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Abstract
In response to the COVID-19 pandemic, many higher educational institutions moved
their courses on-line in hopes of slowing disease spread. The advent ofmultiple highly-
effective vaccines offers the promise of a return to “normal” in-person operations, but
it is not clear if—or for how long—campuses should employ non-pharmaceutical
interventions such as requiring masks or capping the size of in-person courses. In this
study, we develop and fine-tune a model of COVID-19 spread to UCMerced’s student
and faculty population. We perform a global sensitivity analysis to consider how
both pharmaceutical and non-pharmaceutical interventions impact disease spread. Our
work reveals that vaccines alone may not be sufficient to eradicate disease dynamics
and that significant contact with an infectious surrounding community will maintain
infections on-campus. Our work provides a foundation for higher-education planning
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allowing campuses to balance the benefits of in-person instruction with the ability to
quarantine/isolate infectious individuals.

Keywords ODE · SEIR · Global sensitivity analysis · Sobol indices · COVID-19

Mathematics Subject Classification 92B05 · 92D25 · 92D30 · 37N25

1 Introduction

In late 2019, a novel coronavirus, SARS-CoV-2, was identified as the cause of a
cluster of pneumonia cases (Zheng-Li 2021). On March 11, 2020, the World Health
Organization declared the 2019 novel coronavirus outbreak (COVID-19) a pandemic
(World Health Organization 2020). Shortly after, nearly every higher-education insti-
tute rapidly transitioned all classes to on-line instruction to “flatten the epidemic
curve.” As of October 13, 2022, the cumulative number of confirmed COVID-19 cases
exceeds 620 million (Johns Hopkins Corona Virus Resource Center 2022). Although
the availability of multiple effective vaccines offers the likelihood of a return to normal
life, the emergence of highly infectious variants and the advent of booster shots means
that the return to our pre-COVID-19 existence is not in our immediate future (Mathieu
et al. 2021).

Starting in Fall 2020 in theUSA, colleges and universities have attempted to employ
strategies to manage COVID-19 with mixed results. Overall, there were substantial
increases in the number of new COVID-19 cases after school re-opening (Nierenberg
and Pasick 2020). Moreover, even though, by age, college students are less likely
to experience severe complications from COVID-19, the same is not true for their
surrounding communities. During the winter of 2020, large surges in COVID-19 cases
from college students were followed by subsequent infections and deaths in the wider
community (Ivory et al. 2021). In addition, many campuses delayed their in-person
instruction in early 2022 due to emergence of the omicron variant (Moody 2022).
While there is a strong desire for higher-educational institutions to maintain in-person
instruction, it is clear that for the foreseeable future this will require an effective
COVID-19 management policy.

Nationally, educational institutions need to evaluate how to most effectively plan
activities during the academic year while ensuring they do not contribute to local out-
breaks (Ellis 2020; Paltiel et al. 2020; Wrighton and Lawrence 2020). Although some
campuses, such as the University of California (UC) and California State University
systems, are mandating the COVID-19 vaccine for all students and employees, these
mandates will not be required by all campuses or campus populations (Callimachi
2021). In places where the COVID-19 vaccination is not mandated, the population
vaccination levels are likely to vary with local COVID-19 vaccine acceptance patterns
(Lazarus et al. 2021).

Mathematical models have a proven track record of providing novel insights into
the spread and control of epidemics. Dynamic epidemic models have been used to
study COVID-19 at many scales (Chinazzi et al. 2020; Gatto et al. 2020; Gilbert
et al. 2020; Hethcote 2000; Kucharski et al. 2020; Lofgren et al. 2021; Mizumoto
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and Chowell 2020). Given the wide-spread campus closures due to COVID-19, mod-
els have been developed to study the spread of COVID-19 on college campuses to
evaluate reopening strategies (Gressman and Peck 2020; Lopman et al. 2020; Weeden
and Cornwell 2020). Many such models have considered only student populations,
thereby reducing the population to an isolated “bubble” in which students do not inter-
act with individuals outside the campus and faculty are not accounted for. In this study,
we develop a model for COVID-19 dynamics in “bubble-like” institutions—such as
universities, nursing homes and prisons—where individuals within those commu-
nities have complex structured interactions defined by their roles, but, rather than
a bubble, the boundaries between these environments are porous and certain types
of individuals—professors, staff, guards—intermix freely within a larger surround-
ing community where COVID-19 is also spreading. We began the modeling work we
present during the summer of 2020, as our campus and other colleges around the world
worked to manage instruction. While our initial underlying framework was developed
before the emergence of multiple variants, we have modified our model to include the
possibility of reinfection for both vaccinated and unvaccinated subpopulations.

In this study, we develop a structured SEIR model of COVID-19 dynamics on a
college campus and investigate the sensitivity of behavior to the vaccinated population
on campus and other non-pharmaceutical interventions (NPIs) such as mask-use and
social distancing. Our goal is to understand how vaccine hesitancy both within the
campus population and the surrounding community will impact disease propagation
and which interventions will be the most effective. More specifically, we individually
model the various subpopulations at the university, including on-campus undergrad-
uates, off-campus undergraduates, graduate students, and faculty/staff. We connect
our campus to the surrounding community where behavior outside the university
will impact COVID-19 dynamics within the university. We perform a global sensi-
tivity analysis of model behavior—cumulative number of infections at the end of the
semester and infection doubling time—and consider the first-and total-order effect of
epidemic parameters and social contact behavior.

In Sect. 2, we first develop our structured epidemic model, then describe the model
outputs we will study as well as the variance-based sensitivity analysis approach we
employ. In Sect. 3, we discuss the campus data we use to parameterize our model.
Although we use the campus network of UC Merced, we believe our results are
representative ofmid-size rural colleges. InSect. 4,wepresent our results.Weconclude
in Sect. 5. We note that under all conditions, NPIs are still important to mitigating the
spread of COVID-19 on campus and urge universities to continue to support their use.

2 Methods

2.1 Model Description

In this section, we describe the ordinary differential equation (ODE) compartment
model that we have used to make most of the analysis for the university as presented
to the administration during the summer and fall of 2020, see Fig. 1a. This SEIRmodel
is unique as we model the four subpopulations: (1) undergraduate students living off
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Fig. 1 (Color figure online) a Contacts between the 4 campus populations (on-campus undergraduates
(d), off-campus undergraduates (u), graduate students (g), faculty/staff ( f )) and the outside community.
Contacts are separated into classroom (black), dormitory (black dotted), off-campus housing (green), and
the outside community (orange). Thickness of arrows corresponds to the number of contact hours. b The
stages of the COVID-19 infection, included in the ODE model, that an undergraduate living off-campus
would progress through: susceptible (S), exposed (E), asymptomatically infectious (I a ) or symptomatically
infectious (I s ), if symptomatically infectious individuals can choose to self-isolate (at home) (H ) or not (N ),
and finally, both asymptomatically and symptomatically infectious individuals recover (R). Note that some
percentage of the population is initially vaccinated (V ) and, for simplicity, we assume no more individuals
will get vaccinated once the semester begins. Both vaccinated individuals and recovered individuals can
become susceptible after certain period of time

campus, u, (2) undergraduate students living on-campus and in dorms, d, (3) graduate
students, g, and (4) faculty and staff, f . Individuals are designated by both population
and COVID-19 status. Figure 1b presents the phases of the diseases for one of the
subpopulations, the undergraduate students living off-campus (u).

Each subpopulation in our model is divided into eight compartments related to
different stages of infection and immune status: susceptible, S; exposed, E ; asymp-
tomatically infectious, I a ; symptomatically infectious, I s ; symptomatically infectious
and in self-isolation (at home), H ; symptomatically infectious but not in self-isolation,
N ; recovered, R; and vaccinated, V . A susceptible (S) individualmay become exposed
(E) to SARS-CoV-2 (the virus that causes COVID-19) by coming into contact with
any infectious individuals (I ) in any of the 4 subpopulations or the outside commu-
nity (off campus). All exposed individuals become infectious, either asymptomatically
(I a) with probability φ or symptomatically (I s) with probability 1−φ, after spending
an average of 1/σ days in exposed state. After an average of 1/γ s days, symptomatic
individuals may choose to self-isolate and/or report to health services for testing (H )
with probability α or not (N ) with probability 1 − α. Finally, as we do not model
disease mortality, all symptomatically infectious individuals eventually recover (R)—
assuming the recovery rates for H and N individuals are h and δ, respectively. For
asymptomatic individuals, we assume they recover after 1/γ a days. For simplicity, we
assume that both recovered individuals (R) and vaccinated individuals (V ) are unable
to contract the virus nor pass it to susceptible individuals for a certain period of time
due to naturally acquired immunity (1/κ R) and vaccine-mediated immunity (1/κV ),
respectively. We assume that the asymptomatically infectious individuals have lower
probability in transmitting the disease than symptomatically infectious individuals,
thus we employ the fraction of β of asymptomatically infectious individuals ζ < 1
where β denotes the transmission rate for symptomatically infectious individuals. Fig-
ure 11 in Appendix A shows all the subpopulations and all the phases of the disease
for each subpopulation.
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For a subpopulation i ∈ {u, d, g, f }, the dynamics of each stage of the infection
are governed by

dSi
dt

= −mβSi Fi + κV Vi + κ R Ri , (1a)

dEi

dt
= mβSi Fi − σ Ei , (1b)

dI ai
dt

= φσ Ei − γ a I ai , (1c)

dI si
dt

= (1 − φ)σ Ei − γ s I si , (1d)

dHi

dt
= αγ s I si − hHi , (1e)

dNi

dt
= (1 − α)γ s I si − δNi , (1f)

dRi

dt
= γ a I ai + hHi + δNi − κ R Ri , (1g)

dVi
dt

= −κV Vi , (1h)

with initial conditions

I ai (0) = I ai,0, I si (0) = I si,0, Vi (0) =
(
ni − I ai,0 − I si,0

)
vi,0,

Si (0) = ni − I ai,0 − I si,0 − Vi (0),
Ei (0) = Hi (0) = Ni (0) = Ri (0) = 0.

Here ni denotes the total number of individuals in subpopulation i , and vi,0 denotes
the percentage of subpopulation i that has been vaccinated at time t = 0. Note that all
the subpopulations are coupled through the force of infection, Fi , where an individual
in any subpopulation can be infected by any infectious individual in the campus pop-
ulation or through an infectious member of the community. The calculation involves
the contact matrix C,

⎡
⎢⎢⎣
Fu
Fd
Fg
F f

⎤
⎥⎥⎦ = C ×

⎡
⎢⎢⎢⎢⎣

(ζ I au + I su + Nu)/nu
(ζ I ad + I sd + Nd)/nd
(ζ I ag + I sg + Ng)/ng
(ζ I af + I sf + N f )/n f

ζψM + M(1 − ψ)

⎤
⎥⎥⎥⎥⎦

. (2)

The contactmatrixC is a 4×5matrix,with the indices 1, 2, 3, 4, and 5 correspond to off-
campusundergraduate students, on-campusundergraduate students, graduate students,
faculty/staff, and outside community, respectively. Taking off-campus undergraduate
students as an example, we can obtain the explicit form of the force of infection Fu
from Eq. (2):
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Fu = c1,1
ζ I au + I su + Nu

nu
+ c1,2

ζ I ad + I sd + Nd

nd
+ c1,3

ζ I ag + I sg + Ng

ng

+c1,4
ζ I af + I sf + N f

n f
+ c1,5(ζψM + M(1 − ψ)),

where ci, j denotes the (i, j)-th entry of the contact matrix C. The first four terms
signify the force of infection from off-campus undergraduate students, on-campus
undergraduate students, graduate students, faculty/staff, respectively, and are gener-
ated in the same fashion. For the first term, we can break it into the product between
the number of contact-hours the off-campus undergraduate student has with other off-
campus undergraduate students per day (c1,1), the probability of disease transmission
per contact-hour (e.g. ζ if asymptomatic, 1 if symptomatic), and the proportion of con-
tacts that are infectious (e.g., I au /nu if asymptomatic, (I su + Nu)/nu if symptomatic).
The last term is generated by contact-hours between the average undergraduate stu-
dent and the outside community per day (c1,5) multiplied by the static population of
infectious individuals in the surrounding community (both asymptomatic and symp-
tomatic), where M denotes the probability that an outside community individual is
infectious and ψ denote the probability that an outside community individual with
COVID-19 is asymptomatic.

