
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Beyond Nash Equilibrium: Mechanism Design with Thresholding Agents

Permalink
https://escholarship.org/uc/item/4jn3m4z5

Author
Shen, Wen

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jn3m4z5
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Beyond Nash Equilibrium: Mechanism Design with Thresholding Agents

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Wen Shen

Dissertation Committee:
Professor Cristina Lopes, Chair

Professor Amelia Regan
Professor David Redmiles

2019



Chapter 4 c© 2018 IFAAMAS
Chapter 5 c© 2016 IJCAI
Chapter 6 c© 2019 AAAI

All other materials c© 2019 Wen Shen



DEDICATION

To my family.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Main Contributions of The Dissertation . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of The Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Concepts 7
2.1 The Mechanism Design Theory . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Mechanism Environment . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Mechanism Design for Public Good . . . . . . . . . . . . . . . . . . . 9
2.1.3 Mechanism Design for Profit . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Key Components of Traditional Mechanism Design . . . . . . . . . . . . . . 11
2.2.1 Fully Rational Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Preference Ranking via Reasoning . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Direct Preference Revelation . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Challenges and Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Theory of Mechanism Design with Thresholding Agents 16
3.1 Key Ingredients of The MDTA Approach . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Thresholding Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Contests Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Indirect Preference Revelation . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The MDTA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Agent Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Preference Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Contest Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



3.2.4 Indirect Preference Revelation . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Information Design for Crowdfunding 27
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Decision Making in Crowdfunding . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Backers’ Decision Model . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 The Entrepreneur’s Optimization Problem . . . . . . . . . . . . . . . 35

4.3 Optimal Information Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Excessive Disclosure Shrinks Revenue . . . . . . . . . . . . . . . . . . 38
4.3.3 Immediate Disclosure is not Always Optimal . . . . . . . . . . . . . . 39

4.4 Dynamic Information Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Dynamic Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Heuristic Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 An Online Post-Price Mechanism for Autonomous Ridesharing Systems 51
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Ridesharing in AMoD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 The Online Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 IORS Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Multi-Winner Contests for Strategic Network Diffusion 70
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Strategic Diffusion in Social Networks . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Mechanism Design for Strategic Diffusion . . . . . . . . . . . . . . . . 75
6.2.3 False-Name Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.4 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Multi-Winner Contests Mechanism . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.1 Virtual Credits for Diffusion Contributions . . . . . . . . . . . . . . . 80
6.3.2 Diffusion Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 The MWC Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iv



6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 A Generalized Contest Mechanism for Strategic Network Diffusion 94
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Strategic Network Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.2 The Mechanism Design Problem . . . . . . . . . . . . . . . . . . . . . 99

7.3 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3.1 False-Name Proofness . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3.2 Collusion-Proofness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.3 Other Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4 Generalized Contest Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4.1 Superadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.2 Increasing and Bounded Functions . . . . . . . . . . . . . . . . . . . 106
7.4.3 The GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Countering Free Riding in Utility Sharing with Sequential Contests 117
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2 The Free Rider Problem in Utility Sharing . . . . . . . . . . . . . . . . . . . 120

8.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2.2 The Free Rider Problem . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2.3 Mechanism Design in Utility Sharing . . . . . . . . . . . . . . . . . . 123

8.3 Sequential Contest Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9 Conclusions and Future Directions 136
9.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 140

v



A Derivations and Proofs for Chapter 4 150
A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.1.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.1.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1.3 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1.4 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.1.5 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.1.6 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.1.7 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Expert Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.1 Random Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.2 Greedy Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2.3 Epsilon Greedy Exploration . . . . . . . . . . . . . . . . . . . . . . . 157
A.2.4 Softmax Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B Derivations and Proofs for Chapter 6 159
B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.1.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.1.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.1.3 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.1.4 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1.5 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

vi



LIST OF FIGURES

Page

1.1 Dependence structure of the chapters in the dissertation. . . . . . . . . . . . 4

2.1 An overview of mechanism design. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 An illustration of traditional mechanism design (mechanism design with fully

rational agents). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 An illustration of mechanism design with thresholding agents. . . . . . . . . 19
3.2 An illustration of a thresholding agent’ decision-making process. . . . . . . . 20
3.3 An illustration of the relation between preferences and utility function. . . . 22
3.4 An illustration of contest design. . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 The procedure of traditional mechanism design. . . . . . . . . . . . . . . . . 24
3.6 An illustration of indirect preference revelation. Here, a is not affordable when

b is chosen; b is not affordable when c is chosen; a and c cannot be compared
directly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 An illustration of different evaluation methods. . . . . . . . . . . . . . . . . . 26

4.1 Procedure of a typical crowdfunding campaign. . . . . . . . . . . . . . . . . 32
4.2 An illustration of the Dynamic Shrinkage with Heuristic Selection algorithm. 41
4.3 A comparison of performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 A simple scenario of ridesharing: dashed lines indicate the real demand; solid
lines with arrow indicate actual routes. . . . . . . . . . . . . . . . . . . . . . 52

5.2 An abstraction of ridesharing in an AMoD system operating in a grid city. . 55
5.3 A comparison of demand distribution, the social welfare scores and computa-

tional time of a system with three different approaches: the IORS, an auction-
based mechanism and the optimal solution. . . . . . . . . . . . . . . . . . . . 67

5.4 A comparison of the performance of a system with three approaches: the
IORS, an auction-based mechanism, and the optimal solution. . . . . . . . . 68

6.1 A typical directed acyclic graph. . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 False-name attacks at node 2: nodes 21, 22, ..., 2m are replicas of node 2. . . . 78
6.3 An Illustration of the multi-winner contests mechanism. . . . . . . . . . . . . 81
6.4 Probability density function of the means of players’ abilities by four different

groups: HO, HL, HH and DI. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 A comparison of total contributions with different bias factors. . . . . . . . . 89
6.6 A comparison of number of participants and average contributions per player

on Twitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



6.7 Rewards (normalized) obtained by a player that creates different number of
false identities for groups with different noise factors. . . . . . . . . . . . . . 92

7.1 A simple illustration of strategic network diffusion. . . . . . . . . . . . . . . 97
7.2 A typical directed acyclic graph for modeling strategic network diffusion. . . 97
7.3 Three types of false-name attacks at node d. . . . . . . . . . . . . . . . . . . 101
7.4 An example of strategic network diffusion with no collusion and with collusion

under a typical geometric mechanism. . . . . . . . . . . . . . . . . . . . . . . 103
7.5 Average rewards (normalized by the highest number in each dataset) for each

player that creates different false identities. . . . . . . . . . . . . . . . . . . . 113
7.6 Average rewards (normalized by the highest number in each dataset) for each

player that is in different level of collusion. . . . . . . . . . . . . . . . . . . . 114

8.1 An illustration of the free rider problem. . . . . . . . . . . . . . . . . . . . . 119
8.2 A comparison of four effort metrics by varying the noise factor from 0.0 to 1.0. 130
8.3 A comparison of four utility metrics by varying the noise factor from 0.0 to 1.0.131
8.4 A comparison of total efforts and total utility by varying the discounting factor

from 1.00 to 1.10 with threshold θ = 0.50, noise factor ρ = 0.06. . . . . . . . 132
8.5 A comparison of total efforts and total utility by varying the threshold from

0.0 to 1.0 with noise factor ρ = 0.06 and discounting factor λ = 1.06. . . . . 133
8.6 A comparison of total efforts and total utility by percentage of free riders from

0% to 100% with threshold θ = 0.50, noise factor ρ = 0.06 and discounting
factor λ = 1.06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.1 A new paradigm of mechanism design with thresholding agents. . . . . . . . 139

viii



LIST OF TABLES

Page

6.1 Dataset configuration (M.D.–maximum degree, A.D.–average degree) . . . . 87

7.1 A comparison of the total task efforts for different groups . . . . . . . . . . . 112

ix



LIST OF ALGORITHMS

Page

4.1 Dynamic Shrinkage with Heuristic Selection . . . . . . . . . . . . . . . . . . 42
4.2 Shrink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 The Fare Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The Pickup Assignment Algorithm . . . . . . . . . . . . . . . . . . . . . . . 60
6.1 Multi-Winner Contests Mechanism . . . . . . . . . . . . . . . . . . . . . . . 84
7.1 Generalized Contest Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 110
8.1 Sequential Contest Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 126

x



ACKNOWLEDGMENTS

It would be definitely impossible for me to finish this thesis without the long-lasting support
from many individuals over the years. Among them, I would like to particularly thank my
advisor, committee members, collaborators, peers, and my family.

I would like to express my deepest gratitude to my advisor, Prof. Cristina Lopes. Crista has
been a reliable source of inspiration for me since 2014. She has always been encouraging and
supportive, especially when I have difficulties in my academic life. Even though my research
interests diverge from her core expertise, Crista gives me the freedom to explore new exciting
topics and provides me with helpful resources whenever I need them. She not only provides
me with insightful feedback about my research but also points out the right directions for
me to improve. I have benefited a lot from the conversations with her. I consider myself
very fortunate to work with her for my PhD study.

I am very grateful to the other two members of my doctoral committee – Prof. Amelia
Regan and Prof. David Redmiles. Prof. Regan is very knowledgeable and highly supportive.
She not only gives me many insightful comments about my research, but also provides the
pointers to the resources that I need. For some reason, I was struggling to find a dissertation
committee member for a long time. Prof. Redmiles is so kind as to be willing to serve on
my committee, saving me at the last minute. He gives me a lot of constructive comments
that help improve the quality of my dissertation substantially. I also want to thank my
advancement committee Prof. James Jones, Prof. Wenlong Jin and Prof. Alfred Kobsa for
their useful feedback.

Much of this thesis draws on the collaborative work with my coauthors. Of them, I am
especially indebted to my former advisor, Prof. Jacob Crandall, and my friend Prof. Ke Yan
for providing invaluable assistance in research as well as my job hunting. I have learned a
lot from their suggestions and comments.

I would like to extend thanks to my lab mates Rohan Achar, Eugenia Gabrielova, Vaibhav
Saini, Hitesh Sajnani, Thomas Debeauvais, Arthur Valadares, Di Yang, Farima Farmahini-
Farahani, Maruf Zaber, and other close friends at UCI, including Yang Feng, Qi Lou, and
Zhendong Wang. They have offered a friendly learning environment for me. I would like to
thank my other peers even though I am unable to list their names completely.

My heartfelt appreciation goes to my family for their endless support. I want to thank my
parents, grandparents, siblings and other relatives for creating a worry-free environment for
me to concentrate on my study. I would like to thank my little nephew Boyue for the joy he
has brought over video calls. Most importantly, my earnest appreciation belongs to Junzhi
for her unconditional love, true understanding, and inspirational words of encouragement.

My graduate studies were supported in part by the National Science Foundation through
grant no. CCF-1526593.

xi



CURRICULUM VITAE

Wen Shen

EDUCATION

Doctor of Philosophy in Information and Computer Science 2019
University of California, Irvine Irvine, California, USA

Master of Science in Computing and Information Science 2013
Masdar Institute of Science and Technology Abu Dhabi, UAE

Bachelor of Engineering in Software Engineering 2009
Northwestern Polytechnical University Xi’an, China

SELECTED PUBLICATIONS

W. Shen, R. Achar, C.V. Lopes. A Simulation Analysis of Large Contests with Thresholding
Agents. Winter Simulation Conference (WSC), 2019 (To appear).

W. Shen, Y. Feng, C.V. Lopes. Multi-Winner Contests for Strategic Diffusion in Social
Networks. AAAI Conference on Artificial Intelligence (AAAI), 2019.

K. Yan, W. Shen, H. Lu, Q. Jin. Emerging Privacy Issues and Solutions in Cyber-Enabled
Sharing Services: From Multiple Perspectives. IEEE Access, 2019.

W. Shen, R. Achar, C.V. Lopes. Toward Understanding the Impact of User Participation
in Autonomous Ridesharing Systems. Winter Simulation Conference (WSC), 2018.

W. Shen, J. W. Crandall, K. Yan, C. V. Lopes. Information Design in Crowdfunding un-
der Thresholding Policies. International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2018.

K. Yan, Z. Ji, W. Shen. Online Fault Detection Methods for Chillers Combining Extended
Kalman Filter and Recursive One-class SVM. Neurocomputing, 2017.

W. Shen, A. A. Khemeiri, A. Almehrezi, W. Al-Enezi, I. Rahwan, J. W. Crandall. Regu-
lating Highly Automated Robot Ecologies: Insights from Three User Studies. International
Conference on Human-Agent Interaction (HAI), 2017.

W. Shen, C. V. Lopes, J. W. Crandall. An Online Mechanism for Ridesharing in Au-
tonomous Mobility-on-Demand Systems International Joint Conference on Artificial Intel-
ligence (IJCAI), 2016.

xii



W. Shen, C. V. Lopes. Managing Autonomous Mobility on Demand Systems for Better
Passenger Experience. International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA), 2015.

WORKING PAPERS

W. Shen, K. Yan, C.V. Lopes. Manipulation-Resistant Mechanism Design for Strategic
Network Diffusion. Preprint, 2019.

W. Shen, C.V. Lopes. Countering Free Riding in Utility Sharing with Sequential Contests.
Preprint, 2019.

xiii



ABSTRACT OF THE DISSERTATION

Beyond Nash Equilibrium: Mechanism Design with Thresholding Agents

By

Wen Shen

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2019

Professor Cristina Lopes, Chair

In many real-world scenarios, individual agents’ interests are often not fully aligned, in

fact, they can even be conflicting with a principal’s objectives. The principal needs to

take measures to influence agents’ decisions or behavior to achieve desirable system-wide

outcomes. A powerful tool for motivating self-interested agents to cooperate is to offer

incentives for their efforts (e.g. cooperation or sacrifices) by committing to some allocation

and payment rules. This approach to implementing the incentive rules is called mechanism

design. Mechanism design has many promising applications in a variety of critical domains

that include spectrum allocation, online marketplace, transportation management, power

grids, education, and health care. Despite its promising prospects in addressing some of the

most challenging societal issues, mechanism design has not leveraged its full potential due to

assumptions such as full rationality, direct preference revelation, and no group manipulation.

In this work, I introduce a unified framework called mechanism design with thresholding

agents (MDTA) to relax some of those unrealistic assumptions. The proposed approach

integrates a series of new techniques that include modeling agents’ decision-making with

cutoff policies, indirect preference revelation, and using contests to increase competition

among agents to counter group manipulations. I demonstrate the power of the proposed
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framework by applying it to real-world problems that arise in crowdfunding, transportation

systems, information diffusion, and utility sharing. My work extends traditional mecha-

nism design by providing a systematic approach to influencing agents’ behavior for desirable

objectives.
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Chapter 1

Introduction

In many real-world applications, a stakeholder’s objectives are often conflicting or at least

not fully aligned with individual players’ interests [Myerson, 1982, Youn et al., 2008, Shen

et al., 2017, 2018a]. For instance, a seller often wants to sell a product at a high price to

increase revenue while buyers usually would like to buy goods or services with low budgets.

In this case, the buyers may not cooperate with the seller, making it challenging for the

seller to generate revenue. In transportation systems, the transportation authority of a city

is interested in optimizing the throughput of the overall road networks. The individual

commuters, however, care more about the traffic conditions of the particular routes they

have selected. They may choose a route that already encounters heavy traffic instead of

using alternative routes. Commuters’ non-cooperative behavior often results in high price of

anarchy [Youn et al., 2008, Shen et al., 2018a]. Another example is that most people receive

benefits from open source software development, whereas few are willing to devote efforts

to it [Hippel and Krogh, 2003]. These strategic users are usually called free riders [Baumol,

2004]. As a result, fewer open source software products are available to the public. Such

uncoordinated behavior often brings the tragedy of the commons [Hardin, 1968].

To achieve desired objectives, a stakeholder must take measures to influence individual

agents’ decisions or behavior [Shen et al., 2017]. A powerful tool to influence agents’ behav-

ior is mechanism design [Clarke, 1971, Myerson and Satterthwaite, 1983, Nisan and Ronen,
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2001, Hurwicz and Reiter, 2006, Shen, 2013]. It coordinates agents’ decisions or behavior

by committing a social choice function (i.e. an allocation rule and a payment rule) that

implements the desired objectives in a Nash equilibrium or its variants (e.g. dominant-

strategy equilibrium, Bayesian Nash Equilibrium) [Nisan and Ronen, 2001]. Since its in-

ception, mechanism design has witnessed great successes in many critical domains including

spectrum management [Huang et al., 2006], transportation sectors [Ledyard et al., 2002,

Song and Regan, 2005], power grids [Samadi et al., 2012], online marketplaces [Edelman

et al., 2007], education [Abdulkadiroğlu and Sönmez, 2003], health care [Roth et al., 2004],

sponsored search [Edelman and Schwarz, 2010], and social networks [Zhao et al., 2018].

Despite its promising prospects in addressing some of the most challenging societal issues,

mechanism design has not leveraged its full potential. There are several challenges that

need to be addressed before it becomes fully fledged. Traditional mechanism design assumes

that the agents are fully rational [Clarke, 1971, Myerson and Satterthwaite, 1983, Nisan

and Ronen, 2001]. However, this assumption is often violated in many cases due to factors

such as cognitive biases, limited computational power, and information constraints [Simon,

1972, Gigerenzer and Goldstein, 1996]. Second, most mechanisms rely on direct preference

revelation in the sense that they require agents to report their preferences directly to the

mechanisms [Clarke, 1971, Myerson and Satterthwaite, 1983]. In practice, agents are likely

to be unwilling or unable to report their preferences directly due to privacy concerns or

uncertainty [Naor et al., 1999, Yan et al., 2019]. Third, while much research has been

focused on efficient mechanisms or optimal mechanisms, little attention has been given to

mechanisms that are resistant to manipulations such as false-name attacks, collusion and free

riding [Shen et al., 2019b]. Traditional mechanism design typically assume that agents do

not perform group manipulations [Varian and Harris, 2014]. In many real-world scenarios,

however, agents have the incentives to form collusive coalitions to gain benefits [Hendricks

2



and Porter, 1989, Conitzer and Sandholm, 2006]. Therefore, a unified framework to address

these challenges is needed to fully leverage the power of mechanism design.

1.1 Main Contributions of The Dissertation

In this dissertation, we introduce a unified framework called Mechanism Design with Thresh-

olding Agents to relax the full rationality assumption, liberate the restriction of direct prefer-

ence revelation, and counter group manipulations. The framework consists of three integral

components: thresholding agents, contest design, and indirect preference revelation. Specif-

ically, the framework relaxes the full rationality assumption by modeling the agents as the

ones that use cutoff policies to make decisions. Instead of requiring agents to directly re-

port their preferences, the framework uses post-price methods to infer agents’ preferences. To

counter group manipulations, the framework introduces contests to increase the competitions

among agents so that performing group manipulations are not profitable. We demonstrate

the promising prospects of the proposed approach by applying it to addressing real-world

problems in crowdfunding, transportation systems, strategic information diffusion, and util-

ity sharing. To the best of our knowledge, this is the first approach that addresses all the

three challenges when agents use cutoff policies. Our approach complements traditional

mechanism design by extending it to situations that consist of agents that do not possess

full rationality.

1.2 Outline of The Dissertation

A brief outline (See Fig. 1.1) of the dissertation is as follows: Chapter 2 introduces the

background of dissertation including the mechanism design theory, the key components of

traditional mechanism design and the existing challenges. Chapter 3 explains the theory
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of mechanism design with thresholding agents. Chapters 4, 5, 6, 7, and 8 present our

studies on applying the framework of mechanism design with thresholding agents to solving

real-world problems in crowdfunding, ridesharing systems, strategic network diffusion and

utility sharing. Chapter 9 concludes the dissertation work and discusses future directions.

Specifically,

1

2

3

4

6

7

8

9

5

1. Introduction
2. Background and Concepts
3. Theory of Mechanism Design with

Thresholding Agents
4. Information Design for Crowdfunding
5. An Online Post-Price Mechanism for

Autonomous Ridesharing Systems
6. Multi-Winner Contests for Strategic

Network Diffusion
7. A Generalized Contest Mechanism

for Strategic Network Diffusion
8. Countering Free Riding in Utility

Sharing with Sequential Contests
9. Conclusions and Future Directions

Figure 1.1: Dependence structure of the chapters in the dissertation.

Chapter 2 discusses the background of the dissertation. It first introduces the theory of

mechanism design, including mechanism design for public good and mechanism design for

profit. It then presents the key ingredients of traditional mechanism design. In the end, it

discusses the challenges existing in traditional mechanism design and existing solutions.
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Chapter 3 explains the theory of mechanism design with thresholding agents (MDTA). It

first introduce the core components of MDTA and then presents the four stages of MDTA.

After that, it discusses the evaluation methods as well as the applicability of MDTA.

Chapter 4 studies the information design problem in which an entrepreneur voluntarily

reveals the project status of a campaign to backers to influence their beliefs of the project’s

probability of success so that the entrepreneur can solicit sufficient contributions before the

deadline. It first reviews some related work in crowdfunding. It then presents agents’ decision

models and mechanism design problem. After an analysis of optimal information design, It

introduces the dynamic information design approach to help the entrepreneur increase the

revenue. After reporting the experimental settings and the results, it summarizes the work.

Chapter 5 introduces an online post-price mechanism to reduce the operational cost per

unit demand in order to promote rideshairng in autonomous mobility-on-demand systems.

It first discusses the background of ridesharing in autonomous mobility-on-demand systems.

After formally introducing the mechanism design problem, it presents the post-price, inte-

grated online ridesharing mechanism to help reduce the operational cost of the ridesharing

systems.

Chapter 6 proposes a novel multi-winner contests mechanism that is resistant to false-

name attacks in strategic information diffusion in social networks. It first introduces the

motivation behind this work, and then formulates the mechanism design problem and the

design constraints. After presenting the multi-winner contests mechanism, it demonstrates

the competitiveness and robustness of the mechanism via extensive simulations on real-world

datasets. This work sheds light on how to integrate competitions into the design of novel

mechanisms to counter manipulations.
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Chapter 7 presents a generalized contest mechanism that is resistant to both false-name

attacks and collusion. The generalized contest mechanism counters both manipulations

through an elegant integration of two functions (i.e. the superadditive function, and the

increasing and bounded function) into the design of the diffusion reward function. It is

false-name-proof and collusion-proof. Experimental results shows that the generalize contest

mechanisms can outperform the multi-winner contests mechanism in terms of total task

efforts with a variety of supperadditive functions and increasing and bounded functions.

This work provides a systematic approach to manipulation-resistant mechanism design.

Chapter 8 describes a study on countering free riding in utility sharing. This chapter

introduces a sequential contest mechanism that is resistant to free riding. The mechanism

allocates a number of tokens to each agent that has made contributions to the utility produc-

tion before a private deadline, and then conducts a ratio-form contest among the qualified

agents to distribute the rewards.

Chapter 9 concludes the dissertation and discusses possible directions for future research.

