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Abstract
We study the dynamics and horizontal layering of homogeneous stably stratified turbu-
lence (SST) from the point of view of two-point correlation spectra. We retain the most
complete spectral description that is available in this axisymmetric setting, by computing
the angular-dependent spectra, so that we observe the anisotropy of the flow at each scale
— that is at a given wavenumber — and for each orientation of the wavevector — this cor-
responds to a given direction of separation of the two-point correlation. Moreover the flow
is decomposed into geostrophic and ageostrophic motion, in other words waves and vor-
tex contributions[14] also denoted toroidal/poloidal.[4] This complete statistical setting
therefore permits to study the interplay between waves and turbulent motion in different
regimes of stably stratified turbulence, characterized by the Reynolds and Froude non di-
mensional numbers. From results of high resolution Direct Numerical Simulations and of
a statistical model of freely decaying SST, we observe that the spectral characterization of
the flow structure brings to light the relevance of the Ozmidov scale for separating scales
which are strongly affected by the buyoancy force, although we also show that a refined
analysis of the anisotropic dynamics requires modal decomposition.

1 Introduction

Stably stratified homogeneous turbulence (SST) exhibits quasi-horizontal structures or-
ganized in vertically sheared layers, as shown long ago by in situ observations [17], in
laboratory experiments [10] and in direct numerical simulations [2] (DNS) (See Fig. 1).
The thickness of these layers seems to scale according to a unit value of a related Froude
number (see e.g. [16, 18]). However, at smaller scales, turbulent structures apparently re-
cover an isotropic state. In this context, Ozmidov introduces a length scale lO = (ε/N3)1/2

[12], where N is the Brunt-Väisälä frequency [N = (gdρ/dz)1/2 with ρ the mean density
gradient and g the gravity] and ε the dissipation. This scale is defined by stating the
equilibrium between inertial and buoyancy forces, also quantified by the Froude num-
ber Frl = v/Nl (with v the velocity of a structure of size l): structures larger than lO
(Frl � 1) are strongly influenced by stratification whereas structures smaller than lO
(Frl � 1) recover three-dimensional isotropy (see schamtic in Fig. 7-left). The Ozmi-
dov scale is therefore useful for characterizing the regime of SST in numerical simulations
[11, 1] or in experiments [15, 8]. In addition, theoretical models are also available for SST,
several of which rely on a length- and time-scale separation of velocity field u between
the geostrophic motion and the ageostrophic motion [13]:

u = ∇h × ψ︸ ︷︷ ︸
vortex

+∇hζ + uzz︸ ︷︷ ︸
wave
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Figure 1: Left and Middle panels: Spatial distribution of vorticity in high resolution (20483) stably
stratified turbulence DNS. N = π is the Brunt-Väisälä frequency, here corresponding to moderately
small Froude number of order 0.1. Left : horizontal plane cut; Middle: vertical plane cut. One clearly
observes both strong horizontal motion and vertical layering, as well as large-scale anisotropy and small-
scall more isotropic “worms”, corresponding to the difference of energy among scales and orientations
presented in Fig. 3 spectra. Right panel : Visualization of the 20483 DNS field in a vertical plane of
strongly stratified turbulence: isodensity fluctuations are shown in color. Isovorticity lines are shown in
black, and isolines of total density in blue.

(z is the unit axis that bears gravity) but very few address explicitly the geostrophic/ageo-
strophic modal decomposition dependence with the scale which is considered. This decom-
position for homogeneous stably stratified turbulence may also be called toroidal/poloidal
[4] or vortex/wave, [14] and is performed in spectral space by an algebraic projection of
the Fourier-transformed velocity field onto the Craya-Herring frame of reference [5, 9].

We propose here to study the scale-by-scale anisotropy of SST using spectra of two-
point velocity correlations focusing on the dynamics that creates anisotropy at different
scales. We especially focus on the vortex/waves decomposition of energy spectra and their
related spectral transfers, and especially on their dependence on the scale or wavenumber
k and orientation θk of the wavevector with respect to gravity axis (assuming axisymmetry,
therefore no azimuthal dependence).