The model has two types of parameters: (1) parameters related to COVID-19 epi-
demiology and (2) parameters related to contact patterns between the 4 subpopulations
and the outside community (contact matrix C is described in Table 2 and explained
in Sect. 3). Details of the first type of parameters are given in Table 1. Details of
contacts are given below in Sect. 3. The critical term in our model is the force of
infection, defined in Eq. (2), which governs the spread of COVID-19 and is impacted
by interventions such as mask-use, quarantine of infectious individuals, and changes
in social connectivity, including class-size and housing caps through both types of
parameters. We account for the effect of masks with our mask efficiency parameter
which, when used in classrooms, reduced the transmission rate β by a factor (1−m).
In other words, m = 1 or 1−m = 0 in Eqs. (1a, 1b) corresponds to our baseline case
when masks are not required or wearing a mask has no effect on the transmission rate
β. We account for a quarantine period (1/h) and the probability that a symptomatic
individual chose to self-isolate (α). Finally, changes in social connectivity, such as
changes in class-sizes, are implemented by modifying the appropriate contact matrix.

Because our goal is to investigate the sensitivity of COVID-19 dynamics to NPIs
in the context of a vaccinated campus population, we consider two simplifying
assumptions allowing us to include vaccinated individuals in each of our campus
subpopulations. First, our goal is to model COVID-19 in the context of a univer-
sity environment. As such, we followed the requirements of the UC, which requires
vaccination before the semester begins and did not consider an on-going vaccination
program. Thus, in our model we include all vaccinated individuals in the vaccinated
compartment at time t = 0, and there is no inflow to the vaccinated compartment
throughout the simulation. Second, we assume individuals would gain temporary
immunity from vaccination which wanes over time. For simplicity, in our model,
vaccinated individuals move to the susceptible compartment at the rate κV . Similarly,
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Table 1 Description of parameters and their ranges used in the global sensitivity analysis. See Appendix
A for details on parameterization

Symbol Description Unit Range

β Transmission rate for symptomatic individuals per
contact-hour (PCH)

PCH (5.74–24.86) ×10−4 a

1/σ Expected time in exposed state Day 1–7.5

φ Probability that an exposed individual will become
asymptomatic

– 20–80%

ζ Fraction of β for asymptomatic individuals – 50%

1/κR Average duration of naturally acquired immunity Day 90–270

1/κV Average duration of vaccine-mediated immunity Day 180–270

M Probability that outside (Merced) community
individuals are (asymptomatically and
symptomatically) infectious

– 0–1%

ψ Probability that outside (Merced) community
individuals with COVID-19 are asymptomatic

– 0.5

c Community contact multiplier that multiplies contacts
between university population and the community

– 1–10

ω Weekend multiplier that scales the increase in social
interaction during weekends

1–10

p Social percentage – 50–150%

1 − m Reduction in β with mask usage – 0–60%

α Probability that a symptomatic individual will
self-isolate

– 0–100%

1/γ a Average duration in asymptomatic infectious state Day 14

1/γ s Average duration in symptomatic state before deciding
whether to isolate

Day 2

1/h Average duration of symptomatic individuals in
self-isolation

Day 12

1/δ Average duration in symptomatic state if not
self-isolating

Day 12

vu,0, vd,0 Percentage of u or d vaccinated at time t = 0 – 0–80%

vg,0, v f ,0 Percentage of g or f vaccinated at time t = 0 – 0–100%

nd Number of on-campus undergraduates People 2885

nu Number of off-campus undergraduates People 5441

ng Number of graduates People 721

n f Number of faculty/staff People 424

I yx,0 Number of y (s = symptomatic, a = asymptomatic)
infectious individuals from population x (u =
off-campus undergrads, d = on-campus undergrads, g
= graduate students, f = faculty and staff) at time
t = 0

People (0–0.5%) ×nx

aOur baseline value β = 1.147 × 10−3 was chosen so that a model of UC Merced, assuming classroom
contacts based on the Fall 2019 schedule and housing contacts based on a proposed housing plan for Fall
2020 (before UC Merced was moved to fully online), would propagate with an R0 of 3 as defined by the
next generation matrix approach (Chowell and Brauer 2009)
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we assume the immunity recovered individuals acquired from infection also wanes
over time and thus, in our model recovered individuals transition to the susceptible
compartment at the rate κ R .

2.2 Infection Doubling Time

We are interested in analyzing the effect of intervention strategies and vaccination
on the resulting dynamics of COVID-19 infections on our campus. In our work, the
infection doubling time, �T , is the characteristic number of days for the cumulative
number of COVID-19 infections to double, C(ti+1) = 2C(ti ), where ti+1 = ti + �T
for i ≥ 0 and t0 is a point in time at the beginning of the semester, see Fig. 2.
This quantity is a characteristic of the disease dynamics during the early stages of
disease spread (beginning of the semester), when the number of on-campus infections
remains low, and the susceptible population remains large (Patel and Patel 2020).
This characteristic captures the start of a semester when students that are allowed
back to campus have been tested for COVID-19 (large susceptible population), and
the probability that an infectious student returns to campus is low. Infection control
measures aimed at “flattening the curve” means increasing the infection doubling time
(Nunes-Vaz 2020). In this work, we use the infection doubling time as a measure of
epidemic dynamics to asseswhich intervention strategies are associatedwith increased
variance in the infection doubling time.

During this initial period of disease spread, at the beginning of a semester, we
observe an exponential growth phase in the number of infections (Fig. 2). If the
number of infections is growing at a rate r , the infection doubling time is given
by �T = log(2)/r (Muniz-Rodriguez et al. 2020). In this early stage of approx-

Fig. 2 (Color figure online) Cumulative Infections and Infection Doubling Times. The figure illustrates the
doubling of the cumulative number of infections with respect to the infection doubling time (�T ). Here,
C(ti ) is the cumulative number of infections at a time ti since the beginning of the semester
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imately exponential growth in the number of cumulative infections, C(t), where
C ′(t) ≈ rC(t), we can estimate r by using cumulative infections at two points in
time C(t1) and C(t2), where r = log (C(t2)/C(t1)) /(t2 − t1) and t1 < t2. Then, the
infection doubling time is

�T = (t2 − t1)
log(2)

log (C(t2)/C(t1))
.

In this work, we use the average doubling time computed over consecutive days in the
first month (four weeks) of the semester (see Fig. 2).

2.3 Global Sensitivity Analysis

In this work, we are interested in understanding how particular COVID-19 SEIR
epidemic model factors θ = (θ1, θ2, . . . , θk), Table 1, affect a model response Y
(the cumulative number of infections, C(t), and the infection doubling time, �T ).
We perform a variance-based global sensitivity analysis on these epidemic dynamics
with the Sobol method (Saltelli et al. 2010, 2008; Archer et al. 1997), an approach to
decompose the response variance by single and combined factor interactions

Var(Y ) =
∑
i

Varθi +
∑
i

∑
j>i

Varθi, j + · · · + Varθ1,2,...,k .

Under this decomposition, the proportion of variance from a single model factor, the
first-order index, can be written as

Si = Varθi (Eθ∼i (Y |θi ))
Var(Y )

, (3)

where E is expectation, Var is the variance, θi is the i th model factor, and θ∼i indicates
varying all factors except θi . In our work, a second quantity of interest is the total-
order index, or total-effect index (Homma and Saltelli 1996), which in addition to the
first-order index information, accounts for the additional contribution of a factor to
the model variance from interaction effects with other model factors

STi = Eθ∼i (Varθi (Y |θ∼i ))

Var(Y )
. (4)

It follows that STi ≥ Si , and that a total-order index value of zero indicates that
the model factor is non-influential. In our analysis, we estimate the first-order and
total-order indices through numerical model solutions generated by sampling from
the input factor space following Saltelli et al. (2010).

To estimate the first-order index, Si (Eq. 3), we use the estimator

1

N

N∑
j=1

f (B) j

(
f
(
A(i)
B

)
j
− f (A) j

)
,
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for a particular model factor i , first presented in Saltelli et al. (2010). Given a model
response Y = f (·), and where A and B are N × k matrices in which each row is
a sampling of the k model factors (N samples per matrix). Matrices A and B are
generated using the same model factor sampling method and are thus interchangeable
but serve for bookkeeping when forming the k matrices denoted by A(∗)

B . The matrix

A(i)
B is an N × k matrix where column i comes from matrix B and all other k − 1

columns come from matrix A.
The total-order index for a particular model factor i , STi (Eq. 4), is estimated with

the estimator

1

2N

N∑
j=1

(
f (A) j − f

(
A(i)
B

)
j

)2

.

This estimator was first presented in Jansen (1999). For a more technical and detailed
explanation of these estimators, one may consult Saltelli et al. (2010).

To adequately sample the multidimensional input factor space, when forming the
matrices A and B, we use Latin hypercube sampling implemented in MATLAB using
the Statistics and Machine Learning Toolbox (MathWorks 2020). To compute the
first-order and total-order indices, we compute N (k + 2) = 31, 500 model solutions
(N (k + 1) model solutions are suggested in Archer et al. (1997) to estimate Sobol
indices)with N = 1, 500 simulations for each of the k = 19model factors. Eachmodel
factor is sampled from a uniform distribution over the range provided in Table 1. All
confidence intervals (CIs) were formed by resampling the N (k + 2) simulations 2000
times, with replacement, to compute the Sobol indices.

3 Data and Contacts

While the results we present here are specific to UC Merced, we note that any inter-
ested bubble-like communities could calculate their contacts as we outline below and
use the model to analyze measures intended to mitigate COVID-19 transmission. For
example, our model can be applied to skilled nursing facilities (where in-patients
would be equivalent to ‘on-campus students,’ out-patients would represent ‘off cam-
pus students,’ doctors might correspond to ‘faculty/staff,’ and therapists/nurses might
translate to ‘graduate students’ and ‘classes’ in this case would be face-to-face treat-
ments). UCMerced is a public land-grant university set in a rural community. In these
calculations, there were 8326 undergraduate students, of whom 2885 live on-campus
and 5441 live off-campus. There were 721 graduate students and 424 faculty and
staff. Lecturers and postdocs are considered part of the faculty/staff population. We
expect our results would hold for similarly sized campuses with similar class struc-
tures. Although we are able to get exact data from the registrar, we provide a template
that can be used to estimate the contacts between different subpopulations.

