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A Low-Rank Method for
Characterizing High-Level Neural
Computations
Joel T. Kaardal 1, 2*, Frédéric E. Theunissen 3 and Tatyana O. Sharpee 1, 2

1Computational Neurobiology Laboratory and Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute

for Biological Studies, La Jolla, CA, United States, 2Center for Theoretical Biological Physics, University of California, San

Diego, La Jolla, CA, United States, 3Department of Psychology, University of California, Berkeley, Berkeley, CA, United States

The signal transformations that take place in high-level sensory regions of the

brain remain enigmatic because of the many nonlinear transformations that separate

responses of these neurons from the input stimuli. One would like to have dimensionality

reduction methods that can describe responses of such neurons in terms of operations

on a large but still manageable set of relevant input features. A number of methods have

been developed for this purpose, but often these methods rely on the expansion of the

input space to capture as many relevant stimulus components as statistically possible.

This expansion leads to a lower effective sampling thereby reducing the accuracy of

the estimated components. Alternatively, so-called low-rank methods explicitly search

for a small number of components in the hope of achieving higher estimation accuracy.

Even with these methods, however, noise in the neural responses can force the models

to estimate more components than necessary, again reducing the methods’ accuracy.

Here we describe how a flexible regularization procedure, together with an explicit rank

constraint, can strongly improve the estimation accuracy compared to previous methods

suitable for characterizing neural responses to natural stimuli. Applying the proposed

low-rank method to responses of auditory neurons in the songbird brain, we find multiple

relevant components making up the receptive field for each neuron and characterize

their computations in terms of logical OR and AND computations. The results highlight

potential differences in how invariances are constructed in visual and auditory systems.

Keywords: neural coding, auditory cortex, computational neuroscience, receptive fields, dimensionality reduction

1. INTRODUCTION

Signal processing in neurobiological systems involves multiple nonlinear transformations applied
to multidimensional inputs. Characterizing these transformations is difficult but essential to
understanding the neural basis of perception. For example, neurons from successive stages of
sensory systems represent inputs in terms of increasingly complex combinations of stimulus
features (Felleman and Van Essen, 1991; King and Nelken, 2009). Although a number of statistical
tools have been developed to analyze responses of sensory neurons, analysis of high-level sensory
neurons remains a challenge because of two interrelated factors. First, to signal the presence of
certain objects or events, high-level sensory neurons perform sophisticated computations that are
based on multidimensional transformations of the inputs, which together form the receptive field
of the neuron. Second, high-level neurons are unresponsive to noise stimuli and usually require
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structured stimuli reflective of the natural sensory environment.
However, even when presented with natural stimuli, the specific
combinations of inputs necessary to elicit responses of a
given neuron do not occur frequently. As a result, current
statistical methods fail to recover receptive fields for many
high-level neurons due to a lack of sufficient sampling of
the stimulus/response distribution relative to the number of
model parameters. Therefore, to systematically probe high-
level responses we need statistical methods that (i) estimate
multidimensional transformations of the inputs, (ii) account
for the biases in natural stimuli or other strongly correlated
distributions, and (iii) are resistant to overfitting. Here we
describe a practical method that satisfies these criteria and
apply the method to gain new insights into the structure of
receptive fields of high-level auditory neurons from the zebra
finch auditory forebrain.

Present dimensionality reduction methods for recovering
receptive fields of sensory neurons can be roughly divided
into linear and quadratic methods. Linear methods attempt
to reconstruct components of a neuron’s receptive field by
correlating the neural response to a set of features composed
of stimulus components, si. Examples of these methods
include the spike-triggered average (STA), maximally informative
dimensions (MID), and first-order maximum noise entropy
(MNE) methods (Sharpee et al., 2004; Bialek and de Ruyter van
Steveninck, 2005; Schwartz et al., 2006; Fitzgerald et al., 2011b).
With MID being a notable exception, many of these linear
methods are only capable of recovering a single component
of the receptive field. The necessity of characterizing multiple
components of receptive fields has led to the development
of quadratic methods where the feature space is expanded
quadratically to include all pairwise products, sisj, between the
components of a D-dimensional stimulus vector, s (Schwartz
et al., 2006; Fitzgerald et al., 2011b; Park and Pillow, 2011; Rajan
and Bialek, 2013). Generally speaking, such quadratic methods
construct a weight matrix, J, that captures correlations between a
neuron’s responses and the quadratic feature space. The relevant
subspace of stimulus space that spans the receptive field is
recovered by diagonalizing J.

Methods designed to recover this relevant subspace can
be susceptible to bias when the model is constructed based
on incorrect assumptions. For instance, the spike-triggered
covariance (STC) method (the quadratic analog of the STA
method) assumes that the stimulus components are drawn from
a Gaussian white noise distribution (Bialek and de Ruyter van
Steveninck, 2005). When STC is applied to other stimulus
distributions such as natural stimuli, the receptive field
estimation is susceptible to bias and often leads to a poor
reconstruction of the receptive field components. In response
to this short-coming of the STC method, the MID and MNE
methods were developed to minimize bias using principles from
information theory. In the case of the MID method, components
are found that maximize the mutual information between the
response and stimuli independent of the nonlinear function
relating stimuli to responses, also called the nonlinearity (Sharpee
et al., 2004). The MNE method instead invokes the principle of
maximum entropy to construct a nonlinearity that maximizes the

noise entropy, Hnoise(y|s), between the response, y, and stimulus
distribution subject to constraints on the response-weighted
moments of the stimulus space; e.g., 〈y〉, 〈ys〉, and 〈yssT〉 (Jaynes,
2003; Fitzgerald et al., 2011a,b). In order to minimize bias in the
receptive field estimate, Hnoise is maximized subject to only these
data-dependent constraints.

Our proposed method builds on the second-order MNE
model for the probability of a binary response given a set of
stimuli (Fitzgerald et al., 2011a). This model is a logistic function
of a linear combination of inputs in the expanded feature space
(truncated here to second-order):

P(y = 1|s) =
1

1+ e−z(s)
, z(s) = a+ hTs+ sTJs (1)

where unknown weights a, h, and J are determined by
minimizing the negative log-likelihood. The order of the
moments used in constructing the MNE model correspond to
the order of the polynomial that appears in the argument, z(s).
Including the nth-order constraint in the MNEmodel leads to an
additional Dn weights that must be estimated. The MNE model
is truncated to second-order to facilitate the reconstruction
of multi-component receptive fields while avoiding the curse
of dimensionality that appears when including constraints on
the model from higher-order moments. At the same time, the
second-order model is sufficient to describe contributions from
multiple components that excite and suppress the neurons’
response (Schwartz et al., 2006); one can approximate selectivity
for higher-than-second-order features through combinations
of pairwise constraints (Perrinet and Bednar, 2015). Other
advantages of this approach are that (i) it works with arbitrary,
including natural, stimuli, and (ii) the optimization is convex,
converging swiftly to a global optimum. The disadvantage of
this model is that, for a D-dimensional stimulus vector s, one
needs to determine 1 + D + D(D + 1)/2 parameters of which
only 1 + D + rD parameters will be ultimately used to specify r
components obtained by diagonalizing the D× Dmatrix J. Note
that an arbitrary antisymmetric matrix may be added to Jwithout
changing the output of the nonlinearity, P, and it is therefore
sufficient, but not necessary, to optimize an MNE model with J

constrained to be symmetric where only D(D+ 1)/2 elements of
J need to be optimized. However, this constraint was not part of
the original optimization procedure (Fitzgerald et al., 2011a,b).
Below we show that adding a constraint that ensures symmetric J
improves the estimation accuracy in our proposed model.

For currently available datasets, the over-expansion of the
stimulus space can be a severe limitation leading to overfitting
of quadratic models. To resolve this issue, we designed low-
rank MNE models with an explicit rank constraint where a rank
r matrix J is modeled as a product of two low-rank D × r
matrices, J = UVT (Burer and Monteiro, 2003; Bach et al.,
2008; Rajan and Bialek, 2013; Haeffele et al., 2014). For models
where r ≪ D, this bilinear factorization leads to a substantial
reduction in the number of parameters that are necessary to
estimate. Furthermore, as is the case with many optimization
methods, one can improve the robustness of estimation to noise
from limited sampling through regularization that penalizes the
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magnitude of certain model parameters. Since we seek low-rank
representations of J, we choose to invoke nuclear-norm (or trace-
norm) regularization to penalize J based on the sparsity of its
eigenvalue spectrum which, in addition to improved estimation,
has the advantage of allowing us the flexibility to set r as an
upper bound on the rank of J while applying regularization to
further reduce the rank of J (Fazel, 2002; Fazel et al., 2003; Recht
et al., 2010). We apply the low-rank MNE method to recover
receptive field components from recordings of neurons in regions
field L and the caudal mesopallium (CM) of the zebra finch
auditory forebrain subject to auditory stimulation. Our results
provide novel insights into the structure of multicomponent
auditory receptive fields and suggest important differences
between object-level respresentations in the auditory and visual
cortex.