Important questions we address in this work are: What is the anisotropic distribution
of energy (scales and direction) at large scales, and what are the relative amplitudes of
kinetic energy of vortex, waves and potential energy? How does the flow recover isotropy
in terms of its dynamics at smaller scales and is the Ozmidov scale relevant? What are the
relative contributions of geostrophic modes non linear interactions with respect to those
involving ageostrophic modes in the energy transfer T (k, θk) at different scales (where θk
is the orientation w.r.t. gravity)?

In order to discuss these questions and provide some answer to them, we have per-
formed high resolution DNS (20483) varying the Froude number so that the Ozmidov scale
lies either within the inertial spectral range or is much smaller than all the scales of the flow
(all scales anisotropic), so that we reproduce the dynamics of turbulence partially or fully
affected by stratification (in terms of length scales). The modal geostrophic/ageostrophic
decomposition is achievable in the corresponding velocity fields, and energy transfers can
be extracted. We compare the obtained statistics to results of a two-point statistical model
(EDQNM model, see [7]) that permits to reach Reynolds number regimes and above,
and moreover provides a refined analysis of the basic modal interactions (geostrophic-
mode-related or ageostrophic-mode-related) that constitute the complete energy trans-
fer. These refined decompositions are very hard to achieve even in modern state-of-the-
art DNS, by lack of statistical sampling after decomposition of the velocity statistics in
scales/angles/modes/contributions.
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We also use the two-point statistical spectral model of EDQNM type to investigate
the spectral anisotropy of SST with extended infrared, inertial and viscous ranges in order
to evaluate the presence of very large scale dynamics. Such a refined characterization of
SST in the homogeneous case is important for the estimate of mixing efficiency, as studied
experimentally in the paper by Micard et al. in the present ISSF 2016.

2 SST flow structure and overall dynamics

From initially isotropic turbulence in which density is a passive scalar, we apply strat-
ification by turning on gravity, and then let the flow decay under the action of viscous
dissipation and buyoancy force. The initial Froude numbers for the different simulations
vary between 10−1 and 10−3 for N varying between 3.1 and 25.1, and the Reynolds number
is of order 1000 in these high resolution 20483 DNS. Fig. 2-left shows the typical evolution
of kinetic energy with two essential features: (a) the larger the stratification, the slower
the decay with respect to the reference isotropic case at N = 0; (b) strong oscillations
appear due to the exchange of energy between waves kinetic energy and their potential
energy, as a sign of the large-scale vertical oscillating motion. These features also appear
on the predictions of the EDQNM statistical model for kinetic, horizontal and vertical
energies in Fig. 6-left. Accordingly, the kinetic energy spectra shown in Fig. 2-right show
a slight departure of the SST spectra from the k−5/3 Kolmogorov scaling.
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Figure 2: Left: Kinetic energy K decay and Right: Kinetic energy spectra. For isotropic turbulence and
for stably stratified turbulence at four different values of the Brunt-Vaisala frequency N . (20483 DNS
data)

3 Relevance of Ozmidov scale as parameter of two-point correlation spectra anisotropy

In kinetic energy spectra, the Ozmidov scale lO is expected to indicate a separation
between a large-scale spectral range which is strongly affected by stratification and is thus
rendered anisotropic, from a smaller-scale spectral range in which the flow starts to recover
a more isotropic energy distribution. Consistently with this scale complexity, observations
of the spatial distribution of vorticity in Fig. 1 shows large-scale features resembling that
of two-dimensional turbulence in the horizontal plane, whereas smaller three-dimensional
vortex filaments are observed. Fig. 3 shows the different kinetic energy density spectra
E(k, θk). First, note that they retain the directional dependence with the orientation of
the wavevector, whereas kinetic energy spectra of Fig. 2-left shows spherically integrated
spectra, thus discarding the explicit θk dependence. The two bottom panels of Fig. 3 show
that in the initial condition, or later in the unstratified decay, energy density spectra in
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all directions collapse. However, when stratification is present, the energy density spectra
for horizontal wavevectors retain much less energy than those for vertical wavevectors,
consistently with the fact that the flow organizes in strong horizontal layer with more
energy in the horizontal motion than in the vertical one. Note also that the larger the
stratification, the larger the departure. However, this departure is not uniform in scales,
so that for the least stratified cases at N = π and 2π, the small scales of the density
spectra are very weakly anisotropic with respect to the large scales. The location of the
transition range is clearly marked by the Ozmidov wavenumber 2π/lO which is indicated
by a vertical line in the figures. Note also that the isotropic recovery is not merely due
to viscosity, since it very clearly occurs within the inertial spectral range in the N = π
case. Finally, in the mostly stratified case at N = 8π, spectra are anisotropic even in the
dissipative range. This is due to the fact that the Ozmidov wavenumber is larger than
the largest wavenumber (smallest scale) resolved in the flow.