Specifically, it first summarizes the dissertation research and then highlights the major con-

tributions. In the end, it discusses the future directions.
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Chapter 2

Background and Concepts

In this chapter, we first introduce the general theory of mechanism design. In particular,

we focus on the two types of mainstream mechanism design: mechanism design for public

good and mechanism design for profit. We then present the key components of traditional

mechanism design. Finally, we discuss the challenges in traditional mechanism design and

review some related work that aims to address them.

2.1 The Mechanism Design Theory

Mechanism design is a subfield of game theory. It takes an engineering approach to designing

incentives (i.e. allocation rules and payment rules) to achieve desired outcomes in the envi-

ronment that consists of multiple self-interested players [Hurwicz and Reiter, 2006]. Unlike a

typical game that focuses on the consequences of strategic interactions among players given

the rules, mechanism design takes a desired objective as the prior knowledge to find out the

proper rules that can influence agents’ strategic interactions. Hence, mechanism design is

also called reverse game theory [Nisan and Ronen, 2001].

Depending on the nature of the objectives, mechanism design can be generally categorized

into two groups: mechanism design for public good [Clarke, 1971] and mechanism design for
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profit [Krishna and Perry, 1998, Myerson and Satterthwaite, 1983]. In mechanism design for

public good, the stakeholder’s goal is to maximize the social welfare of all the players while

an individual agent is interested in his own payoffs [Börgers, 2015]. The stakeholder’s goal

is partially aligned with that of an individual agent. In mechanism design for profit, the

stakeholder aims at to optimize the revenue or the profit [Myerson, 1981]. The individuals

players, on the other hand, care more about their own utilities or profits.

2.1.1 The Mechanism Environment

A typical mechanism design setting consists of three components: individual agents, social

choices, private preferences [Jackson, 2014]. We discuss each in turn:

• Individual agents: A mechanism setting involves a finite group of N self-interested

individuals.

• Social choices: In a mechanism environment, the principal has a set of potential

social choices or social decisions D with d ∈ D be a generic social choice. A social

choice d ∈ D represents a allocation rule and a payment rule that determine which

individual agents get the goods g ∈ G at what prices. The set of social choice may be

finite or infinite depending on the application.

• Private preferences: Individual agents have private information of their values.

They may be unwilling to disclose the private information without incentives. Let

θi ∈ Θi denote the private information of a player i ∈ N , the set of all the agents’

private information is Θ = ×iΘi with θ = (θi)i∈N .

A mechanism M is an algorithm that asks the individual agents in N to directly reveal their

private information θ, allocates the goods G to the players in N and collects payments from

the players in N (See Fig. 2.1 for an overview).
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Figure 2.1: An overview of mechanism design.

Players may have incentives to lie about the reports of their preferences. In order to be

implementable in practice, a mechanism needs to implement the social choice function in

Nash equilibrium and its variants (e.g. dominant strategy equilibrium, and Bayesian Nash

equilibrium) [Nisan and Ronen, 2001]. In Nash equilibrium, it is incentive compatible for an

agent to truthfully reveal his preference if others do not change their strategies. In a dominant

strategy equilibrium, it is in the interest of an agent to truthfully report his preference

regardless of other agents’ strategies. In Bayesian Nash equilibrium, an agent would reveal

his true valuation if he believes that others also truthfully reveal their preferences.

2.1.2 Mechanism Design for Public Good

In mechanism design for public good, the principal aims at social welfare maximization

for all the agents. That is, the principal is interested in the efficiency of the allocation

of the goods. Thus, the goods should be allocated to the agents that have the highest

values. A famous mechanism that implements the efficient outcomes in dominant strategy is

the Vickrey-Clarke-Groves (VCG) mechanism [Hurwicz and Reiter, 2006]. Under the VCG
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mechanism, it is dominant-strategy incentive compatible for a player to truthfully report his

preferences to the mechanism. The mechanism allocates the goods to the players with the

highest valuations. Each player pays his social cost— the marginal cost he brings to the

society due to his existence [Hurwicz and Reiter, 2006].

The VCG mechanism is individually rationally and does not require distributional assump-

tions. It has many applications in practice, including sponsored search [Edelman and Os-

trovsky, 2007], spectrum allocation [Huang et al., 2006] and online marketplaces [Wang

et al., 2012]. However, it is not budget balanced and may receive low revenue [Conitzer and

Sandholm, 2004]. Besides, the VCG mechanism is prone to other manipulations such as

collusion [Conitzer and Sandholm, 2004].

2.1.3 Mechanism Design for Profit

In mechanism design for profit, the mechanism designer focuses on the revenue optimization.

To achieve the optimal revenue, the mechanism designer needs to have prior information

about the distribution of agents’ valuation. A celebrated mechanism that implement the

optimal outcomes in Bayesian Nash equilibrium is the Myerson’s auction. In Myerson’s

optimal mechanism, the mechanism allocates the goods to the players that have the highest

virtual values [Myerson, 1981]. The virtual value of an agent is the surplus that can be

extracted from the agent given the value distribution of all the agents. The prices for the

winning players are determined according to the VCG mechanism.

The Myerson’s optimal mechanism has practical applications [Hurwicz and Reiter, 2006]. For

instance, a seller often wants to sell products to potential buyers to maximize the profits.

If the seller has the information of agents’ value distributions, the seller may commit the

Myerson’s auction to achieve her objective. However, the Myerson’ optimal mechanism

requires prior knowledge about the agents’ value distributions, which is not always feasible
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in practice [Hartline and Roughgarden, 2009]. It is also vulnerable to manipulations such as

collusion [Caillaud and Jehiel, 1998].

2.2 Key Components of Traditional Mechanism Design

Despite that mechanism design for public good and mechanism design for profit differs in the

objectives, they share the same procedure since they all fall into the framework of traditional

mechanism design (See Fig. 2.2 for an illustration). Specifically, they all assume that agents

do not make mistakes and have perfect rationality when modeling the agents. They assume

that the agents are able to compare the available alternatives in complex environments and

select the best one via reasoning. Besides, they assume that the agents are both able to and

willing to report their preferences directly to the mechanism designer.

2.2.1 Fully Rational Agents

Traditional mechanism design assumes that the agents are fully rational [Clarke, 1971, My-

erson, 1981, Hurwicz and Reiter, 2006, Börgers, 2015]. This assumption require the agents

have perfect prior knowledge of the themselves, other agents and the environment. They

never make mistakes because they have unbiased cognition, unlimited computational power,

complete and perfect information [Hurwicz and Reiter, 2006, Börgers, 2015]. The full ra-

tionality assumption allows the agents to always make rational decisions even in complex

environments. It also enables the mechanism designer to determine the agents’ utility func-

tions without introducing additional priors or thresholds.

2.2.2 Preference Ranking via Reasoning

In traditional mechanism design, the agents are able to and will always select the best alter-

natives that are in their own interests [Hurwicz and Reiter, 2006]. This is done by complex
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Stage 1

Stage 2 Stage 3Agent Modeling
Determine  agents' utility functions

based on the assumption that
agents have perfect rationality.

Preference Ranking
Identify the best alternative via

reasoning.

Direct Preference Revelation
Allocate goods and charge agents according to an
allocation rule and a payment rule that requires the

agents directly report their preferences.

Figure 2.2: An illustration of traditional mechanism design (mechanism design with fully
rational agents).

reasoning processes that assume the agents’ actions will converge to a Nash equilibrium (or

its variants).

2.2.3 Direct Preference Revelation

Another key component is direct preference revelation [Börgers, 2015]. It requires all the

agents to directly report their preferences to the mechanism designer. The mechanism de-

signer commits an allocation rule and a payment rule based on the agents’ reported values.

The allocation rule and the payment rule constitute the social choice function. A truthful

mechanism implements the social choice function in a Nash equilibrium or its variants such

as dominant-strategy equilibrium or Bayesian Nash equilibrium.

2.3 Challenges and Existing Solutions

The application of traditional mechanism design has been impeded greatly by some of the

unrealistic assumptions: the full rationality assumption, the direct preference revelation

assumption, and the no group manipulation assumption. There are a few attempts that aim

to address the challenges.
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2.3.1 Challenges

Despite its promising prospects in addressing some of the most challenging societal issues,

mechanism design has not been leveraged its full potential. There are several challenges that

are needed to be addressed before it becomes fully fledged. First, mechanism designers often

must assume that the agents are fully rational. However, this assumption is often violated

in many cases due to factors such as limited computational power, cognitive biases, and

time constraints [Gigerenzer and Goldstein, 1996]. Second, efficient mechanism design relies

on directly revealed preferences. In many real-world environments, people are reluctant to

reveal their preferences directly due to privacy concerns [Naor et al., 1999]. Third, while

much research has been focused on efficient or optimal mechanisms, little attention has

been given to mechanisms that are resistant to manipulations such as false-name attacks,

and collusion [Shen et al., 2019b]. Besides, traditional approaches to designing mechanisms

typically require substantial prior knowledge about participating agents’ value distributions.

Nevertheless, mechanism designers usually do not have such knowledge in hand [Nisan et al.,

2007].

2.3.2 Existing Solutions

New lines of research have begun to address the four challenges. To relax the rationality

assumption, Selten [1998] introduced the concept of Aspiration Adaptation Theory (AAT). In

AAT, agents have different categories of factors to consider before making the decisions. They

rank the categories according to the urgency towards their goals. In the same category (a.k.a.

aspiration level), the agents do not conduct exhaustive search but consider the factor satisfied

(or solved) even if it is sub-optimal [Rosenfeld and Kraus, 2012]. If an aspiration level cannot

be met, the agents search for another factor in a downward category (or aspiration level).

The AAT model provides a systematic approach to model boundedly rational agents when

the principal has prior knowledge of all the factors that influence agents’ decision-making
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processes. In practice, however, the principal may not have sufficient knowledge about agents’

priorities of the factors nor the exact composition of the aspiration levels [Rosenfeld and

Kraus, 2012]. Another method to relax the full rationality assumption is Quantal Response

Equilibrium (QRE) [McKelvey and Palfrey, 1995]. In QRE, agents may make mistakes and

their payoffs are related to the probability that they make mistakes. Thus, highly costly

mistakes are unlikely. When all agents make no mistakes, the game converges to a Nash

equilibrium. The QRE model can deal with the scenarios where agents make errors but

is non-falsifiable without putting restrictions on the methods of perturbations [Haile et al.,

2008]. Ghosh and Kleinberg [2014] proposed a model called “simple agents” where agents

only reason on whether to participate in or not. Their work assumes that the agents have

homogeneous valuations. It remains unknown how to extend their approach to the situations

where agents have different value distributions.

Most research on mechanism design restricts the attention to direct mechanisms where agents

must explicitly reveal their preferences. In practice, however, posted-price mechanisms are

more favorable due to its efficiency and ease of implementation [Wang et al., 2008, Badani-

diyuru et al., 2012]. They help protect the agents’ privacy by not requiring direct preference

revelation from the agents. Besides, direct mechanisms are also usually vulnerable to manip-

ulations such as false-name attacks [Nath et al., 2012] and collusion [Laffont and Martimort,

2000].

To relax the requirement of agents’ value distributions, Devanur and Hartline [2009] intro-

duced the problem of prior-free mechanism design. In general, there are three methods to

prior-free mechanism design: deterministic empirical distribution [Nisan et al., 2007], ran-

dom sampling [Devanur and Hartline, 2009], and consensus estimates [Goldberg and Hartline,

2003, Ha and Hartline, 2013]. While random sampling can provide a good approximation of

optimal mechanisms in many scenarios, deterministic empirical distribution and consensus

estimates may perform arbitrarily poor if the feasibility constraints or the consensus-estimate
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functions are not satisfied. All the three methods require direct revelation of agents’ prefer-

ences, making them less appealing to be deployed in practice.

To address these challenges, a new unified framework to mechanism design is needed. In

particular, the framework needs to relax the assumptions such as full rationality, direct

preference revelation and no group manipulations. Moreover, the framework should be able

to be scaled up to large systems that consists of thousands of or even millions of agents.
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Chapter 3

Theory of Mechanism Design with

Thresholding Agents

This chapter presents the theory of mechanism design with thresholding agents (MDTA),

followed by a discussion of evaluation methods and the potential application domains of

MDTA. Before introducing the MDTA approach, we highlight its key ingredients.

3.1 Key Ingredients of The MDTA Approach

To relax the unrealistic assumptions in traditional mechanism design, we introduce a uni-

fied framework called mechanism design with thresholding agents (MDTA). The framework

has three integral components: threshoding agents, contest design, and indirect preference

revelation.

3.1.1 Thresholding Agents

Previous research on mechanism design usually assumes that agents are fully rational. How-

ever, this assumption is often not grounded [Shen et al., 2017, 2018a]. To address this prob-

lem, we proposed to use cutoff policies to model agents’ decision-making processes [Shen
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et al., 2018b]. In doing so, each agent has a private threshold value to decide to participate

in the mechanism or not. This method relaxes the assumption that each agent is fully ra-

tional and allows mechanism designers to model agents’ valuations with greater flexibility

instead of making strong assumptions about their rationality. In repeated interactions (e.g.

repeated auctions), it is also convenient for the mechanism designers to learn and make

inference about agents’ valuation or types with preference data using the cutoff policies.

When designing manipulation-resistant mechanisms, the mechanism designers often must

estimate agents’ costs of performing a specific action (e.g. false-name attacks). In many

cases, however, the designers are unable to make an accurate estimation for every agent.

We introduced a parameter called cost coefficient to help model agents’ costs [Shen et al.,

2019b]. The cost coefficient is privately known to an agent only. This approach relieves the

mechanism designers’ burden of precisely calculating agents’ costs of efforts. It also makes it

possible for the designers to learn agents’ cost functions through empirical data in repeated

interactions.

3.1.2 Contests Design

Many online platforms (e.g. online marketplaces, crowdfunding sites, social media platforms)

rely on high-quality online customer reviews to build reputations [Jøsang et al., 2007]. How-

ever, online ratings are often vulnerable to manipulations [Mukherjee et al., 2012]. For

instance, a user may post fake reviews for a seller in exchange for a free item or a discount.

Such activities will undermine customers’ confidence or trust in the online platforms [Jøsang

et al., 2007]. Another example is that a user may create multiple fake accounts to make

profits without making any contributions towards promoting the task owners’ goals in so-

cial media marketing [Conitzer et al., 2010]. To address this problem, we proposed to use

multi-winner contests to design manipulation-resistant mechanisms [Shen et al., 2019b]. We

demonstrated that proper peer competition could significantly reduce the incentives of ma-
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nipulations (e.g. false-name attacks) as well as increase agents’ aggregated efforts in social

network marketing. It will be interesting to explore novel contest structures to counter

agents’ collusive behaviors. Another direction is to design contest mechanisms to maximize

agents’ aggregated efforts.

3.1.3 Indirect Preference Revelation

Efficient mechanism design typically requires agents to reveal their valuations or preferences

directly. However, this requirement is often problematic for two reasons. First, agents may

be unaware of their accurate valuations. They are likely to overestimate or underestimate

their valuations. Second, even if they know their actual values, they may be reluctant to

disclose the information to the mechanism designers due to privacy concerns or for fear that

the designers will use this information in an unwanted way in the future. To address this

issue, the designers can implement indirect (i.e. posted-price) mechanisms [Shen et al., 2016,

2019b]. This method does not require agents to report their valuations. However, it does

require the designers to have prior knowledge about agents’ value distributions. When the

designers do not have prior knowledge about agents’ value distributions, it is possible to

design randomized mechanisms to learn the value distributions by offering free items with

monotonic increment in the agents’ valuations. This method is usually applicable to online

scenarios when agents’ value distributions are learnable. It may result in a loss of optimality

when agents’ valuations are sufficiently large.

3.2 The MDTA Framework

The MDTA framework consists of four stages: agent modeling, preference ranking, contest

design, and indirect preference revelation (See Fig. 3.1 for an illustration). In agent modeling,

the principal (i.e. the mechanism designer) isolates agents’ primary alternatives of interest
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and convert the preference relations to suitable utility functions given that agents have their

private thresholds to trigger their decisions. In preference ranking, the principal identifies the

relative orders of agents’ preferences based on ground truth or reasoning. In contest design,

the principal selects optimal parameters for the contest through simulations. Finally, the

principal allocates the goods to the agents based on the outcomes of the contest and charge

them accordingly.

Stage 1 Stage 3

Stage 2 Stage 4Agent Modeling
Determine  agents' utility

functions given that they have
private thresholds.

Preference Ranking
Identify the relative orders of

agents' preferences via ground
truth (observed data) or reasoning.

Indirect Preference
Revelation

Allocate goods and charge agents
according to the outcomes of the contest

(observed preferences).

Contest Design
Optimize the parameters of the
contest through simulations. 

Figure 3.1: An illustration of mechanism design with thresholding agents.

3.2.1 Agent Modeling

In agent modeling, the principal identifies agents’ primary alternatives of interest and deter-

mines their utility functions given that agents have their own private thresholds to trigger

their decisions (See Fig. 3.2 for an illustration of a thresholding agent’ decision-making pro-

cess). In this work, we assume that agents’ thresholds are fixed. The thresholds serve as

the priors that the agents hold to represent their perceptions of the acceptable consequence

should they participate (or do not participate) in the activities set by the principal. The per-

ceptions might be fully or partially correct and thus the degree that the thresholds represents

the reality vary from agent to agent.

When making decisions, a thresholding agent determines a threshold (a.k.a. a prior) that in-

dicates the tipping point that the agent take actions either towards or against the principal’s

objectives. For instance, a buyer often has a budget to buy a product. The upper bound of
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Figure 3.2: An illustration of a thresholding agent’ decision-making process.

the budget is a threshold of the buyer. That is, the buyer would only buy the product if its

price is no greater than the threshold. If the seller sets the price lower than to equal to the

threshold, then the buyer’s action is favorable for the seller. Otherwise, the buyer’s action

is conflicting with the seller’s interest (i.e. revenue maximization).

Agents’ thresholds are often constrained by their cognitive abilities, available information

and computational capabilities [Kau and Hill, 1972, Kahneman, 2003, Zhou et al., 2005, Shen

et al., 2018b]. Thus, agents’ decisions can be optimal or suboptimal depending on whether

their thresholds are correct or not. When all the agents have correct thresholds or priors,

their behaviors are rational.

Before making a decision, the agent also needs to establish a model of the world. The model

derives from an estimation based on the data and the agents’ beliefs. For example, before a
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buyer decides to buy the product, he needs to know the details of the transaction (e.g. the

quality of the good, the delivery policy and return policy). The model serves as the agent’s

benefit evaluation or risk assessment.

If the agent’s estimated value exceeds the his threshold, then the agent would take an action

that either go towards or against the principal’s objective.

Example 3.1. Consider a group of buyers want to buy products from a seller with each

buyer is only interested in buying one item. Before making the purchase decisions, a buyer

needs to decide the upper bound (say 7 dollars) of the price that he or she is willing to pay

for the product. If the seller’s price for the product is below or equal to the upper bound, the

buyer is likely to buy it. Otherwise, the buyer would not buy it regardless of other factors.

Different buyers may have different upper bounds (or thresholds) of the prices.

3.2.2 Preference Ranking

In preference ranking, the mechanism designer identifies the relative orders of agents’ prefer-

ences via ground truth or reasoning. When selling a product, the seller needs to identify the

partial order that all the buyers would prefer to buy the product with a lower price rather

than a higher price. This partial order is drawn from empirical observations.

In decision theory, a preference ordering a % b means that alternative a is at least as good as

b. A preference ordering a � b refers to that alternative a is strictly preferred to b. Rational

choice satisfies the following two properties: completeness and transitivity.

Definition 3.1 (Rational Choice). A preference relation % is rational if it satisfies:

• Completeness: for all alternatives a, b, we have a % b or b % a.

• Transitivity: for all alternatives a, b, c, if a % b and b % c, we have a % c.
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Completeness indicates that agents are willing and able to compare the choices or alter-

natives. Transitivity eliminates preference cycles and makes preference relations logically

consistent. A preference relation that is complete and transitive can be represented by a

utility function (See Def. 3.2).

Definition 3.2 (Utility Function). A utility function u : X → R represents preference

relation % if, for all alternatives a, b,

a % b⇔ u(a) ≥ u(b) . (3.1)

The utility function measures the level of pleasure or satisfaction that an agent receives due

to a choice (alternative). Note that not all preference relations have a utility function rep-

resentation. Only preferences orderings that are complete and transitive can be represented

by a utility function (See Fig. 3.3).

All pairs of choices can be
compared with each other

If choice a is preferred to b,
and choice b is preferred to
c, then a is preferred to c

Completeness

Transitivity

R
ational C

hoice

The level of
pleasure or
satisfaction

that an agent
receives due
to a choice.

Utility Function

Prerequisite

Property

Reflection

Interpretation

Figure 3.3: An illustration of the relation between preferences and utility function.

3.2.3 Contest Design

In contest design, the mechanism designer selects the optimal parameters for the contest

success function and the allocation rules to achieve her desired goals (See Fig. 3.4 for an

illustration).

22



Contest Success
Function

Revealed
Preferences

P1

P2

P3

Pn

n

3

2

1

Allocation
Rule

(Winner-
Take-All  or

Proportional)

1st

2nd

3rd

nth

Agent Probability of
Success

Allocation

Figure 3.4: An illustration of contest design.

In this stage, the principal determines the probability of winning for each agent that has

revealed his preference (e.g. participation, efforts) and the rules for allocating the goods. The

probability of winning is determined by a contest success function that takes the observed

preferences of all the agents as the input. The contest success function can be either ration-

form or difference-form [Jia et al., 2013]. The former determines the probability of winning

by a function of the ratio of the respective preferences (commitments) while the later is a

function of the differences between agents’ preferences (commitments) [Corchón and Dahm,

2010]. The allocation rules can be winner-take-all or proportional [Cason et al., 2010].

In winner-take-all allocation, the principal only distributes the goods to the winners. In

proportional allocation, the goods are distributed proportionally according to the probability

of winning.

Traditional mechanism design (See Fig. 3.5) usually assumes that agents compete for a single

item by directly reporting their valuations (or bids) to the mechanism designer. In MDTA,

the mechanism does distribute the goods according to agents’ reports but allocates the goods

according to the observed preferences (e.g. efforts, actions, decisions) of the agents.
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Information Strategies
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Figure 3.5: The procedure of traditional mechanism design.

3.2.4 Indirect Preference Revelation

When determining the payment for each agent, the principal uses a post-price mechanism.

Instead of asking the agents to directly reveal their preferences, the principal can provide

a price, observe agents’ choice, infer and learn their preferences. For example, given the

observed preferences shown in Fig. 3.6, if choice b is selected by an agent, then choice a is

not affordable to him. Similarly, b is not affordable when he choose c. Choice a and choice

c cannot be directly compared. However, by transitivity, we can infer that if the previous

relations all hold, then c is revealed indirectly as preferred to a.