2. RESULTS

2.1. Mathematical Approach for Low-Rank
Characterization of Neural Feature
Selectivity
2.1.1. Problem Set-up
An optimal low-rank MNE model is one that minimizes the
negative log-likelihood function with respect to the weights a, h,
U, and V. The mean negative log-likelihood is:

L(a, h,U,V) = −
1

N

∑

t

[

yt log(Pt)+ (1− yt) log(1− Pt)
]

(2)

where Pt is introduced as a short-hand to represent the
nonlinearity, P(y = 1|st), N is the number of samples, and
yt ∈ [0, 1] is the response to tth sample of the stimulus
space, st .

Additional structure can be imposed on the weights by
adding a penalty function to the mean negative log-likelihood
(Equation 2). Nuclear-norm regularization is defined as the sum
of absolute values of the eigenvalue spectrum (i.e.,

∑

k |σk| where
σk is the kth eigenvalue of J). When applied as a penalty function,
the nuclear-norm increases the sparsity of J’s eigenvalue spectrum
(Fazel, 2002; Fazel et al., 2003; Recht et al., 2010). Because matrix
J can possess both positive and negative eigenvalues, the nuclear-
norm does not simply equal its trace. While in principle one can
compute the nuclear-norm of J by diagonalization it is in practice
more efficient to embed J within a larger positive semidefinite
matrix, (Fazel, 2002; Fazel et al., 2003):

QQT =

[

U

V

]
[

UT, VT
]

=

[

UUT, J

JT, VVT

]

(3)

and instead take the trace overQQT:

ℓ∗(Q) =
1

2

r
∑

k=1

ǫk
∥
∥Q•,k

∥
∥
2

2
=

1

2

r
∑

k=1

ǫk

(∥
∥U•,k

∥
∥
2

2
+

∥
∥V•,k

∥
∥
2

2

)

(4)

where ‖·‖2 is the ℓ2-norm and Q•,k, U•,k, and V•,k refer to the
kth column of each matrix. Here, ǫk ≥ 0 is a regularization

parameter which is a hyperparameter that controls the strength
of the nuclear-norm penalty. Regularizing over this semidefinite
embedding penalizes the rank of UUT and VVT. This leads
to a penalization of the rank of J by proxy since rank(J) ≤
min

(

rank(U), rank(V)
)

(Fazel, 2002; Fazel et al., 2003; Cabral,
2013) shown in the following.

Proof. Since U spans the same range space as UUT and V spans
the same range space as VVT, it can be shown that regularizing
over the trace of QQT is an effective strategy for regularizing the
rank of J by showing that J has zero projection into the null space
of U and V. The null space operators of U and V are defined
as PN (U) = I − UU† and PN (V) = I − VV† where †

indicates a generalized matrix inverse. Projecting J onto PN (U)
yields PN (U)J = J − UU†UVT = J − UVT = 0. Similarly,
JPN (V) = 0. Therefore, the range space of J is a subset of the
range spaces ofU andV where rank(J) ≤ min(rank(U), rank(V))
and penalizing Tr(QQT) (where Tr(·) is the trace) is an effective
surrogate to the nuclear-norm of J for penalizing the rank of J.

This surrogate regularization readily works with gradient
based methods for optimization, whereas diagonalization of J
does not. Unlike typical implementations of the nuclear-norm
that use only a single regularization parameter (i.e., ǫk = ǫ for
all k), we found that assigning a unique regularization parameter
for each of the r columns of Q led to substantial improvement
in the characterization of J. A single regularization parameter
has the tendency to eliminate insignificant components at the
expense of degrading the quality of the significant high variance
components. Using multiple regularization parameters allows
us to eliminate the insignificant components while avoiding
degradation of the significant components.

While the bilinear factorization of J intoU andV sets an upper
bound of r on the rank of J, there is a subtle inconsistency in
how the rank behaves caused by the symmetry of the problem.
In the present formulation of the optimization problem, J can
be nonsymmetric and therefore possess an undesirable complex
eigenvalue spectrum. This issue cannot simply be solved by
symmetrizing J ← Jsym =

1
2

(

J+ JT
)

post-optimization. While
symmetrizing would provide a real eigenvalue spectrum, this
symmetrization procedure can have the unintended consequence
of increasing the rank of J up to 2r. This can be a problem
because there are generally not enough variables provided by the
D × r matrices U and V to fit a rank 2r matrix. We resolved this
inconsistency by requiring that U and V satisfy:

UVT = VUT H⇒ J = JT, (5)

with proof that this guarantees the rank of J is invariant to
symmetrization provided in the following.

Proof. The symmetry constraint (Equation 5) is a sufficient
condition to guarantee rank(Jsym) ≤ r since rank(Jsym) =

rank(J+ JT) = rank(2J) ≤ min
(

rank(U), rank(V)
)

≤ r.

From a practical point of view, the bilinear formulation of
the symmetry constraints (Equation 5) is potentially problematic
since its Jacobian can be rank-deficient and it introduces D(D −
1)/2 unique constraints which can lead to an overly large number
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of constraint equations to satisfy. The difficulty in applying
constraints with rank-deficient Jacobian is that such constraints
can fail to satisfy the Karush-Kuhn-Tucker (KKT) conditions
(Prop 1 in the Appendix) when a local minimizer lies on the
boundary of the feasible region. Since we require the application
of equality constraints to enforce invariance of the rank of J to
symmetrization, any feasible local minimum lies on the boundary
of the feasible region. Consequently, we would like to formulate
an optimization problem for low-rank MNE that will generally
satisfy the KKT conditions at a local minimizer. A safe choice
(see the discussion following Prop 1) is to replace the bilinear
formulation with a set of rD linear equality constraints:

wk = U•,k + πkV•,k = Ak,kQ•,k = 0 for all k, (6)

where πk ∈ {−1, 1} for the kth column of U and V and

Ak,k =
[

I, πkI
]

(7)

is the D × 2D dimensional Jacobian matrix of wk with respect to
Q•,k. For a brief summary of alternative constraints that satisfy
rank(Jsym) ≤ r, see the Section 5.1 in the Appendix.

Putting this all together, the low-rank MNE method is a
nonlinear program of the form:

min
a,h,Q

f (a, h,Q) = min
a,h,Q

L(a, h,Q)+ ℓ∗(Q)

subject to wk = 0 for all k.
(8)

This problem can be transformed from a constrained to
“unconstrained” optimization via the Lagrangian method:

L(a, h,Q,3) = f (a, h,Q)−

r
∑

k=1

3T
•,kwk (9)

where 3 is a D× rmatrix of unconstrained Lagrange multipliers
and:

f (a, h,Q) = L(a, h,Q)+ ℓ∗(Q). (10)

is the objective function. Alternatively, one may directly
substituteV•,k = −πkU•,k into f for an equivalent unconstrained
problem. Once a solution is found to Equation (8), relevant
quadratic components of J are identified by diagonalizing Jsym:

Jsym =
1

2

(

J+ JT
)

= �6�T, (11)

where� is aD×Dmatrix with columns forming an orthonormal
basis and 6 is a D × D diagonal matrix where the 6k,k element
corresponds to the variance of the �•,k basis vector. Those
columns of � with nonzero variance span the subspace of
stimulus space relevant to a response (Fitzgerald et al., 2011a).
Note that, in theory, a solution to Equation (8) should yield
Jsym = J with maximum rank r. In practice, this is dependent
on the desired precision to which the constraints are satisfied and
at what variance the eigenvalues are defined to be approximately
zero. If an investigator employs an eigenvalue solver that is more

precise than the constraint satisfaction, diagonalizing Jmay result
in a complex eigenvalue spectrum with small imaginary parts.
Diagonalizing Jsym instead via Equation (11) eliminates these
small imaginary components and will admit at most r eigenvalues
with variance above the desired precision.