For our model to be accurate, it is necessary to be able to estimate the number of
contacts each of the subpopulations (off-campus undergraduates, on-campus under-
graduates, graduate students, and faculty/staff) has with one another. We assume that
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most of these contacts come from in-class instruction, living/dorm situations, contact
with the outside community, and unscheduled social interactions. We explain each
of these factors separately and denote Cc for classroom contacts, Cl for living/dorm
contacts, Co for contact with the outside community, and C

s for unscheduled social
interactions. The sum of these four matrices provides the total contact matrix C. We
use cki, j to denote the (i, j)-th entry of the submatrix C

k with k ∈ {c, l, o, s}. For
simplicity, this information is displayed as a contact matrix in Table 2. We do not
dynamically model the outside community and so the contact matrix is of size 4 × 5,
since the interactions of campus population do not influence the outside community.
The units of our contact matrix are contact-hours per day.

In the following subsections, we will discuss how the contact matrix is filled using
in-class instruction, living situation, outside community interaction, and unscheduled
social interaction information. Each of these sections corresponds to a different com-
ponent of the contact matrix, as described in Table 2.

3.1 In-class InstructionCc

The majority of interactions in our model are derived from classroom instruction.
We assume that lectures are comprised of 3 h per week, while discussion sections
meet for one hour per week. When a class is listed as a laboratory, we assume that it
meets for 2.5 h per week. Further, we assume that faculty and staff only interact with
each other during faculty meetings. In particular, we assume a faculty meeting occurs
once every other week for an hour. The ‘average’ department size was calculated using
information fromUCMerced School of Natural Sciences andwas roughly 17.5 faculty
per department.

Especially in large classrooms, counting every other individual as a contact just
as likely to spread COVID-19 is not realistic. COVID-19 is spread through droplets
(e.g., sneezing, coughing) for contacts within 6 feet, but it can also be spread through
aerosols which remain suspended in the air and viable for much longer (Brlek et al.
2020; Hamner 2020; Kwon et al. 2020). As such, our formulation for the spread
of COVID-19 in a classroom distinguishes between ‘close’ transmission (through
droplets) and ‘far’ transmission (through aerosols). First, we assume that 8 contacts
(the 8 closest people surrounding you) have a ‘normal’ chance of infecting you. Then,
beyond your 8 neighbors, you have a reduced fraction (25%) of the ‘normal’ chance.
(We also ran results with a 10% chance of infection, see Supplementary File 1, but
the sensitivity results were qualitatively similar to the 25% chance.) As an example,
assume an off-campus undergraduate student is in a 3-hour per week lecture course
with 40 other undergraduate students, 10 of whom live on-campus and 30 of whom
live off-campus, then their ‘contact-hours’ from this one class with other off-campus
undergraduate students would be

(
6︸︷︷︸

close contacts
off-campus UG

+ (30 − 6)︸ ︷︷ ︸
far contacts

off-campus UG

×0.25

)
× 3/7,︸︷︷︸

hours spent in
this class per day
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and with on-campus undergraduate students would be

(
2︸︷︷︸

close contacts
on-campus UG

+ (10 − 2)︸ ︷︷ ︸
far contacts

on-campus UG

×0.25

)
× 3/7.︸︷︷︸

hours spent in
this class per day

Note we assume that of the 8 contacts closest to the student, a proportional amount
come from each sub-population. We compute these values for each of their courses
and sum them together to get the total number for that student. We average over all the
individuals in a subpopulation to obtain the corresponding classroom contact matrix
entries.

We display the relevant information for calculating classroom contacts in Table 3.
Classroom contacts only influence the campus subpopulations (not the outside com-
munity), and thus, the fifth column (not displayed in Table 3) consists of all zeros.
We note that in Table 3, the classes graduate students teach as graduate assistants
may be laboratories or discussion sections, the classes faculty and staff teach may be
lectures, laboratories, or discussion sections. For our baseline contact matrices and
more details, see Appendix A.

3.1.1 Network Analysis

Although we use the contact matrices to model the connectivity of the campus, we can
also use network analysis since we have access to individual-level data. In particular,
we can build a network graph of every individual on campus and their connectivity
to each other via classes only. From this network, we can determine characteristics of
those individuals that have the highest rates of contact. These network analyses are
presented in Appendix B.

To build the weighted undirected graph, we consider each individual affiliated
with the university as a separate node. Edges are formed between two nodes if those
two individuals share a class (either as students or as student/instructor). For each
additional class individuals share, the edge weight is increased by one. Of course,
the graph changes depending on whether all classes meet in person, or whether there
is a class capacity. Supplementary Fig. B1 (see Supplementary File 2) displays the
resulting network for a full campus in which all classes meet in person. The network is
colored by subpopulation (reddish purple corresponds to on-campus undergraduates,
yellow represents off-campus undergraduates, sky blue for graduate students, and
vermilion for faculty/staff), the size of each node represents the weighted degree, and
the edge thickness reflects weights. It is apparent that under normal conditions most of
the campus is connected with one another. However, as seen in Supplementary Fig. B4
(see Supplementary File 2), when classes with more than 25 students enrolled do not
meet in person, much of the network becomes disconnected, i.e., having no contact
with any other individuals.

With a resulting graph for the no intervention strategy that has over 9000 nodes and
1.6 million unique edges, it becomes necessary to use metrics to analyze exactly how
the campus is connected. We report a histogram distribution of the weighted degree, a
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measurement calculating how many edges each node has. Histogram representations
of the degree are displayed in Fig. 12. It is clear that capping in-person classes has
a dramatic effect on the weighted degree, reducing maximal degree from 1,417 to
367. In fact, edges are reduced to ≈ 0.13 million. Further, approximately 17% of
campus individuals have 0 classroom contacts (no edges) when implementing a class
cap strategy.

We can gather information about possible ‘super-spreaders’ by examining the indi-
viduals that have the highest degrees. Under the assumption of no interventions, it is
clear the individuals with the highest degree are most often undergraduate students
taking many introductory classes. For example, the individuals with the top 3 degree
scores were all undergraduate students taking 4–5 lower level introductory classes
(all living off-campus). When class caps are implemented, the structure of those with
the highest interactions changes. Of the top 3 degree scores when imposing a class
cap of 25, we have one lecturer teaching multiple labs and two graduate students that
are taking a full load of classes and also teaching discussion sections and labs. This
highlights how important it is to incorporate these subpopulations, who may serve as
a vector for disease transmission, in our model.

3.2 Living SituationsCl

In addition to classroom contacts, most members of the community will also inter-
act with other individuals based on their living situation. We assume that the living
contacts are based on living situation only. Therefore, there is no mixing between
subpopulations in our model. For example, on-campus undergraduate students do not
live with off-campus undergraduate students and vice versa. This means that in our
contact matrix (Table 2), living contacts exist only on the diagonals.

We assume that on-campus undergraduate students have contacts for approximately
10 h per day with their direct roommate. To simulate the effects of encountering other
individuals in their dorm, we assume that on-campus undergraduate students have
2 h of contact per day multiplied by the average number of beds per bathroom. For
example, if there are roughly 4 students per bathroom, they would experience 8 h of
additional contact per day.

The off-campus undergraduates are assumed to live with, on average, 3 off-campus
undergraduate housemates. Since their living situation is likely larger than a dorm
room, we assume less contact, at 4 h per day contact with each roommate. Graduate
students have a similar situation, except that we assume they live with 1.5 other grad-
uate housemates. Similarly, we assume 4 h of contact per day with each roommate
for each graduate student. We assume that faculty and staff to do not live with other
faculty and staff.

3.3 Contact with Outside CommunityCo

One of the most important aspects about a bubble-like community, from an infec-
tious disease perspective, is that some key individuals have contact with the “outside
community.” This is often overlooked in mathematical models, partly because the
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populations that interact with the outside world tend to be outnumbered by those con-
tained fully in the bubble. However, these outside contacts cannot be ignored because
they represent the potential for infection to infiltrate the “closed” community. These
contacts are present in the fifth column of the contact matrix displayed in Table 2.

There are varying levels of contact with the surrounding community depending on
which subpopulation a person is part of. We assume that there is little contact with
the outside world if you live on-campus (1 h of contact per day). For off-campus
undergraduate students and graduate students, the number of contacts is higher due
to increased shopping, transportation, etc., at 5 h of contact per day. We assume that
faculty and staff have the highest amount of contact with the outside community since
many faculty live with families that are not affiliated with the university (15 h of
contact per day). However, as these numbers are not directly produced from known
data, we also include a parameter c, a multiplier in front of the community contact
matrix, that we vary.

3.4 Unscheduled Social InteractionsCs

One aspect of contact that has not yet been addressed is contact that occurs outside the
classroom and living situation. In particular, we consider the effect of “unscheduled”
social interaction in which members of the undergraduate student population meet for
gatherings, unmasked, on a daily basis. Examples of these daily social interactions
might include eating dinner with friends in the dining hall or forming an in-person
study group for a course. In our contact matrix (Table 2), these are included in the
undergraduate student populations (both on- and off campus).

We incorporate unscheduled social interactions in our model in two ways: first
the daily weekday interactions described above and secondly an increase in social
interaction during the weekend. To calculate the daily social interactions, we scale the
classroom contacts by 30%.Our assumption is that the amount of contacts each student
has sociallywill be similar to those experienced in the classroom, especially as some of
our “unscheduled” social interactions include course study groups. The scaling value
is chosen as studies show that the contact-hours in ‘other/social’ is roughly 30% of the
‘school’ contacts (Glass and Glass 2008; Leung et al. 2017). We assume that as class
caps are implemented, unscheduled social contacts similarly decrease. Since many
of these unscheduled social contacts are based on study groups arising from courses,
unscheduled social contacts decrease as class caps are implemented. Thus, the social
contact matrix C

s is always 30% of the classroom contact matrix C
c. There is large

uncertainty in number of social contacts, and so we multiply this contact matrix by
the parameter p, which varies from 50 to 150% as shown in Table 1 as part of the
sensitivity analysis. For the increased social interaction over the weekend, wemultiply
these daily social contacts by the parameter ω, to simulate going to a larger gathering.
This parameter and larger number of contacts is active from 5 pm Friday until 5 pm
Sunday.
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4 Results: Global Sensitivity Analysis

We are interested in the sensitivity of the cumulative number of infections at a point in
time since the semester began,C(ti ), and the sensitivity of the infection doubling time,
�T , to the model parameters and initial conditions. We refer to initial conditions and
model parameters as “model factors” in this text. We performed a global sensitivity
analysis following Saltelli et al. (2010) and estimated the first-order sensitivity index
and the total-order effect through numerical model solutions generated by sampling
from the input factor space, assuming that all parameters were uniformly distributed
in their given range listed in Table 1.

4.1 Variance in Cumulative Infections and Infection Doubling Time

Wefirst study the variance of the followingmodelmetrics: the time-varying cumulative
infections, the doubling time, and number of the cumulative infections at the end of the
fifteen-week term. As mentioned above, we do this by employing a global sensitivity
analysis approach where we vary parameters independently and uniformly over their
ranges. In our analysis, we consider the quantifiable effect of three classes of model
factors: infection parameters (β, σ , φ, κ R , κV ), contact parameters (M , c, ω, p, m,
α), and initial conditions (I yx,0 where y ∈ {s, a} and x ∈ {d, u, g, f }) (see Table 1 and
Appendix A for model factor ranges and details).