The observed preferences can be recorded for future reference (e.g. learning and inference).

This stage avoids seeking direct preference revealtion from the agents and helps protect the

privacy of agents. Besides, observed preferences are also more reliable and accurate than

reported preferences [Beshears et al., 2008].
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Figure 3.6: An illustration of indirect preference revelation. Here, a is not affordable when
b is chosen; b is not affordable when c is chosen; a and c cannot be compared directly.

3.3 Evaluation

Evaluation methods vary from low-fidelity simulations to high-fidelity simulations and to de-

ployment in practice (See Fig. 3.7 for an illustration). When the principal has no empirical

data available, she can produce synthesis data according to some rules or assumptions and

execute the mechanism on the dataset with different parameter settings. When empirical

data is available, the principal can conduct realistic simulations that bring more insights

about the performance of mechanism in real-world scenarios. If possible, it would be ideal

to deploy the mechanism in the selected applications. However, simulations are still neces-

sary because real-world deployment are often costly and time-consuming, while conducting

extensive simulations is a cost-efficient method to identify optimal parameters of the mech-

anism [Shen et al., 2018a].
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Figure 3.7: An illustration of different evaluation methods.

3.4 Applicability

The MDTA framework is most suitable to address conflicting scenarios when a stakeholder

and individual agents have diverging interests or objectives in complex systems that consists

of a large population of agents. The method is applicable to traditional mechanism design

problems such as mechanism design for social good, mechanism design for profit, as well as

manipulation-resistant mechanism design such as countering false-name attacks, collusion

and free riding.

26



Chapter 4

Information Design for Crowdfunding

Crowdfunding has emerged as a prominent way for entrepreneurs to secure funding without

sophisticated intermediation. In crowdfunding, an entrepreneur often has to decide how to

disclose the campaign status in order to collect as many contributions as possible. Such

decisions are difficult to make primarily due to incomplete information. In this chapter, we

propose to use information design as a tool to help the entrepreneur to improve revenue

by influencing backers’ beliefs. We introduce a heuristic algorithm to dynamically compute

information-disclosure policies for the entrepreneur, followed by an empirical evaluation to

demonstrate its competitiveness over the widely-adopted immediate-disclosure policy. Our

results demonstrate that the immediate-disclosure policy is not optimal when backers follow

thresholding policies despite its ease of implementation. With appropriate heuristics, an

entrepreneur can benefit from dynamic information disclosure. Our work sheds light on

information design in a dynamic setting where agents make decisions using thresholding

policies. This chapter is based on our published work, [Shen et al., 2018b].

4.1 Background

Crowdfunding reinvents the way that entrepreneurs raise external funding for implementing

creative ideas. It has created a rapidly growing market that contributes an annual economic
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impact of tens of billions of US dollars globally [Yu et al., 2017]. Unfortunately, not all the

crowdfunding campaigns are successful because most campaigns will get funded only if they

have reached the fundraising goal within a deadline [Short et al., 2017]. In fact, less than

40% of the crowdfunding projects reach the targeted goals and receive the funds within the

campaign deadlines [Short et al., 2017].

Mounting research has begun to investigate the determinants of the success of crowdfunding

projects. Although there might be many factors (e.g. project descriptions [Marelli and

Ordanini, 2016], product value [Agrawal et al., 2014], geography effect [Agrawal et al., 2011],

reward details [Marelli and Ordanini, 2016], entrepreneurs’ reputation [Kuppuswamy and

Bayus, 2015] and the social network effect [Agrawal et al., 2014]) that influence a campaign’s

success, a recent study indicates that the number of donations made by early backers of a

project is often the only difference between that project being funded or not [Solomon et al.,

2015]. A substantial body of both theoretical analyses [Agrawal et al., 2014, Mollick, 2014,

Alaei et al., 2016] and empirical evidence [Kuppuswamy and Bayus, 2015, Colombo et al.,

2015, Marelli and Ordanini, 2016, Skirnevskiy et al., 2017] demonstrate that the amount of

early contributions has a strong positive effect on the success of crowdfunding campaigns.

These prior studies unanimously confirm the crucial role of early contributions in the success

of crowdfunding projects.

There are two main reasons why the amount of early contributions matters. First, infor-

mation about contributions received early in the campaign signals to potential backers the

quality of the project, which in turn can trigger social learning behavior [Bandura, 1989]

causing potential backers to also contribute to the campaign [Colombo et al., 2015]. An em-

pirical study on a sample of 25,058 Kickstarter projects indicates that prospective backers

usually make their pledging decisions based on how much of the project goal has already

been funded by others [Kuppuswamy and Bayus, 2015]. Second, backers who have made

an early contribution are likely to circulate the information of the project to their friends
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or families, which may attract additional contributions [Colombo et al., 2015, Skirnevskiy

et al., 2017]. Both rationales indicate that it is of interest to entrepreneurs to attract as

many contributions from early backers as possible.

In crowdfunding, backers are often reluctant to donate in the early days of a campaign

due to high uncertainty [Mollick, 2014, Alaei et al., 2016, Kuppuswamy and Bayus, 2015,

Solomon et al., 2015, Colombo et al., 2015]. A major source of uncertainty is the probability

of success that the campaign will get funded (i.e. Probability of Success, or PoS) [Colombo

et al., 2015, Kuppuswamy and Bayus, 2015]. Prospective backers are often uncertain about

entrepreneurs’ abilities to collect sufficient contributions to get the project funded. For

instance, 64.12% of the crowdfunding projects in Kickstarter failed to reach the target

goals [Kickstarter, 2017]. A backer 1 experiences a monetary or non-monetary opportu-

nity cost if the fundraising goal is not achieved (and the project not funded), even if he is

refunded upon the failure of the campaign [Alaei et al., 2016].

To attract as many early contributions as possible, an entrepreneur must take appropriate

measures to coordinate backers’ actions. To do this, the entrepreneur needs to have prior

knowledge about the backers’ arrival process, their valuation of the project (if funded),

and how they estimate the probability that the campaign will be funded. However, none

of this information is perfectly known to the entrepreneur. Thus, it is challenging for the

entrepreneur to figure out what actions will make backers, especially early backers, be more

willing to contribute.

If conditions permit, the entrepreneur can manipulate backers’ payoffs by offering appealing

discounts to early backers that face high uncertainty [Ellman and Hurkens, 2015, Strausz,

2016]. The problem of devising allocation and payment schemes falls into the field of mech-

anism design [Nisan and Ronen, 1999]. While illuminating, it requires additional budgets

1We will use “she” to denote an entrepreneur and “he” a backer/agent.
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and thus diminishes the entrepreneur’s revenue [Ellman and Hurkens, 2015, Strausz, 2017].

Absent from sophisticated or even unrealistic assumptions of the backers’ private types (e.g.

valuation, arrival time, departure time), it is rather difficult or even unfeasible for the en-

trepreneur to implement effective mechanisms [Ellman and Hurkens, 2015, Strausz, 2017].

This is particularly the case in online settings where the entrepreneur has little knowledge

about how the backers make their projections of the campaign’s PoS.

Alternatively, the entrepreneur can improve backers’ beliefs of the campaign’s PoS by choos-

ing what information backers see. In particular, the entrepreneur can and is permitted to

voluntarily disclose the project status (i.e. how many contributions have been collected up

to a given timestamp), a critical factor that influences backers’ beliefs of the campaign’s

PoS [Kuppuswamy and Bayus, 2015, Alaei et al., 2016]. The problem of determining which

pieces of information are disclosed to whom is called information design [Taneva, 2015].

Prior work on information design has generally assumed that backers’ strategic behavior was

perfectly rational and that games were well-defined (e.g. signaling games) [Bergemann and

Pesendorfer, 2007, Taneva, 2015, Bergemann and Wambach, 2015, Bergemann and Morris,

2016, Alonso and Camara, 2016]. However, studies on consumer purchasing behavior show

that buyers usually follow thresholding policies to decide whether to purchase goods or

not [Kau and Hill, 1972, Kahneman, 2003, Zhou et al., 2005]. They often buy products

when the prices are no more than their reserved values. This is particularly the case when

consumers face high degrees of uncertainty and have little knowledge about the environment

or the future, as frequently observed in clinical decision making [Pauker and Kassirer, 1980],

crowdsourcing contests [Easley and Ghosh, 2015], airline ticket sales [Zhou et al., 2005],

online shopping [Lee and Lin, 2005], management science [Su, 2007], societies of autonomous

machines [Shen et al., 2017] and crowdfunding [Mollick, 2014, Alaei et al., 2016]. Under

certain circumstances, thresholding policies are optimal policies and hence represent rational
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behavior [Ohannessian et al., 2014]. We thus consider the scenario where backers follow

thresholding policies when they decide whether to contribute to a project or not.

In this work, we study the information design problem in which an entrepreneur voluntarily

reveals the project status to backers to influence their beliefs of the project’s probability of

success. Our work contributes to the state of the art in the following ways:

1. We show that excessive information disclosure weakly shrinks the entrepreneur’s rev-

enue. We identify conditions when immediate disclosure is optimal in crowdfunding

when agents follow thresholding policies. We demonstrate that immediate disclosure

is optimal if the funding goal has been achieved and if the project status increases

monotonically by at least one contribution each time.

2. We introduce a heuristic algorithm called Dynamic Shrinkage with Heuristic Selection

(DSHS) to to help the entrepreneur make decisions on information-disclosure policies.

3. Our experimental results demonstrate that the immediate-disclosure policy is not opti-

mal when agents follow cutoff policies despite that it is more efficient to compute than

the heuristic methods. Entrepreneurs can benefit from dynamic information design

with appropriate heuristics.

4.2 Decision Making in Crowdfunding

This section first introduces key notations. It then formalizes backers’ decision model and

the entrepreneur’s optimization problem.
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4.2.1 Preliminaries

We consider discrete time t ∈ T = {1, 2, 3, ..., T}, where T is the deadline for the campaign.

Before launching the campaign, the entrepreneur must determine a fundraising goal G to get

funded, a deadline T for reaching the goal, the number of rewards N , the minimal amount

of contributions for a reward P , and a detailed description of the project such as motivation,

product, milestones, and profiles of the team. All this information is fixed and is disclosed

to all the backers. See Figure 4.1 for the procedure of a typical crowdfunding campaign.

starts a
campaign

entrepreneur

make con-
tributions

backers

the
campaign

ends

is funding goal
achieved?

receives
the funds

fulfills the
project

receive
the

rewards

receive
a refund

yes

no

Figure 4.1: Procedure of a typical crowdfunding campaign.

After the campaign starts to accept contributions, backers arrive at the campaign sequentially

with at most one each time. This is without loss of generality because batch arrivals can be

viewed as a special case where the time interval is minimal [Shen et al., 2016, Alaei et al.,

2016]. Let b(t) ∈ {0, 1} denote the number of arrivals at time t ∈ T .

At the beginning of time t, the entrepreneur discloses the state of the campaign (i.e. project

status) s(k) to each backer i that is in the campaign. Here, s(k) = (Sk, k) where Sk refers to

the percentage of funds that have been raised up to time k ≤ t (k not included), with respect

to the fundraising goal G. For simplicity, let |s(k)| = Sk. We denote the entrepreneur’s
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decision on information disclosure for backer i at time t by

d(i, t) = (s(k), t) s.t. k ∈ T , k ≤ t . (4.1)

Here, |s(1)| = 0. The disclosed project status s(k) must reflect the true state of the project

at time k, which is enforced by the crowdfunding platform. In real-world crowdfunding

campaigns, entrepreneurs are allowed to voluntarily disclose truthful project status [Solomon

et al., 2015, Alaei et al., 2016]. In our work, we assume that any information about the

project status observed by the backers is directly revealed by the entrepreneur. Future work

should address the scenarios when backers have exogenous information due to information

contagion [Arthur and Lane, 1993].

4.2.2 Backers’ Decision Model

It is widely known that backers’ beliefs of PoS are usually correlated with the entrepreneur’s

updates of the project status [Kuppuswamy and Bayus, 2015, Marelli and Ordanini, 2016,

Alaei et al., 2016, Kuppuswamy and Bayus, 2017]. However, the exact correlation is privately

known to a backer himself only and not observed by the entrepreneur. This makes it difficult

to accurately model backers’ decision making process. To tackle this problem, we formalize

backers’ decision model using the same pattern as that in the work [Ohannessian et al., 2014]

by Ohannessian et al., which also assumes that agents use thresholding policies.

Let ri(t, d(i, t)) ∈ [0, 1] represent high-value backer i’s estimate of the campaign’s PoS given

the report d(i, t), and φi ∈ (0, 1] be his threshold on ri(·) to contribute. We denote backer i’s

decision on whether to contribute or not at time t by αi(t) ∈ {0, 1}, where 0 indicates Not
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Pledging, and 1 represents Pledging. Backer i’s expected utility ui is determined as follows:

ui(t, αi(t), d(i, t)) =


ci · αi(t) , if ri(t, d(i, t)) ≥ φi;

0 , otherwise.

(4.2)

Here, ci > 0 is backer i’s expected utility if he contributes (i.e. αi(t) = 1) when his es-

timate of PoS is no less than the threshold φi. Note that ci, ri(·) and φi are all private

information known to backer i only, while his arrival and pledging behavior are observed by

the entrepreneur through the platform. In practice, backer i may adapt to the environment

and update his threshold accordingly. In this case, his threshold φi can be treated like the

upper bound of all the updated thresholds. Without loss of generality, we assume that each

contributing backer pledges the same amount P of fund to the project for a reward.

Backer i stays at the campaign for at most li ∈ {1, 2, 3, .., L} periods, where li is known to

backer i only. This is without loss of generality because although backers may dynamically

enter and exit the system and check the progress, these situations can be viewed as the case

that the backers stay in the system for a sufficient period.

Let I(t) denote the group of backers who have arrived at the campaign before or at time t,

have at least one time period to leave and have not yet claimed a contribution. At time t,

for each backer i ∈ I(t), his objective function is

Bi(t) = max
αi(t)

ui(t, αi(t), d(i, t)) s. t. G, T,N, P, li , (4.3)

where ui is determined by Equation 4.2. At time t, backer i will leave the campaign either

if he claims a contribution (i.e. αi(t) = 1) or his own deadline li is reached.
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4.2.3 The Entrepreneur’s Optimization Problem

In crowdfunding, the entrepreneur is interested in attracting as many contributions as pos-

sible within the deadline so that her project will get funded. Specifically, her objective is to

set the disclosure policy such that the number of contributions is maximized until a given

deadline T .

Let M(t) denote the funds that the entrepreneur has raised up to time t (t included) when

she uses the disclosure policy DP (t). Here,

DP (t) = (((d(i, t′))i∈I(t′))t′≤t . (4.4)

The entrepreneur’s expected contributions at time t is defined as follows:

M(t) =
t∑

t′=1

∑
i∈I(t′)

αi(t
′) · P s. t. G, T,N, P . (4.5)

Due to the deadline constraint, the entrepreneur’s optimization problem (i.e. optimal infor-

mation design) is formalized as follows:

Definition 4.1 (Optimal Information Design). An optimal information design in crowd-

funding is to find a disclosure policy DPopt(T ), such that M(T ) is maximized, i.e.

DPopt = argmax
DP (T )

M(T ) . (4.6)

Due to the dynamic nature of crowdfunding, the design of disclosure policy DP (t) cannot

be based on backers’ later decisions (αj(t̂)j∈I(t̂))t̂>t, or use later project status (s(t̂))t̂>t. This

constraint is called No Clairvoyance.
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4.3 Optimal Information Design

After introducing the solution concepts, we show that excessive information weakly shrinks

revenue. We further identify conditions under which immediate disclosure is optimal in

crowdfunding.

4.3.1 Solution Concepts

In his seminal work [Blackwell et al., 1953], Blackwell formulated a partial order that com-

pares the quality of two pieces of information (see Theorem 4.1). According to Blackwell’s

theorem, if a piece of information ζ2 is Blackwell-inferior to ζ1, then an agent will always

weakly prefer ζ1 to ζ2.

Theorem 4.1 (Blackwell’s theorem [Blackwell et al., 1953]). Let ζ1 and ζ2 represent two

pieces of information, the following conditions are equivalent:

1. When the agent chooses ζ1, her expected utility is always at least as big as the expected

utility when she chooses ζ2, independent of the utility function and the distribution of

the input.

2. ζ2 is a garbling of ζ1.

Blackwell’s theorem implies two types of information: vertical information and horizontal

information, which are key solution concepts used in this work. Given two pieces of infor-

mation, if one is always (weakly) preferred whatever the information receivers’ types are,

then they are vertical information (see Definition 4.2). If the two pieces of information are

not comparable without prior knowledge about the receivers’ types, then the information is

horizontal (definition omitted since it complements vertical information).
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Definition 4.2 (Vertical Information). Given two pieces of information ζ1 and ζ2, where

ζ1 6= ζ2, if ∀i ∈ I, ui(ζ1) ≥ ui(ζ2), then ζ1 % ζ2, where I denotes a set of agents and %,

indicating preferred or indifferent to, is independent of agent i’s private type. If ζ1 % ζ2, the

information is vertical.

In crowdfunding, backer i’s estimate of the campaign’s PoS (i.e. ri(t, d(i, t))) is both time

and state-dependent. Both the amount of funding (measured by |s(k)|) raised, and the time

of the project status (denoted by k) are important. We identify three scenarios of vertical

information. First, a higher state of project status is always more favorable if the time of

the state is the same (e.g. (20%, 5) % (10%, 5)), which is obvious. Second, the earlier report

of project status is always (weakly) preferred if the project status of the two reports are

the same (see Proposition 4.1). Third, the later report of project status is always (weakly)

preferred if the revenue increases by more than P each time between the timestamps of the

two statuses. (see Proposition 4.2). All the proofs can be found in Appendix A.1.

Proposition 4.1. An earlier report of project status is always weakly preferred if the project

status of the two reports are the same. Formally, given project status s(k1) and s(k2), where

k1 < k2, |s(k1)| = |s(k2)|, we have ∀t ≥ k2, ∀i ∈ I(t): (s(k1), t) % (s(k2), t).

Proposition 4.2. A later report of project status is always weakly preferred if the revenue

increases by more than P each time between the period of the two statuses. Given status

reports ε1 : (s(k1), t1) and ε2 : (s(k2), t2), where k1 < k2, t1 < t2 and |s(k2)| − |s(k1)| ≥

(k2 − k1) · P/G, we have ∀t ≥ k2,∀i ∈ I(t): ε2 % ε1.

If the conditions of vertical information cannot be identified, the information is horizontal

(see Example 4.1). Without prior information about backers’ private types (e.g. arrival

process, valuation, the estimate of the campaign’s PoS, and the correlation between them),

it is not feasible for the entrepreneur to identify optimal information design. However, an
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effective disclosure policy should capture both the vertical and horizontal component, making

the information design problem particularly challenging for the entrepreneur.

Example 4.1. Given T = 30, P = 0.1G, |s(10)| = 30% and |s(15)| = 40%, without prior

knowledge about backer i’s projection of PoS (i.e. ri(·)), it is unclear which project status

is more favorable by i. This is because |s(15)| − |s(10)| = 0.1 < 0.1 · (15− 10).

4.3.2 Excessive Disclosure Shrinks Revenue

Given two project status reports, if their partial order can be identified according to Propo-

sition 4.1 and 4.2, then the entrepreneur only needs to disclose the one with higher order.

This is because revealing the low-order report does not increase the chance that backers

contribute to the campaign (see Lemma 4.1).

Lemma 4.1. If the order of two project status reports can be identified, the low-order report

does not increase the change of backers’ contribution. Formally, given two reports ε1 :

(s(k1), t1) and ε2 : (s(k2), t2), if ∀t ≥ max{k1, k2}, k1 6= k2, ∀i ∈ I(t) : ε2 % ε1, we have :

E(αi = 1|ε2) ≥ E(αi = 1|(ε1, ε2)) , where E(αi = 1|ε) denotes the expectation that backer i

contributes to the campaign given the information ε.

If the partial order of the two reports cannot be identified, the entrepreneur should also

refrain from disclosing additional information. Depending on how backers estimate the

campaign’s PoS, revealing more information than necessary can decrease the revenue. The

reason is that excessive information disclosure can decrease backers’ projections of the PoS

(See Lemma 4.2).

Lemma 4.2. If the partial order of the two project status reports cannot be identified, ex-

cessive information disclosure weakly decrease backers’ projections of PoS. Formally, given

two reports ε1 : (s(k1), t1) and ε2 : (s(k2), t2) where k1 6= k2, if the partial order of the
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two cannot be identified by the entrepreneur, then ∀t ≥ max{k1, k2}, ∀i ∈ I(t), we have:

ri(t, (ε1, ε2)) ≤ max{ri(t, ε1), ri(t, ε2)} .

In our model of crowdfunding, excessive information disclosure weakly diminishes a backer’s

willingness to contribute (see Theorem 4.2) and thus weakly shrinks the revenue as well

as the entrepreneur’s ability to implement optimal information-disclosure policies. The en-

trepreneur should not disclose more information about the project status than necessary in

order to collect as many contributions as possible.

Theorem 4.2. Excessive information disclosure weakly diminishes the chance that a backer

will contribute. Formally, given two project status reports ε1 : (s(k1), t1) and ε2 : (s(k2), t2)

where k1 6= k2, let α
′
i denote backer i’s decision on pledging if given report either ε1 or ε2,

and α
′′
i denote his decision on contribution if given (ε1, ε2). ∀t ≥ max{k1, k2}, ∀i ∈ I(t), we

have: E(α
′
i = 1) ≥ E(α

′′
i = 1).

4.3.3 Immediate Disclosure is not Always Optimal

The immediate-disclosure policy (see Definition 4.3) is widely adopted by entrepreneurs on

major crowdfunding platforms (e.g. Kickstarter, Indiegogo) due to its ease of implemen-

tation [Alaei et al., 2016]. It is thus important to investigate if immediate disclosure is

optimal.

Definition 4.3 (Immediate Disclosure). An immediate-disclosure policy always reveals the

current project status to all the backers in the campaign. Formally let DPim denote imme-

diate disclosure, we have

DPim(t) = (((d(j, t′))j∈I(t′))t′≤t s.t. d(j, t′) = (s(t′), t′) . (4.7)
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If the entrepreneur and the backers have identical information, immediate disclosure is op-

timal [Rayo and Segal, 2010, Kamenica and Gentzkow, 2011, Au, 2015]. It still holds if the

entrepreneur has some unique information provided that such information does not affect the

backers’ decisions. Unfortunately, in our model, all information about the campaign (e.g.

G, T, P,N) except the project status is known to both the entrepreneur and the backers.

Backer i’s estimate of PoS (i.e. ri(t, d(i, t))) is influenced by the project status s(k) that

the entrepreneur reveals. Thus, it is critical for the entrepreneur to identify conditions when

immediate disclosure is optimal.