Unlike the full-rank MNE optimization, the low-rank MNE
optimization is a nonconvex problem (see the discussion
surrounding Prop 2 in the Appendix). This nonconvexity is
caused by the bilinear factorization of J in the negative log-
likelihood term of the cost function, f . The nuclear-norm penalty,
on the other hand, is convex since ǫk ≥ 0 for all k. Due to this
property of the nuclear-norm, it is possible to show that there
is a regularization domain where any solution to the low-rank
MNE problem is globally optimal (Burer and Monteiro, 2003;
Bach et al., 2008; Haeffele et al., 2014). Specifically, if all ǫk are
greater than or equal to the magnitude of the largest variance
eigenvalue of the D × D gradient matrix ∇JL (where ∇J is the
gradient operator with respect to J) evaluated at a solution, then
the weights a, h, U, and V are globally optimal solutions of
the low-rank MNE problem. Conversely, if any ǫk is less than
the magnitude of the largest variance eigenvalue of ∇JL, then a
solution to the low-rank MNE problem is not guaranteed to be
globally optimal and belongs to the locally optimal domain. For
proof of this, see the Sections 5.2 and 5.3 in the Appendix.

When the rank of the ground truth of matrix J is low-
rank, solutions of the low-rank MNE problem in the globally
optimal domain can be a good approximation to the ground
truth of J. This approximate solution can be attractive due to
its certifiable global optimality and can be helpful when D is
practically too large to fit with the full-rank MNE method or to
find compressed solutions for J of rank less than the ground truth.
In some cases, however, it is possible that solutions that lie in
the locally optimal domain better reconstruct the ground truth
of J compared to solutions in the globally optimal domain. In the
following sections, we detail optimization algorithms that may
be used to find solutions in either the locally or globally optimal
domains of the low-rank MNE problem.

2.1.2. Optimizing the Weights
To find a feasible local minimizer of the low-rank MNE problem
(Equation 8) for given set of nuclear-norm regularization
parameters, a line search interior-point method designed to find
local minima of nonlinear, nonconvex programming problems
based on Ch. 19 of Numerical Optimization by Nocedal and
Wright (2006) is used. The interior-point method iteratively
searches for a local minimumof the low-rankMNEminimization
problem (Equation 8) by recursively solving:

[

∇
2
xxL, A

T

A, 0
︸ ︷︷ ︸

H

] [

px
−p3

]

= −

[

∇xL

w
︸ ︷︷ ︸

KKT

]

(12)

for the weight and Lagrange multiplier update directions,
px and p3, respectively, where a weight vector xT =
[

a, hT, QT
•,1, · · · ,Q

T
•,r

]

is defined. The matrix A is the full
Jacobian matrix of the constraints and w is a concatenation of
the equality constraints (i.e., wT =

[

wT
1 , · · · ,w

T
r

]

). The matrix
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labeled H will be referred to as the constrained Hessian and
the vector on the right-hand-side contains the KKT conditions
(Prop 1 in the Appendix). For nonconvex problems, it can
be useful to employ an optimization method that reduces the
chances of converging to a saddle point of f . The implementation
of the interior-point algorithm from Nocedal and Wright (2006)
has the advantage of circumventing saddle points by adding a (1
+ D + 2rD) × (1 + D + 2rD) positive diagonal shift matrix, δI
where δ > 0, to the Hessian of the Lagrangian, ∇

2
xxL + δI, to

maintain proper matrix inertia of the constrained Hessian. The
matrix inertia is specified by the number of positive eigenvalues,
m, the number of negative eigenvalues, n, and the number of
eigenvalues equal to zero, l, of the constrained Hessian. To
prevent convergence of the interior-point method to a saddle
point of f , we maintain a matrix inertia of m = 1 + D + 2rD
(the number of rows/columns of ∇

2
xxL), n = rD (the number

of constraints), and l = 0. If the constrained Hessian does not
meet this condition, the inertia is enforced by adjusting δ until
this condition is satisfied.

The trouble with using this interior-point method to solve
Equation (8) is that the size of matrixH is (1+D+ 3rD)× (1+
D + 3rD) which can be prohibitively large for typical memory
constraints and lead to substantial time spent solving the linear
system (Equation 12). Some alternative approaches are to use
quasi-Newton methods such as the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Nocedal and
Wright, 2006) or gradient-only heuristics like stochastic gradient
descent (Bottou, 2010). Another option is to divide the
weights into blocks and perform block coordinate descent using
constrained block Hessians (Wright, 2015). We chose the latter
to better exploit the structure of the regularization function
(Equation 4).

The block coordinate descent algorithm cyclically solves the
subproblems:

block k subproblem:







min
a,h,Q•,k

f (a, h,Q)

subject to wk = Ak,kQ•,k = 0
(13)

until the KKT conditions (Prop 1 in the Appendix) and
second-order sufficient conditions (Prop 2 in the Appendix) are
satisfied. The block coordinate descent is performed by cyclically
minimizing the cost function with respect to the kth block of

weights xT
k
=

[

a, hT,QT
•,k

]

using the interior-point algorithm

described above to recursively solve:

[

∇
2
xkxk

L, A(k)T

A(k), 0
︸ ︷︷ ︸

Hk

] [

pxk
−p3k

]

= −

[

∇xkL

wk

]

(14)

while holding the remainingQ•,j (j 6= k) fixed. The new indexing

on the Jacobian A(k)T = ∇xkw
T
k
is the Jacobian of the kth

block constraints and is a D × (1 + 3D) matrix. Proof that the
block coordinate descent algorithm converges to a feasible local
minimizer of the low-rank MNE problem (Equation 8) appears
in Section 5.4 of the Appendix.

2.1.3. Hyperparameter Optimization
Now we turn to the procedure for setting the nuclear-norm
regularization parameters. In the globally optimal domain
(Prop 4 in the Appendix), the goal is to use nuclear-
norm regularization to find a globally optimal solution that
approximates a solution to the unregularized problem where
all ǫk = 0. Therefore, it makes sense to make the regularized
and unregularized problems as similar as possible by using the
minimal amount of regularization necessary to reach the globally
optimal domain. To do so, one can optimize each block of the
block coordinate descent such that ǫk is approximately equal to
the magnitude of the largest variance eigenvalue of ∇JL, which
will be defined as λL. A simple algorithm for achieving this is:
(i) optimize xk, then (ii) increase ǫk if ǫk < λL or decrease ǫk
if ǫk > λL, and then repeat steps i and ii until ǫk ≈ λL for
each block (see Algorithm 1 for a pseudocode implementation).
By contrast, in the locally optimal regularization domain we
instead adjust ǫk to find the model that best generalizes to novel
data in a cross-validation set. This approach to hyperparameter
optimization is in common use in modern machine learning
applications (Bergstra et al., 2011; Bergstra and Bengio, 2012).

Our approach to the hyperparameter optimization in the
locally optimal domain exploits the structure of the block
coordinate descent subproblems (Equation 13) where the
gradient and Hessian of the block k subproblem only depends
explicitly on ǫk. Holding the remaining Q•,j (j 6= k) fixed, the
kth block is optimized while varying ǫk via a grid search on the
domain ǫk ∈ [0, ǫmax] where ǫmax is chosen to be large enough
such that Q•,k ≈ 0 when ǫk = ǫmax. We can estimate the
generalization ability of the ith solution x∗(i) for a chosen value
of the ǫk parameter, ǫki ∈ [0, ǫmax], by evaluating the negative

log-likelihood LCV(x
∗(i)) where yt and st are now samples drawn

from the cross-validation set. If LCV(x
∗(i)) ≤ LCV(x

∗(j)) for all
ǫkj ∈ [0, ǫmax] of the block k subproblem (Equation 13), then

x∗(i) is taken to be the most generalizeable estimate of the weights
for the block k subproblem. The optimization completes when
several full cycles through all r blocks of the block coordinate
descent algorithm fail to provide a further decrease in LCV(x).
For a pseudocode implementation, see Algorithm 2.

We tested both of these algorithms and found the locally

optimal domain to be most appropriate for recovering receptive

field components. In the applications of low-rank MNE to

model neurons and avian auditory neurons (for details about

the data, see the methods section), we found the minimum

amount of regularization necessary to reach the globally optimal

domain was unreasonably large (ǫk ∼ 1 or more). These large

regularization parameters were found to severely attenuate the

variance of the recovered components (i.e., the eigenvalues of J).