Figure 3 presents the behavior of the cumulative number of infections as a conse-
quence of class caps (each column represents a different class cap: none, 100 students
and 50 students) and vaccination status of the campus at the beginning of the term
(each row). For simplicity, we assume that all undergraduates have the same vac-
cination fraction vu,0 = vd,0 and that graduate students and faculty have the same
vaccination fraction v f ,0 = vg,0, at the start of the semester. We consider the fol-
lowing three vaccination scenarios, Low: vu,0 = vd,0 = 0%, v f ,0 = vg,0 = 0%;
Medium: vu,0 = vd,0 = 40%, v f ,0 = vg,0 = 50%; and High: vu,0 = vd,0 =
80%, v f ,0 = vg,0 = 100%. The black line signifies the mean cumulative infections
over time, while the pink and blue shadings show one and two standard deviations
from the mean, respectively. The mean and coefficient of variation for the doubling
time and total cumulative infections are reported in each subplot.

Without vaccination or class caps (Fig. 3a), we expect about 1500 infections by the
end of the semester (the baseline number of cumulative infections). By implementing
a class cap of 50 students, the expected cumulative infections drop to about 200, an
86.8% reduction in cumulative infections (RECI) from the baseline (Fig. 3c). On the
other hand, increasing vaccination rates to 100% for faculty and graduate students and
80% for undergraduate students reduces the expected cumulative infections to about
112 (92.6% RECI) by the end of the semester (Fig. 3g). With a class cap of 50 and
high vaccination rates, we expect about 82 cumulative infections (94.6% RECI) by
the end of the semester (Fig. 3i).

In addition to examining the cumulative number of infections, we can also investi-
gate how vaccination and class caps impact the doubling times of infections among the
campus populations. Figure 4 displays the infection doubling time in weeks (top row)
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Fig. 3 (Color figure online) Distribution of cumulative infections. Figures show the distribution of cumu-
lative infections over the span of a semester (15 weeks) and we allow the contact, infection parameters,
and initial number of infectious individuals to vary (see Table 1). The mean and coefficient of variation for
the doubling time and total cumulative infections are reported in each subplot. The reduction in expected
cumulative infections (RECI) from case (a) with no vaccination and no class caps is presented in each
subsequent case

and cumulative infections at the end of the semester (bottom row) as a function of vac-
cinated undergraduate students, vu,0 = vd,0. The columns correspond to faculty and
graduate student vaccination rates 0% (left), 50% (middle), and 100% (right). Within
each panel, the effects of incorporating class caps are portrayed with no class cap (yel-
low/thick line), 100-person cap (pink/medium line), and 50-person cap (teal/thin line).
As we increase undergraduate student vaccination rates, we observe the lengthening
of infection doubling time and we note that infection doubling times often exceed
the length of the semester (Fig. 4a–c). We also see that increasing faculty and gradu-
ate student vaccination rates is not as effective in reducing the number of cumulative
infections as vaccinating the larger undergraduate student population. This can be seen
in Fig. 4d–f in the similarity between the three panels where the faculty vaccination
is increased by 50% from left to right. The curves representing the cumulative infec-
tions, as a function of undergraduate vaccination rate, indicate a minimal change in
the number of cumulative infections as faculty and graduate student vaccination rate
is increased to 100%. This is likely because the faculty and graduate students only
make up about 12% of the campus population.

It is apparent that the NPI of having large enrollment classes be remote drastically
reduces the number of cumulative infections by the end of the semester, especially
when the campus population is not significantly vaccinated (Fig. 4d–f). In the case
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Fig. 4 (Color figure online) Expected infection doubling times and cumulative infections by class capacity
and percent of vaccinated undergraduates. The expected cumulative number of infection (cumulative infec-
tions) by the end of the semester and the expected doubling time computed during the first four weeks of
the semester. The error bars are a 95% confidence interval

when none of the population was vaccinated, by capping classes at 50 students, there
is an 86.8% reduction in the expected cumulative infections by the end of the semester
(Fig. 3c). Increasing the percentage of the vaccinated population also has a large effect
in reducing the cumulative infections by the end of the semester. In the case when
there is no class cap, having 80% of undergraduates and 100% of faculty, staff, and
graduate students vaccinated resulted in a 92.6% reduction in the expected cumulative
infections by the end of the semester (Fig. 3g). We observe from Fig. 4, that under
low vaccination, class caps have a higher effect at reducing the number of cumulative
infections. However, under high vaccination, implementing class caps has less of an
effect in reducing the expected number of cumulative infections by the end of the
semester.

4.2 Sobol Analysis of the Variance in Cumulative Infections and Infection
Doubling Time

The first-order Sobol sensitivity index Si measures the direct effect that each model
factor θi ∈ (β, σ , φ, κ R , κV , M , c, ω, p, m, α, I su,0, I

a
u,0, I

s
d,0, I

a
d,0, I

s
g,0, I

a
g,0, I

s
f ,0,

I af ,0) has on the variance of the model output. The total-order Sobol sensitivity index
STi measures the total effect (direct and through interactions with other model factors)
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each model factor, θi , has on the variance of the model output. As mentioned above,
we consider the sensitivity of two model outputs: the cumulative number of infections
over time and the doubling time of the infection. We categorize the parameters for the
sensitivity analysis into three groups: infection parameters (β, σ , φ, κ R , κV ), contact
parameters (M , c, ω, p, m, α), and initial conditions (I su,0, I

a
u,0, I

s
d,0, I

a
d,0, I

s
g,0, I

a
g,0,

I sf ,0, I
a
f ,0). In each sensitivity analysis figure, we show 9 subfigures illustrating three

class cap scenarios—no class cap (the first column), class cap with 100 students (the
second column), and class cap with 50 students (the third column)—along with three
vaccination scenarios—(1) 0% vaccination (the top row); (2) 50% of faculty, 50%
graduate students, and 40% of undergraduate students vaccinated (the middle row);
and (3) 100% of faculty, 100% graduate students, and 80% of undergraduate students
vaccinated (the bottom row).

We note that the initial conditions do not contribute to the sensitivity of either of
our metrics in a fashion that is dependent on the vaccination or NPIs. As such, we
include those figures in Appendix C.

4.2.1 Sensitivity of Infection Doubling Time

We now turn to examine the global sensitivity analysis with respect to infection dou-
bling time (�T ). Figure 5 displays the global sensitivity analysis of infection doubling
time for infection and contact model parameters, while Fig. 13 presents the global sen-
sitivity analysis of infection doubling time with respect to initial conditions.

When examining Fig. 5, we can see that across these vaccination scenarios and
class caps, infection transmission rate β is the most significant parameter having
the greatest individual effect on the variance in infection doubling time (�T ). Across
these scenarios, transmission rate,β, captures 40% to 60%of the variance in first-order
effects, while considering interaction effects with other model factors (the total-order
effect), β captures 40% to 70% of the variance in infection doubling time. That is,
β has the largest effect on infection doubling time �T among all model factors. We
also see that both greater vaccination rates and lower class caps lead to a decrease in
the effect of transmission rate on infection doubling time. The strong sensitivity of
infection doubling time on transmission rate implies that anything that can be done to
lower the transmission rate, such as wearing masks or improving HVAC systems, can
have a large impact on infection dynamics at the beginning of the semester.

Other parameters to which infection doubling time is sensitive to include contact
parameters: infections from the outside community,M , community contact multiplier,
c, weekend contact multiplier, ω, social contact percentage, p, mask usage, m, and
the probability that a symptomatic individual will self-isolate, α. From Fig. 5a, under
no class cap and no vaccination we observe an infection doubling time of �T = 3.5
weeks (the number of cumulative infections would double in 3.5 weeks) and the
sensitivity of infection doubling time is similarly affected by transmission from the
community (through M and c) and transmission on campus (through p, ω, and m).
The sensitivity from parameters of each type of contact, off-campus or on-campus
contacts, capture about 10% of the variance in infection doubling time; however, as
the class cap is reduced to 50 students, Fig. 5c, infection doubling time increases to
�T = 7.2 weeks and the effect of mask, social, and weekend contact parameters is
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Fig. 5 (Color figure online) Global sensitivity analysis of infection and contact parameters on infection
doubling time. First-order (blue) and total-order (red) Sobol indices are shown as well as the standard errors.
The mean and coefficient of variation for the doubling time and total cumulative infections are reported in
each subplot. Each column represents three class cap scenarios: none, 100 student, and 50 student caps.
Each row represents one of three vaccination scenarios at the start of the semester. First row: 0%vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated

reduced. In this case, the effect of infections from the outside community, M , and
community contact multiplier, c, becomes more influential. This indicates that when
contacts are reduced on campus through NPIs that reduce the number of people that
meet in one location, this reduces the effect from the transmission rate β and the
social and weekend contacts, and infections from community and contact with the
community have a greater effect on infection doubling time of cumulative on-campus
infections. When vaccination is increased, as in Fig. 5g, under no class caps, with
faculty and graduate student vaccination rates of 100%, and 80% of the undergraduate
student population vaccinated, at the beginning of the term, we see an increase in
infection doubling time to �T = 16.1 weeks (longer than our 15 week term) but no
real qualitative change in the sensitivity ofmodel factorswhen comparedwith reducing
class cap. Thisminimal change in sensitivity to parameter values is because vaccination
reduces the number of infected and susceptible individuals, but vaccination does not
reduce contacts in the way that implementing class caps does by directly reducing
person to person interactions. This analysis highlights the importance of including
community interactions in models of bubble-like communities. Moreover, this shows
that an effort to reduce transmission on campus will require attention to infection rates
in the surrounding community.
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Across scenarios in Fig. 5, the probability that a symptomatic individual will self-
isolate, α, and the amount of time spent in the ‘exposed class,’ σ , have nonzero total-
order effect and no first-order effect. This indicates that σ andα alone do not contribute
significantly to the model variance, but through interaction with other parameters
can have a significant impact on infection doubling time. Unfortunately, determining
exactly which model factors σ and α are interacting with, and to what extent, is
not computationally tractable with this Sobol analysis. Another parameter that has a
nonzero effect on doubling time is m or mask usage, where 1 − m is the reduction
in infection transmission probability by wearing a mask. From Fig. 5, we observe
that as we increase vaccination rates (moving down a column), we can see that the
impact of wearing a mask, model factor m, stays rather consistent in its importance.
This indicates that masks are still crucial for controlling the spread of disease even as
vaccination rates increase. However, when decreasing the class caps, we can see that
the sensitivity tom decreases. Thus, NPIs such as wearing masks and reducing contact
by moving courses online are still important in controlling the number of infections
on campus. The duration of naturally acquired immunity 1/κ R and immunity through
vaccination 1/κV , do not affect infection doubling time since both types of immunity
are assumed to last longer than three months (see Table 1) and infection doubling time
is computed using cumulative infections observed within the first month.

Figure 13 displays the sensitivity of infection doubling time to the number of
initially infectious individuals on campus. The distribution and number of initially
infectious individuals at the start of the semester (undergraduate students, graduate
students, and faculty and staff) do not play a large role in determining infection dou-
bling time. This is intuitive, since infection doubling time measures the time it takes
to double the number of cumulative infections and should be the same whether we
start with one infectious individual or 100 infectious individuals (see Fig. 2).