From Proposition 4.2, we see that to improve backer i’s belief of the campaign’s PoS, the

entrepreneur should always disclose the project status that is preferred by all the backers if

available. Otherwise, the information design is not optimal. With this intuition in mind, we

show that before the campaign reaches the fundraising goal, immediate disclosure is optimal

if and only if the project status increases monotonically in time by at least one contribution

each time (see Lemma 4.3). This condition characterizes the relationship between the growth

rates of the revenue and the maximum possible arrival rate of the backers. Though the

entrepreneur does not have prior knowledge of the backers’ types (e.g. beliefs, thresholds),

she can observe the progress of the project and determine if immediate disclosure is optimal

given the tracking record of project status.

Lemma 4.3. Before the campaign reaches the fundraising goal, immediate disclosure is opti-

mal if and only if the project state increases monotonically in time by at least one contribution

each time. Formally, if M(t) < G, then we have

DPim(t) = argmax
DP (t)

M(t) ⇐⇒ ∀t′ ≤ t : |s(t′)| − |s(t′ − 1)| ≥ P/G . (4.8)

After successfully reaching the funding objective, it is certain that the campaign will get

funded, so immediate disclosure is optimal (see Lemma 4.4).
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Lemma 4.4. After the campaign reaches the fundraising goal, Immediate disclosure is opti-

mal. Formally, if M(t) ≥ G, then we have: DPim = argmax
DP (t)

M(t).

Lemma 4.3 shows that immediate disclosure is not always optimal during the crowdfund-

ing campaign when backers follow a thresholding policy. According to Definition 4.1 and

Equation 4.5, in order to compute the optimal solution, the entrepreneur must have a prior

knowledge of the sequence of decisions ((αi(t))i∈I(t))t∈T in advance. However, such assump-

tion violates the No Clairvoyance constraint and is not implementable in practice.

4.4 Dynamic Information Design

Instead of restricting our attention to optimal information design, we introduce a heuris-

tic algorithm, called Dynamic Shrinkage with Heuristic Selection (DSHS), to help the en-

trepreneur make decisions on information disclosure (See Fig. 4.2 for an illustration of DSHS).

Available project
statuses (historical)

Heuristic Selection
Use a heuristic algorithm to select the
final project status report to disclose

Candidate heuristic algorithms:
random selection, greedy selection,
epsilon greedy, softmax, and meta

status status
status

statusstatus

status

status
status

Backer

Dynamic Shrinkage
Rank all the project status reports

Remove the least promising
reports according to the two
relative orders

Remaining project statuses
(not directly comparable)  Estimate of

probability of
success

Decision

Threshold

Figure 4.2: An illustration of the Dynamic Shrinkage with Heuristic Selection algorithm.
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DSHS treats the two conditions separately: before and after project success (see Algo-

rithm 4.1). Before the campaign reaches the fundraising goal, the algorithm determines the

disclosure policy according to two processes: dynamic shrinkage (see Algorithm 4.2) and

heuristic selection. After the campaign reaches the fundraising goal (if it happens), the

algorithm discloses information immediately.

Algorithm 4.1 Dynamic Shrinkage with Heuristic Selection

Input: t - time; s(t) - project status at time t; I(t)- backers in the campaign.
Output: (d(i, t))i∈I(t)- the entrepreneur’s decisions on information disclosure for backers
in the campaign at time t.

1: if t ≤ T then
2: for each backer i ∈ I(t) do
3: if current revenue M(t) < G then . before success
4: Include all the available project status into Hi(t)
5: Sort Hi(t) in the ascending order of |s(k)|
6: Remove the least promising candidates in Hi(t)
7: Select the project status s(ksel) using heuristics
8: Finalize disclosure decision d(i, t)← (s(ksel), t)
9: else . after success

10: Disclosure current status, i.e. d(i, t)← (s(t), t)
11: end if
12: Update revenue M(t+ 1) = M(t) + αi(t) · P
13: Update project status s(t+ 1) = M(t+ 1)/G
14: end for
15: end if

4.4.1 Dynamic Shrinkage

In the dynamic-shrinkage process, DSHS ranks all the available choices, and removes the

least promising choices which are less preferred by the backers according to Propositions 4.1

and 4.2. By doing so, the entrepreneur avoids excessive information disclosure that weakly

shrinks revenue.
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Initially, DSHS includes all the project status disclosures s(k) since the last disclosure for

backer i into a set Hi(t). That is,

Hi(t)← {s(k)}k∈{k0,k0+1,...,t} s.t. d(i, t′) = (s(k0), t′) , (4.9)

where t′ ∈ {1, 2, ..., t}. It then sorts the choices Hi(t) in the ascending order of |s(k)|.

This sorting problem can be easily solved by Quicksort [Hoare, 1962] with time complex-

ity O(|Hi(t)| log |Hi(t)|). Since |Hi(t)| ≤ T , the worst-case complexity for the function is

O(T log T ).

After the sorting process, DSHS removes the least promising candidates through the function

Shrink (see Algorithm 4.2). While there are at least two choices available, the Shrink algo-

rithm removes the project status with later time if the two statuses have the same progress

(see line 4, Algorithm 4.2) according to Proposition 4.1. This process is equivalent to re-

moving duplicates in a sorted array, which can be solved in O(T ) time. Given two project

statuses, if they satisfy the relation in Proposition 4.2, then the algorithm removes the

project status with the earlier time (see line 7, Algorithm 4.2) . This step takes O(T log T )

Algorithm 4.2 Shrink

Require: H- sorted project status disclosures
Ensure: H ′-remaining status disclosures after shrinkage

1: if |H| ≥ 2 then
2: while s(k1), s(k2) ∈ H, k1 < k2 do
3: if |s(k1)| = |s(k2)| then
4: H ← H \ {s(k2)} . By Proposition 4.1
5: end if
6: if |s(k2)| − |s(k1)| ≥ (k2 − k1) · P/G then
7: H ← H \ {s(k1)} . By Proposition 4.2
8: end if
9: end while

10: end if
11: H ′ ← H

time in the worst case. The algorithm does nothing if only one disclosure strategy exists.
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4.4.2 Heuristic Selection

After the shrinkage process, if there are still at least two choices available (i.e. |Hi(t)| ≥ 2),

then the remaining setHi(t) is horizontal. The entrepreneur has to select some s(ksel) ∈ Hi(t)

to attract as many contributions as possible. This optimization problem is similar with the

renowned restless bandit problem [Whittle, 1988], which is not solvable due to incomplete

information. However, simple heuristics such as random selection, greedy selection, ε-greedy

exploration, and softmax exploration can be used to produce acceptable results. See Ap-

pendix A.2 for details of each algorithm.

We further introduce a meta algorithm (See Algorithm 4.3). The intuition is that the

algorithm can improve the quality of decisions by only using the experts that have a satisficing

performance for producing the final results [Crandall, 2014]. Besides, we take an ensemble

approach to calculate the final selection instead of directly applying the results produced

by the selected experts. The benefit is that the algorithm can further reduce potential

performance loss due to biases of a single individual expert [Shen et al., 2013, Kuncheva and

Whitaker, 2003].

Before describing the meta algorithm, we first introduce the notations used. Let X denote

the set of experts, where x ∈ X is one of the four heuristics. We write zt(x) for expert x’s

expected revenue at time t and write wt(x) for expert x’s revenue prospect. Here, zt(x) is

computed by:

zt(x) =
∑

s(k)∈H′

∑
i∈I(t)

ρtx(s(k)) ·Υx(s(k), i, t) , (4.10)

where ρtx(s(k)) denotes the probability that s(k) is selected as the targeted project status

by expert x at t, and Υx(s(k), i, t) is the entrepreneur’s expected increase of revenue given

(s(k), t) for backer i ∈ I(t) by using expert algorithm x. Details of computing Υx(s(k), i, t)

for each expert x is described in Appendix A.2. Initially, wt = maxx∈X{zt(x)}.

44



Each time the algorithm selects a subset X ′ of experts whose expected revenue is higher

than a learned threshold—the minimum learned prospect wt(x). This step eliminates the

experts that fail to produce better expected revenue than the threshold. The algorithm then

performs a majority vote from the results generated by each expert x ∈ X ′. The selected

project status s(ksel) is the one with the most votes. Ties are broken by choosing the result

generated by the expert with the highest zt(x). This step aims to improve the robustness of

selection by reducing the performance loss caused by biases of a single expert.

When a new expert algorithm is selected, the prospect for the expert is updated by

wt(x) = (1− σ)qt(x) + σwt−δ(x) . (4.11)

Here, δ is the number of periods that expert x has been used, and σ ∈ [0, 1] is the learning

rate ( σ = 0.9 in our work). qt(x) is the entrepreneur’s average revenue gain per time by

using expert algorithm x in the last δ periods. It is calculated by:

t(x) =
t∑

t′=t−δ

∑
j∈I(t′)

αj(t
′)

δ
. (4.12)

Algorithm 4.3 Meta

Require: H ′-remaining status disclosures after shrinkage; X-the set of experts
Ensure: s(ksel)-the selected project status disclosure

1: Compute zt(x) for x ∈ X
2: Initialize wt(x) = maxx∈X z

t(x)
3: while t < T do
4: X ′ = {x : zt(x) ≥ minwt(x)}
5: Perform a majority vote for s(k) ∈ HX′

6: Select s(ksel) as the s(k) with the majority rule
7: Update wt(x) = (1− σ)qt(x) + σwt−δ(x) if a new expert x is selected
8: Update qt(x) and zt(x) for each x ∈ X
9: end while
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DSHS is highly flexible in the sense that it allows the entrepreneur to easily customize both

the shrinkage process and the selection process with different methods.

4.5 Empirical Evaluation

This section describes the experimental settings and the results.

4.5.1 Experimental Setup

We collected the campaign data from a randomly selected subset of Kickstarter2 projects

using a web crawler. The dataset contains 1,569 projects which satisfy the following condi-

tions: (1) they were all-or-nothing, reward-based campaigns; (2) the campaigns lasted for

exactly 1,440 hours (60 days) with both the starting time and the ending time falling between

07/15/2016 and 10/15/2016. Each campaign includes hourly project status, the fundraising

goal, the deadline, the minimal amount of contribution, and the number of contributions

every hour. The data samples allow us to mimic the operation of real-world crowdfund-

ing projects when the underlying factors and correlations that impact them are yet to be

identified [Mollick, 2014, Alaei et al., 2016].

Most of the projects on Kickstarter offer several tiers of perks for the backers to choose. We

only selected the early bird pledges and the regular pledges that would offer a product to

the backers to compensate backers’ financial support. We adjusted the funding goal for each

project accordingly. The early bird pledges were proportioned to the regular pledges. For

instance, an early bird pledge with value 8 is equivalent to 0.8 regular pledge with value 10.

Due to Kickstarter’s API constraints, we were unable to track the number of backers who

visited the campaign per hour. We simulated backers’ arrivals using Poisson [Ross, 1996] dis-

2https://www.kickstarter.com
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tribution for each project. The arrival process was independently and identically distributed

with a mean ϑ(t) across time, where t ∈ T . The mean of (ϑ(t))t∈T was 0.1 (consistent with

the empirical arrival rates of backers in crowdfunding projects [Marwell, 2015]).

We used the anticipating random walk [Alaei et al., 2016] model for simulating backers’

projections of PoS because it is tailored for computing backers’ estimates of PoS in crowd-

funding. For each project, the backers’ valuation of a reward was Gaussian [Ross, 1996]

distributed with a mean equivalent to the value of the reward P and a randomly selected

standard deviation ranging 0.05 of the mean to 0.5 of the mean.

We performed six groups of experiments: immediate disclosure (immediate), and DSHS with

five heuristics (random, greedy, ε-greedy, softmax, and meta) . We also included the empirical

results (Empir.) for comparison. Each group was run 30 times with the same 2.9GHz quad-

core machine.

4.5.2 Results

Figure 4.3a shows the average revenue (normalized by the highest revenue achieved in all

experiments) obtained in the end by each group. The actual revenue excluded the projects

that failed (M(T ) < G), while the expected revenue included all the projects regardless of

whether they succeeded to meet the funding goal or not. Not surprisingly, the expected

revenue of each group was significantly higher than their respective actual revenue. This

is because the majority of the campaigns failed due to not having met the funding goal

within the deadline (see Figure 4.3c). Among the six groups, the meta group scored the

best for both the expected revenue (mean = 0.7435, std = 0.0244) and the actual revenue

(mean = 0.3722, std = 0.0092), followed by the softmax group, and the ε-greedy group. The

greedy group and the immediate group performed better than the immediate group in the

expected revenue, but not in the actual revenue due to a lower success rate. The random
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group received the lowest scores in terms of both the expected revenue (mean = 0.3210, std

= 0.0273) and the actual revenue (mean = 0.1004, std = 0.0329).

At the beginning, the immediate, the meta, the greedy, and ε-greedy groups performed better

than the other two (see Figure 4.3b). As time progressed, the meta and the ε-greedy groups

continued to lead the way until the later left behind the former at around t = 400. The

ε-greedy group kept the second until at time t = 900 that it was surpassed by the softmax

group. One explanation is that the ε-greedy algorithm initially encouraged exploration to a

higher degree than the softmax algorithm. However, it acted more greedily than the softmax

exploration over time, which was not favorable since better choices were rarely explored. The

meta group used a set of refined policies to produce more robust decisions than the others.

The random group performed the worst possibly because the random algorithm completely

ignored the history of backers’ responses.

The meta algorithm took the most computation time (mean = 0.2300 std = 0.0290 ), while

the random method required the least time (mean = 0.1037, std = 0.0034) (see Figure 4.3d).

Immediate disclosure required no additional time.

In summary, although the meta group required the most computation time, it performed

consistently the best among all the groups in terms of both actual and expected revenue. This

echoes our previous findings that immediate disclosure is not always optimal in crowdfunding.
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Figure 4.3: A comparison of performance.

4.6 Summary

In this work, we present the very first study on information design where a sender inter-

acts with multiple receivers that follow thresholding policies. Our work demonstrates that

excessive information disclosure weakly shrinks the revenue in crowdfunding when backers

use cutoff policies. It further shows that the widely-adopted immediate-disclosure policy is

not optimal. We also present how the entrepreneur can benefit from dynamic information
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disclosure with appropriate heuristics. To further evaluate the performance of the heuristic

algorithm, user studies and real-world deployment are needed.

Although our analysis is in the context of crowdfunding, extensions to other domains (e.g.

transportation systems, smart grids, and online shopping) where agents typically use thresh-

olding policies can be straightforward. For instance, online shopping marketplace can employ

DSHS variants to dynamically reveal the number of products available or the number of prod-

ucts sold to attract potential buyers to buy the products. Further research is required to

assess the variants’ performance in these domains.
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Chapter 5

An Online Post-Price Mechanism for

Autonomous Ridesharing Systems

With proper management, autonomous ridesharing systems or autonomous mobility-on-

demand (AMoD) systems have great potential to satisfy the transport demand of urban

populations by providing safe, convenient, and affordable ridesharing services. Meanwhile,

under certain conditions such systems might decrease private car ownership and use, and

thus significantly reduce traffic congestion, energy consumption, and carbon emissions. To

achieve this objective, an AMoD system requires private information about the demand from

passengers. However, due to self-interestedness, passengers are unlikely to cooperate with the

service providers in this regard. Therefore, an online mechanism is desirable if it incentivizes

passengers to truthfully report their actual demand. In this chapter, we hereby introduce a

posted-price, integrated online ridesharing mechanism (IORS) that satisfies desirable prop-

erties such as ex-post incentive compatibility, individual rationality, and budget-balance.

Numerical results indicate the competitiveness of IORS compared with two benchmarks,

namely the optimal assignment and an offline, auction-based mechanism. This chapter is

based on our work appeared in [Shen et al., 2016].
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5.1 Background

The rise of private car ownership and use has brought many social and environmental chal-

lenges, including traffic congestion, increased greenhouse gas emissions [Poudenx, 2008]. One

possible solution to address the challenges is to promote ridesharing [Furuhata et al., 2013,

Caulfield, 2009, Levofsky and Greenberg, 2001] among passengers by providing incentives

(e.g. lower fares for the shared trips than individual trips) to them. In such a scenario, a

limited number (depending on the seat capacity of the vehicle) of passengers who have simi-

lar itineraries share a ride and split the fares. Ridesharing (as shown in Figure 5.1) increases

the occupancy of vehicles during traveling, making it possible to transport more passengers

with fewer vehicles running on the roads [Masoud et al., 2017, Masoud and Jayakrishnan,

2017].

Figure 5.1: A simple scenario of ridesharing: dashed lines indicate the real demand; solid
lines with arrow indicate actual routes.

Rideshare experiences can be significantly improved as autonomous vehicle technologies ma-

ture. This is because AMoD systems have the potential to provide safe, convenient, and

affordable mobility solutions for passengers, while reducing greenhouse emissions and pri-

vate car ownership [Mitchell, 2010, Chong et al., 2013, Shen and Lopes, 2015, Spieser et al.,

2014]. Unlike traditional mobility-on-demand systems (e.g. taxis, shuttles), an AMoD sys-

tem is equipped with a fleet of self-driving, electric cars with no drivers needed. This enables

seamless cooperation between the information center and the autonomous vehicles (AVs).

Several mechanisms [Kleiner et al., 2011, Kamar and Horvitz, 2009, Cheng et al., 2014, Zhao

et al., 2015] have been introduced to promote ridesharing in traditional mobility-on-demand
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systems. These mechanisms require passengers to directly reveal the valuation of the rides.

While interesting and insightful from a theoretical perspective, they may not work well in

practice since they require passengers to reveal the exact value of their rides, which could be

problematic [Naor et al., 1999, Larson and Sandholm, 2001, Babaioff et al., 2015]. In this

case, posted-price mechanisms are more appealing because passengers only need to accept

offers with value greater than the posted price, without revealing their actual valuations to

service providers.

Some of the mechanisms require additional constraints (e.g. dual ride shares only, lin-

ear in commitment) to satisfy desirable properties such as strategy-proofness and budget-

balance [Kleiner et al., 2011, Zhao et al., 2015]. Besides, many mechanisms assume that

passengers are only motivated by monetary incentives (i.e. lower fares) [Kleiner et al., 2011,

Kamar and Horvitz, 2009, Cheng et al., 2014, Zhao et al., 2015]. They neglect the fact that

non-monetary factors such as time, comfortability and privacy, are also important, or even

critical when people make decisions on whether to use the service or not.

Another drawback of these mechanisms is that they process the ride requests in batch and

do not work in online environment [Kleiner et al., 2011, Kamar and Horvitz, 2009, Cheng

et al., 2014, Zhao et al., 2015]. In AMoD systems, service providers are committed to offering

an immediate response to each request sent by passengers via a smart device. Besides, they

assume that the demand is fixed without consideration of the dynamic nature of demand

responsive systems.

A desirable mechanism is expected to be truthful and online [Parkes and Singh, 2004, Gal-

lien, 2006, Nisan et al., 2007]. It should be able to provide a fare quote immediately after

the submission of a request. It needs to consider major non-monetary factors (e.g. latest

departure time) as well as the dynamic nature of demand-driven systems. However, such a

mechanism is yet to be designed. To bridge the gap and transcend conventional transport
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models like private car ownership, we introduce a truthful online mechanism called IORS

for AMoD systems. We implement a simple, abstracted, yet powerful simulator that enables

efficient modeling of ridesharing in AMoD systems. Numerical results show that the IORS

mechanism outperforms the cutting-edge auction-based mechanism for last-mile mobility

systems [Cheng et al., 2014] substantially. It has a very close performance compared to the

optimal solution, but requires a shorter time to compute and requires no future knowledge

about the demand.

5.2 Ridesharing in AMoD Systems

An AMoD system (see Figure 5.2) can be viewed as a multi-agent system consisting of

an information center, a fleet of autonomous vehicle agents, and self-interested passengers

who dynamically enter and exit the system. The working principle of the AMoD system is

straightforward: when a passenger needs a ride, she sends the ride request to the information

center using a smart device. This initiates the demand for mobility. The information center

next computes a fare quote and sends it to the passenger. If the passenger accepts the fare

estimate, the information center then calculates an assignment. As long as a plan has been

calculated, it will be sent to both the AV assigned and the passenger who has just submitted

the request. Both the passenger and the AV are committed to executing it. Otherwise, the

passenger will be subject to penalties.
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Figure 5.2: An abstraction of ridesharing in an AMoD system operating in a grid city.

5.3 The Online Mechanism

5.3.1 Preliminaries

In our work we consider discrete time T = {0, 1, 2, ...}, with passengers that arrive and depart

over time. Without loss of generality, we assume that the AVs never exit the AMoD system.

The information center has full knowledge of the AVs at each time. However, passengers’

demand information is private and hidden from the center. The mechanism designer should

incentivize passengers to truthfully reveal their demand for better system-wide optimization.

In our model we make a realistic assumption that the passengers are impatient [Horn, 2002].

They will leave the AMoD system and switch to other alternatives if the pickup time is later

than their latest departure time.

Let It denote a group of passengers who have mobility demand at time t ∈ T . At each

time, a passenger i ∈ It submits a request rti ∈ Rt to the information center. The request

rti can be represented as a tuple (oi, di, ti, t̄i), where oi, di, ti and t̄i are passenger i’s origin,

destination, arrival time and latest departure time, respectively. Here, ti = t. To quantify

the transport demand, we introduce the effective demand `i, which indicates the minimum
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distance from passenger i’s origin oi and destination di. Assuming that the effective demand

is independent of request submission time, we have:

∀t ∈ T , i ∈ It, `t+1
i = `ti . (5.1)

Equation 5.1 indicates that the effective demand of passenger i ∈ It will not change if the

passenger delays its request submission from time t to time t+ 1.

Once a passenger i has sent her request rti , the system needs to provide a fare estimate qrti

to the passenger immediately, which enables the passenger to make a prompt decision on

whether to accept the quote or not. It is important to note that the quote is the upper

bound of the fare rather than the final payment. The passenger only accepts the service if

the quote is lower than the amount that she is willing to pay. If the passenger accepts the

quote and if the system is able to provide the service given the time and routing constraints,

she will be serviced with an assignment provided. A final payment prti will be calculated

upon the completion of the ride. Otherwise, the request will be rejected.

In our model we make the passengers who use the ride service split the operational cost

of the vehicles. This enables the AMoD system to provide service without seeking for ex-

ternal subsidies. The mechanism designer’s goal is to minimize the cost per unit effective

demand. Since the operational cost is split by all the passengers, this objective reflects the

social welfare. The mechanism needs to collect truthful information about the requests from

passengers. However, passengers are selfish and motivated to minimize their own cost for the

rides. For instance, they may delay their request submissions, or claim a shorter waiting time

to reduce their cost. Therefore, incentives should be provided to counter the manipulations.