For instance, the variance of the components of J reconstructed

from the model neuron data was two orders of magnitude lower

than the ground truth. This attenuation was accompanied by

substantial distortion of the components. Similarly, solutions

that were found in the locally optimal domain had much better

generalization ability across both the model neurons and the
avian neurons as measured by evaluating the negative log-

likelihood on the cross-validation sets.
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Algorithm 1 Low-rank MNE block coordinate descent algorithm (globally optimal domain)

1: inputs: maximum rank r, paired data samples
(

st , yt
)

for all t, initial guess for weights a, h, U, and V, set πk for all k = 1, · · · , r,
maximum number of iterationsMmax, regularization parameter precision δǫ , convergence precision δx

2: initialization: J← UVT

3:

4: form← 1, · · · ,Mmax do

5: for k← 1, · · · , r do
6: a′ ← a, h′ ← h, U′ ← U, V′ ← V

7: J← J− U′
•,k
V
′T
•,k

⊲ remove block k from J

8: λL ← max
(

|λmax

(

∇JL
)

|, |λmin

(

∇JL
)

|
)

evaluated with primed variables and J

9: do

10: ǫk ← λL
11: a′, h′, U′

•,k
, V′
•,k
← Solve the block k subproblem (Equation 13) using an

12: interior-point method algorithm with inputs a′, h′, U′
•,k
, V′
•,k
, J,

13: ǫk, πk, (st , yt) : ∀t
14: λL ← max

(

|λmax

(

∇JL
)

|, |λmin

(

∇JL
)

|
)

⊲ update eigenvalue threshold
15: while ǫk 6∈ [λL, λL + δǫ]
16: J← J+ U′

•,k
V
′T
•,k

⊲ include kth block solution in J

17: a← a′, h← h′, U← U′, V← V′

18: if
∥
∥x− x′

∥
∥
2
≤ δx and {ǫk : ǫk 6∈ [λL, λL + δǫ] ,∀k} = ∅ then

19: (where x =
[

a, hT,QT
•,1, · · · ,Q

T
•,r

]

and x′ is the analogous vector for primed weights)
20: break ⊲ optimization has finished

21:

22: outputs: a, h, J

The global optimization procedure outlined in Algorithm 1

runs very quickly, usually finding a solution within 1–4 hours for
problems of size D = 400 to 1, 200 and r = 1 to r = 20 (see
Section 4.8 for hardware/software details). The local optimization
procedure in Algorithm 2, on the other hand, can range from
on the order of less than an hour to a day for problems of
size D = 400 to 1, 200 and r = 1 to r = 20. It should be
said, however, that the goal of these algorithms are to find good
solutions to Equation (8) but we made little attempt to optimize
these algorithms for speed. There are two primary bottlenecks
in the optimization: (i) the choice of subproblem solver and
(ii) the choice of hyperparameters to use in the optimization.
Since the optimization procedure is highly customizeable, the
timing of these bottlenecks will be highly variable on the
choices made by the investigator. For instance, solving the block
subproblemmay be sped-up by using L-BFGS instead of the exact
Hessian on the larger D problems. Furthermore, there are other
approaches that may be taken in place of Algorithm 2 to choose
hyperparameters. In particular, one can replace the blockwise
grid search with a random search for the hyperparameter settings
(Bergstra and Bengio, 2012) or use Bayesian optimization
(Brochu et al., 2010; Snoek et al., 2012). We performed some
preliminary analysis using Bayesian optimization and found it to
be a competitive alternative to Algorithm 2 that may speed up
the optimization for large D.

2.1.4. Rank Optimization
Depending on the application, there are a several possible ways to
choose the rank of J in the low-rank MNE model. For instance,
one may intend to find the optimal rank of J, ropt, defined

as the rank of J of the model that has the best generalization
performance to novel data. In this instance, an unregularized
model would be fit by trying different signs,πk, for the constraints
and maximum rank r and then choose the ropt model as that
which makes the best predictions on novel data. For a nuclear-
norm regularized model, the fit is more flexible since r can
instead be treated as an upper bound on the rank of J while
the regularization can be used to lower the rank, if necessary. In
this case, ropt can instead be determined by finding some model
of maximum rank r where J is rank-deficient with respect to at
least one πk = 1 and πk = −1 constraint as determined by the
number of negative and positive eigenvalues of J. The justification
for this approach is that if the regularization procedure leads
to U•,ropt+1 = V•,ropt+1 = 0 for trials with both signs of
πk = ±1, the value of the cost function (f ) is left unchanged
from the ropt model. Adding additional columns in U and V

beyond ropt + 1 would be equivalent to optimizing the ropt + 1
model. Procedurally, one can guess r that is ostensibly an upper
bound on ropt and if there is at least one vector Q•,i = 0 for
πi = −1 and at least one vector Q•,j = 0 for πj = 1 that is
zero in Q, then ropt = rank(Q). This is equivalent to splitting J

into a sum of a positive semidefinite and negative semidefinite
matrix, J = Jpsd + Jnsd, where the optimal rank would be rank(J)
when both Jpsd and Jnsd are composed of rank-deficient bilinear
factorization matrices (i.e., rank(Qpsd) < rpsd and rank(Qnsd) <

rnsd). If this condition is not met, however, the maximum rank, r,
must be increased and the optimization must continue with extra
columns appended to Q and each πk set appropriately until this
condition is met. Since we are looking for the optimal rank in
our applications, we use this procedure for determining the rank.
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Algorithm 2 Low-rank MNE block coordinate descent algorithm (locally optimal domain)

1: inputs: maximum rank r, maximum range for regularization parameters ǫmax, number of regularization parameter grid points
ngrid, training set indices Ttrain ⊆ {1, · · · ,N} and cross-validation set indices TCV ⊂ {1, · · · ,N} where Ttrain ∩ TCV = ∅, paired
data samples (st , yt) for all t ∈ Ttrain ∪TCV, initial guess for weights a, h,U, and V, set πk for all k = 1, · · · , r, maximum iterations
Mmax, convergence precision δp, maximum failures to find a better solution σmax

2: initialization: J ← UVT, Lbest ← L(a, h,U,V)|TCV (evaluated over data indices t ∈ TCV), regularization grid resolution
δǫ ← ǫmax/ngrid, early completion switch σ ← 1

3:

4: form← 1, · · · ,Mmax do

5: for k← 1, · · · , r do
6: a′ ← a, h′ ← h, u′ ← U•,k, v

′ ← V•,k
7: J← J− u′v

′T ⊲ remove block k from J

8: for n← 0, · · · , ngrid do
9: ǫk ← nδǫ

10: a′, h′, u′, v′ ← Solve the block k subproblem (Equation 13) using an
11: interior-point method algorithm with inputs a′, h′, u′, v′, J,
12: ǫk, πk, (st , yt) : ∀t ∈ Ttrain

13: L′ = L(a′, h′, J+ u′v
′T)|TCV

14: if L′ < Lbest − δp then

15: Lbest ← L′

16: a← a′, h← h′, U•,k ← u′, V•,k← v′

17: σ ← 0
18: else if L′ ≤ L(a, h,U,V)|TCV then

19: a← a′, h← h′, U•,k ← u′, V•,k← v′ (or skip for monotonic convergence)

20: J← J+ U•,kV
T
•,k

⊲ include block k’s solution in J

21: if σ = σmax then

22: break ⊲ optimization has finished

23: σ ← σ + 1

24:

25: outputs: a, h, J

We initialize the πk parameters such that Jpsd and Jnsd have equal
maximum rank.

If instead one intends to find a compressed representation of J
where r < ropt, the only remaining unset parameters are πk. This
can be done by solving the problems with different choices of πk

and keeping the model that fits the best either to the training or
cross-validation sets. Instead of solving models that enumerate
all possible choices of πk for all k = 1 · · · r, one can instead take
a shortcut by solving lower-rank models of rank rn, incrementing
the rank of the model (e.g., rn+1 = rn+1), enumerating solutions
with πk fixed for all k ≤ rn, and repeating until reaching a rank
r model. Alternatively, one can also use other principled means
for choosing πk including the eigenvalues of J from the full-rank
MNE model or from an unconstrainted low-rank MNE model.
One may also attempt to do away with the πk parameters entirely
by using one of the alternative constraint formulations (Section
5.1 in the Appendix).