However, one has to consider the fact that in decaying SST the length scales evolve
in time, and we observe for instance in Fig. 7-right from long-time EDQNM evolution
that while the integral and Kolmogorov lengths increase due to the self-similar decay
(from t ' 0.5, after the initial transient), the Ozmidov length itself decreases rapidly, and
crosses first the integral scales, then the Kolmogorov scale, so that at large times all the
flow scales are affected by stratification. The role of Ozmidov scale in SST is similar to
that of the Zeman scale (ε/Ω3)1/2 in rotating turbulence, in which the Zeman scale also
separates anisotropic large scales from more isotropic smaller scales, with a rather smooth
transition [6]. This is very different from the situation of unstably stratified homogeneous
turbulence, in which the Ozmidov scale can be defined similarly as in SST, and in which
it appears as a sharp cut-off scale between strongly anisotropic infrared spectral range
and almost immediately fully isotropic inertial and viscous spectral ranges [3].

4 Modal anisotropy: kinetic, potential, vortex, waves

We propose here a refined study of anisotropy in the flow, based on the different modal
energies that are present, in order to provide a better understanding of the dynamics of
the flow that creates the specific layering. On the one hand, kinetic and potential energy
exchanges occur at all scales, from vertical oscillations due to the presence of internal
gravity waves. On the other hand, the vortex motion exchanges energy with waves, in a
rather complex way.

We first study the scale-by-scale distribution of kinetic and potential energies in Fig. 4,
and more specifically the potential to kinetic ratio Ep(k)/Ek(k) as a function of wavenum-
ber. At large scales (small k), there is an equipartition between the waves kinetic and
potential energy, and, since waves and vortex have similar kinetic energy, the ratio is
of order 1/2. Further down the scales, at large k, we observe an increase of the ratio,
indicating that potential energy of the small scales is larger than their kinetic energy.
This effect seems however to be partially due to the structure of scalar variance spectrum
in the dissipative ranges (here the Prandtl number if of order one), from the curve at
N = 0. There is nonetheless a clear dependence of the ratio with N . Overall, inertial
and dissipative ranges behave differently from the point of view of potential to kinetic
energy equilibrium. We now study the ratio between potential and waves energy density
Ep(k, θk)/Ew(k, θk) in Fig. 5-left and the ratio between potential and vortex energy den-
sity Ep(k, θk)/Ev(k, θk) in Fig. 5. The two distributions of these ratios are very different.
Accounting for the unavoidable jitter in the curves due to lack of sampling of DNS in
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Figure 3: Spectral kinetic energy density distribution Ek(k, θk) for wavevector oriented from vertical
(label O1) to horizontal (label O6). 20483 DNS of stably stratified homogeneous turbulence. From left
to right and bottom to top, the figures show: the initial condition, the isotropic reference case at N = 0,
increasing stratification N = π, 2π, 4π, 8π. The vertical dashed line shows the Ozmidov wavenumber
(N3/ε)1/2.