Let Ct denote the total cost of the system incurred up to now from t = 0, and I ′t ⊆ It be
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the set of passengers been serviced at t. We have the cost per demand of the system:

W ′ =
Ct∑

t′∈[0,t]

∑
i∈I′t

′ `i
. (5.2)

Let W = 1/W ′, the mechanism designer’s goal is equivalent to maximizing the social welfare

W . Initially, the total cost is zero. That is, C0 = 0. We assume that the total cost of the

system Ct is non-decreasing. It quantifies the minimum operational cost that the system

needs to transport the passengers. Since the total cost is independent of the time and the

orders of the request submissions, the following inequation holds:

∀t ∈ T , Ct+1 ≥ Ct . (5.3)

If the requests are delayed from t to t+ 1:

∀t ∈ T , Ct+1 = Ct . (5.4)

Let δrti denote the increase on the operational cost if passenger i is serviced when she submits

the request rti at time t, the following equation always holds for every t ∈ T :

Ct+1 − Ct =
∑
t′=t+1

i∈I′t
′

δrt′i
. (5.5)

Equation 5.5 shows that the increase on the total operational cost from time t to time t+ 1

always equals to the summation of the marginal cost that is incurred by the requests being

served at time t+ 1.

Let V denote the set of vehicles in operation and V t ⊆ V be the set of vehicles that have

at least one seat available at time t. Initially, we divide the vehicles into N groups (or

coalitions), where N = |V|. At each time, a request r ∈ Rt is added into a group X t
v ⊆ Xt
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according to the mechanism policy, where Xt is the set of all groups at time t. At time t,

all passengers in a group share the same fare rate (cost per unit demand). Let ρ denote the

cost per unit demand, we have:

ρX tv = ρrti , (5.6)

where (i ∈ {i | rti ∈ X t
v , t ∈ T }).

5.3.2 IORS Mechanism

The IORS mechanism consists of three parts: fare estimation, pickup assignment and pay-

ment calculation. In the fare estimation process, the mechanism calculates a quote for each

request. In the pickup assignment phase, the mechanism computes an optimal plan that min-

imizes the cost per unit demand. Finally, the mechanism provides payments immediately

after successful completion of the rides.

Fare Estimation

As the passengers arrive and depart dynamically, the mechanism can only rely on the known

information to compute the upper bound of the fare. The fare estimation process is described

as follows (as shown in Algorithm 5.1): for each request rti at time t, the mechanism first

checks if a vehicle v (with vacancies) satisfies the passenger’s latest departure time. If such

a vehicle is found, then the mechanism compares the cost per unit demand before and after

adding the request rti into the coalition, respectively. If the cost per unit demand decreases,

then the fare is calculated and stored in a set Q′. The mechanism selects the maximum fare

in the set as the quote. Otherwise, the system rejects the request. Note that the mechanism

picks the highest (instead of the lowest) cost per unit demand as the upper bound of the

fare estimate. This is because the mechanism needs to adjust the assignments so that the

system can produce the lowest cost per unit demand in general. Besides, it is a necessary
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condition for individual rationality and incentive compatibility. The algorithm takes O(n3)

time in the worst case.

Algorithm 5.1 The Fare Estimation Algorithm

Input: t - Time, Rt - A set of requests from passengers It at time t
Output: QRt-The fare estimate for requests Rt

Initialize: QRt ← ∅
1: while rti ∈ Rt do
2: Q′ ← ∅
3: while v ∈ V t do
4: Compute t′

5: if t′ ≤ t̄i then
6: Compute ρX t−1

v ∪{rti}
7: if ρX t−1

v ∪{rti}
< ρX t−1

v
then

8: q′ ← `tiρX tv
9: Q′ ← Q′ ∪ {q′}

10: end if
11: end if
12: end while
13: if Q′ 6= ∅ then
14: q ← argmax

q′∈Q′
q′

15: QRt ← QRt ∪ {(rti , q)}
16: end if
17: end while

return QRt

Pickup Assignment

Let nvt denote the number of seats available in vehicle v at time t. Each vehicle can only

service at most Nv passengers, where N is the seat capacity of the vehicle. That is, 0 ≤

nvt ≤ Nv. When there are multiple requests that decrease the cost per unit demand of a

coalition, the coalition selects the one that produces the lowest cost per unit demand. If there

is a tie, the mechanism breaks it by choosing the one with the highest demand at random.

The pickup assignment procedure is shown in Algorithm 5.2. The mechanism selects the nt

requests that produces the lowest cost per unit demand, where nt is determined as following:
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nt = min{nvt , nRt}, where nRt is the number of requests submitted. The time complexity of

Algorithm 5.2 is O(n2 log n).

Algorithm 5.2 The Pickup Assignment Algorithm

Input: t - Time; R′t - A set of requests from passengers It who accept the fare quotes
at time t
Output: Πt-The set of assignment
Initialize: Πt ← ∅, A← ∅

1: while v ∈ V t do
2: while r ∈ R′t do
3: Compute t′

4: if t′ ≤ t̄i then
5: Compute ρX t−1

v ∪{r}
6: if ρX t−1

v ∪{r} < ρX t−1
v

then
7: c′ ← ρX tv
8: A ← A∪ {(v, c′)}
9: end if

10: end if
11: end while
12: end while
13: V ← V t
14: I ← {i | ri ∈ Rt}
15: while A 6= ∅ and V 6= ∅ and I 6= ∅ do
16: A ← quicksort(A);
17:

18: (v, c′)← argmin
(v,c′)∈A

c′

19: Πt ← Πt ∪ {(v̂, r̂) | v̂ = v, cr̂ = c′}
20: A ← A \ {(v∗, c∗) | v∗ = v, (v∗, c∗) ∈ A}
21: if nv < 1 then
22: V ← V \ {v}
23: end if
24: I ← I \ {i | cri = c′, ri ∈ R′t}
25: end while

return Πt.

Payment Calculation

When a passenger accepts a fare quote and is not assigned with a vehicle, her request will be

added to time t+ 1 if the threshold t̄ satisfies. In this process, the mechanism assumes that
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all the passengers accept the fare estimate. This is because if a passenger rejects the quote,

the mechanism simply ignores the request and assumes that the passenger never submits

it. We assume that the system can calculate the marginal cost and the optimal routes as

quickly as necessary, although it might be time-consuming in real-world application due to

limited computational power and the complexity of the traffic dynamics. However, it can

be computed with meta heuristics [Hansen and Zhou, 2007]. At time t, the cost per unit

demand for all requests assigned to vehicle v under the assignment of πv ∈ Πt is determined

as following:

ρX tv =

∑
t′∈[0,t]

∑
r∈{r|(v,r)∈Πt′} δr∑

t′∈[0,t]

∑
r∈{r|(v,r)∈Πt′} `r

. (5.7)

Therefore, the final payment of passenger i at time t is calculated as following:

pti = `iρX tv , (5.8)

where pti can be calculated in O(n2T log n) time.

Ex-post Incentive Compatibility

We show that the IORS mechanism satisfies ex-post incentive compatibility.

Lemma 5.1. A passenger can not decrease her cost by delaying the submission of the request,

provided that all other passengers report their demand truthfully and do not change their

decisions on fare quotes. That is, for all τ1, τ2, t ∈ T and submissions R and R′, where

0 ≤ τ1 < τ2 ≤ t, R = {R0, ..Rτ1 ,Rτ2 , ...,Rt}, and

R′(t) =


Rτ1 \ {rτ1i } : t = τ1

Rτ2 ∪ {rτ1i } : t = τ2

R(t) : otherwise ,

(5.9)
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We have:

ptR(τ1) ≤ ptR′(τ2) (5.10)

Proof. Depending on whether ri is serviced or not, we distinguish two cases:

• The request is not serviced: if the passenger delays her request from τ1 to τ2, then her

latest departure time ˆ̄τ1 = τ̄1 − 1 < τ̄1. If the pickup time t = τ̄1, then she will not

be serviced at time τ2, which is obviously less favorable than being serviced. Another

situation is that the addition of the request at time τ2 does not decrease the cost per

unit demand of the coalitions at time τ2, or the new cost per unit demand is less than

the threshold determined by Algorithm 5.2.

• The request is serviced: If the passenger delays her request from τ1 to τ2. Assuming

that,

ptR(τ1) > ptR′(τ2) (5.11)

We prove the theorem by contradiction. If 0 ≤ τ < τ1, we have R′(τ) = R(τ). By

equation 5.1 and 5.4, the operational cost and the total unit demand are independent

of the request submission time. That is, C ′ = C,
∑
`′ =

∑
`. By equation 5.5, 5.7 and

5.8, we have ptR(τ) = ptR′(τ). Thus, inequation 5.11 does not hold. This is also true if

τ2 < τ ≤ t. If τ1 < τ ≤ τ2, since R′(τ) = Rτ1 \ {rτ1i }, we have the cost per unit demand

ρR(τ1) ≤ ρRτ1\{rτ1i }, and the total demand `R(τ1) < `Rτ1\{rτ1i }. By multiplying the left

and right sides of the two inequations, we get ρR(τ1)`R(τ1) ≤ ρRτ1\{rτ1i }`Rτ1\{r
τ1
i }

. That

is, ptR(τ) ≤ ptR′(τ). Hence, inequation 5.11 does not hold when τ2 < τ ≤ t. Therefore,

the assumption is invalid and inequation 5.10 holds.

By incorporating the above cases, we prove the lemma.

Lemma 5.2. The passenger can not decrease her cost by misreporting its latest departure

time, provided that all other passengers report their demand truthfully and do not change
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their decisions on fare quotes. That is,

p′r ≤ pr, (∀ˆ̄t 6= t̄). (5.12)

Proof sketch. If passenger claims an earlier latest departure time (i.e. ˆ̄t < t̄), according to

Algorithm 5.1 and 5.2, the search space of the vehicles may be reduced and the request

might be rejected. If ˆ̄t > t̄, the search space will be increased. However, a passenger will

reject the assignment if the pickup time exceeds the t̄ according to the assumption made in

section 5.3.1. By equation 5.1, 5.4, 5.5, 5.7 and 5.8, the fare ˆ̄p does not increase in either

scenario.

Theorem 5.1. The IORS mechanism is ex-post incentive compatible provided that all other

passengers report their demand truthfully and do not change their decisions on fare quotes.

Proof sketch. A passenger i can not lie about her origin oui and destination di. She is

unable to claim an earlier arrival ti. According to Lemma 5.1, she will not benefit from

delaying the request submission provided that all other passengers report their demand

information truthfully and do not change their decisions on whether to accept the quotes or

not. The passenger will not gain from misreporting the latest departure time according to

lemma 5.2.

Discussion

Note that the IORS mechanism does not require passengers to specify the deadlines for

the latest delivery to their destinations. This is because passengers are likely to misreport

the deadlines to rule out potential ridesharing assignments (e.g. by claiming an earlier

deadline). However, mechanism designers may set constraints (e.g. the longest time, the

maximum number of passengers, and the maximum rate) on a shared ride if necessary.
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The IORS mechanism also satisfies other properties such as individual rationality and budget

balance. For example, it is individual rational because passengers’ final payments never

exceed their quotes. The budget balance property is met for the reason that the total cost

is split by the passengers who are provided with the ride services. Due to space limitations,

we omit the poofs for these properties.

5.4 Benchmark

For evaluation purposes, we compute the optimal assignment as a benchmark to evaluate

the efficiency of the IORS mechanism. The goal of the optimal assignment is to minimize

the overall cost per unit demand (equivalent to maximizing W ) under the constraints in the

AMoD system. This is a minimum maximal matching problem, which is NP-hard [Hopcroft

and Karp, 1973], and cannot be solved in polynomial time. We use a linear programming

solver LpSolve solver [Berkelaar et al., 2004] for optimization in the experiment.

Auction-based mechanisms have been proven to be efficient in some of the existing rideshar-

ing systems such as carpooling and shuttles [Kleiner et al., 2011, Cheng et al., 2014, Coltin

and Veloso, 2013, Kamar and Horvitz, 2009]. Some of them even have very close perfor-

mance compared with the optimal solution [Cheng et al., 2014]. In our work, we compare

the performance of the IORS with the state-of-the-art, offline, auction-based mechanism

(bottom-up) described in [Cheng et al., 2014]. The auction-based mechanism can not be

solved in polynomial time.
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5.5 Experimental Results

To evaluate the performance of the IORS mechanism, we developed an AMoD simulator to

model the transportation system of a grid city with 101× 101 blocks (a scenario similar to

Figure 5.2).

5.5.1 Experimental Settings

In the experiment, we assumed that the number of AVs in the system is fixed. We set

the number N = 1000. For each simulation, the system ran for 500 rounds unless specified

otherwise. For each round, we generated a random number of requestsRt ∈ R. We initialized

R with a set of N = 500 integers randomly drawn from a normal distribution with mean

µ = 1000 and standard deviation 100 (see Figure 5.3a). We assumed that each AV can

transport up to four passengers at the same time.

We then generated the Rt requests respectively using the following method: the request time

is the current round number; the waiting time is randomly drawn from the range 10 to 100;

both the origins and destinations are randomly selected within a radius of 50 blocks in the

grid. The operational cost per unit distance (block) is 1. The speeds for all vehicles are the

same: 0.5 block per unit time (round). Initially, all the AVs depot at the center of the grid

city. At time t = 0, the AVs become available for servicing passengers.

To be fair for evaluation and in the interest of saving time, we calculated the shortest paths

between any two vertices in the city grid using the A∗ algorithm [Hart et al., 1968] and saved

it into a dictionary for further use in all the simulations

We ran all the simulations on a 2.9GHz quad-core machine with a 32GB RAM.
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5.5.2 Results and Discussion

We performed simulations using the IORS mechanism. For comparison purposes, we com-

puted the optimal assignment under the same experimental settings as a benchmark. we

also conducted experiments on an AMoD system with the offline, auction-based mechanism

described in section 5.4. To counter the effect of the fluctuations caused by the randomiza-

tion techniques used, we ran all the experiments 20 times and calculated the mean and the

standard deviation of the metrics evaluated.

We computed the social welfare scores over time for the systems using one of the follow-

ing mechanisms: IORS mechanism, auction-based mechanism and the optimal assignment

solution. The result (see Figure 5.3b) clearly shows that the IORS mechanism performs sig-

nificantly better (with a 95% confidence interval) than the auction-based mechanism, with

an increase of 22.73%. Although it is a little inferior to the optimal solution, it performs

fairly well (with a score equals to 93.62% of the optimal solution) with 79.35% less compu-

tational time on average (see Figure 5.3c ) and no future knowledge of demand required.

The IORS mechanism adds a request only if this addition decreases the cost per unit demand

of a group. However, it might suffer from local minima and produce suboptimal solutions

due to a myopic view of the demand. The auction-based mechanism, on the other hand,

processes the aggregated requests at once. It removes the requests with the lowest ranks.

Although the mechanism might make better plans than the IORS mechanism at processing

time because they have a better knowledge of demand distributions, it performs worse than

the IORS at all the other time.

The revenue of IORS system is slightly lower than the optimal system, and much higher than

the auction-based system (see Figure 5.4a). The effective demand of the system with the

IORS mechanism fluctuates around 0.7, while the demand for optimal solution first increases
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Figure 5.3: A comparison of demand distribution, the social welfare scores and computational
time of a system with three different approaches: the IORS, an auction-based mechanism
and the optimal solution.

and then drops down to a level very close to that of the IORS system. This is due to the

increased demand from passengers. As shown in Figure 5.4b, the demand for auction-based

system keeps increasing and then reaches a plateau. For each time measured, the scores of

the auction-based system are the lowest.

When the demand is high, obviously, it is effective to increase the supply (i.e. number of

vehicles) at first. However, once the number of the AV fleet reaches some point, it will not

help to improve the social welfare (i.e. W ) (see Figure 5.4c).
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Figure 5.4: A comparison of the performance of a system with three approaches: the IORS,
an auction-based mechanism, and the optimal solution.

In summary, the IORS mechanism outperforms the offline, auction-based mechanism over-

whelmingly in promoting ridesharing in AMoD systems. Although it is still inferior to the

optimal solution, it can achieve a very close performance with substantially less computa-

tional time needed and no future knowledge of demand required.

5.6 Summary

To promote ridesharing in AMoD systems, we introduce a posted-price, integrated online

mechanism, namely IORS. We show that IORS is ex-post incentive compatible. Simulation

results demonstrate its competitiveness compared with the optimal assignment solution and
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the offline, auction-based mechanism. Although IORS is tailored for AMoD systems, it is

applicable to traditional demand responsive transport systems such as taxis and shuttles,

provided that the dispatchers have full control over the vehicles. Besides, IORS can be

applied to distributed scenarios by dividing a city into multiple zones where each zone has

a control center individually processing the requests.

Future directions include coalition structure generation for optimal groups of shared riders,

mechanism design to address ethics and privacy problems in ridesharing. Another direction

is to develop more complex and realistic simulation platforms as benchmarks for future

evaluation.
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Chapter 6

Multi-Winner Contests for Strategic

Network Diffusion

Strategic diffusion encourages participants to take active roles in promoting stakeholders’

agendas by rewarding successful referrals. As social media continues to transform the way

people communicate, strategic diffusion has become a powerful tool for stakeholders to in-

fluence people’s decisions or behaviors for desired objectives. Existing reward mechanisms

for strategic diffusion are usually either vulnerable to false-name attacks or not individually

rational for participants that have made successful referrals. In this chapter, we introduce

a novel multi-winner contests (MWC) mechanism for strategic diffusion in social networks.

The MWC mechanism satisfies several desirable properties, including false-name-proofness,

individual rationality, budget constraint, monotonicity, and subgraph constraint. Numer-

ical experiments on four real-world social network datasets demonstrate that stakeholders

can significantly boost participants’ aggregated efforts with proper design of competitions.

Our work sheds light on how to design manipulation-resistant mechanisms with appropriate

contests. This work is based on our published work, [Shen et al., 2019b]
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6.1 Background

Strategic diffusion is the process of spreading information among social media users to pro-

mote desired private or social outcomes [Galeotti and Goyal, 2009]. As the impact of social

media on people’s daily lives continues to grow, strategic diffusion has become a prominent

tool for stakeholders (e.g. individuals, companies, governments, and NGOs) to influence peo-

ple’s preferences, decisions or behaviors [Jackson and Yariv, 2011, Chaffey, 2016]. The vast

popularity of strategic diffusion in social networks is primarily because it encourages partic-

ipants to take active roles in promoting stakeholders’ agendas in a word-of-mouth fashion

(i.e. in the forms of referrals). This viral marketing strategy can reach a broader audience

at a faster pace and are usually more economically efficient than traditional advertising such

as newspapers, radios or televisions [Leskovec et al., 2007, Galeotti and Goyal, 2009].

To unleash the power of crowds, stakeholders usually reward both direct and indirect referrals

to encourage potential participants to perform the tasks early and invite influential players

to participate. For example, if Alice refers Bob and Bob then refers Cathy, both Alice and

Bob are rewarded for Cathy’s purchases. However, Bob is typically given more rewards than

Alice for his direct referral. Such referral mechanisms are often called the geometric reward

mechanisms, or the incentive tree mechanisms [Pickard et al., 2011]. Geometric reward

mechanisms are usually effective and easy to implement [Tang et al., 2011]. As a result, they

have witnessed a growing range of serious applications, including product promotion [Drucker

and Fleischer, 2012], disaster rescue [Rutherford et al., 2013], global manhunt [Rahwan et al.,

2013], participatory sensing [Gao et al., 2015] and crowdfunding [Naroditskiy et al., 2014b].

Despite the promising prospects of the geometric reward mechanisms, they are usually vul-

nerable to manipulations [Drucker and Fleischer, 2012]. Under many geometric reward

mechanisms, indirect referrals are rewarded [Pickard et al., 2011]. A strategic player may

create multiple fake accounts or identities on his behalf with one referring another to in-
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crease his rewards. Players’ such malicious behaviors are often called false-name attacks. A

false-name attack refers to a strategy that a profit-maximizing agent utilizes to gain benefits

by creating multiple false identities (i.e. replicas). False identities can be analogous to “free

riders” in the sense that they pay less than what they should have paid. This free rider prob-

lem arises when genuine identities are unfeasible or difficult to be recognized. Unfortunately,

many social network services lack effective methods to fully eliminate false identities [Ferrara

et al., 2016].

False-name attacks severely impede stakeholders from implementing desired individual or

societal outcomes. On the one hand, false-name attacks are undesirable because they not

only diminish stakeholders’ revenues but also reduce other truthful players’ payoffs [Drucker

and Fleischer, 2012]. On the other hand, prior research indicates that false-name attacks

are pervasive in social networks since players may create false accounts with no or minimal

efforts if no interventions are given [Lorenz et al., 2011, Naroditskiy et al., 2014a, Ferrara

et al., 2016].

Despite that much research has been devoted to tackling the false-name-attack problems

in social networks [Conitzer et al., 2010, Emek et al., 2011, Todo et al., 2011, Brill et al.,

2016], our work is most closely related to the mechanism design problem for multi-level

marketing [Drucker and Fleischer, 2012]. In their work, Drucker and Fleischer introduce a

class of mechanisms by capping the rewards a player can get from indirect referrals. They

show that under their mechanisms false-name attacks are unprofitable. While illuminating,

their methods indicate that some of the less influential players in the referral networks will

receive no rewards for successful indirect referrals. For instance, players with ordinary or

low capabilities may have little or no incentives to participate in the referral mechanisms.

Ignoring these players is problematic for stakeholders because the population of many online

platforms typically consist of a large portion of participants with low or common capabil-

ities [Ipeirotis, 2010, Dow et al., 2012]. Besides, the implementation of their mechanisms
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is not based on graphs but rather on trees, it remains unknown whether their mechanisms

can be applied to large-scale social networks consisting of thousands of participants with

different abilities.

To address these issues, we introduce a novel mechanism called the Multi-Winner Contests

(MWC) mechanism for strategic diffusion in social networks. The MWC mechanism dis-

tinguishes itself from existing methods in two aspects. First, it allocates virtual credits for

each successful referrals by taking both diffusion contributions and verifiable task efforts into

account. Second, it determines the diffusion rewards for each player according to the results

of contests that compare the virtual credits earned by the qualified players. We show that

the mechanism is false-name-proof, individually rational, budget-constrained, monotonic,

subgraph-constrained, and computationally efficient. We conducted extensive experiments

with four real-world social network datasets. Experimental results demonstrate that false-

name-attacks are unprofitable under the MWC mechanism. Stakeholders can significantly

boost the aggregated efforts of players when they select parameters of the MWC mechanism

appropriately. Our work casts light on how to integrate competitions into the design of novel

mechanisms to counter manipulations.

6.2 Strategic Diffusion in Social Networks

This section first describes notations used for modeling strategic diffusion in social networks.