2.2. Testing the Algorithm on Model
Neurons
We now illustrate the proposed method by analyzing responses
of model neurons. Details about the model data may be found
in Section 4.4 in methods. First, we tested the method on

two model neurons with different signal-to-noise ratios (SNR)
(cf. Figure 1). Both the low-rank and full-rank approaches
yielded good reconstructions in the high SNR regime, finding
all of the four relevant components of the model. The subspace
overlap (Equation 22 in methods) between the set of model
and reconstructed dimensions was 0.933 ± 0.007 and 0.909 ±
0.008 for the low and full-rank approaches, respectively. The
STC method that is standard for noise-like stimuli (Schwartz
et al., 2006) performs worse here, because it is not designed
to work with stimuli drawn from correlated distributions, with
subspace overlap of 0.32 ± 0.05. We note that although the
low-rank and full-rank approaches recover the component
subspace with reasonable accuracy, the low-rank models produce
much more accurate predictions on the test sets (0.233 ±
0.009 vs. 0.32 ± 0.02 for the negative log-likelihood of low-
rank and full-rank models, respectively). The main advantage
of the low-rank approach becomes apparent in the ultra-low
SNR regime. Here, the full-rank model failed to recover all
of the relevant components finding only two out of four
with a subspace overlap of 0.17 ± 0.05. In contrast, the
low-rank model correctly determined the number of relevant
components with a subspace overlap of 0.83± 0.02. This is much
better than the STC method where the subspace overlap was
0.30± 0.06.
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FIGURE 1 | (A) Two model neurons were generated from a synthetic receptive field, one with high SNR and another with low SNR. (B) Low-rank MNE, full-rank MNE,

and STC models were optimized for both of the neurons and the mean top four largest magnitude components of J were plotted. (C) These mean components

correspond to the largest variance eigenvalues in the eigenvalue spectra. The dashed lines in the eigenvalue spectra correspond to the eigenvalues of the ground

truth, JGT. (D) Low-rank models with maximum rank ranging over r = 1 · · · 8 were trained on four different jackknives of the data set where for each jackknife the data

set was split into a training and cross-validation set. The predictive power of each jackknife’s trained models evaluated on its cross-validation set is shown to saturate

when r ≥ ropt = 4. (E) Quantitative comparisons of the receptive field reconstructions from the three methods is compared based on each model’s predictive power

on the test sets (top) and the subspace overlap onto the ground truth (bottom).

From a qualitative point of view, the low-rank model
performs better than the full-rank model because the matrix
J is less corrupted by noise present in the data. This can be
seen by looking at the eigenvalue spectra of J in Figure 1C

where the full-rank models recover a nearly full-rank J matrix
dominated by fictitious components. The large number of
fictitious components contribute substantially to the variance
of J leading to an overall decrease in the predictive power
of the model. The significance of these fictitious components
becomes even more substantial in the low SNR regime where
their eigenvalues nearly engulf the eigenvalues of the relevant
components. By contrast, the low-rank models exhibit a sparse
eigenvalue spectrum of rank consistent with the ground truth in
Figure 1A.

We also found fits of the low-rank model to be resilient even
when the rank of U and V was larger than the ground truth. For
example, in Figure 1D, we show the results for fitting low-rank
models with rank r = 1, · · · , 8 (using signs of the eigenvalues
of the mean J matrix from the full-rank models to initialize the
πk values). Here, the negative log-likelihood evaluated on the
cross-validation set saturates as r becomes greater than or equal
to the ground truth value of 4. Above r = 4, the regularization

procedure eliminates the fictitious dimensions that infected the
full-rank models leading to a rank-deficient solution equivalent
to the r = 4 model. On the other hand, the models with r < 4
have a higher negative log-likelihood because, by design, they
cannot recover all four components and represent a low-rank
compression of J.

2.3. Application to Avian Auditory Data
We now show that the proposed low-rank MNE method offers
substantial improvement in our ability to resolve multiple
relevant components of sensory neurons’ receptive fields by
applying it to recordings from the avian auditory forebrain
(Gill et al., 2006; Amin et al., 2010). For details about these
recordings and data processing, see Section 4.5 in methods.
First, the low-rank method produces much sharper components
that are more localized in both frequency and time compared
to components of the full-rank estimation (Figures 2A,B). The
improvement over the STC components is even more dramatic
(Figures 2A,B). This difference becomes more pronounced for
components that account for lower variance in the neural
response. For such components, the low-rank method can
resolve localized regions of sensitivity under the broad bands
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FIGURE 2 | Low-rank MNE, full-rank MNE, and STC models were optimized on a dataset of 50 avian auditory forebrain neurons. Logical OR and logical AND FB

models were fit using linear combinations of the subspace components of each method. Logical AND FB models from two example neurons are shown (A,B). The

quality of each model is measured using the difference between the mean negative log-likelihood of the model and the linear MNE model evaluated on the test sets

and plots summarize predictive ability across the population of neurons (C). A bar plot quantifies the number of neurons in the population best fit by each model (D).

Note low-rank and linear MNE models outperform all STC and full-rank MNE models across the population.

that dominate in the full-rank method, e.g., for components in
columns 2–4 in Figure 2A. Quantitatively, reconstructions of
neural responses obtained with low-rankmodels yield universally
higher predictive power on novel data subsets compared to
the full-rank and STC models (Figure 2C). Importantly, the
full-rank models did not yield better predictions over the
linear one-component MNE models (J = 0) for all neurons.
Therefore, the additional variables in the full-rank model do
not yield any statistically significant components because the
full-rank model does not improve predictions on the test
sets relative to the linear model. This is despite the leading
components of the full-rank reconstructions bearing apparent
similarity to the top components of the low-rank reconstruction.
STC models made worse predictions than the linear MNE
models across all neurons as well. By comparison, the low-
rank optimization yielded better predictions on the test sets
compared to the linear model for 37 of the 50 neurons
(Figure 2D).

The ultimate utility of methods for receptive field
reconstruction is to produce models that can inform our
understanding of the transformations performed by high-
level sensory neurons. Toward that goal, one can subject the
components obtained from low-rank reconstructions to a

functional basis (FB) transformation (Kaardal et al., 2013).
This transformation aims to account for the observed neural
responses in terms of logical operations, such as logical AND/OR,
on the set of input components. By studying whether populations
of neurons are best fit by logical AND/OR functions, we can
learn whether populations of neurons in certain regions of the
brain compute primarily conjunctive or integrative functions of
their inputs. A conjunctive neuron would be selective toward
coincidences of multiple relevant inputs and corresponds to
a logical AND function. An integrative neuron is responsive
toward any relevant input and corresponds to a logical OR
function. Here we find that FB models based on logical AND
combinations overwhelmingly outperformed models based on
logical OR across the population where 40 of the 41 field L
neurons and 8 of the 9 CM neurons were best fit by logical AND
models (Figure 3). To gain intuitive understanding for these
results, we note that a logical AND operation is equivalent to a
logical OR followed by negation. These results therefore suggest
that logical AND better represents cases where invariances
are built into suppressive receptive field components. This is
because logical OR combinations often work well to approximate
invariance in neural responses that occur if any relevant stimulus
features are present, corresponding to the logical OR operation
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FIGURE 3 | The difference between the negative log-likelihood of the best

logical AND (LAND) and logical OR (LOR) models averaged across test sets is

plotted against Tr(J) where here J is averaged across jackknives. The

horizontal dashed line demarcates neurons best fit by logical OR models on

top from neurons best fit by logical AND models below. The vertical dashed

line separates neurons where the eigenvalue spectra of mean J are dominated

by negative variance on the left and positive variance on the right.

(i.e., if vk · st for any k is greater than some threshold, where vk
is a receptive field component, the neuron spikes in response
to sample t). When these components are all suppressive, this
implies that the neural response occurs if none of the relevant
features are present in the stimulus (i.e., if vk · st for any k is
greater than some threshold, the neuron is silent at sample t).
This would correspond to the logical AND model. Supporting
these arguments, we found neurons with stronger suppressive
components were better described by logical AND models over
logical OR models (Figure 3) with a t-test p-value of 0.1%.

3. DISCUSSION

By using low-rank MNE models that are resistant to both
overfitting and the biases of naturalistic stimuli, we have
estimated multiple components relevant to responses of neurons
from the avian auditory forebrain with much greater accuracy
than by prior methods. Interestingly, we found that receptive
fields of neurons from field L and CM, relatively high-level
regions of the avian auditory forebrain, were composed of few
components (r ≤ 20). This number is small enough for the
resultant models to provide interpretable representations of the
underlying receptive fields.