4.2.2 Sensitivity of Cumulative Infections at End of Term

Here, we are interested in quantifying the effect of each parameter on the cumulative
number of infections at the end of the term for each vaccination and class cap sce-
nario. Figure 6 displays the global sensitivity analysis for the cumulative infections
at the end of the semester with respect to infection and contact parameters. We find
that as vaccination rates increase and class caps are implemented, the most sensitive
parameters begin to change. Under the scenario with no vaccinations and no class
caps (Fig. 6a), the most important parameters are the transmission rate, β, weekend
contact multiplier, ω, social contact percentage, p, mask usage,m, and the probability
that a symptomatic individual decides to self-isolate, α. By incorporating different
class caps, the landscape of sensitivity continues to change. The first-order effect
of self-isolation, α, mask usage, m, social contact percentage, p, and weekend con-
tact multiplier, ω become less important, while the parameters governing the outside
community start to play a larger role. The probability that Merced community individ-
uals are infectious, M , and the community contact multiplier, c, start to influence the
cumulative number of infections. This underscores the importance of educating local
communities to help reduce the spread of infections in the community. As vaccination
rates are increased, without class caps, we see a similar shift towards a decrease in
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Fig. 6 (Color figure online) Global sensitivity analysis of infection and contact parameters on cumulative
infections at the end of the term. First-order (blue) and total-order (red) Sobol indices are shown as well
as the standard errors. The mean and coefficient of variation for the doubling time and total cumulative
infections are reported in each subplot. Each column represents three class cap scenarios: none, 100 student,
and 50 student caps. Each row represents one of three vaccination scenarios at the start of the semester.
First row: 0% vaccination; second row: 50% of faculty, 50% graduate students, and 40% of undergraduate
students vaccinated; third row: 100%of faculty, 100%graduate students, and 80%of undergraduate students
vaccinated

first-order effects from mask usage, m, social contact percentage, p, and weekend
contact multiplier ω; however, these parameters remain influential through interaction
effects with other parameters. When both vaccination and class caps are utilized, the
community parameters become more important than the transmission rate, see Fig. 6i.

We can also examine the sensitivity of cumulative infections to the initial number
of infectious individuals on campus. Figure 14 presents this sensitivity analysis. It
is apparent that under no interventions, the initial number of infectious individuals
has little effect on the cumulative number of infected individuals at the end of the
term. Similarly, when incorporating class caps, the initial conditions are insensitive.
However, under high vaccination rates (80%undergraduate students and 100% faculty,
staff, and graduate students), the cumulative number of infections is slightly sensitive
to the initially infectious individuals on campus—with slightly higher sensitivity to
undergraduate student infections, both symptomatic and asymptomatic. The sensitivity
in those scenarios is present because thefinal number of cumulative infections observed
at the end of the term is mainly from those infected at the start of the semester and
undergraduate students make up the greatest proportion of the campus population
(about 88% of the on-campus population consists of undergraduates). This tells us that

123



13 Page 24 of 45 L. Zhao et al.

under the best-case scenario with both high vaccination and class caps, it is important
to minimize the number of infectious students at the start of the term.

4.2.3 Sensitivity of Time-Varying Cumulative Infections

In order to dissect the forces that contribute most strongly to the cumulative infec-
tions, we next consider their time-varying first and total-order Sobol indices. That is,
we now look at the total contributions to the variance in cumulative infections over
time. We separate the impact of infection parameters (Figs. 7, 9), contact parameters
(Figs. 8, 10) and initial conditions (Fig. 15, 16). Because the time-varying first and
total order indices for initial conditions show that their effect is limited to the start
of the term, and that their effect is greatest when the initially infected made up the
majority of cumulative infections observed in one semester, we include those figures
in Appendix C.

First, we consider the time varying impact of infection parameters on the cumulative
infections. As shown in Fig. 7, 9, regardless of the vaccination status or class cap
scenario, the strongest contributor at all times comes from β. This is consistent with
the results from Fig. 5, where we look at the sensitivity to the infection doubling time.

Fig. 7 (Color figure online) Time-varying total-order effect of infection parameters on cumulative infec-
tions. The total-order Sobol indices are shown as well as the standard errors. The mean and coefficient of
variation for the doubling time and total cumulative infections are reported in each subplot. Each column
represents three class cap scenarios: none, 100 student, and 50 student caps. Each row represents one of
three vaccination scenarios at the start of the semester. First row: 0% vaccination; second row: 50% of
faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row: 100% of faculty,
100% graduate students, and 80% of undergraduate students vaccinated
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Fig. 8 (Color figure online) Time-varying total-order effect of contact parameters on cumulative infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row repre-
sents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination; second row:
50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row: 100% of
faculty, 100% graduate students, and 80% of undergraduate students vaccinated

We now see that this effect increases during the early part of the academic term. In
the case of no vaccination and no class caps, Fig. 7a, the amount of time spent in the
‘exposed state,’ 1/σ , becomes influential early in the semester and reaches its strongest
contribution to cumulative infections during the fourth week of the semester, the effect
from σ then decreases. Both increasing vaccination and implementing class caps have
the effect of delaying and dampening the contribution from σ . The probability of
becoming asymptomatic, φ, at most explains about 5% of the variance in the case
with no vaccination and a class cap of 100 students. Also, the duration of immunity
from both vaccination, 1/κV , and natural immunity, 1/κ R , does not affect the variance
in cumulative infections, including through interactions with other parameters. This is
expected since we are only modeling a 15-week term, and both natural and immunity
through vaccination lasts at least 12 weeks (see Table 1).

Next, we present the role of contact parameters in Fig. 8, 10. In Fig. 8, we note
that importance of contact parameters depends not only on vaccination and class cap
scenario, but also on time. In the case of no vaccination and no class cap, Fig. 8a, we
see that both the weekend contact multiplier, ω, and social contact percentage, p, are
initially themost influential among all the contact parameters, but their effect decreases
after the sixth week. We observe that as vaccination is increased without decreasing
the class cap, Figs. 8d, g, the effect on cumulative infections from these parameters
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Fig. 9 (Color figure online) Time-varying first-order effect of infection parameters on cumulative infec-
tions. Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination; second
row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row:
100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated

is delayed towards later in the semester. However, as the person-to-person contacts
on campus are reduced through class caps as in Fig. 8b, c, we see the sensitivity to
ω and p replaced by the sensitivity to M , the percentage of infectious people in the
community and c, the community contact multiplier. This is similar to the results
from the sensitivity analysis in Figs. 5, 6. In the case with no vaccination and no
class cap, Fig. 8a, we can see how α, the probability that a symptomatic person will
self-isolate, becomes more influential over time but reaches a fixed effect of about
10% of the variance. Without class caps, as vaccination is increased to medium and
high vaccination, Fig. 8d, g, respectively, we see that the effect due to α is delayed to
later in the semester but still reaches 10% of the variance by the end of the semester.
However, under low vaccination and a class cap of 100 students (Fig. 8b), α becomes
more significant, explaining more than 15% of the variance by the end of the semester.
When comparing Fig. 8, the total-order effect, and Fig. 10, the first-order index, in
terms of α we can see that most of the contribution to the model variance seen in Fig. 8
comes from the interaction effects with other model parameters. This means that in
bubble-like communities with low vaccination rates and no class caps policy, making
sure that students self-isolate if they are symptomatic plays a large role in affecting
the cumulative number of infections observed over the course of the semester.
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Fig. 10 (Color figure online) Time-varying first-order effect of contact parameters on cumulative infec-
tions. Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination; second
row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row:
100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated

From Figs. 15, 16, we see that the infectious people at the beginning of the term
only affect the cumulative infections within the first few weeks of the term. While we
do observe different levels of sensitivity to these initial conditions, these effects are
separated by population size. Among those that are infectious at the start of the term,
those that are symptomatic have a slightly larger effect than those that are asymptomatic
even though asymptomatic people are 50% less infectious than symptomatic people in
ourmodel. The largest effect on cumulative infections, from up to 1%of the population
that is initially infectious, comes from undergraduate students that live off-campus
(5441 students), followed by students living in the dorms (2885 students) and the
least influential infections, consistently explaining less than 1% of the variance, are
both graduate student (721 graduate students) and faculty/staff initially infected (424
faculty and staff). In all cases,we see that both increased vaccination and implementing
lower class caps extend how far into the term these model factors remain significant.
For example, in Figs. 15i, 16i, we see that the effect from the initially infectious
undergraduate populations persists until the end of the term. That is because high
vaccination and smaller class caps leads to fewer cumulative infections by the end of
the term, and the initial infections make up a large number of the cumulative infections
observed over the term.
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For nonlinear models, it is not generally true that the first and total order Sobol
indices will be equal. This only happens in cases where the model factors only have a
linear contribution to themodel variance as in the case of the initial conditions (Fig. 15,
16). However, in this casewe note that the importance ofmodel factors (i.e., the rank of
their contribution to the variance) is similar for first-order and total order time varying
Sobol indices (compare Figs. 7, 8, 9 and 10). However, there are a few intriguing
differences to point out. Most notably, the first-order index for β (Fig. 9a) may exhibit
an internal peak rather than simply increase to saturation. Our interpretation again
would involve a change in the dynamics from early in the semester with a large
susceptible population to later in the semester with less susceptible people that can
become infected. For the case with no class cap and no vaccination, the transmission
rate β is the parameter that has the most significant direct effect on the output variance
(Figs. 9a, 10a). This indicates that any interventions that can lower the transmission
rate, β, would significantly impede the transmission. As shown in Fig. 9a, we observe
that the fraction of variance due to β begins to decrease after week 3 and begins
increasing again after week 6. From Fig. 7a of the time varying total-order effect,
the saturation in β is likely due to the increasing interaction effects with the contact
parameters (Fig.8), and with the other model factors that have a nonzero effect.

5 Discussion and Conclusion

In this manuscript, we introduced an ODE-based SEIR model with multiple sub-
populations (undergraduate students living on-campus, undergraduate students living
off-campus, graduate students, and faculty and staff) on a campus that interacts with
the outside community. We discussed how to use registrar information to estimate
contact-hours due to classes. We examined the effects of NPIs such as social distanc-
ing in the form of transitioning large classes to an online format, mask usage, and
considered differing vaccination rates with waning immunity for both natural immu-
nity and immunity from vaccination among the different campus subpopulations. We
acknowledge that there are othermethods of incorporating heterogeneous interactions,
such as agent-based modeling and stochastic modeling (Bahl et al. 2021; Panovska-
Griffiths et al. 2022). Our proposed model preserves some aspect of heterogeneity
while remaining open to traditional methods of analysis and being computationally
inexpensive. This allowed us to evaluate different intervention strategies and obtain
rapid results to assist the administration in making decisions regarding the mitigation
of COVID-19 on the university campus.

We examined the sensitivity of two epidemic characteristics, the infection doubling
time and the cumulative number of infections over the course of the semester, to 19
model factors that fall into three categories: infection parameters, contact parameters,
and initial conditions, under varying levels of vaccination rates and class caps. Through
our analysis, we found that implementing class caps (or limiting the number of people
that can meet in an enclosed space) and greater vaccination rates, led to changes in
the rank importance of the model factors in their contribution to the model variance.
We found that, in scenarios with increased vaccination rates without class caps, the
social contact multiplier, weekend contact multiplier, and probability to self-isolation
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when symptomatic are the most significant model factors contributing to the infection
doubling time and the number of cumulative infections observed over the course of
one 15-week academic term (one semester). However, when decreasing person-to-
person contacts through smaller class caps, under low vaccination, the contacts with
infectious people from the outside community play a predominant role in affecting the
number of cumulative infections for the campus population and directly affects the
infection doubling time. This work highlights that even when the campus implements
and regulates NPIs, or can require vaccination, the outside community still have a
large effect on the infections observed on campus. Therefore, it will be necessary for
universities to work with their surrounding communities to help limit the spread of
COVID-19.