It then introduces the mechanism design problem for strategic diffusion. After defining the

concept of false-name attacks, it presents the solution concepts for the reward mechanism

design problem.
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6.2.1 Preliminaries

Strategic diffusion processes or referral networks are usually modeled with directed acyclic

graphs (DAGs). We consider a referral DAG G = (V,E) (See Figure 6.1) where V denotes the

set of players that may contribute (i.e. nodes) and E denotes the set of referral relationships

(i.e. edges). For any nodes v, u ∈ G (v 6= u), if there is a directed edge from v to u, then

it means that u’s decision to contribute is partially a result of v. In this case, we say u is

a direct successor of v and v is a direct predecessor of u. For each node v, the number of

direct predecessors v has is its indegree deg−(v). The number of direct successors it has is its

outdegree, denoted by deg+(v). A source node (i.e. a seed node) has a indegree of 0, while

a sink node has a outdegree of 0.

1 2

4

3
5

6

Figure 6.1: A typical directed acyclic graph.

For any nodes v, u ∈ G (v 6= u), if a path leads from v to u, then u is said to be a successor of

v and reachable from u, and v is said to be a predecessor of v. We write the distance between

v and u by dist(u, v). If there is no path from v to u, then the distance between the two

nodes is infinity; that is dist(v, u) =∞. The length from v to v is 0, i.e. dist(v, v) = 0. Let

κ+
v be the set of all successors of v, we have κ+

v = {u ∈ V : 0 < dist(v, u) < ∞}. Similarly,

the set of v’s predecessors κ−v = {u ∈ V : 0 < dist(u, v) < ∞}. Let Gv be the subgraph

rooted at v, then Gv = (V ′, E ′), where V ′ = {v} ∪ κ+
v and E ′ ⊆ E.

In a DAG G = (V,E), if a player v ∈ V makes a contribution to the designated tasks (e.g.

making purchases, answering questions, reporting software bugs), we say player v exerts task

efforts tv ∈ R≥0. Player v may either directly or indirectly spread the information of the tasks

to his successors to maximize his profits. If one of his successors u also contributes to the
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tasks, then we say v makes diffusion contributions dv ∈ R≥0. In our model, we assume that

the task efforts are verifiable and available for the stakeholder. For instance, a seller usually

has the legitimate transactions information about the products she sells to each buyer.

Each edge e = (vi, vj) ∈ E has a weight ωvivj (i.e. ωe). The weight ωvivj represents the

proportion of the credits assigned to vi when vj contributes to the designated tasks with

efforts tvj . Here, ωvivj = 1/deg−vj if vi 6= vj; otherwise, ωvivj = 1. Let Pvivj be the set of all

paths from vi to vj and p be a path in the set Pvivj . Path p’s weight ω(p) is the product of

the weights of all edges along the path. That is,

ω(p) =
∏

(vi,vj)∈p

ωvivj , (6.1)

where the length of the path |p| = dist(vi, vj).

6.2.2 Mechanism Design for Strategic Diffusion

We consider a principal (e.g. a seller, a task owner) employs strategic diffusion to maximize

the aggregated efforts on the tasks she designates. Initially, the principal selects some par-

ticipants (i.e. seeds) S ⊆ V in a social network G = (V,E) to perform the tasks that she

specifies. The principal may select the seed nodes randomly if she has no prior knowledge

of the social network. Alternatively, she may select the seed nodes using the influence maxi-

mization approach if the network structure and diffusion method are known a priori [Kempe

et al., 2003] .

Some of the seed participants then perform the tasks and invite their neighbors in the social

network to participate. If a participant v exerts task efforts tv, he will receive a task reward

πt(v) from the principal. Participant v may spread the information to his successors u ∈ κ+
v

to maximize his profits. If a successor u exerts task efforts tu, the referrer v will receive a
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diffusion reward πd(v, u). The total diffusion rewards for v: πd(v) =
∑

u∈κ+v πd(v, u). Thus,

the total rewards for v are determined by: π(v) = πt(v) + πd(v).

The total contributions of v include both the task efforts and the diffusion contributions. In

strategic diffusion, the task efforts are verifiable while the diffusion contributions are difficult

to verify because strategic players can generate fake referrals with no or minimal efforts by

creating multiple false identities with one being referred by another. We thus treat them

separately. Let c(v) be the total contributions for v, we have: c(v) = (tv, dv). Let Θv be the

space of v’s total contributions c(v), and Θ = (Θv)v∈V .

In our model, we assume that the valuation of a player is linear in the rewards he receives

and the cost he pays is linear in the task efforts he has contributed. That is, there are

constants αv, βv, γv and ςv with βv > 0 and ςv > 0, such that player v’s utility is U(v) :=

αv + βv · π(v)− (γv + ςv · tv). Without loss of generality, let αv = γv and δv = ςv
βv

. We have

player v’s utility:

U(v) = π(v)− δv · tv , (6.2)

where δv > 0 is a private coefficient that determines the player’s marginal cost for exerting

extra unit effort. The higher ability a player owns, the lower δv he has, and vice versa. That

is, there is a negative correlation between a player’s ability and his cost coefficient.

We note that a player may incur costs on spreading the information to his neighbors. We

avoid explicitly including players’ diffusion costs into the utility function for two concerns.

First, diffusion efforts are not directly verifiable for the principal. The exact correlations

between the costs on task efforts and the diffusion costs may vary from player to player,

which are unknown to the principal. Second, a player v can integrate his diffusion costs into

the task efforts by setting a higher cost coefficient δv. Similar techniques were also used in

literature [Shen et al., 2018b].
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In strategic diffusion, the principal is interested in a reward mechanism π that determines

the reward for each player that has exerted efforts.

Definition 6.1. A reward mechanism π is a tuple of payments for each player v ∈ V , where

G = (V,E). That is, π = (π(v))v∈V , where π(v) : Θ→ R.

6.2.3 False-Name Attacks

In a graph G = (V,E), we say a graph G′ = (V ′′, E ′′) and a set of replicas R ⊆ V ′ are a

false-name attack by v in G if when we collapse R into the single node with label v in G′ we

get the graph G.

Definition 6.2 (False-Name Attack). Given a referral graph G = (V,E), for any v ∈ V ,

let DSv, DPv be the sets of node v’s direct successors and direct predecessors, respectively.

G′ = (V ′′, E ′′) is obtained from G by a false-name attack at v if:

• V ′′ = V \ {v} ∪ {r1, ..., rm}, m > 1. The set of nodes R = {r1, ..., rm} is the set of

replicas of v.

• The sum of the task efforts of v’s replicas is equal to v’s task efforts. That is, tv =∑
r∈R tr, where tr > 0.

• All replicas of v have at least one direct successor; that is deg+(r) ≥ 1 for all r ∈ R.

• For all u ∈ DSv, Gu = G′u, where G′u is a subgraph of G′ rooted at u.

• The direct predecessors of a replica of v are either replicas of v, or the direct predeces-

sors of v ∈ V , or null. That is, DPr = R \ {r} ∪DPv ∪ ∅, where r ∈ R.

• ∀r ∈ R, ∃ a replica r′ of v such that r ∈ κ+
r′ .

In general, there are three types of false-name attacks: type 1 (See Figure 6.2a), type 2 (See

Figure 6.2b), and hybrid. Type 1 false-name attacks occur in the form of a long referral
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chain that consists of the replicas, while in type 2 attacks the replicas operate in parallel.

Hybrid attacks are combinations of type 1 and type 2 attacks.

1

4

3
5

621 2m22

(a) Type 1

1
4

3
5

6

21

2m

22

(b) Type 2

Figure 6.2: False-name attacks at node 2: nodes 21, 22, ..., 2m are replicas of node 2.

A false-name attack is profitable if the sum of the rewards received by the replicas r ∈ R of

v ∈ V are higher than the reward v receives. That is,
∑

r∈R π(r) > π(v).

6.2.4 Solution Concepts

Since false-name attacks are harmful to both the stakeholders and other truthful players, it

is desirable that the reward mechanism satisfies the false-name-proofness property. A reward

mechanism is false-name proof if false-name attacks are unprofitable for every player in a

social network. That is, the total rewards that v ∈ G receives are at least the same as the

sum of the rewards received by the replicas of v in a graph obtained from a split of G at

node v.

Definition 6.3 (False-Name-Proofness). A reward mechanism π is false-name-proof if for

all v ∈ G: π(v) ≥
∑

r∈R π(r), where R is the set of replicas due to a false-name attack at

node v.

According to Equations 6.2 and 6.7, if player v’s costs on task efforts (i.e. δv · tv) are equal

to or higher than the rewards πt(v), then player v will have no incentives to participate in

the strategic diffusion without positive diffusion rewards. To encourage potential players

to participate, a reward mechanism needs to ensure that a player who has made successful
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referrals receives positive (expected) rewards. Otherwise, it would be not appealing to players

with high marginal costs (i.e. high δv). A reward mechanism satisfies individual rationality

if its (expected) utility is positive and it allocates positive (expected) diffusion rewards to

each player that have made successful referrals.

Definition 6.4 (Individual Rationality). A reward mechanism π is individually rational if

for each player v ∈ V with dv > 0, we have: U(v) > 0, and πd(v, u) > 0, where u ∈ κ+
v , and

U(v) is determined by Equation 6.2.

In practice, a reward mechanism should be budget constrained. If not, the mechanism will

be economically unfeasible for deployment. In our setting, the total rewards distributed to

the players should not exceed a fixed portion ϑ of the total aggregated task efforts.

Definition 6.5 (Budget Constraint). A reward mechanism π is budget constrained if:∑
v∈G π(v) ≤ ϑ ·

∑
v∈G tv, where ϑ is a positive constant.

Another important constraint is that a reward mechanism should limit indirect referrals to

restrict the formation of long referral chains. This property is usually called the monotonicity

constraint. A reward mechanism is monotonic if direct referrals receive higher diffusion

rewards than or at least the same rewards as indirect referrals. The monotonicity property

encourages participants to form short diffusion chains by offering more rewards. As a result,

it limits the scope of indirect rewards, which is desirable in practice because many successful

referral chains are usually short [Leskovec et al., 2007].

Definition 6.6 (Monotonicity). A reward mechanism π is monotonic If v2 is a successor of

v1, adding a direct successor vi to v2 increases v1’s diffusion rewards πd(v
′
1) at least as much

as the diffusion rewards πd(v
′′
1 ) by adding a direct successor vj to a successor of v2 , where

tvi = tvj , i.e. πd(v
′
1) ≥ πd(v

′′
1 ).
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In strategic diffusion, players should not have incentives to delay performing the tasks to

wait for a referral with a more rewarding position in a social network G. To satisfy this

constraint, a reward mechanism should determine the rewards for each player v ∈ V based

on the subgraph Gv rooted at v.

Definition 6.7 (Subgraph Constraint). A reward mechanism π is subgraph-constrained if

π(v) only depends on the rooted subgraph Gv.

6.3 Multi-Winner Contests Mechanism

We present a novel reward mechanism called the Multi-Winner Contests (MWC) mechanism

(See Fig. 6.3 for an illustration). It has two key ingredients. The mechanism first calculates

the virtual credits for the diffusion contributions of each player with successful referrals. It

then determines the diffusion rewards by holding a contest among players that are in his

rooted subgraph. The MWC mechanism is computationally efficient and satisfies several de-

sirable properties, including false-name-proofness, individual rationality, budget constraint,

monotonicity, and subgraph constraint.

6.3.1 Virtual Credits for Diffusion Contributions

For each newly joined player v that has exerted task efforts tv, the MWC mechanism pays

πt(v) = µ · tv (µ > 0) for his task contributions and allocates virtual credits η · (tv)2 for

his diffusion contributions. If v has either directly or indirectly referred player u ∈ κ+
v to

participate (tu > 0), his virtual credits bv are computed by:

bv = η · (tv)2 + tv ·
∑
u∈κ+v

∑
p∈Pvu

tu · ω(p) · λ|p| , (6.3)

where 0 < λ < 1, η ≥ λ/2, and Pvu is the set of paths from v to u.
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Figure 6.3: An Illustration of the multi-winner contests mechanism.

The initial allowance of virtual credits η · (tv)2 serves dual purposes. First, it ensures that

each player has a positive amount of virtual credits to enter into the contests and receives a

positive share of diffusion rewards. Second, it allows the mechanism to significantly reduce

a player’s virtual credits if he splits his task efforts. This dedicated design is an essential

step that makes false-name attacks unprofitable. Note that tu ·λ|p| is a typical tree incentive

mechanism (i.e. geometric reward mechanism). The MWC mechanism extends it to a reward

mechanism that applies to social networks by introducing the weights w(p). To incentivize

players to exert higher task efforts, the MWC mechanism amplifies the virtual credits for

diffusion contributions by multiplying the player’s task efforts tv.

6.3.2 Diffusion Rewards

The MWC mechanism performs multi-winner contests to decide the diffusion rewards. In

the contests, the winners are chosen simultaneously by a contest success function (CSF) that
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compares the virtual credits of each player. A CSF determines each player’s probability of

winning the contest in terms of all players’ efforts [Skaperdas, 1996].

In general, there are two types of contest success functions: the ratio form and the difference

form [Skaperdas, 1996]. In the ratio form, the winning probabilities depend on the ratio of

efforts exerted by each player. In the difference form, they are determined by the difference

in efforts that each player has exerted. The ratio form can be naturally applied to large

contests that consist of many players, while extending the difference form to contests with

more than two players is usually non-trivial and difficult [Jia et al., 2013]. Strategic diffusion

in social networks typically involves a large number of players. It is thus desirable to use the

ratio form CSFs for analytical convenience.

The ratio form CSFs typically predict contest outcomes from the ratio of the efforts that

each player has devoted. For each node v ∈ G, the MWC mechanism holds a contest for

each subgraph Gv = (V ′, E ′) rooted at v. If player v’s virtual credits bv ≥ η · (tv)2, he will be

allowed to enter into the contests. Otherwise, player v makes no contributions and receives

0 rewards. If v is allowed to enter into the contest, his probability of winning is determined

by a contest success function

pr(v) =
(bv)

τ∑
u∈Gv(bu)

τ
, (6.4)

where 0 < σ ≤ 1, and bv ≥ η · (tv)2.

The parameter σ can be interpreted as the “noise” of a contest. It captures the marginal

increase in the probability of winning caused by a higher effort and is crucial to the outcomes

of the contest [Jia et al., 2013]. Contests with low σ can be regarded as poorly discriminat-

ing or “noisy” contests. That is, players with different efforts may have a similar level of

chance to win. Contests with high σ can be regarded as highly discriminating in the sense

that players with higher efforts have a greater chance to win. The contest success func-

tions are imperfectly discriminating in the sense that with all of them, the prize at stake is
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awarded probabilistically to one of the players with higher virtual credits leading to a higher

probability of winning the prize.

In the contest success function, each player’s probability of success does not depend on his

identity or the identities of his opponents, but just on the efforts (i.e. virtual credits) of the

players. This property indicates that if in some cases two players have identical efforts then

their probabilities of success must be equal and if all players were to exert identical efforts,

then each one of them would have a probability of success equal to 1/n. Besides, a player’s

probability of success is independent of agents who have not exerted efforts.

The total rewards for diffusion contributions are

πd = φ ·
∑
u∈V ′

tu
deg−Gv(u)

deg−(u)
, (6.5)

where φ > 0, and deg−Gv(u) denotes the number of direct predecessors of u in Gv = (V ′, E ′).

Here, deg−Gv(u) ≤ deg−(u). The diffusion rewards of v are thus determined as:

πd(v) =
(bv)

σ∑
u∈V ′(bu)

σ
· φ ·

∑
u∈V ′

tu ·
deg−Gv(u)

deg−(u)
. (6.6)

The MWC mechanism utilizes the probability of winning to determine the proportion of

the total diffusion rewards for each player. This is because empirical evidence shows that

proportional-prize contests exert higher aggregated efforts than winner-take-all contests [Ca-

son et al., 2010, Sheremeta, 2011]. Besides, proportional-prize contests also limit the degree

of biases that discourage low-ability players without altering the performance of stronger

players [Cason et al., 2010, 2018].
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6.3.3 The MWC Mechanism

The MWC mechanism π = (π(v))v∈G uses a post-price mechanism πt(v) = µ · tv to reward

a player that exerts tv task efforts. The total reward for player v includes both the task

rewards πt(v) and the diffusion rewards πd(v). Thus, we have the total reward for player v:

π(v) =


µ · tv + πd(v) if bv ≥ η · (tv)2

0 otherwise ,

(6.7)

where µ ∈ R>0 is the reward parameter that characterizes to what extent the principal values

agents’ efforts, and bv, πd(v) are defined by Equations 6.3 and 6.6, respectively.

The MWC mechanism π (See Algorithm 6.1 for an implementation) is computationally

efficient. The social network G = (V,E) can be implemented using adjacency lists, where

each node maintains a list of all its adjacent edges. It takes O(|V |2 + |V | · |E|)) time to

compute the virtual credits (See Lines 1–6). Computing the total rewards (See Lines 7–9)

also takes O(|V |2 + |V | · |E|)) time. Therefore, the time complexity for the MWC mechanism

is O(|V |2 + |V | · |E|)).

Algorithm 6.1 Multi-Winner Contests Mechanism

Input: G- a social network; S-seed nodes
Output: π-payment for each node v ∈ G
Initialize: π(v) = 0 for all v ∈ G

1: for each newly joined player v ∈ G and tv > 0 do
2: bv ← η · (tv)2

3: for each vi ∈ κ−v and tvi > 0 do
4: bvi ← bvi + tvi · tv ·

∑
p∈Pviv

w(p) · λ|p|
5: end for
6: end for
7: for each vj in Gv do
8: Compute the rewards π(vj) by Equation 6.7
9: end for

10: return π
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The MWC mechanism achieves false-name-proofness by introducing an initial allowance

ηv · (tv)2 of virtual credits for each player v that has exerted non-zero task efforts. If the

task efforts reduce, the allowance will decrease quadratically. False-name-attacks are not

profitable because splitting task efforts into smaller pieces causes a larger degree of reduction

than the degree of increase in virtual credits. This elegant design of the virtual credits

enables the MWC mechanism to be manipulation-resistant to all the three types of false-

name attacks. We postpone all the proofs to the Appendix.

Theorem 6.1 (False-Name-Proofness). The MWC mechanism π is false-name-proof.

The MWC mechanism employs a post-price mechanism πt to determine the rewards for

players’ task efforts. For the diffusion rewards, each player that has made successful referrals

is guaranteed to receive a positive amount of rewards. Thus, it follows that the MWC

mechanism satisfies the individual rationality property.

Theorem 6.2 (Individual Rationality). The MWC mechanism π is individually rational.

The MWC mechanism is budget-constrained because it allocates a fixed portion of rewards

(i.e. µ ·
∑

v∈G tv) for the task efforts and a fixed number of rewards (i.e. φ ·
∑

v∈G tv) for

diffusion rewards.

Theorem 6.3 (Budget Constraint). The MWC mechanism π is budget-constrained.

Under the MWC mechanism, players with direct referrals are given more virtual credits than

if they have indirect referrals. This is achieved by introducing the discounting factor λ < 1.

For the same level of task efforts, the virtual credits for diffusion rewards decrease as the

distance of path between the referrer and the successor increases.

Theorem 6.4 (Monotonicity). The MWC mechanism π is monotonic.
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Since the diffusion rewards are determined by a contest among players in a subgraph rooted

at player v, it follows that the MWC mechanism is subgraph constrained.

Theorem 6.5 (Subgraph Constraint). The MWC mechanism π satisfies the subgraph con-

straint.

6.4 Experiments

Before describing the results, we introduce the experimental settings.

6.4.1 Experimental Settings

We used four public datasets: Twitter [Hodas and Lerman, 2014], Flickr [Cha et al., 2009],

Flixster [Goyal et al., 2011], and Digg [Hogg and Lerman, 2012]. These datasets included

anonymized timestamps that could be used to estimate the influence probabilities needed

for simulating the diffusion process of social networks [Goyal et al., 2010]. For each dataset,

we first estimated the influence diffusion probabilities for each node using the learning al-

gorithms by Goyal et al. (2010) with the Bernoulli distribution under the static model.

We then simulated the influence diffusion process with the general threshold model [Kempe

et al., 2003] based on the estimated diffusion probabilities. After preprocessing, each dataset

produced a largest weakly connected component. See Table 6.1 for dataset configuration.

We modeled players’ abilities with the simulation method by Burnap et al. (2013). We

considered four groups of players: homogeneous (HO)-players with similar levels of abilities;

heterogeneously low (HL)-players with different level of abilities, and the average abilities

are low; heterogeneously high (HH)-players with different level of abilities, and the average

abilities are high; and distinct (DI)- a portion of players with low average abilities, the

other portion with high average abilities. Each player’s ability was generated according
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Table 6.1: Dataset configuration (M.D.–maximum degree, A.D.–average degree)

Dataset #Nodes #Edges #Seeds M.D. A.D.

Twitter 323,185 2,148,717 1,715 8,822 52

Flickr 145,305 2,149,882 768 6,731 34

Flixster 95,969 484,865 502 3,109 27

Digg 17,817 128,587 107 1,375 20

to a Gaussian distribution with means that follow the probability density function (See

Figure 6.4). Let ρv be player v’s ability, then his cost coefficient δv = 1− ρv.

In our experiments, we set λ = 0.5 as it was standard in many geometric reward mechanisms.

In practice, a stakeholder usually sets ϕ ≤ 1 to make profits, but ϕ should be as close to 1

as possible to encourage players to participate. We let ϕ = 1. To encourage players to join,

we set µ = 0.9, and φ = ϕ− µ = 0.1. Note that η ≥ λ/2 = 0.25, we set η = 0.25. For each

group of players in each dataset, we varied the noise factors from 0 to 1 with an increment

of 0.05. For each result (i.e. a data point) obtained, we ran the respective experiment 20

times. We ran all the experiments on the same 3.7GHz 6-core Linux machine with 32GB

RAM.

6.4.2 Results

For each dataset, we compared the total aggregated task efforts by each group of players as

the noise factor σ varied (See Figure 6.5). Figure 6.5a shows that the total contributions

were quite low ( ≤ 2, 000) when the noise factor was zero. The main reason is that players

had no incentives to make extra diffusion contributions (See Figure 6.6a) since the diffusion

rewards were determined by a random lottery with no dependence upon the efforts of players

when σ = 0.
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Figure 6.4: Probability density function of the means of players’ abilities by four different
groups: HO, HL, HH and DI.

As σ began to increase, the total contributions experienced a significant growth, which was

largely due to the increase of players (See Figure 6.6a). The growth continued until it

reached the peak where the total contributions began to shrink gradually (See Figure 6.5).

The decline continued until it started to level off when the noise factor exceeded 0.8 (See

Figure 6.5). An explanation for this trend is that when σ increased, the MWC mechanism

values higher diffusion efforts more. When σ is low, the reward mechanism favors players
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Figure 6.5: A comparison of total contributions with different bias factors.

with average abilities. These players usually take up a large portion of the population.