We demonstrated that the low-rank MNE models produced
better predictive models than full-rank MNE, STC, and linear
MNE models and did so with a fewer components than the
full-rank MNE models across the population of neurons. There
are several reasons why this improvement is observed. As
mentioned before, MNE models in principle produce better
reconstructions of the relevant components than STC for stimuli
drawn from distributions other than Gaussian white noise.
This was demonstrated in practice where we saw the STC

models performing worse than the low-rank and linear MNE
models on both model neurons and recordings from auditory
neurons subject to correlated stimuli. With regard to the full-
rank MNE models, the low-rank MNE models have three major
advantages: (i) the number of components necessary to optimize
is explicitly reduced, (ii) the optimization procedure uses
nuclear-norm regularization to eliminate fictitious components,
and (iii) significant components are recovered via a nonlinear
matrix factorization. The first reason is simply a matter of
reducing overfitting since fewer weights were estimated in the
low-rank MNE models than the full-rank MNE models. To the
second point, both the full-rank and low-rank MNE methods
used a form of regularization as an attempt to reduce this
overfitting but the early exiting procedure used by the full-
rank MNE method (Fitzgerald et al., 2011a) did not impose
defined structure on J while the low-rank MNE regularization
procedure directly eliminated components from J. Lastly, while
it may be approximately true in many cases, one cannot generally
assume that the size of the contribution of each component of J
toward the predictive power of an MNE model will correspond
to the variance of the component. In fact, we observed from
randomly generated low-rank MNE problems with suboptimal
local minima that an optimal component corresponding to
highest variance was not necessarily the component that led to
the best fit. This seems likely to be an important consideration for
other nonlinear matrix factorization methods as well. In contrast,
linear matrix factorizations like in the STC method where each
component is a local minimum of the matrix factorization has
a direct correspondence between the variance of the component
and quality of the low-rank fit.

Ultimately, since the optimization of full-rank MNE models
is convex, the weights that minimize the negative log-likelihood
represent the ground truth as captured by the training data.
Thus, if the full-rank MNE model’s representation of J is high
or even full-rank, the global solution of the low-rank MNE
optimization problem in the absence of regularization would also
be high or full-rank. In such cases, including our applications, it
is unsurprising that the locally optimal domain would produce
solutions that generalize significantly better than the globally
optimal domain for low-rank representations of J. This is
because the solutions in the globally optimal domain must have
large enough regularization parameters to eliminate all possible
higher-rank solutions; a requirement that is relaxed in the locally
optimal domain.

Overall, the efficiency of the low-rank optimization for the
extraction of multiple input components makes it possible
to begin to resolve a long-standing puzzle of how high-level
auditory responses can combine selectivity to sharp transients
with integration over broad temporal components. We find
that it is possible to reconstruct many more components more
accurately than was possible before. The results highlight an
interesting potential difference between high-level visual and
auditory responses. In vision, current studies (Serre et al.,
2007; Kaardal et al., 2013) show that logical OR models are
better at describing the neural computations while this initial
analysis suggests that logical AND operations are better at
explaining responses in the avian auditory forebrain. It is
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worth noting that both logical OR and logical AND models
could indicate the presence of invariance to certain stimulus
transformations. The difference is that logical OR models would
capture invariance constructed by max pooling responses among
excitatory dimensions whereas logical AND would capture
invariance constructed by max pooling among suppressive
dimensions. Here, pooling is used as an approximation to logical
OR; when applied to suppressive dimensions it converts to a
logical AND operation because of negation (that is, in the logical
AND model the response is observed if the stimulus has no
features that simultaneously strongly project onto any of the
receptive field components). Thus, one arrives at a potential
important difference between visual and auditory processing. In
the visual system (Serre et al., 2007), invariance is achieved by
max pooling across primary excitatory dimensions whereas in the
auditory system invariance is achieved by suppression.

4. METHODS

4.1. The First-Order and Full-Rank MNE
Methods
The full-rank MNE method (Fitzgerald et al., 2011a) solves the
convex, nonlinear program:

min
a,h,J

L(a, h, J) (15)

where L is the negative log-likelihood from before (Equation 2)
but with J directly optimized and without explicit regularization.
Since the full-rank MNE problem is convex, we find a global
optimum of L via conjugate gradient descent. As a mild form of
regularization, early stopping is used where the performance of
the model after each conjugate gradient descent step is measured
on a cross-validation set and the algorithm returns the weights
a, h, and J with minimal negative log-likelihood evaluated on
the cross-validation set. The early stopping criterion is to halt
optimization after 40 consecutive iterations of the conjugate
gradient descent algorithm fail to decrease the negative log-
likelihood evaluated on the cross-validation set. The quadratic
weights that form a subspace relevant to the neural response
are extracted via eigendecomposition in the same way as the
low-rank method (Equation 11).

First-order MNE models solve (Equation 15) with J fixed to
zero. The receptive field is approximated entirely by the linear
weights, h. Since the first-order MNE method is also convex, it is
fit using conjugate gradient descent with early stopping using the
exact same procedure as the full-rank MNE method.

4.2. Spike-Triggered Average (STA) and
Spike-Triggered Covariance (STC) Methods
The STA and STC methods are standard methods for analyzing
receptive fields of neurons stimulated by Gaussian white noise
stimuli (Schwartz et al., 2006). To calculate the STA, the
difference between a spike-weighted average of zero-centered

stimuli is computed:

hSTA =
1

Nspk

N
∑

t=1

ytst , (16)

where hSTA is a single component estimate of the receptive field.
Note that the STA can only compute one component. STC,
on the other hand, can estimate multiple components of the
receptive field. For STC, the difference of two covariancematrices
is calculated:

C =
1

Nspk

N
∑

t=1

ytsts
T
t −

1

N

N
∑

t=1

sts
T
t , (17)

one the spike-weighted mean stimulus covariance and the other
the mean stimulus covariance. As with the STA, the stimuli are
zero-centered. The matrix C is diagonalized:

C = �6�T (18)

and the relevant components are spanned by the eigenvectors
corresponding to the largest variance eigenvalues. Determining
where to cut-off the eigenvalue spectrum is done by randomly
shuffling the responses in the training set to break correlations
between the stimuli and responses (Bialek and de Ruyter van
Steveninck, 2005; Rust et al., 2005; Schwartz et al., 2006;
Oliver and Gallant, 2010) and then generating randomized STC
matrices, Crand, from Equation (17). All eigenvalues of C with
larger variance than the largest variance eigenvalue of Crand are
considered significant and form the estimate of the relevant
subspace.

Since STC is not equipped with a nonlinearity, we optimize
a full-rank MNE model with all st projected into the relevant
components from above and use the resulting weights to estimate
the predictive power of the model on the test set. If �r is the
rank r STC basis, then the stimulus space is transformed into the

reduced stimulus space, s
(red)
t = �T

r st , and then the full-rank
MNE problem (Equation 15) is minimized on the training set
projected into this reduced stimulus space.

To contend with the strong correlations present in the
data sets, we repeated the above STC analysis with stimulus
correlations removed through data whitening. Data whitening
removes the mean correlations between elements of the stimulus
space such that the mean covariance of the stimulus samples is
the identity matrix. This can be a beneficial pre-processing step
for STC models since STC models are biased when the stimulus
space is not Gaussian white noise distributed. There are standard
ways of whitening data known as principal component analysis
(PCA) and zero-phase (ZCA) whitening (Bell and Sejnowski,
1997), both of which we implemented. In both cases, the first step
is to take the singular-value decomposition of the mean centered
(mean stimulus vector subtracted) stimulus covariance matrix:

1

N

N
∑

t=1

(st − 〈st〉)(st − 〈st〉)
T = LELT. (19)
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Then, for the PCA whitening transform the stimuli are

transformed as s
(PCA)
t = E−

1
2 LTst while the ZCA whitening

transforms the stimuli as s
(ZCA)
t = LE−

1
2 LTst . From here,

the procedure is the same as before with the whitened stimuli
substituted for st . We observed, however, that these decorrelation
methods performed poorly, producing receptive fields that lacked
discernible structure and with worse predictive power compared
to standard STC.

4.3. Functional Basis Method
The FB method (Kaardal et al., 2013) was used to recover
biologically interpretable characterizations of the receptive field.
This is done by modeling the nonlinearity as logical circuit
elements where a linear combination of the inputs determine the
probability of a spike. The two most basic descriptions are logical
AND:

PAND(y = 1|st) =
∏

k

1

1+ e−bk−ζ1c
T
k
st−ζ2(c

T
k
st)2

, (20)

and logical OR:

POR(y = 1|st) = 1−
∏

k

[

1−
1

1+ e−bk−ζ1c
T
k
st−ζ2(c

T
k
st)2

]

, (21)

where bk are thresholds, ζ1 is a linear weighting, ζ2 is a
quadratic weighting, and ck are FB vectors that are formed by
taking linear combinations of the relevant components from
� (Equation 11). The functional basis is fit by minimizing the
negative log-likelihood using an L-BFGS algorithm. However,
since it is a nonconvex optimization and therefore not guaranteed
to converge to a global minimum, the optimization is repeated
with multiple random initializations until 50 consecutive
optimizations fail to produce a model that better fits the training
set data. The FB model that best fits the training data is returned.