Many of the parameters, such as the contact matrices, were directly informed from
campus data. Thus, it may be that these results may not hold for other campuses that
differ from our own (e.g., no large classes, campuses that are more integrated with
the surrounding community, or campuses in urban settings). However, our flexible
framework allows other universities to alter parameters and calculate contact matrices
from their registrar data in order to make decisions about intervention strategies and
to perform sensitivity analyses for their own campuses.

The parameters that were not directly calculated fromdata remain a source of uncer-
tainty in the model. Although many of the parameter values were taken from literature
values, the accuracy of those estimates is unknown. Therefore, model validation with
real data remains a future direction for exploration. We also plan to replace the way
that we model infections originating from the surrounding community, which is cur-
rently a constant, with dynamic data from county dashboard reports.We can also study
the impact of a surge in COVID-19 infections in the off-campus community on the
campus population by introducing a pulse in the community parameter.

We note there are several limitations with the current study. In our model, it is
assumed that vaccination makes the recipient 100% immune with the possibility of
breakthrough cases throughwaning immunity.A logical future directionwould include
booster shots and the introduction of novel variants (e.g., delta, omicron). This will be
especially important whenmodeling an academic year as opposed to one 15-week aca-
demic term. Another modeling option would be to include vaccinated subpopulations
with decreased transmission rates and the possibility of shorter convalescence times.
As differing variants have become dominant, the parameters would need to be updated
to reflect appropriate transmission rates and, perhaps, a shortened infectious period
of time. We also assumed 100% compliance with interventions, meaning that every
member of the campus community wears well-fitting masks at all times when they
are indoors. In our work, we attempted to capture the varying degrees of mask usage
and effectiveness by varying the mask efficiency from having no effect to reducing
transmission by up to 60%.

Overall, our model exhibits results consistent with current public health messaging.
Our model suggests that, despite increasing vaccination rates, it remains important to
continue to socially distance, to wear masks, and to implement class caps to reduce
the transmission of COVID-19. It is likely that these results will not hold as more
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COVID-19 variants emerge; however, our modeling framework can be readily adapted
to account for such novel infections.
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Appendix A: Details of theModel

We track infection and immune status by modeling four campus subpopulations each
with eight compartments. A schematic is provided in Fig. 1b for a single subpopula-
tion, undergraduate students who live off-campus (u). Figure 11 here displays all the
campus subpopulations, undergraduate students who live off-campus (u), undergrad-
uate students who live on-campus in the dorms (d), graduate students (g), and faculty
and staff ( f ) as they progress through different stages of the COVID-19 infection.

Next, we discuss in more details the parameterization of our ODE model, the
parameters are arranged in the same order as in Table 1.

β: Transmission rate of symptomatic infectious individuals per contact-hour,
(5.74–24.86)×10−4.

The review by Liu et al. (2020) compared 12 studies with the mean of R0 estimates
ranging from 1.5 to 6.68 with a median of 2.79. On the other hand, 13 out of 20
estimated values of R0 listed in the review (Park et al. 2020) were between 1 and
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Fig. 11 (Color figure online) All subpopulations included in the ODE model, (1) undergraduate students
living off campus (u), (2) undergraduate students living on-campus and in dorms (d), (3) graduate students
(g), and (4) faculty and staff ( f ) and the phases of the disease that each individual progresses through:
susceptible (S), exposed (E), asymptomatically infectious (Ia ) or symptomatically infectious (Is ), if symp-
tomatically infectious individuals can choose to self-isolate (at home) (H ) or not (N ), and finally both
asymptomatically or symptomatically infectious recover (R). Note that some percentage of the population
is initially vaccinated (V ) and, for simplicity, we assume no more individuals will get vaccinated once
the semester begins. Both vaccinated individuals and recovered individuals can become susceptible after
certain period of time

3. Although Ke et al. (2021) estimated a median R0 to be 5.9 in the USA during
early COVID-19 pandemic, their inference was driven by data collected from highly
populated areas such as New York city. Merced, CA is a mid-sized rural city, and
the UC Merced campus population is younger and healthier and has better access to
vaccines and healthcare than the broader population. Thus, we choose the ranges of
β corresponding to R0 ∈ [1.5, 6.5] (see Table 1) to capture the transmission rates
associated with a relatively wide range of population densities.

1/σ : Duration in exposed state, 1–7.5 days.

The incubation period for the original strain of COVID-19 is estimated to be 4 to 6
days (Lauer et al. 2020; Backer et al. 2020). Previous mathematical modeling efforts
have used incubation period as a proxy for duration in exposed state (McCombs
and Kadelka 2020). However, we note that since incubation time represents the time
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between exposure and symptom onset andwe aremodeling the time between exposure
and infectiousness, we subtract the one to two day pre-symptomatic infectious period
(Casey-Bryars et al. 2021). This gives a baseline value around 3-5 days, which is then
varied from 1 to 7.5 days for the sensitivity analysis.

φ: Probability that an exposed individual will become asymptomatic, 20–80%.
ζ : Fraction of β for asymptomatic individuals, 50%.

Currently, there is limited data on the full characterization of asymptomatic SARS-
CoV-2 infection—such as the proportion of asymptomatic infection among the general
population and the subpopulationwith confirmed infection, and the transmission rate of
asymptomatic individuals compared to symptomatic individuals—given that COVID-
19 surveillance systems rely on symptom-based screening primarily. On the other
hand, many studies do not distinguish presymptomatic infection (no symptoms at
screening point but develop symptoms later on) and truly asymptomatic infection (no
symptoms at screening point and never develop any symptoms) very well, i.e., the
imprecise use of the term “asymptomatic.”

A systematic review (Oran and Topol 2021) analyzed 14 longitudinal studies and
estimated a median of 72.3% (IQR 56.7–89.7%) of individuals who tested positive
but had no symptoms at the time of testing would remain asymptomatic. Another sys-
tematic review (Sah et al. 2021) estimated a median of 35.1% (95% CI 30.7–39.9%)
of laboratory-confirmed cases was truly asymptomatic by analyzing 170 studies, and
they observed greater asymptomaticity in children than the elderly, and lower asymp-
tomaticity among cases with comorbidities than cases with no underlying medical
conditions. A meta-analysis of 130 studies (Buitrago-Garcia et al. 2022) found an
interquartile range of 14–50% of people infected with COVID-19 that was persis-
tently asymptomatic. To account for the large uncertainty, we choose to vary φ from
20 to 80% in our global sensitivity analysis.

Using mobility data and case reports within China and Bayesian inference along
with a mathematical model, Li et al. (2020) estimated that a median of 86% of infec-
tions went undocumented and these undocumented infections were 55% (95% CI
46–62%) as contagious as documented infections. A systematic review (Buitrago-
Garcia et al. 2022) suggests that asymptomatic infection might be less contagious
than symptomatic infection (risk ratio 0.32 with 95% CI 0.16–0.64). For simplicity,
we choose ζ to be 0.5.

1/κ R : Average duration of naturally acquired immunity, 90–270 days.
1/κV : Average duration of vaccine-mediated immunity, 180–270 days.

Long-term longitudinal studies on COVID-19 reinfection can provide crucial data
that would enhance our understanding of the durability of naturally acquired and vac-
cine induced immunity. However, designing such studies and interpretation of results
is very complex due to the emergence of variants, the potential of hybrid immunity
from both infection and vaccine, different vaccine options and dosing schedules, and
heterogeneity in populations. We choose those lower bounds for 1/κ R (90) and 1/κV

(180) based on the 5% quantile of the predicted time to breakthrough infection follow-
ingmRNAvaccination (3.5months after vaccinationwithBNT162b2 ormRNA-1273)

123



Modeling and Global Sensitivity Analysis of Strategies… Page 33 of 45 13

and viral vector vaccines (4.3 and 2.6 months after vaccination with ChAdOxa and
Ad26.COV2.S, respectively), and the 5% quantile of the predicted time to reinfection
following natural infection (3.5 months) in Townsend et al. (2022). We set the upper
bounds for both 1/κ R and 1/κV to be 270, longer than the 15-week semester period.

M : Probability that outside (Merced) community individuals are (asymptomati-
cally and symptomatically) infectious, 0–1%.
ψ : Probability that outside (Merced) community individuals with COVID-19 is
asymptomatic, 0.5.

Limited data are available to give an accurate estimate on those two parameters. For
simplicity, we assume ψ = 0.5 and let M vary from 0 to 1% in our global sensitivity
analysis.

c: Community contact multiplier that multiplies contacts between university pop-
ulation and the community, 1–10.

As mentioned in Sect. 3.3, the numbers inCo, contact with outside community, are
not directly produced from known data. To assess the potential effect of contact with
outside community on our modeling responses, we vary c from 1 to 10.

ω: Weekend multiplier that scales the increase in social interaction during week-
ends, 1–10.

As described in Sect. 3.4, we multiply the unscheduled social contact-hours we
calculated for a typical weekday by ω to simulate the increased social interaction over
the weekend, such as going to a larger gathering. We vary this parameter from 1 to 10.

p: Social percentage, 50–150%.

Since there is a large uncertainty in the number of social contact-hours we use in
C
s , we multiply this matrix by p and let it to vary from 50 to 150%.

1 − m: Reduction in β with mask usage, 0–60%.

Reduction in transmission rate of COVID-19 using masks often depends on the
material and fit of the mask. Pan et al. (2021) demonstrated mask efficiencies of
approximately 20–70%. We note these experiments were performed on mannequins
and the masks were fitted correctly. To account for reality, we have reduced these
rates slightly. Howard et al. (2021) provides a review of estimates of mask efficacy for
reduction in transmission for various coronaviruses (e.g., SARS) as well as modeling
estimates for reduction in transmission rates for COVID-19, which demonstrated wide
variations in efficacy.

α: Probability that a symptomatic individual will self-isolate, 0–100%.

We let α vary from 0 to 100%, noncompliance to perfect compliance.

1/γ s : Average duration in symptomatic infectious state before deciding whether
to isolate, 2 days.
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We assume that individuals make the decision to isolate when symptoms appear or
the day after symptoms appear. A meta-analysis found that individuals begin being
infectious a day or two before symptom onset (Casey-Bryars et al. 2021), so we set
1/γ s = 2.

1/γ a : Average duration in asymptomatic infectious state, 14 days.
1/h: Average duration of symptomatic individuals in self-isolation, 12 days.
1/δ: Average duration of symptomatic individuals not self-isolating, 12 days.