the large scales, it seems that the first figure shows a dominance of potential energy over
vortex energy in the large scales and in horizontal spectra, but this trend is reversed in
the smaller scales, with a strong increase of potential energy in vertical spectra at small
scales. This accounts for the above-mentioned increase of potential energy over total ki-
netic energy in spherically averaged spectra in Fig. 4. Indeed, Fig. 5-right for Ep/Ev shows
only a very weak dependence of this ratio with θk at small scales, whereas it is strongly
dependent on orientation at large scales. Overall, one concludes that the dynamics of the
flow in terms of modal energy exchanges depends significantly on the observed scale, but
the Ozmidov wavenumber which is indicated in Fig. 5 gives an order of magnitude of the
separation, unlike a rather clear separating wavenumber k ' 30 observed in Fig. 5-right.
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Figure 4: Ratio of potential energy Ep(k) to kinetic energy Ek(k) for the initial condition, the isotropic
run, and the four stably stratified runs of turbulence. (20483 DNS data)
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Figure 5: Left: Ratio of potential energy density Ep(k, θk) to poloidal(wave) energy Ew(k). Right:
Ratio of potential energy density Ep(k, θk) to toroidal(vortex) energy Ev(k). For the initial condition,
the isotropic run, and the four stably stratified runs of turbulence. O1 for vertical-most wavevectors, O6
for close to horizontal ones. (20483 DNS data)

5 Lessons learned from a two-point statistical model (EDQNM-type)

The EDQNM model is a two-point statistical model which solves equations for the two-
point velocity-density correlation spectra using a quasi-gaussian closure. It was shown to
compare very well with DNS of SST in parametric ranges common to the two approaches
(see e.g. [18]). The advantages of the model is that: (a) it permits to reach a wider
range of parameters, especially the Reynolds number; (b) it provides smooth spectra and
thus is not subject to the large statistical uncertainties at large scales that are present in
DNS, unless one would pay the price for ensemble averaging; (c) the flow evolution is not
subject to physical box confinement, since a very wide spectral range can be chosen.

5.1 Energy evolution and spectra

As mentioned above, Fig. 6-left shows results from EDQNM for energetics of decay of SST
in agreement with DNS ones. Although we do not present here the exact same parametric
cases as for DNS, Fig. 6-right shows kinetic energy density spectra that exhibit a similar
anisotropic distribution as in DNS in the inertial range. Spectra at two times are presented
in the Figure, in order to emphasize a particular feature that was not observable in DNS
due to limited box size: while the anisotropy in the spectra develops in the inertial range
(and eventually in the viscous sub-range depending on the intensity of stratification),
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(EDQNM model data)

the infrared spectrum also becomes significantly anisotropic, as a trace of the influence
of the buoyancy force on the largest scales of the flow. There is however no noticeable
backscatter, since the slope of the infrared spectrum is preserved. Observing the infrared
anisotropy up to the largest scales (smallest wavenumbers) suggests that in real SST, the
mean stratification gradient will also evolve in time due to nonlinear turbulent mixing.

5.2 Energy transfers

We show in Fig. 8 the transfers that can be obtained from EDQNM model, including
transfers of modal energies, potential, waves and vortex kinetic energy, but EDQNM also
gives access to separate contributions in these transfers from vortex, waves, or mixed
vortex-waves interactions. The left panel of the figure shows the global kinetic energy
transfer TK(k), with a scale distribution similar to that of isotropic turbulence: a direct
energy cascade is shown by a negative transfer in the inertial range and positive transfer
in smaller wavenumbers. The figure also shows the anisotropic distribution of the vortex
kinetic energy density transfer T V (k, θk) , but with an overall shape which is close to that
of TK , corresponding to a mostly downscale transfer of energy. Its dependence on θk is
consistent with the observed anisotropy in energy density spectra.

What EDQNM adds to our understanding of the dynamics of SST, is the contribution
of purely vortex interactions to T V , plotted in Fig. 8-right. This energy transfer is mostly
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between different directions, and corresponds to a directional energy redistribution (from
horizontal to vertical wavenumbers, see arrow on the figure) rather than between scales. It
shows that this geostrophic “cascade” is the main cause of the vertical layering in the flow
at moderate Reynolds and Froude number regimes [7, 18]. Therefore, a simplistic picture
of the energy transfers in freely decaying SST at these regimes would be: (a) angular
energy drain from geostrophic modes interactions, superimposed with (b) a more classi-
cal downscale cascade à la Kolmogorov mediated by interactions involving ageostrophic
modes. In this picture, the Ozmidov scale lO can hardly be introduced, since the transfer
from purely vortex interactions on the figure do not seem to relate easily to lO. It may
therefore be necessary to introduce a directional dependence in this separating scale, for
instance by proposing a vertical Ozmidov scale and a horizontal one, rather than a unique
one, in models of stably stratified turbulence. This is left for future work.
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