When σ reached a point, the mechanism no longer leaned toward these players. It became

more appealing to high-ability players than the low-ability or ordinary-ability players (See

Figure 6.6b). However, all groups except the HH group included a small portion of high-

ability players. That also explains why the HH group experienced a slighter decline than the

other groups. Similar observations were found in social networks.

Players in the HH and HO groups typically performed better than the other two groups.

As the noise factor σ increased, the HO groups experienced the highest degree of growth in
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Figure 6.6: A comparison of number of participants and average contributions per player on
Twitter.

total task efforts. Two factors contributed to this phenomenon. First, HO groups mainly

consisted of players with normal abilities (See Figure 6.4a). Second, when σ increased to a

point, the contests favored players with common abilities. Figure 6.5 shows that the total

contributions of the DI groups were the most invariant to the noise factors. This is because

the DI groups lacked a population mass of players with ordinary abilities (See Figure 6.4d).

The observations applied to all the three datasets (See Figure 6.5). Despite that the optimal

noise factors differed in populations and network structures, there were “sweet spots” for

stakeholders to maximize the total efforts. In our experiments, all the optimal noise factors

fell within the range between 0.45 and 0.65 (See Figure 6.5), which suggested that medium

noise factors were typically superior than the others.

To study how false-name attacks affect players’ rewards, we measured the total rewards

earned by a player that had created different numbers of false identities. For each network,

we considered a population consisting of the same percentage (25%) of players from each of

the four groups: HO, HL, HH, and DI. We compared four noise factors: 0.4, 0.5, 0.6, and

0.7 with all the four networks.

90



Results show that the rewards earned by each player reduced significantly as the number of

false identities increased from zero. The decline then slowed down until the rewards remained

almost steady (See Figure 6.7). These trends were observed on all the groups of experiments

that were given different noise factors and different network structures. An explanation is

that when a player created a small number of false identities, his task efforts would be diluted

to each false identity. This substantially reduced the player’s virtual credits and his diffusion

rewards. When the number of false identities continued to increase, there was little room

to reduce. This consistent results further echoed our theoretical analysis that the MWC

mechanism is false-name-proof.

In summary, experimental results indicate that stakeholders can maximize the total task

contributions by selecting appropriate (typically moderate) noise factors for the contests.

It further demonstrates that players will not gain by creating false identities. The results

also show that the MWC mechanism can scale to large social networks with hundreds of

thousands of nodes.
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(a) Twitter.
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(b) Flickr.
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(c) Flixster.
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(d) Digg.

Figure 6.7: Rewards (normalized) obtained by a player that creates different number of false
identities for groups with different noise factors.

6.5 Summary

In this chapter, we introduce a novel multi-winner contests mechanism for strategic diffusion

in social networks. The mechanism is false-name-proof and individual rational for players

with successful referrals. It is computationally efficient, budget-constrained, monotonic, and

subgraph-constrained. Experiments on four real-world social networking datasets show that

stakeholders can boost the performance of players by selecting proper noise factors. They
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further indicate that the MWC mechanism is both false-name-proof and scalable. Our work

demonstrates the promising prospects of bringing contests to mechanism design.

Our work opens several exciting avenues for future research. In our model, agents do not

discount the future and do not have uncertainties about the delivery of the rewards. In many

real-world activities (e.g. crowdfunding, and investments), however, agents need to consider

future risks when they make decisions. Another fertile area is to develop novel methods to

automatically select optimal noise factors of MWC mechanisms for different concerns (e.g.

profit maximization). We also find it very rewarding to integrate contests into the design of

truthful mechanisms [Shen et al., 2016, Zhao et al., 2018].
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Chapter 7

A Generalized Contest Mechanism for

Strategic Network Diffusion

Strategic network diffusion, a marketing strategy that allows stakeholders to promote their

desired outcomes by offering incentives to successful referrals, plays an important role in

modern society. Unfortunately, existing incentive mechanisms for for strategic network dif-

fusion are often vulnerable to manipulations such as false-name attacks and collusion. In this

chapter, we introduce a new class of mechanisms called the Generalized Contest Mechanism

(GCM). We show that the GCM are resistant to both false-name attacks and collusion. It

also satisfies other desirable properties such as budget constraints, individual rationality,

monotonicity, and subgraph constraints. Experiments on real-world social network datasets

show that the GCM not only can beat the state-of-the-art mechanisms in terms of total

efforts but is also more robust to false-name attacks and collusive manipulations. Our work

brings new insights into how to counter manipulations with proper design of competitions.

7.1 Background

Strategic network diffusion refers to the marketing strategy in which a stakeholder (e.g. a

seller, a task owner) incentivizes participants to spread the designated information across
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their social networks to achieve her desired outcomes [Galeotti and Goyal, 2009, Shen et al.,

2019b]. Such viral marketing strategy is usually more efficient and effective than tradi-

tional advertisement because referral marketing is usually more credible to potential cus-

tomers [Berman, 2016]. It can also have access to new customers that traditional marketing

methods may not reach, and provide better matching of potential users’ needs to a product

or service [Berman, 2016]. Moreover, previous studies show that the value and contribu-

tion of participants acquired through referrals are higher than those of non-referred cus-

tomers [Schmitt et al., 2011]. Due to these benefits, strategic network diffusion has become

a powerful tool for stakeholders to promote their agendas and has broad applications in many

domains such as crowdsourcing [Pickard et al., 2011], disaster management [Gao et al., 2011,

Besaleva and Weaver, 2013], health care [De Choudhury et al., 2013], e-commerce [Con-

stantinides et al., 2008, Tiago and Veŕıssimo, 2014, Zhao et al., 2018], economic diversifica-

tion [Alshamsi et al., 2018] and political campaigns [Enli, 2017].

To encourage early adoption and attract participation from influential players, stakeholders

usually provide rewards (e.g. discounts, free products, event tickets or other monetary

incentives) for both direct and indirect referral [Emek et al., 2011, Pickard et al., 2011].

For instance, if Alice has referred Bob and Bob has invited Dana, both Alice and Bob are

rewarded for Dana’s contributions (e.g. purchases, labor work) toward the stakeholders’

goals. Mechanisms that provide incentives to the successful referral chains are often called

geometric mechanisms [Emek et al., 2011, Drucker and Fleischer, 2012].

Geometric mechanisms have many important applications ranging from disaster response to

product promotion [Besaleva and Weaver, 2013, Shen et al., 2019b]. However, they are often

vulnerable to manipulations such as false-name-attacks and collusion [Drucker and Fleis-

cher, 2012]. In strategic network diffusion, a false-name attack refers to an agent’s strategy

to create multiple false identities in order to increase his diffusion rewards, while collusion is

a manipulative strategy that a group of agents communicate to jointly limit the competition
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(e.g. reducing the task efforts). False-name attacks and collusion are pervasive in social

networks since players may create multiple accounts with no or minimal cost, and may com-

municate with their social ties to reduce the competition if they can make profits [Drucker

and Fleischer, 2012, Naroditskiy et al., 2014a, Ferrara et al., 2016]. Nevertheless, Both ma-

nipulations are undesirable because they not only diminish stakeholders’ ability to implement

their goals but also reduce other honest players’ payoffs [Drucker and Fleischer, 2012, Shen

et al., 2019b]. Besides, agents’ manipulative behaviors may crash the markets [Tang et al.,

2011].

To counter false-name attacks and collusion in strategic network diffusion, we introduce a

new mechanism called the Generalized Contest Mechanism (GCM). In doing so, we first

characterize a necessary and sufficient condition for a reward mechanism to be false-name-

proof: the reward function should be superadditive in terms of the diffusion contributions.

We then identify a sufficient condition for a mechanism to be collusion-proof: the total

diffusion rewards for the referrers of a player should be increasing and bounded above in

terms of the total task efforts of the referrers. Finally, we integrate both conditions into a

single mechanism. We demonstrate that the resulting mechanism is both false-name-proof

and collusion-proof. It also satisfies other desirable properties such as budget constraints,

individual rationality, monotonicity, and subgraph constraints. Numerical results demon-

strate that the GCM can outperform the state–of-the-art multi-winner contests (MWC)

mechanism [Shen et al., 2019b] in terms of total task efforts with a variety of supperadditive

functions and increasing and bounded functions. The GCM is also more robust to false-

name attacks and collusive manipulations than the MWC mechanism. Our work provides a

systematic approach to manipulation-resistant mechanism design.
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Figure 7.1: A simple illustration of strategic network diffusion.

7.2 Strategic Network Diffusion

Before introducing the mechanism design problem, we first describe key notations.

7.2.1 Notations

We model referral processes with a directed acyclic graph (DAG) G = (V,E). In a DAG

G, nodes V represent the players that may voluntarily participate in the strategic diffusion

to increase their utilities. To maximize their profits, the players need to both complete the

principal’s designated tasks (e.g. buying a product, collecting data, crowdfunding, manhunt,

and software development) and invite their neighbors to participate. Edges E correspond to

the referral relationships.

a c
e

f

d
b

g

Figure 7.2: A typical directed acyclic graph for modeling strategic network diffusion.

For any two nodes u, v ∈ V (v 6= u), if a path from u to v exists, then u is a predecessor of v,

and v is a successor of u. In this case, player v’s decision to contribute to the principal’s tasks
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is (partially) due to u’s referral. We write the distance between u and v by dist(u, v) ∈ Z>0.

The distance between v and itself is 0 (i.e. dist(v, v) = 0). If there is no path from u to v,

then dist(u, v) = +∞. If dist(u, v) = 1, we say u is a direct predecessor of v, and v is a direct

successor of u. For each node v ∈ V , the number of its direct predecessors is its indegreee

deg−(v), and the number of its direct successors is its outdegree deg+(v). The set of v’s all

predecessors I−v = {u ∈ V : 0 < dist(u, v) < +∞}. Similarly, the set of v’s all successors

I +
v = {u ∈ V : 0 < dist(v, u) < +∞}. The subgraph rooted at v includes node v and all its

successors. That is, Gv = (Vv, Ev), where Vv = {v} ∪ I +
v , and Ev ⊆ E.

In a referral DAG G = (V,E), if a player v makes irreversible contributions to the principal’s

designated tasks (e.g. purchasing products without returns, collecting data, manhunt, and

software development), then player v exerts task efforts tv ∈ R≥0. Player v can choose

to spread the information of the tasks to his successors and invite them to participate to

maximize his profits. If one of his successors u ∈ I +
v also exert task efforts tu ∈ R≥0, then we

say player v makes diffusion contributions dv ∈ R≥0. In strategic network diffusion, a player’s

decision to exert positive task efforts may be due to either a single referral chain or multiple

referrals. This setting is more general than the tree setting where a player’s decision to make

contributions can be only traced from a single referral chain. For example, it is likely that

a customer will use a mobile application only if more than one of his friends have actively

used it and have sent invitations to him. Similar to the tree setting, a player in a referral

network is also permitted to invite multiple neighbors to increase his diffusion contributions.

In practice, players’ task efforts are usually measurable and verifiable to the principal. For

instance, the principal can quantify a player’s task efforts according to the pieces of the

tasks or the amount of time spent on the tasks. We thus assume that players’ task efforts

are observable in our model. However, the diffusion contributions are often difficult or even

unfeasible to verify because strategic players can generate fake referrals with no or minimal

efforts by creating multiple false accounts or identities to form extra referral chains.
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7.2.2 The Mechanism Design Problem

We consider a principal aims to maximize the aggregated task efforts via strategic network

diffusion. At the beginning, the principal selects a number of participants S ⊆ V in a social

network G = (V,E) as the seed nodes. The optimal selection of seed nodes in a social

network falls into the broad categories of influence maximization problems [Kempe et al.,

2003]. The influence maximization problem is proven to be NP-hard even the diffusion

model is known as a priori, but one can address it with approximation algorithms [Chen

et al., 2009]. Alternatively, the principal can choose the seed nodes arbitrarily if she has no

prior knowledge of the social network.

The seed participants may voluntarily perform the tasks and invite their neighbors in the

social network to participate. If a player v ∈ G = (V,E) exerts task efforts tv, he will receives

a task reward πt(v) from the principal. If v also spread the information to his successors

and one of his successors u ∈ I +
v also exerts task efforts, then the referrer v will also receive

a diffusion reward πd(v, u). Let πd(v) denote the total diffusion rewards that v receives, we

have πd(v) =
∑

u∈I+v πd(v, u). Player v’s total rewards π(v) ∈ R≥0 include both the task

rewards and the diffusion rewards, i.e. π(v) = πt(v) + πd(v).

In our model, we assume that the valuation of a player is linear in the rewards he receives

and the cost he pays is linear in the efforts he has contributed. Let c(v) ∈ R≥0 denote the

total cost for player v to exert task efforts tv and diffusion contributions dv, player v’s total

cost cv = tv + dv. Let ρv ∈ R≥0 denote the parameter that measures the relative cost for

player v to make a unit diffusion contribution compared with the cost of the unit task effort,

we have dv = ρv · tv. Hence, c(v) = (1 + ρv) · tv. Let Θv be player v’s type space for the total

cost cv, then the type space for all the players in a social network G = (V,E) is Θ = (Θv)v∈V .

In practice, the cost for information diffusion is relatively insignificant compared with the
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task efforts. That is, 0 ≤ ρv << 1. For example, a player share the information via mass

messages to all the target neighbors.

Player v’s utility U(v) = π(v)− ζv · cv, where ζv ∈ R≥0 is a private coefficient that quantifies

player v’s marginal cost for exerting extra unit effort. Let δv = ζv · (1 + ρv), we have player

v’s utility

U(v) = π(v)− δv · tv , (7.1)

where δv ∈ R≥0 is a private parameter that quantifies player v’s marginal cost for exerting

extra unit effort. In practice, performing manipulations also incur costs. However, such cost

can be incorporated into the private cost coefficient that is privately known to the player

himself [Shen et al., 2019b].

In strategic network diffusion, the principal is interested in an incentive mechanism π that

determines the rewards for each player that has exerted efforts (See Def. 7.1). In practice,

an incentive mechanism must satisfy several constraints (e.g. budget feasibility, and volun-

tary participation) to be implementable. In this work, we are particularly interested in a

mechanism that is resistant to manipulations such as false-name attacks and collusion.

Definition 7.1 (Incentive Mechanism). An incentive mechanism π for strategic network

diffusion in a social network G = (V,E) is a payment rule π = (π(v))v∈V , where π(v) : Θ→ R

is the payment function for agent v.

7.3 Design Constraints

In this section, we formally introduce the two primary constraints for manipulation-resistant

mechanism design: false-name proofness and collusion-proofness. We also discuss other

constraints such as individual rationality, budget constraint, monotonicity and subgraph

constraint.
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7.3.1 False-Name Proofness

In strategic network diffusion, a strategic agent may create false identities (i.e. replicas) to

form fake referrals to maximize his profits. In a referral graph G = (V,E), a false-name

attack for player v ∈ G is a split at node v that results in a new graph G′ = (V ′, E ′) and a

set of replicas R ⊆ V ′. For the resulting graph G′, if we collapse R into the single node v in

G′ we get the graph G.

Definition 7.2 (False-Name Attack). In a DAG G = (V,E), we say a graph G′ = (V ′, E ′)

and a set of replicas R ⊆ V ′ are a false-name attack for player v in the graph G if v ∈ V ′

and when we collapse R into the single node v in G′ we get the graph G.

In strategic network diffusion, there are generally three types of false-name attacks: serial

split, parallel split and hybrid split. Serial split forms a long referral chain with one replica

referring to another (See Fig. 7.3a). Parallel split duplicates the replicas in parallel to

increase the count of referral relationships (See Fig. 7.3b). Hybrid split consists of both

serial attacks and parallel attacks (See Fig. 7.3c). False-name attacks are detrimental to

both the principal and other honest players. They can even crash the markets if most of

the participants participate in the false-name attacks. Therefore, it is desirable that the

incentive mechanism satisfies the false-name-proofness property.
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Figure 7.3: Three types of false-name attacks at node d.
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An incentive mechanism is false-name-proof if under the mechanism false-name attacks are

unprofitable for each player in the referral graph. Specifically, the total rewards that v ∈

G = (V,E) receives are greater than or the same as the sum of the rewards obtained by the

replicas of v due to a split of G at node v (See Def. 7.3).

Definition 7.3 (False-Name-Proofness). An incentive mechanism π is false-name-proof for

all v ∈ G : π(v) ≥
∑

r∈R π(r), where R is the set of replicas due to a false-name attack at

node v.

7.3.2 Collusion-Proofness

Different from false-name attacks, a collusion in a referral graph G = (V,E) is a coalition

strategy that makes at least one of the weakly connected players better off by changing the

internal network structure (i.e. adding or removing the referral relationships) or reducing

the task efforts of the coalition (See Def. 7.4).

Definition 7.4 (Collusion). A collusion is a coalition strategy of weakly connected players

that makes at least one player in the coalition better off by changing the internal network

structure or reducing the task efforts of the coalition. Formally, in a DAG G = (V,E), we

say a graph G′ = (V ′, E ′) and a set of players P ⊆ V ′ are a collusive coalition if under the

incentive mechanism π, we have

• for each pair u, v ∈ P , there exists either a directed path from u to v in G, or a directed

path from v to u in G.

• for each v ∈ V ′, we have v ∈ V .

• for each u, v ∈ V \ P , if uv ∈ E, then uv ∈ E ′;

• for each v ∈ V \ P , the task efforts tv remain unchanged.
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• for each v ∈ P , the task efforts tv do not increase.

• There exist at least one v ∈ P such that we have U(v) < U ′(v), where U(v) is player

v’s utility when there is no collusion, and U ′(v) is player v’s utility when v is in a

collusive coalition. Other members’ utilities do not change.
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Figure 7.4: An example of strategic network diffusion with no collusion and with collusion
under a typical geometric mechanism.

A group of players may reduce the task efforts, or change the internal network structure, or

use combination of these two strategies to form a collusive coalition. Note that there may

be coalitions that can increase the total efforts, which are usually beneficial to the principal.

Such behaviors are typically not categorized as collusion.

Collusion is harmful to both the principal and other honest players. The collusive behavior

depletes the principal’s budgets with less task efforts. When the budget is fixed, under

many mechanisms, the budget allocated to other honest players become less. Therefore, the

incentive mechanism should satisfy the collusion-proofness property. An incentive mechanism

is collusion-proof if under the mechanism no group of weakly connected players can collude to

make at least one member of the group better off by changing the internal network structure

or reducing the task efforts without making the remaining members worse off (See Def. 7.5).

Definition 7.5 (Collusion-Proofness). An incentive mechanism π is collusion-proof if no

group of weakly connected players P ⊆ V can increase the utilities for at least one player
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in the coalition without reducing the utilities for any other member in the group through

changing the internal network structure or reducing the task efforts of the coalition.

7.3.3 Other Constraints

To be implementable in practice, an incentive mechanism should also satisfy other desirable

constraints, such as voluntary participation, budget constraint, monotonicity, and subgraph

constraint.

A player should not be forced to participate in a mechanism. That is, a mechanism needs

to incentivize or at least not penalize participation. An incentive mechanism satisfies the

voluntary participation property if each player v ∈ G = (V,E) receives positive (expected)

diffusion rewards for each successful referral.

Definition 7.6 (Voluntary Participation). An incentive mechanism π satisfies voluntary

participation if for each player v ∈ G = (V,E) with dv ≥ 0, we have U(v) ≥ 0, and

πd(v, u) > 0, where u ∈ I +
v , and U(v) is determined by Equation 7.1.

To be economically feasible, an incentive mechanism should be budget constrained. In

strategic network diffusion, the total rewards allocated to the players should not exceed a

fixed portion ϑ of the total aggregated task efforts.

Definition 7.7 (Budget Constraint). A reward mechanism is budget-constrained if we have∑
v∈G π(v) ≤ ϑ ·

∑
v∈G tv, where ϑ ∈ R>0 is a predefined constant.

A mechanism for strategic network diffusion should limit indirect referrals to prevent agents

from forming unnecessarily long referral chains. That is, the mechanism should satisfy

the monotonicity constraint to limit the scope of indirect referrals and facilitate the task

completion.
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Definition 7.8 (Monotonicity). An incentive mechanism π is monotonic if v2 is a successor

of v1, adding a direct successor vi to v2 increases v1’s diffusion rewards π
′

d(v1) at least as

much as the diffusion rewards π
′′

d (v1) by adding a direct successor vj to a successor of v2,

where tvi = tvj .

In strategic network diffusion, players should have no incentives to delay performing the

tasks to wait for a referral with a more rewarding position. That is, an incentive mechanism

should determine the diffusion rewards for each player v ∈ V based on the reverse subgraph

Gv rooted at v.

Definition 7.9 (Subgraph Constraint). An incentive mechanism π is subgraph-constrained

if π(v) only depends on the rooted subgraph Gv.

It is challenging for stakeholders to design a mechanism that satisfies all the constraints,

especially false-name-proofness and collusion-proofness. A main reason is that in practice

agents’ identities are often costly to verify and the collusive communications are usually

difficult or unfeasible to capture [Jin et al., 2011, Yang et al., 2014, Feldman and Chuang,

2005]. To tackle this challenge, a careful treatment is needed.

7.4 Generalized Contest Mechanism

In this section, we take a decomposition approach to manipulation-resistant mechanism

design for strategic network diffusion. To do so, we first characterize the conditions for

an incentive mechanism to satisfy both false-name-proofness and collusion-proofness. We

then present a class of Generalized Contest Mechanism (GCM) that satisfy all the design

constraints.
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7.4.1 Superadditivity

We decompose the incentive mechanism into two payment rules: one for the task efforts

and the other for the diffusion contributions. For task efforts, a posted price mechanism is

used . Posted price mechanisms are both false-name-proof and collusion-proof because they

determine the rewards for each agent based solely on the verifiable task efforts.

We now focus on the diffusion incentive mechanism πd(v). In order to satisfy the false-name-

proofness requirement, the incentive mechanism should be supperadditive in the diffusion

contributions dv. That is, for any two diffusion contributions d(v1), d(v2) ∈ R≥0, we have

πd(d(v1) + d(v2)) ≥ πd(d(v1)) + πd(d(v2)). The intuition is inspired from the superadditivity

in functional analysis. The supperadditivity requirement of the mechanism brings a mono-

tonicity in terms of the diffusion rewards that create extra incentives for the agent not to

split.

Definition 7.10 (Superadditivity). Let f : R≥0 → R, a function f is supperadditive if

f(x+ y) ≥ f(x) + f(y) for all x, y ∈ R≥0.

Theorem 7.1. An incentive mechanism is false-name-proof if and only if it is superadditive

in terms of the diffusion contributions.

Theorem 7.1 gives us a sufficient and necessary condition for an incentive mechanism to be

false-name-proof when players’ valuation is linear in the rewards and the costs he pays are

linear in the task efforts. To design a false-name-proof mechanism, the principal needs to

make the diffusion mechanism be superadditive in the diffusion efforts.