A retrospective cohort study (Bi et al. 2020) reported that the time to recovery from
symptom onset was significantly shorter in younger adults, for example the estimated
median was 22.4 days (95% CI 20.8–24.1%) for individuals aged 50–59 years and
19.2 days (95% CI 17.5–21.0%) for individuals aged 20–29 years. The model-based
analysis (Verity et al. 2020) estimated amean duration from symptomsonset to hospital
discharge of 24.7 days (95% credible interval 22.9–28.1). A retrospective cohort study
of adult patients in Wuhan, China estimated a median duration of viral shedding of
20 days (IQR 17–24) in survivors. But data obtained through hospital surveillance are
likely to represent patients with moderate or severe illness. Data for outpatients with
mild illness or no symptoms are needed to fully characterize the infectious period
for the general population. In a multistate telephone survey of symptomatic adults
conducted in the USA, 65% (n = 175) reported that they had returned to their usual
state of health a median of 7 days (IQR 5–12) from the date of testing and among
respondents aged 18–34 years with no chronic medical condition, 19% reported not
having returned to their usual state of health at the time of interview (Tenforde et al.
2020). Lee et al. (2020) evaluated the clinical course of asymptomatic and mildly
symptomatic patients admitted to community treatment centers for isolation in South
Korea (average age of patients ≈ 40 years) and found that the virologic remission
period was longer in symptomatic patients, 21.8 ± 7.6 (mean ± standard deviation)
days, than in asymptomatic patients, 19.1 ± 7.5 days; the mean number of days from
symptom onset to virologic remission for patients who developed symptoms during
their illness was 11.7 ± 8.2 days. Since we consider a population that is younger and
healthier than the general population, we assume a shorter period in our study, i.e.,
1/h = 1/δ = 12 and 1/γ a = 14 = 1/γ s + 1/h = 1/γ s + 1/δ. It will be interesting
to see the effect of varying these parameters in a future study.

vu,0, vd,0: Percentage of u or d vaccinated at time t = 0, 0–80%.
vg,0, v f ,0: Percentage of g or f vaccinated at time t = 0, 0–100%.

We would like to understand how vaccine hesitancy within the campus population
will impact disease propagation on campus, so we vary those parameters in a wide
range.

nd Number of on-campus undergraduates, 2885.
nu Number of off-campus undergraduates, 5441.
ng: Number of graduates, 721.
n f : Number of faculty/staff, 424.

The faculty, student, and staff counts come directly from excel spreadsheets gen-
erated by registrar and employment data.
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I yx,0: Number of y (s = symptomatic, a = asymptomatic) infectious individuals
from population x (u = off-campus undergrads, d = on-campus undergrads, g =
graduate students, f = faculty/staff) at time t = 0, (0–0.5%)×nx .

Weassume that it is very unlikely for large numbers of infectious individuals to come
to campus, as many campuses require a negative test prior to allowing people to come
back to campus at the beginning of the semester. To account for the false negativity
of COVID-19 tests and possible reinfection since the negative test result, we let the
number of symptomatic (asymptomatic) infectious individuals from population x , I sx,0
(I ax,0), vary between 0% and 0.5% of the subpopulation size nx , i.e., I

y
x (0) = I yx,0 ∈

(0, 0.5%) × nx with y ∈ {a, s} and x ∈ {u, d, g, f }.

Appendix B: University Network Visualization

Table 4 University network characteristics under four interventions with different class cap size For all
four cases, the total number of nodes is 9471, with nu = 5441, nd = 2885, ng = 721, and n f = 424

No intervention Class cap 100 Class cap 50 Class cap 25

Total # of isolated nodes 0 10 305 1626

Isolated u 0 2 253 1324

Isolated d 0 0 18 222

Isolated g 0 0 1 10

Isolated f 0 8 33 70

Weighted degree [1, 1417] [0, 543] [0, 543] [0, 367]

Average weighted degree 417.552 155.553 83.150 34.840

# of unique edges 1613685 614622 343204 138890

Edge weights [1, 10] [1, 9] [1, 8] [1, 7]
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Fig. 12 Histogram of weighted degrees for the university network under four interventions with different
class cap sizes. The upper left panel contains no interventions and the lower right panel assumes classes
that are larger than 25 students do not meet in person. Bin width are 50, 25, 10 and 5 for No Intervention,
class cap 100, class cap 50, and class cap 25, respectively
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Appendix C: Figures of Sensitivity Analysis to Initial Conditions

Fig. 13 (Color figure online) Global sensitivity analysis of doubling time to initial conditions. First-order
(blue) and total-order (red) are shown as well as the standard errors. The mean and coefficient of variation of
the doubling time and total cumulative infections are reported in each subplot. Each column represents three
class cap scenarios: none, 100 student, and 50 student caps. Each row represents one of three vaccination
scenarios at the start of the semester. First row: 0% vaccination; second row: 50% of faculty, 50% graduate
students, and 40%of undergraduate students vaccinated; third row: 100%of faculty, 100%graduate students,
and 80% of undergraduate students vaccinated
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Fig. 14 (Color figure online) Global sensitivity analysis of initial conditions on cumulative infections at the
end of the term. Each column represents three class cap scenarios: none, 100 student, and 50 student caps.
Each row represents one of three vaccination scenarios at the start of the semester. First row: 0%vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated
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Fig. 15 (Color figure online) Time-varying total-order effect of initial conditions on cumulative infections.
The total-order Sobol indices are shown as well as the standard errors. The mean and coefficient of variation
for the doubling time and total cumulative infections are reported in each subplot. Each column represents
three class cap scenarios: none, 100 student, and 50 student caps. Each row represents one of three vac-
cination scenarios at the start of the semester. First row: 0% vaccination; second row: 50% of faculty,
50% graduate students, and 40% of undergraduate students vaccinated; third row: 100% of faculty, 100%
graduate students, and 80% of undergraduate students vaccinated
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Fig. 16 (Color figure online) Time-varying first-order effect of initial conditions on cumulative infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row repre-
sents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination; second row:
50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row: 100% of
faculty, 100% graduate students, and 80% of undergraduate students vaccinated

Appendix D: Details of the Contact Matrix

Here, we discuss in more detail the calculation of the contact matrixC. With examples
for our baseline case (no class cap), we explain the calculation of the classroom contact
matrixCc, the living contact matrixCl , the contact matrix for outside community and
campus subpopulations Co, and the social contact matrix Cs .

Table 5 The contact matrix for in-class instruction,Cc , calculated using registrar data between the subpop-
ulations off-campus undergraduates, on-campus undergraduates, graduate students, and faculty and staff
under no class caps, assuming far contacts are 25% less likely to transmit than close contacts

Contacts Off-campus
undergraduates

On-campus
undergraduates

Graduate
students

Faculty and
staff

Outside
community

Off-campus undergraduates 39.9723 15.3198 1.0761 1.8044 0

On-campus undergraduates 28.8926 36.5159 0.8496 1.8129 0

Graduate students 8.1204 3.3995 6.9070 1.2818 0

Faculty and staff 23.1541 12.3354 2.1796 1.2500 0
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Table 5 displays the classroom contact matrix created using the registrar data with
no class caps, Cc. Note that since the outside community does not engage in courses,
the entries for the fifth column of this sub-matrix are 0. Except for faculty and staff,
most other subpopulations have contact-hours that are higher within their own sub-
population. This intuitively makes sense since most students take courses with those
in their subpopulation. In general, lower-level courses are taken by students who are
in the freshman or sophomore stage, who also live on-campus. Upper-level courses
tend to be taken by students more advanced in their college degree, who tend to live
off-campus.

One may notice that these classroom contact-hours do not appear to be symmetric.
We note that, in the model, contact-hours are scaled by the size of the subpopula-
tion (nu = 5441, nd = 2885, ng = 721, n f = 424). When examining the various
subpopulations, we can see that the contact-hours are symmetric between those pop-
ulations (e.g., cc1,2 × nu = cc2,1 × nd ). This symmetry ensures that the contact-hours
are reciprocal.

We can also examine the sub-contact matrix generated by living situations (living
in dorms or apartments),Cl . As shown in Table 6, the first four columns of this matrix
is diagonal and, thus, symmetric, as the various subpopulations only live with the same
subpopulation. The details for calculating these living contact-hours are described in
Sect. 3.2.

Beyond the university, subpopulations interact with the surrounding community.
Table 7 displays the contacts between each of the subpopulations and the outside
community. Since we do not directly model the outside community, these interactions

Table 6 The contact matrix for living situations, Cl

Contacts Off-campus
undergradu-
ates

On-campus
undergradu-
ates

Graduate
students

Faculty and
staff

Outside
community

Off-campus undergraduates 12 0 0 0 0

On-campus undergraduates 0 21.5472 0 0 0

Graduate students 0 0 6 0 0

Faculty and staff 0 0 0 0 0

Table 7 The contact matrix for contacts between campus subpopulations and outside community, Co

Contacts Off-campus
undergradu-
ates

On-campus
undergradu-
ates

Graduate
students

Faculty Outside
community

Off-campus undergraduates 0 0 0 0 5

On-campus undergraduates 0 0 0 0 1

Graduate students 0 0 0 0 5

Faculty and staff 0 0 0 0 15
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Table 8 The contact matrix for unplanned social contacts (e.g., parties or study groups), Cs , on a typical
weekday

Contacts Off-campus
undergradu-
ates

On-campus
undergradu-
ates

Graduate
students

Faculty and
staff

Outside
community

Off-campus undergraduates 11.9917 4.5960 0 0 0

On-campus undergraduates 8.6678 10.9548 0 0 0

Graduate students 0 0 0 0 0

Faculty and staff 0 0 0 0 0

Table 9 The full contact matrixC under nominal conditions between the subpopulations off-campus under-
graduates, on-campus undergraduates, graduate students, faculty and staff, and the outside community on
a typical weekday

Contacts Off-campus
undergradu-
ates

On-campus
undergradu-
ates

Graduate
students

Faculty staff Outside
community

Off-campus undergraduates 81.9640 19.9158 1.0761 1.8044 5

On-campus undergraduates 37.5604 73.0387 0.8496 1.8129 1

Graduate students 8.1204 3.3995 21.9070 1.2818 5

Faculty and staff 23.1541 12.3354 2.1796 1.25 15

occur solely in the fifth columnof the contactmatrix. see Sect. 3.3 formore information
regarding the choices of values.

In addition to the matrices for in-class instruction, living situation, and outside
community, there is also the ‘social’ matrix C

s . In this case, it is assumed that only
undergraduate students engage in unplanned social gatherings. To construct our social
sub-matrix, we multiply the classroom contact-hours in Table 5 by 0.3, as described
in Sect. 3.4. Table 8 displays our nominal calculation for the social sub-matrix for a
typical weekday. Recall, as explained in Sect. 3.4, during the weekend, we multiply
this social matrix by a multiplier, ω, to represent larger weekend gatherings such as
parties. As with the classroom contacts, the social contacts are reciprocal between
subpopulations.