In prior applications, the FB method has produced basis
vector spaces that are equal to ropt. However, this need not be
the case and the FB method may yield a basis with more or
less dimensions than the underlying subspace. The optimal basis
size can be determined by varying the number of components
until the negative log-likelihood evaluated on the cross-validation
set saturates to desired accuracy. The minimal number of
components necessary to reach saturation is the desired number
of basis vectors.

4.4. Synthetic Data
The low-rank MNE method was tested on synthetic data
generated from model receptive fields: (i) a neuron with a high
SNR and (ii) a neuron with a low SNR. In this case, high
and low SNR correspond to the relative decisiveness of each
model neuron’s response to a stimulus. For instance, a high
SNR model neuron is more likely to have a nonlinearity where
P(y = 1|s) is close to 0 or 1 compared to a low SNR model
neuron which is more likely to take on intermediate probabilities.
Using Equation (1), high and low SNR model neurons can be
generated from a given set of weights by adjusting the gain of z.
Concretely, the model neurons were generated by taking a sum of
the weighted outer-products of the orthonormal vectors stored in
the 400× 4 (D× ropt) matrix F (Figure 1A) yielding the ground
truth matrix, JGT = FWFT. The linear weights, hGT, were set
to zero while the threshold, aGT, and the 4 × 4 diagonal weight
matrix,W, were independently rescaled to produce a mean firing
rate 〈y〉 ≈ 0.2 by averaging P(y = 1|st) over t where st is
the tth 20 × 20 pixel stimulus sample drawn from a correlated
Gaussian distribution unrolled into a D = 400 vector. The
diagonal elements of the rescaled weight matrix,W, appear as the
dashed lines in Figure 1C and correspond to the eigenvalues of
JGT. Note that the eigenvalues of JGT have larger variance for the
high SNRmodel neuron compared to the low SNRmodel neuron
which corresponds to the high SNR model having a higher gain.

The correlated Gaussian stimuli were generated by first
drawing sample vectors, ŝt , from a normal distribution with zero
mean and unit variance. A correlated Gaussian stimulus vector

is then obtained via st = C
1
2
covŝt where Ccov is a covariance

matrix constructed from natural images. Explicitly, Ccov =
1

nsamp

∑nsamp

t=1 κ tκ
T
t where κ t is the tth sample of a total of nsamp

samples drawn from a set of 20×20 images unrolled into vectors.
The responses were binarized into spikes by generating a list of
uniformly distributed random numbers, ξt ∈ [0, 1]. If ξt < P(y =
1|st), then yt = 1; otherwise, yt = 0. The total number of spikes
was 11,031 for the high SNR model and 10,434 for the low SNR
model. The same 48,510 stimulus samples were used as stimulus
input to the model neurons. All models (first-order MNE, low-
rankMNE, full-rankMNE, and STCmodels) were trained, cross-
validated, and tested on 70%/20%/10% nonintersecting subsets of
the data samples, respectively. In these proportions, the results
were validated via jackknife analysis where four training, cross-
validation, and test sets were defined by circularly shifting the
sample indices in each set upward by 25% intervals of the total
number of samples in the set (t← t + N/4; see Figure 4).

FIGURE 4 | The data samples for each neuron are divided into 70% training (green), 20% cross-validation (blue), and 10% test (red) sets. The samples that appear in

each set are varied between 4 jackknives.
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4.5. Avian Data
Data from the CRCNS database provided by the Theunissen
laboratory was composed of in vivo electrophysiological
recordings from anesthetized adult male zebra finches subjected
to auditory stimuli (Gill et al., 2006; Amin et al., 2010).
The recordings captured single-neuron action potentials from
the auditory mid-brain, specifically 143 neurons from the
mesencephalicus lateral dorsalis (MLd), 59 neurons from the
ovoidalis (Ov), 37 neurons from the caudal mesopallium (CM),
and 189 neurons from field L (L); the latter two of which
are the focus of this paper. The temporal sampling resolution
of the response was 1 ms. Two types of auditory recordings
were used to stimulate action potentials: (1) 2 s samples of
conspecific birdsong from 20 male zebra finches and (2) 10
synthetic recordings composed of sums of spectro-temporal
ripples. Both stimulus types were bandpass filtered between
250Hz and 8 kHz. These stimuli were presented to the zebra
finches through speakers in a sound-attenuation chamber and
each stimulus was repeated up to 10 times.

We processed the stimuli using MATLAB’s spectrogram
function on each sound clip and adjusted the frequency
resolution of the spectrograms to find a reasonably well balanced
compromise between the frequency and temporal resolution.
Each Hamming window of the spectrogram had a 50% overlap
with its neighbors. We found that a 250 Hz frequency resolution,
which is coupled with a 2 ms temporal resolution, demonstrated
a reasonable spectro-temporal resolution in the linear weights (h)
of first-order MNE models where structure of the receptive field
could be resolved and there were plenty of stimulus/response
pairs for model fitting. The spike times, each corresponding to
one spike, were accumulated in 2 ms bins across all trials of an
auditory recording. Any 2 ms period without any spikes was set
to zero. Since the number of spikes in a bin could be greater
than one, the spike count was divided by the maximum number
of spikes across temporal bins ymax = max(y1, · · · , yN), (yt ←
yt/ymax). This ensured that the binned response was within the
required range yt ∈ [0, 1] and effectively corresponds to reducing
the bin width by ymax. The stimulus samples were assigned by
extracting 40–60 ms windows from the spectrogram preceding
the neural response at yt , excluding frequency bins well above and
below the receptive field structures observed in h, and unrolling
each spectro-temporal window into a stimulus feature vector,
st . The response/stimulus pairs were then randomly shuffled to
ensure that the training sets each provided a wide sampling of
the response/stimulus distribution.

We selected 41 of the 189 field L neurons and 9 of the 37
CM neurons for analysis. These neurons were chosen based
on whether a spectro-temporal window of the stimuli could
be identified that produced an estimate of a single-component
receptive field with an observable structure. For each neuron,
the STA (Schwartz et al., 2006) and first-order MNE methods
were used to extract this component and the spectro-temporal
window for each neuron was manually adjusted such that the
estimated receptive field amplitude was confined to the spectro-
temporal window. We did not use STC or second-order MNE
methods for this pre-processing step because the computation of
these second-order methods are relatively slow compared to the

aforementioned first-order methods and the first-order methods
appear to produce a single component that is a weighted average
of the second-order components. Since the stimulus samples
were spectro-temporally correlated, the STA suffered from bias
leading to single component receptive field estimates covering
excessively large spectral and temporal ranges when compared
to the smaller spectro-temporal extent of the more appropriate
MNE models. Furthermore, the STA was prone to yielding
structure even when the temporal window was set far (e.g., >100
ms) from the spike-onset time where theMNEmethods found no
observable structure. By contrast, we found the first-order MNE
method to be more reliable and less misleading, so first-order
MNE was ultimately chosen to determine the spectro-temporal
windowing of the neurons. The chosen neurons were then those
that exhibited structure in the first-order MNE receptive field
estimate determined by visual inspection. This procedure if
anything biases the results toward greater performance of linear
models. Despite this potential bias, we found that low-rank
models outperformed the models based on one component. It
is possible the relative improvement would be greater for other
neurons not considered here.

The number of stimulus samples ranges from 9,800 to 58,169
with a median sample size of 42,474 and the spike counts are
between 276 and 29,121 with amedian count of 6,120. First-order
MNE, low-rank MNE, full-rank MNE, STC, and FB models were
trained, cross-validated, and tested on 70%/20%/10% of the data,
respectively, over four jackknives incremented in the same way as
was done with regard to the model neuron data (i.e., Figure 4).

4.6. Data Analysis
Since we knew already that ropt = 4 for the model neurons, we fit
all r = 1, · · · , 8 low-rank MNEmodels demonstrating saturation
of cross-validation performance at a r = ropt = 4 model. For the
avian data, ropt was not known a priori so we instead fit low-rank
MNE models with a maximum rank of r = 20 which satisfied
the conditions set by the rank optimization section (above) where
less than 10 of each positive and negative eigenvalues exceeded a
magnitude greater than 1 · 10−4 on the majority of all jackknives
for each neuron. A summary of the specific parameters used in
Algorithm 2 to solve the low-rank MNE problems may be found
in Table 1. We fit low-rank MNE models using both the stricter
monotonic convergence approach and the looser nonmonotonic
convergence approach in Algorithm 2 and found the difference
in predictive power on the test sets between the two models
to be insignificant. However, the nonmonotonic convergence
approach had a tendency to produce sparser eigenvalue spectra
of J so we opted to present the results from this version of the
algorithm instead.

