sparse
triangular solver, in Proceedings of SIAM Workshop on
Combinatorial Scientific Computing, 2016, pp. 13–22.

[3] T. A. Davis and Y. Hu, The University of Florida
sparse matrix collection, ACM Trans. Math. Softw., 38
(2011), pp. 1:1–1:25.

[4] T. A. Davis, S. Rajamanickam, and W. M. Sid-
Lakhdar, A survey of direct methods for sparse linear
systems, Acta Numerica, 25 (2016), p. 383–566.

[5] N. J. Higham and A. Pothen, Stability of the par-
titioned inverse method for parallel solution of sparse
triangular systems, SIAM J Sci Comput., 15 (1994),
pp. 139–148.

[6] M. Jacquelin, L. Lin, N. Wichmann, and C. Yang,
Enhancing scalability and load balancing of parallel se-
lected inversion via tree-based asynchronous communi-
cation, in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2016, pp. 192–201.

[7] S. C. Jardin, N. Ferraro, X. Luo, J. Chen,
J. Breslau, K. E. Jansen, and M. S. Shephard,
The M3D-C1 approach to simulating 3D 2-fluid mag-
netohydrodynamics in magnetic fusion experiments, J.
Phys. Conf. Ser., 125 (2008), p. 012044.

[8] G. Karypis and V. Kumar, A fast and high qual-
ity multilevel scheme for partitioning irregular graphs,
SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[9] J. Kim, W. J. Dally, S. Scott, and D. Abts,
Technology-driven, highly-scalable dragonfly topology,
in 2008 International Symposium on Computer Archi-
tecture, June 2008, pp. 77–88.

[10] W. Kohn and L. Sham, Self-consistent equations
including exchange and correlation effects, Phys. Rev.,
140 (1965), pp. A1133–A1138.

[11] L.-Q. Lee, Z. Li, C. Ng, and K. Ko, Omega3P:
a parallel finite-element eigenmode analysis code for
accelerator cavities, , Stanford Linear Accelerator
Center (SLAC), 2009.

[12] X. S. Li, Factorization-based sparse solvers and pre-
conditioners, in Series in Contemporary Applied Math-
ematics: Vol 19, Matrix Functions and Matrix Equa-

tions, Z. Bai, W. Gao, and Y. Su, eds., World Scientific,
2015, pp. 109–137.

[13] X. S. Li and J. W. Demmel, Making sparse Gaussian
elimination scalable by static pivoting, in Proceedings
of the 1998 ACM/IEEE Conference on Supercomput-
ing, SC ’98, Washington, DC, USA, 1998, IEEE Com-
puter Society, pp. 1–17.

[14] , SuperLU DIST: a scalable distributed-memory
sparse direct solver for unsymmetric linear systems,
ACM Trans. Math. Softw., 29 (2003), pp. 110–140.

[15] L. Lin, J. Lu, L. Ying, and W. E, Adaptive local
basis set for Kohn-Sham density functional theory in
a discontinuous Galerkin framework I: Total energy
calculation, J. Comput. Phys., 231 (2012), pp. 2140–
2154.

[16] W. Liu, A. Li, J. D. Hogg, I. S. Duff, and
B. Vinter, Fast synchronization-free algorithms for
parallel sparse triangular solves with multiple right-
hand sides, Concurrency and Computation: Practice
and Experience, 29 (2017), pp. e4244–n/a. e4244
cpe.4244.

[17] J. Mayer, Parallel algorithms for solving linear sys-
tems with sparse triangular matrices, Computing, 86
(2009), p. 291.

[18] P. Raghavan, Efficient parallel sparse triangular solu-
tion using selective inversion, Parallel Processing Let-
ters, 08 (1998), pp. 29–40.

[19] F.-H. Rouet, Memory and performance issues in
parallel multifrontal factorization and triangular solu-
tions with sparse right-hand sides, theses, Université de
Toulouse, Dec. 2012.

[20] Y. Saad, Iterative methods for sparse linear systems,
Society for Industrial and Applied Mathematics, sec-
ond ed., 2003.

[21] Y. Saad, Numerical Methods for Large Eigenvalue
Problems, Society for Industrial and Applied Mathe-
matics, Philadelphia, second ed., 2011.

[22] M. W. Sid Lakhdar, Scaling the solution of large
sparse linear systems using multifrontal methods on
hybrid shared-distributed memory architectures, theses,
Ecole normale supérieure de lyon - ENS LYON, 2014.

[23] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa,
J. Junquera, P. Ordejón, and D. Sánchez-
Portal, The SIESTA method for ab initio order-N
materials simulation, J. Phys.: Condens. Matter, 14
(2002), pp. 2745–2779.

[24] E. Totoni, M. T. Heath, and L. V. Kale,
Structure-adaptive parallel solution of sparse triangular
linear systems, Parallel Computing, 40 (2014), pp. 454
– 470.

[25] X. Wang, W. Liu, W. Xue, and L. Wu, swSpTRSV:
a fast sparse triangular solve with sparse level tile
layout on Sunway architectures, in Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2018, pp. 338–353.

[26] T. Wicky, E. Solomonik, and T. Hoefler,
Communication-avoiding parallel algorithms for solv-
ing triangular systems of linear equations, in 2017

IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2017, pp. 678–687.

	Introduction
	Triangular solution and its baseline parallelization
	Improved Algorithms
	Asynchronous binary-tree-based collective communications.
	Efficient local computations.

	Numerical Results
	Binary-tree algorithm.
	Faster computation.
	Overall performance.

	Conclusion