Next, we present the full contact matrix, C, which is sum of all the submatrices
shown above (i.e., C = C

c +C
l +C

o +C
s). Table 9 displays the full contract matrix

under nominal conditions, assuming a far contact classroom rate of 25%.
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Brlek A, Vidovič Š, Vuzem S, Turk K, Simonović Z (2020) Possible indirect transmission of COVID-19 at
a squash court, Slovenia, March 2020: case report. Epidemiol Infect 148

Buitrago-Garcia D, Ipekci AM, Heron L, Imeri H, Araujo-Chaveron L, Arevalo-Rodriguez I, Ciapponi A,
Cevik M, Hauser A, Alam MI et al (2022) Occurrence and transmission potential of asymptomatic
and presymptomatic SARS-CoV-2 infections: update of a living systematic review and meta-analysis.
PLoS Med 19(5):e1003987

Callimachi R (2021) For colleges, vaccine mandates often depend on which party is in power. https://www.
nytimes.com/2021/05/22/us/college-vaccine-universities.html. Accessed 01 June 2021

Casey-Bryars M, Griffin J, McAloon C, Byrne A, Madden J, Mc Evoy D, Collins Á, Hunt K, Barber A,
Butler F et al (2021) Presymptomatic transmission of SARS-CoV-2 infection: a secondary analysis
using published data. BMJ Open 11(6):e041240

Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, Piontti APY, Mu K, Rossi L, Sun K
et al (2020) The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19)
outbreak. Science 368(6489):395–400

Chowell G, Brauer F (2009) The basic reproduction number of infectious diseases: computation and esti-
mation using compartmental epidemic models, Mathematical and statistical estimation approaches in
epidemiology. Springer, New York, pp 1–30

Ellis L (2020) Colleges hoped for an in-person fall. Now the dream is crumbling. Chron High Educ
Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, Rinaldo A (2020) Spread and dynamics

of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc Natl Acad Sci
USA 117(19):10484–10491

Gilbert M, Pullano G, Pinotti F, Valdano E, Poletto C, Boëlle PY, d’Ortenzio E, Yazdanpanah Y, Eholie SP,
Altmann M et al (2020) Preparedness and vulnerability of African countries against importations of
COVID-19: a modelling study. Lancet 395(10227):871–877

Glass LM, Glass RJ (2008) Social contact networks for the spread of pandemic influenza in children and
teenagers. BMC Public Health 8(1):1–15

Gressman PT, Peck JR (2020) Simulating COVID-19 in a university environment. Math Biosci 328:108436
Hamner L (2020) High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County,

Washington, March 2020. Morb Mortal Wkly Rep 69
Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653
Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab

Eng Syst Saf 52(1):1–17
Howard J, Huang A, Li Z, Tufekci Z, Zdimal V, van der Westhuizen HM, von Delft A, Price A, Fridman L,

Tang LH, Tang V, Watson GL, Bax CE, Shaikh R, Questier F, Hernandez D, Chu LF, Ramirez CM,
Rimoin AW (2021) An evidence review of face masks against COVID-19. Proc Natl Acad Sci USA.
https://doi.org/10.1073/pnas.2014564118

Ivory D, Gebeloff R, Mervosh S (2021) Young people have less Covid-19 risk, but in college towns, deaths
rose fast. https://www.nytimes.com/2020/12/12/us/covid-colleges-nursing-homes.html. Accessed 01
June 2021

Jansen MJ (1999) Analysis of variance designs for model output. Comput Phys Commun 117(1–2):35–43
Johns Hopkins Corona Virus Response Center (2020) Corona virus resource center. COVID-19 Dashboard.

https://coronavirus.jhu.edu/map.html. Accessed 13 Oct 2022
Ke R, Romero-Severson E, Sanche S, Hengartner N (2021) Estimating the reproductive number R0 of

SARS-CoV-2 in the United States and eight European countries and implications for vaccination. J
Theor Biol 517:110621

KucharskiAJ,Russell TW,DiamondC,LiuY,Edmunds J, FunkS,EggoRM(2020)Centre formathematical
modelling of infectious diseases COVID-19 working group. 2020, May. Early dynamics of transmis-
sion and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis. 20(5):553–558

Kwon KS, Park JI, Park YJ, Jung DM, Ryu KW, Lee JH (2020) Evidence of long-distance droplet trans-
mission of SARS-CoV-2 by direct air flow in a restaurant in Korea. J Korean Med Sci 35(46)

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q,Meredith HR, Azman AS, Reich NG, Lessler J (2020) The
incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases:
estimation and application. Ann Intern Med 172(9):577–582

123

https://www.nytimes.com/2021/05/22/us/college-vaccine-universities.html
https://www.nytimes.com/2021/05/22/us/college-vaccine-universities.html
https://doi.org/10.1073/pnas.2014564118
https://www.nytimes.com/2020/12/12/us/covid-colleges-nursing-homes.html
https://coronavirus.jhu.edu/map.html


13 Page 44 of 45 L. Zhao et al.

Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, Kimball S, El-Mohandes A (2021) A
global survey of potential acceptance of a COVID-19 vaccine. Nat Med 27(2):225–228

LeeYH,HongCM,KimDH,LeeTH,Lee J (2020)Clinical course of asymptomatic andmildly symptomatic
patients with coronavirus disease admitted to community treatment centers, SouthKorea. Emerg Infect
Dis 26(10):2346

LeungK, JitM, Lau EH,Wu JT (2017) Social contact patterns relevant to the spread of respiratory infectious
diseases in Hong Kong. Sci Rep 7(1):1–12

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J (2020) Substantial undocumented infection
facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368(6490):489–493

Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J (2020) The reproductive number of COVID-19 is higher
compared to SARS coronavirus. J Travel Med

Lofgren E, Lum K, Horowitz A, Madubuonwu B, Myers K, Fefferman NH (2021) The epidemiological
implications of jails for community, corrections officer, and incarcerated population risks fromCOVID-
19. medRxiv. https://doi.org/10.1101/2020.04.08.20058842

Lopman B, Liu C, Le Guillou A, Handel A, Lash TL, Isakov A, Jenness S (2020) A model of COVID-
19 transmission and control on university campuses. medRxiv. https://doi.org/10.1101/2020.06.23.
20138677

Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C, Rodés-Guirao L (2021) A
global database of COVID-19 vaccinations. Nat Hum Behav 1–7

MathWorks (2020) Statistics andmachine learning ToolboxTM R2020a. https://www.mathworks.com/help/
stats/

McCombs A, Kadelka C (2020) A model-based evaluation of the efficacy of COVID-19 social distancing,
testing and hospital triage policies. PLoS Comput Biol 16(10):e1008388

Mizumoto K, Chowell G (2020) Transmission potential of the novel coronavirus (COVID-19) onboard the
diamond Princess Cruises Ship, 2020. Infect Dis Model 5:264–270

Moody J (2022) Colleges extend remote instruction. https://www.insidehighered.com/news/2022/01/10/
colleges-extend-remote-instruction-period-due-omicron. Accessed 08 Feb 2022

Muniz-RodriguezK,ChowellG,CheungCH, JiaD,Lai PY,LeeY,LiuM,Ofori SK,RoosaKM,SimonsenL
et al (2020)Doubling timeof theCOVID-19 epidemic byprovince,China. Emerg InfectDis 26(8):1912

Nierenberg A, Pasick A (2020) Schools briefing: coronavirus dorms and super spreaders. https://www.
nytimes.com/2020/09/09/us/schools-reopening-coronavirus.html. Accessed 01 June 2021

Nunes-Vaz R (2020) Visualising the doubling time of COVID-19 allows comparison of the success of
containment measures. Glob Biosecurity 1(3)

Oran DP, Topol EJ (2021) The proportion of SARS-CoV-2 infections that are asymptomatic: a systematic
review. Ann Intern Med 174(5):655–662

Paltiel AD, Zheng A, Walensky RP (2020) Assessment of SARS-CoV-2 screening strategies to permit the
safe reopening of college campuses in the United States. JAMANetwOpen 3(7):e2016818–e2016818.
https://doi.org/10.1001/jamanetworkopen.2020.16818

Pan J, Harb C, Leng W, Marr LC (2021) Inward and outward effectiveness of cloth masks, a surgical mask,
and a face shield. Aerosol Sci Technol 55(6):718–733

Panovska-Griffiths J, Stuart R, Kerr C, Rosenfield K, Mistry D, Waites W, Klein D, Bonell C, Viner R
(2022) Modelling the impact of reopening schools in the UK in early 2021 in the presence of the alpha
variant and with roll-out of vaccination against SARS-CoV-2. J Math Anal Appl 126050

Park M, Cook AR, Lim JT, Sun Y, Dickens BL (2020) A systematic review of COVID-19 epidemiology
based on current evidence. J Clin Med 9(4):967

Patel SB, Patel P (2020) Doubling time and its interpretation for COVID 19 cases. Natl J Community Med
11:141–143

Sah P, Fitzpatrick MC, Zimmer CF, Abdollahi E, Juden-Kelly L, Moghadas SM, Singer BH, Galvani AP
(2021) Asymptomatic SARS-CoV-2 infection: a systematic review and meta-analysis. Proc Natl Acad
Sci USA 118(34):e2109229118

Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global
sensitivity analysis: the primer. Wiley, New Jersey

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity
analysis of model output. design and estimator for the total sensitivity index. Comput Phys Commun
181(2):259–270

Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC, Gibbs KW, Erickson HL,
Steingrub JS, Smithline HA et al (2020) Symptom duration and risk factors for delayed return to usual

123

https://doi.org/10.1101/2020.04.08.20058842
https://doi.org/10.1101/2020.06.23.20138677
https://doi.org/10.1101/2020.06.23.20138677
https://www.mathworks.com/help/stats/
https://www.mathworks.com/help/stats/
https://www.insidehighered.com/news/2022/01/10/colleges-extend-remote-instruction-period-due-omicron
https://www.insidehighered.com/news/2022/01/10/colleges-extend-remote-instruction-period-due-omicron
https://www.nytimes.com/2020/09/09/us/schools-reopening-coronavirus.html
https://www.nytimes.com/2020/09/09/us/schools-reopening-coronavirus.html
https://doi.org/10.1001/jamanetworkopen.2020.16818


Modeling and Global Sensitivity Analysis of Strategies… Page 45 of 45 13

health among outpatients with COVID-19 in a multistate health care systems network-United States,
March-June 2020. Morb Mortal Wkly Rep 69(30):993–998

Townsend JP, Hassler HB, Sah P, Galvani AP, Dornburg A (2022) The durability of natural infection
and vaccine-induced immunity against future infection by SARS-CoV-2. Proc Natl Acad Sci USA
119(31):e2204336119

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H,
Walker PG, Fu H et al (2020) Estimates of the severity of coronavirus disease 2019: a model-based
analysis. Lancet Infect Dis 20(6):669–677

Weeden KA, Cornwell B (2020) The small-world network of college classes: implications for epidemic
spread on a university campus. Sociol Sci 7:222–241

World Health Organization March 11, 2020. WHO Director-General’s opening remarks at the media
briefing on COVID-19. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-
remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 28 June 2020

Wrighton MS, Lawrence SJ (2020) Reopening colleges and universities during the COVID-19 pandemic.
Ann Intern Med 173(8):664–665

Zheng-Li S (2021) Origins of SARS-CoV-2: focusing on science. Infect Dis Immun 1(01):3–4
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X et al (2020) Clinical course and

risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort
study. Lancet 395(10229):1054–1062

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

	Modeling and Global Sensitivity Analysis of Strategies to Mitigate Covid-19 Transmission on a Structured College Campus
	Abstract
	1 Introduction
	2 Methods
	2.1 Model Description
	2.2 Infection Doubling Time
	2.3 Global Sensitivity Analysis

	3 Data and Contacts
	3.1 In-class Instruction mathbbCc
	3.1.1 Network Analysis

	3.2 Living Situations mathbbCl
	3.3 Contact with Outside Community mathbbCo
	3.4 Unscheduled Social Interactions mathbbCs

	4 Results: Global Sensitivity Analysis
	4.1 Variance in Cumulative Infections and Infection Doubling Time
	4.2 Sobol Analysis of the Variance in Cumulative Infections and Infection Doubling Time
	4.2.1 Sensitivity of Infection Doubling Time
	4.2.2 Sensitivity of Cumulative Infections at End of Term
	4.2.3 Sensitivity of Time-Varying Cumulative Infections


	5 Discussion and Conclusion
	Acknowledgements
	Appendix A: Details of the Model
	Appendix B: University Network Visualization
	Appendix C: Figures of Sensitivity Analysis to Initial Conditions
	Appendix D: Details of the Contact Matrix
	References