Two measurements were used to evaluate the quality of the
our models. The overlap metric (Fitzgerald et al., 2011a):

O(X,Y) =

r

√

|Det
(

XYT
)

|

2r

√

|Det
(

XXT
)

| 2r
√

|Det
(

YYT
)

|
(22)

measures how well the receptive field is recovered as measured
on an interval O ∈ [0, 1] where 0 means the two
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subspaces, X,Y (X and Y are generic matrices and unrelated to
any other variables defined in the paper), are complementary
while 1 means the subspaces span the same range space. The
overlap metric allowed us to compare the quality of the ropt
recovered vectors of highest variance in � (Equation 11) to the
model neuron subspace defined in the matrix F. Of course, since
F was not available for the avian neurons, this measure was not
used to evaluate solutions on the avian data. A second measure
of the quality of the fit was the predictive power of the models in
the reserved test sets. This was done by calculating the negative
log-likelihood Ltest(a, h, J) evaluated over the test sets composed
of the remaining data samples that were not used to train or
cross-validate models (see Figure 4). In this latter assessment,
models with minimal Ltest were the best at predicting neural
responses and assumed to recover better approximations of the
underlying receptive field. Our application of these assessments
to the model neurons were consistent with this assumption
(Figure 1).

Once the mean components were recovered from Jsym
averaged across jackknives, the FB method was applied to
the avian data using the same data divisions as before (4
jackknives with 70%/20%/10% samples reserved for training,
cross-validation, and testing). The FB basis set size was
determined by finding the number of vectors, ck, necessary to
saturate the negative log-likelihood up to a precision of ∼ 10−4.
Both logical AND and logical OR functions were fit for each
neuron.

4.7. Resolving Inconsistent Optimal Rank
In cases where model parameters are determined from multiple
training and cross-validation sets, there is a risk that, due to

TABLE 1 | Summary of parameter values used in our application of Algorithm 2.

Parameter Value Definition

r Varies Maximum rank of J

π1, · · · ,πr Varies Constraint signs

ǫmax 0.5 Maximum value of the regularization

parameters

ngrid 501 Number of different values the

regularization parameter can assume

forming a uniform grid from 0 to ǫmax

Ttrain 70% of samples Indices of data samples that form the

training set

TCV 20% of samples Indices of data samples that form the

cross-validation set

Mmax 20 Maximum number of iterations of the

block coordinate descent algorithm

δp 0 (machine

precision)

Convergence precision

σmax 3 Number of allowed failures to improve

cross-validation performance

Since the convergence precision, δp, is set to zero, the algorithm converges when the

negative log-likelihood evaluated on the cross-validation set does not decrease above

machine precision. The constraint signs are assigned to equal numbers of positive and

negative components.

the unique biases of each data set’s sampling of stimulus and
response space, the datasets may produce weights that disagree
on the value of ropt, the optimal rank of J. For such cases, we
use a statistical approach based in random matrix theory as
a standard for deciding which eigenvalues of the mean 〈Jsym〉
(Equation 11) across jackknives are significantly distinguishable
from eigenvalues dominated by noise. The logic behind this
statistical approach is as follows. Suppose that 〈Jsym〉 is a large
(D ≫ 1) matrix that comes from a distribution of random
symmetric matrices Ĵ with elementwise mean 〈Ĵi,j〉 = 0 and

variance 〈Ĵ2i,j〉 = δ̂2. What is the probability that the kth

eigenvalue of 〈Jsym〉 comes from this distribution of random
matrices?

According to the Wigner semi-circle law, in the limit D→∞
the eigenvalues of random symmetric matrices of this type follow

the probability distribution P(β) = 1

2πδ̂2

√

4δ̂2 − β2 for |β| ≤

4δ̂2 and 0 otherwise. In other words, the probability distribution
is bounded at −2|δ̂| ≤ β ≤ 2|δ̂| and β outside of these
bounds is asymptotically improbable. Thus, if we can generate
this probability distribution, we can define a principled method
to find the mean optimal rank 〈ropt〉 using the bounds of the
eigenvalue distribution, P(β), as a null hypothesis. Unfortunately,
we do not know the probability distribution from which 〈Jsym〉
is drawn so the analytic probability distribution is out of reach;
but we can assume a conservative estimate of the bounds of
the null hypothesis through an empirical estimate of a broad-
δ̂2 variance distribution. We make this empirical estimate by

generating random symmetric matrices Ĵ where Ĵi,j = ±〈J
(m,n)
sym 〉

and m, n are random integers on the interval [1,D]. The sign
on Ĵi,j is chosen with equal probability to ensure that 〈Ĵi,j〉 = 0

across the distribution while randomly drawing elements 〈J
(m,n)
sym 〉

ensures a constant 〈Ĵ2i,j〉 across i, j. By aggregating the magnitude

of the minimum and maximum eigenvalues from each of the
random matrices, an estimate can be made on the bounds of
the null hypothesis. With regard to this estimate of the bounds,
pk is defined as the probability that the magnitude of the kth
eigenvalue of 〈Jsym〉 is less than or equal to the magnitude of
the bounds. If pk < pthres where pthres ∈ [0, 1] is a significance
threshold, then the kth eigenvalue of 〈Jsym〉 is considered a
statistically significant outlier from the null distribution with
probability 1 − p. This estimate of the underlying probability
distribution is conservative because it is designed to have a large
variance and thus a large width for the semi-circle distribution
such that an eigenvalue β of 〈Jsym〉 is more likely to fall within
the bounds of the null distribution. For a pseudocode outline of
this algorithm, (see Algorithm 3).

4.8. Resources
The interior-point method, block coordinate descent
algorithm, and FB method were written in Python 2.7
using standard numerical packages numpy (version 1.11.1)
and scipy (version 0.18.1) and the machine learning package
Theano (version 0.8.2) (Al-Rfou et al., 2016). These packages
were installed through Anaconda (version 1.5.1) and were linked
against IntelMKL (version 1.1.2) for CPU parallelization of linear
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Algorithm 3 Statistical approach for choosing 〈ropt〉

1: inputs: Jsym ← 〈Jsym〉 averaged across jackknives, pthres, the number of random matrices to generateM
2: initialization: calculate the vector of eigenvalues β ← eig(Jsym) arranged in descending order of magnitude, initialize empty

vector ζ ← ∅, 〈ropt〉 ← 0
3:

4: form = 1 toM do

5: Ĵ← randomly sample D(D+ 1)/2 elements of±Jsym with uniform
6: probability and generate a D× D symmetric matrix.

7: ζ ←
[

ζ , |min(eig(Ĵ))|, max(eig(Ĵ))
]

⊲ Append magnitude of maximum and minimum

8: eigenvalues of Ĵ

9: for k = 1 to D do

10: p← 1
2M

∑2M
m=1 H(ζm − |βk|) ⊲ H(·) is the Heaviside step function

11: if p ≥ pthres then
12: break

13: else

14: 〈ropt〉 ← k

15:

16: output: 〈ropt〉

algebra operations. Theano was chosen because it conveniently
allows investigators to flexibly choose between using graphics
processing units (GPUs) or central processing units (CPUs) as a
backend to the optimization code without requiring modification
to the code itself. We initially experimented with using GPUs
to optimize the low-rank MNE models but found that the
limitation to 32-bit floating-point precision on the available
GPUs was inadequate without much hands-on tuning of the
optimization parameters of the interior-point method which was
not ideal for applications involving large datasets. In particular,
using 32-bit floating-point precision in the algorithm often led to
ill-conditioning of the Hessian matrix. These issues with 32-bit
floating-point precision were replicated on CPUs as well. On
the other hand, using 64-bit floating-point precision on CPUs
did not present any issues with convergence or ill-conditioning.
Consequently, we performed our low-rank MNE optimizations
on a cluster of CPUs using 64-bit floating-point precision.
The FB method, on the other hand, did not have any issues
with precision so we ran these optimizations on GPUs using
32-bit precision. The optimization of full-rank and first-order
MNE problems was done in C using OpenMP (version 4.0)
and OpenBlas (version 0.2.14) for CPU parallelization. Figures
were generated using MATLAB (version R2016b) and Inkscape
(version 0.92.1).
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