7.4.2 Increasing and Bounded Functions

In strategic network diffusion, a group of strategic players may collude to change the internal

network structure or reduce the task efforts to benefit at least one member of the group
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without hurting the remaining members. To counter agents’ such behavior, a mechanism

should bound the total diffusion rewards for a referral. However, referrers will have no

incentives to provide extra efforts if the number of the total diffusion rewards is fixed. To

encourage the referrers to exert efforts, the mechanism needs to be monotonically increasing

in the sum of total task efforts. Combining the two required conditions, the mechanism

should be a monotonically increasing and bounded function in the sum of the referrers’ task

efforts.

Inspired by the monotone convergence theorem [Bibby, 1974] in real analysis, we demonstrate

that if an incentive mechanism is monotonically increasing and bounded above in terms of

the sum of the predecessors’ task efforts, then the mechanism is collusion-proof.

Suppose a player v ∈ G = (V,E) exerts task efforts t(v) due to the referrals of his predecessors

I−v . If the sum of the diffusion rewards due to the referral of player v is an increasing and

bounded above function with respect to the sum of the task efforts of all the predecessors,

the mechanism is collusion-proof.

Definition 7.11 (Increasing and bounded function). A function f : R≥0 → R is mono-

tonically increasing and bounded above if the following two conditions hold: (1) for all

x, y ∈ R≥0 such that x ≤ y one has f(x) ≤ f(y); (2) for all x ∈ R≥0 there exists L ∈ R where

L = limx→+∞ f(x).

The diffusion rewards should be increasing in the sum of the task efforts because the task

efforts of the players are verifiable. A group of players can only increase their diffusion

efforts by increasing the sum of their total task efforts once the referral chains leading to

v have established. The function should be bounded above due to the budget constraint

requirement.

Theorem 7.2. An incentive mechanism is collusion-proof if the mechanism is an increasing

and bounded function in terms of the sum of the predecessors’ task efforts
∑

u∈I−v t(u).
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The increasing and bounded function provide incentives for referrers to increase their task

efforts instead of colluding to reduce the task efforts. Meanwhile, it bounds the diffusion

rewards. Note that the increasing and bounded function is not an necessary condition. To

see this, we give an example. If the mechanism follows a uniform allocation rule, it is also

collusion-proof. However, this rule violates the false-name-proofness constraint.

7.4.3 The GCM

Based on the Theorems 7.1 and 7.2, we introduce the generalized contest mechanism for

strategic diffusion in social networks. The mechanism first constructs a superadditive func-

tion to determine the diffusion contributions for each player in the successful referral chain.

It then uses an increasing and upper bounded function to determine the diffusion rewards.

For each player v ∈ G = (V,E), if v exerts task efforts t(v) > 0 due to the referrals of his

predecessors I−v . The task rewards for player u ∈ Gv are computed by

πt(u) = µ · t(u) , (7.2)

where µ ∈ R>0 is the reward parameter that characterizes to what extent the principal values

agents’ efforts.

The total diffusion rewards for the players in the subgraph Gv rooted at v is φ · t(v) where

φ ∈ R>0. Let Dv = {u ∈ I−v : dist(u, v) = 1} be the set of player v’s direct predecessors. The

virtual credits for player v are b(v, v) = η · f(t(v)), where f(·) is a superadditive function in

task efforts t. For each u ∈ I−v , the virtual credits for u’s diffusion contributions due to v

are determined by

b(u, v) = η · f(t(u)) + t(u) ·
∑

uu′∈p′ t(u
′)∑

uu′∈p t(u
′)
· t(v) · (1− λ) . (7.3)
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The proportion of diffusion rewards allocated to each player u ∈ Gv are calculated according

to a ratio-form contest success function

h(b(u, v)) =
(b(u, v))ρ∑

u′∈Gv(b(u
′, v))ρ

, (7.4)

where ρ ∈ R>0 is the noise factor.

The diffusion rewards for player u due to referring v are calculated by

πd(u, v) =


h(b) · t(v) · φ · g(y) u 6= v

h(b) · t(v) · φ · g(y) + tv · φ(1− g(y)) u = v ,

(7.5)

where λ ∈ R>0 is the proportion of diffusion credits given to the task worker v, and 0 ≤

g(y) ≤ 1 is an increasing and bounded above in terms of y. Here, y =
∑

u∈I−v t(u) are the

total task efforts of player v’s predcessors I−v .

The total rewards for player u ∈ Gv are determined by

π(u, v) = πt(u) + πd(u, v) , (7.6)

where πt(u) and πd(u, v) are computed by Eq. 7.2 and Eq. 7.5, respectively.

The GCM updates the diffusion rewards for each player in an anytime fashion, making it

suitable for large-scale social networks. The social network G = (V,E) can be implemented

with adjacency lists. In the data structure, each node maintains a list of all its adjacent

edges. It takes O(|V |) time to allocate the diffusion credits, compute the task efforts, and

update the rewards for all the newly joined players (See line 3-5 in Algo. 7.1). Computing

diffusion credits for each player in the predecessors requires a depth-first search that takes

O(|V | + |E|) time (See line 7). To compute diffusion credits for all the players, it takes
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Algorithm 7.1 Generalized Contest Mechanism

Input: S-seed nodes in a social network G.
Output: π-payment for each node v ∈ G
Initialize: π(v) = 0 for all v ∈ G

1: while network propagation is true do
2: for each newly joined player v ∈ G and t(v) > 0 do
3: Assign diffusion credits b(v, v)← η · (t(v))2

4: Compute task efforts πt(u) by Eq. 7.2
5: Update rewards π(u)← π(u) + πt(u)
6: for each u ∈ I−v and t(u) > 0 do
7: Compute diffusion credits b(u, v) by Eq. 7.3
8: end for
9: for each u ∈ Gv and b(u, v) ≥ η · f(t(u)) do

10: Compute diffusion rewards πd(u, v) by Eq. 7.5
11: Update rewards π(u)← π(u) + πd(u, v)
12: end for
13: end for
14: end while
15: return π

O(|V | · (|V | + |E|)) time (See line 6-8). Similarly, it requires O(|V | · (|V | + |E|)) time to

compute the diffusion rewards and update the total rewards for each player in the social

network (See line 9-12). Therefore, the total time complexity for updating the total rewards

for all the players in Algo. 7.1 is O(|V |2 + |V ||E|).

The GCM achieves false-name-proofness and collusion-proofness simultaneously by intro-

ducing a superadditive function to determine the diffusion contributions and a ratio-form

contest success function to compute the proportion of diffusion rewards. The total diffusion

rewards for all the referrers and the task worker are capped with an increasing and bounded

above function in the total task efforts exerted by the referrers. For each player that has

made successful referrals, he also receives a positive diffusion reward. Thus, the mechanism

satisfies the voluntary participation constraints. The GCM is budget-constrained because it

allocates a fixed portion of rewards for both task efforts and diffusion contributions. Under

the GCM, direct referrals are given more diffusion rewards than indirect referrals through

decayed diffusion credits. Therefore, the GCM is monotonic. For each newly joined player
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v, the GCM updates all the rewards of the players in the same subgraph rooted at v. Hence,

the GCM satisfies the subgraph constraint.

Theorem 7.3. The generalized contest mechanism satisfies false-name-proofness, collusion-

proofness, individual rationality, budget constraint, monotonicity, and subgraph constraint.

Apart from false-name attacks and collusion, a mechanism may be vulnerable to collusion

false-name attacks: false-name attacks that are results of coordinated action by a group of

players. The GCM is resistant to collusion false-name attacks because it simultaneously

satisfies the collusion-proofness and the false-name-proofness.

Corollary 7.1. The generalized contest mechanism is resistant to collusion false-name at-

tacks.

When the superadditive function f(t(u)) = (t(u))2 and g(y) = 1, the generalized contest

mechanism corresponds to the multi-winner contests (MWC) mechanism [Shen et al., 2019b].

Note that the MWC mechanism is not collusion-proof as when referrers have the same cost

coefficients, they could reduce their task efforts while still receiving the same level of diffusion

rewards.

7.5 Experiments

There are different ways to construct the superadditive functions and the increasing and

bounded functions. GCM variants with different functions may perform differently. It is

desirable to identify the variants that have the best performance and compare their perfor-

mance with the state-of-the-art mechanisms for strategic network diffusion. In our work, we

conducted numerical simulations to show the promise of the generalized contest mechanism

on four real-world social network datasets.
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7.5.1 Experimental Settings

Datasets In our experiments, we used four real-world social network datasets: Twitter [Ho-

das and Lerman, 2014], Flickr [Cha et al., 2009], Flixster [Goyal et al., 2011], and Digg [Hogg

and Lerman, 2012]. We estimated the influence probabilities for simulating the diffusion

process using the learning algorithms with the Bernoulli distribution under the static model

[Goyal et al., 2010]. We next used the general threshold model [Kempe et al., 2003] to simu-

late the influence diffusion process with the estimated probabilities. After that, each dataset

generated a largest weakly connected component of the entire social networks.

We estimated the efforts according to a “S”-shaped sigmoid curve 1/(1 + e−(deg−(v)−0.8∗MD))

and the cost coefficient is calculated by δv = −0.1 ∗ 1/(1 + e−(deg−(v)−0.8∗MD)) + 0.2. Here,

deg−(v) refers to the set of v’s predecessors, and MD is the maximum degree of the social

network.

Method We measured the total efforts, the average individual efforts, the number of par-

ticipates, and the social welfare. We used the multi-winner contests mechanism [Shen et al.,

2019b] as the benchmark. We ran all the experiments 20 times on the same 3.7GHz 6-core

machine.

Table 7.1: A comparison of the total task efforts for different groups

GCM - Log GCM - Lin GCM-Quad GCM-Exp MWC

Quadratic Cubic Quartic Quadratic Cubic Quartic Quadratic Cubic Quartic Quadratic Cubic Quartic

Twitter 1,992 2,966 3,320 4,119 4,471 5,780 5,041 5,888 6,673 7,142 8,963 9,327 4,080
Flickr 261 303 377 499 581 709 976 1,190 1,483 1,752 1,985 2,324 491
Flixster 120 178 268 391 434 499 650 732 806 945 1,069 1,177 379
Digg 113 170 196 211 242 275 389 418 472 513 603 691 207

Parameters In our experiments, we set the noise factor as ρ = 0.55 because moderate noise

factors typically can expect the highest efforts [Shen et al., 2019b]. As standard in many

geometric mechanisms, we set λ = 0.5. For fair comparison, we choose φ = 0.1, µ = 0.9, and

η = 0.25.
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(c) Flixster.
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(d) Digg.

Figure 7.5: Average rewards (normalized by the highest number in each dataset) for each
player that creates different false identities.

We selected different superadditive functions. We considered the following three superaddi-

tive functions: (1) quadratic: (t(u))2, (2) cubic: (t(u))3, and (3) quartic: (t(u))4. We varied

the increasing and bounded above functions. We chose the following four functions: (1)

linear: g(y)
1+g(y)

; (2) quadratic: (g(y))2

1+(g(y))2
; (3) exponential: eg(y)−1

eg(y)+1
; (4) logarithmic: log(g(y)+1)

1+log(g(y)+1)
.

This resulted in 12 GCM variants. We compared their performance with the MWC mecha-

nism.
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(b) Flickr.
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Figure 7.6: Average rewards (normalized by the highest number in each dataset) for each
player that is in different level of collusion.

7.5.2 Results

We compared the social welfare, the average individual efforts, and the total efforts. Our

results indicate that the general contest mechanisms outperform the multi-winner contests

mechanism consistently.

Performance without Manipulations When there were no manipulations, all the GCM

vairants except the GCM-Log groups outperformed the MWC mechanism. Among them, the
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GCM-Exp groups performed the best, followed by the GCM-Quad groups and the GCM-Lin

groups (See Table 7.1). The underline reason is that the generalized contest mechanisms

with exponential and quadratic form of increasing and bounded functions increased greater

than the linear form. The MWC used the linear form. It had a higher increase rate than

the logarithmic form. GCMs with quartic functions performed better than the cubic and

quadratic form because the quartic forms offered higher incentives for the players to exert

task efforts.

Robustness to False-Name Attacks With the same increasing and bounded function

(linear), we studied how the selection of superadditive function affects the performance in

presence of different levels of false-name attacks. Results show that the degree of polynomials

increase the resistance false-name attacks (See Fig. 7.5). This is because higher degree of

polynomials provides higher diffusion credits and rewards. Players who have performed

false-name attacks suffer from a higher loss of rewards.

Robustness to Collusion With the same superadditive function (quadratic), we compared

how the selection of increasing and bounded function affects the performance in presence

of different levels of collusion. Results show that MWC experienced the smallest degree

of reduction in the rewards, while the GCM-Exp group had the biggest reduction (See

Fig. 7.6). This indicates that GCM variants are more resistant to collusion because players

would receive substantially less rewards if they colluded under the GCM variants.

Discussion In summary, the generalized contest mechanism can achieve performance on

par with the state-of-the-art mechanisms that is resistant to false-name attacks. It provides

a higher level of flexibility for stakeholders to tune the parameters to tailor for their specific

needs.
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7.6 Summary

To counter false-name attacks and collusion, we introduce the generalized contest mecha-

nism. We take a decomposition approach to design the manipulation-resistant mechanisms.

The GCM satisfies desirable properties such as individual rationality, budget constraint,

monotonicity and subgraph constraint. We compare variants of GCM with the state-of-the-

art mechanism for strategic network diffusion empirically. Results show that the GCMs are

more robust to manipulations and outperform the MWC mechanism in terms of performance

as well. Our work provides a new approach to manipulation-resistant mechanisms.

In our work, we assumed that the budget grows linear in task efforts. This requires an rising

market. It will be interesting to study if the budget is fixed or shrinks. Another fruitful

problem is to study how to address the challenges when players learn (e.g. their marginal cost

coefficients adapt). Another important problem is design manipulation-resistant mechanisms

to maximize individual efforts.
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Chapter 8

Countering Free Riding in Utility Sharing

with Sequential Contests

Free riding is a common problem that arises in many online communities such as peer-

to-peer file sharing systems, user-generated content platforms, and open-source software

development. Agents’ free riding behaviors severely reduce the production of society and can

often lead to the tragedy of the commons. In this work, we introduce a sequential contest

mechanism to counter agents’ free-riding behavior. The mechanism allocates a number of

tokens to each agent that has made contributions to the utility production before a private

deadline, and then conducts a ratio-form contest among the qualified agents. The sequential

contest mechanism is resistant to free riding and also satisfies the budget constraints. We

conducted experiments with real-world dataset to evaluate its performance and robustness.

Experimental results demonstrate that stakeholders can achieve optimal results by tuning

the parameters of the sequential contest mechanism. Our method brings new insights into

how to design free riding resistant mechanisms for utility sharing.
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8.1 Background

The free rider problem arises in many real-world scenarios, including crowdfunding [Agrawal

et al., 2014], open-source software development [Baldwin and Clark, 2006], user-generated

content platforms [Lao, 2010], strategic network diffusion [Shen et al., 2019b], and peer-to-

peer file sharing systems [Ramaswamy and Liu, 2003]. A free rider usually gain benefits

from the contributions made by others without contributing to the development of public

resources. For instance, millions of people use Wikipedia — a free encyclopedia every day but

only a small fraction of the users pay to support its operation or put efforts into increasing its

contents or improving its quality. Most of the users receive benefits from Wikipedia without

contributing to its development [Antin and Cheshire, 2010]. These users are often referred

as the free riders.

Free riding is a key challenge in cooperation among organizations [Hogg and Huberman,

2008]. Agents’ free riding behavior is usually harmful to the growth of the public resources.

It often makes the public goods unsustainable [Grossman and Hart, 1980]. For example,

the Wikipedia would not be able to sustain its operation if no one donates or no one spend

time helping improve it. A main reason for the free rider problem is that there is a lack of

mechanisms that exclude non-cooperators (e.g. Wikipedia do not prevent users from having

access to it) [Antin and Cheshire, 2010].

Another problem in utility sharing is that even some agents choose to contribute, they may

not be willing to contribute early [Shen et al., 2018b]. The agents usually have uncertainty

about the prospect of the public goods. For instance, if users believe that the Wikipedia

would not sustain in the near future, they are unlikely to contribute to its operation. There-

fore, stakeholders of the public goods must not only provide incentives to agents that have

contributed but also need to incentivize those who have contributed early.
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Figure 8.1: An illustration of the free rider problem.

To counter the free riding behavior in utility sharing, we introduce a novel mechanism called

the Sequential Contest Mechanism (SCM). The sequential contest mechanism initially assign

the same number of tokens to each of the newly joined agents. It updates the tokens according

to normalized weight of the agent’s contributions to the utility sharing. If an agent chooses

not to contribute, his weight of contributions will be diluted to a small amount that disqualify

him from gaining the benefits. In this way, the mechanism encourages agents to contribute.

Another benefits of using sequential contests is that agents have extra incentives to contribute

early because early movers have an advantage in the final outcomes in sequential contests.

The efforts and payoffs of earlier movers are strictly higher than later players. The earlier

players may impact the followers and they do not have direct competitors.

We conducted numerical simulations with real-world data to evaluate the performance of

the sequential contest mechanism. Results show that the proposed mechanism can achieve

optimal performance through parameter tuning and is resistant to free riding. Our work
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demonstrates the promising prospective of proper competition in countering free riding in

utility sharing.

8.2 The Free Rider Problem in Utility Sharing

This section introduces the free rider problem in utility sharing and formulates the mecha-

nism design problem. Before describing the agents’ decision models, we first introduce the

notations used.

8.2.1 Notations

We consider discrete time T = {1, 2, ...} with a set of players I = {1, 2, ...} arrive sequentially

in a utility sharing scenario. At each time t ∈ T , a player i ∈ I that has not exerted his effort

previously decides whether to exert his effort ei,t ∈ R≥0 or not. Without loss of generality,

we assume that ei,t ∈ [0, 1] for all i ∈ I, t ∈ T . For simplicity’s sake, we further assume that

the total efforts that a player has invested in the utility sharing should be less than or equal

to 1. That is,
∑|T |

t=1 ei,t ∈ [0, 1]. Let n = |T |, and m = |I|.

The effort investment of player i during the n periods is represented by a vector ei =

(ei,1, ei,2, ..., ei,n). For all i ∈ I, t ∈ T , we have ei,t ∈ [0, 1]. Thus, ei ∈ Θi = {(x1, x2, ..., xn) ∈

[0, 1]n|
∑n

t=1 xt ≤ 1}. Therefore, the space for all players’ invested efforts e ∈ Theta where

Θ = (Θi)i∈I . Without loss of generality, we assume that a player only invests his effort in

one of the time t ∈ T . That is, if player i invests a total effort of b in the time periods of

|T |, then we can assume that player i only invests his efforts at time t (i.e. ei,t = b), and

invests no effort in other times (i.e. ei,t = 0 for other times). Let It denote the set of players

that invest their efforts in time t (i.e. It = {i ∈ I|bi,t > 0}), and et denote the total effort
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invested from time 1 to t, we have

et =
∑
i∈I

∑
j≤t

ei,j . (8.1)

In utility sharing, the principal is interested in solicits as many efforts as possible. The

minimum total invested efforts is 0, while the maximum total invested efforts possible is

m · 1 = m. Thus, the total invested efforts to the principal et ∈ [0,m]. Without loss of

generality, the utility of total invested efforts to the principal can be presented as a function

g(bt) where g : {0,m} → [0, 1] such that g(0) = 0 and g(m) = 1.

In practice, it is often difficult or even unfeasible to solicit the maximum amount of efforts

(i.e. bt = m). The principal often has a private threshold θ ∈ (0, 1] for her utility. That

is, the principal will be interested in soliciting the efforts such that her utility reaches her

threshold θ. Assume that the principal’s utility g reaches the threshold θ at time t(θ, e). We

have

t(θ, e) =

 min{t ∈ I|g(et) ≥ θ} if u(et) ≥ θ for some 1 ≤ t ≤ n;

+∞ if u(et) < θ for all 1 ≤ t ≤ n.
(8.2)

Time t(θ, e) is the earliest time that principal’s utility g surpasses her threshold θ. If g is

not possible to reach θ, then time t(θ, e) is equivalent to infinity.

8.2.2 The Free Rider Problem

In utility sharing, players typically want to maximize their payoffs. At time t, player i

receives a utility ut that is determined by the principal. Note that, the utility ut is the same

for all the players i ∈ I at time t. Let t′ = t(θ, e), player i’s utility at time t is calculated by

u(i, t′) = ut′ · si,t′ −
t′∑
t=0

ei,t , (8.3)
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where si,t′ ∈ [0, 1] is player i’s estimate of the probability that the principal’s utility exceeds

her private threshold θ at time t′. In large-scale utility sharing that consists of thousands of

players, it is without loss of generality to assume that player i’s estimate of the probability

si,t′ are independent and identically distributed according to the normal distribution N (0, 1).

Thus, the expected value for si,t′ is E(si,t′) = 0.5.

Without extra incentives, players tend to exert no efforts at all, which results in free riding

(e.g.
∑t′

t=0 ei,t = 0). The players receive positive utilities, but contribute nothing to the

utility sharing. Eq 8.3 can be simplified as

u(i, t′) = ut′ · si,t′ . (8.4)

In order to counter the free riding behavior, the principal may provide rewards to the players

that have invested efforts into the utility sharing. Let π(i) ∈ R≥0 denote the rewards that

player i receives in the utility sharing. When the principal receives the rewards, player i’s

utility is

u(i, t′) = (ut′ + E(π(i))) · si,t′ −
t′∑
t=0

ei,t . (8.5)

By Eq. 8.4 and Eq. 8.5, the relative utility for player i not performing free riding is

∆u(i, t′) = (ut′ + E(π(i))) · si,t′ −
t′∑
t=0

ei,t − ut′ · si,t′ (8.6)

= E(π(i)) · si,t′ −
t′∑
t=0

ei,t . (8.7)
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In our model, we assume that player i’s utility is his relative utility ∆u(i, t′). Thus, we have

player i’s utility in the utility sharing for contributing a effort in one of the time periods is

E(u(i)) = E(π(i)) · si,t′ −
t′∑
t=0

ei,t . (8.8)

In order to counter players’ free riding behavior, the principal must provide incentives that

is increasing in terms players’ efforts before the terminating time t′ = t(θ, e).

8.2.3 Mechanism Design in Utility Sharing

In utility sharing, a principal is interested in obtaining the desirable utility production as

early as possible by providing incentives to some players that have exerted positive contri-

butions to the utility production. That is, the principal is interested in a utility sharing

mechanism π that determines the rewards for each agent that has exert efforts.

Definition 8.1. A utility sharing mechanism π is a tuple of payments for each agent i ∈ I.

That is, π = (π(i)i∈I), where π(i) : Θ→ R.

The utility sharing mechanism should be able to counter the free riding behavior. In other

words, players would be better off to participate in the investment of their efforts than

exerting no efforts at all.

Definition 8.2 (Free-Riding-Proofness). A utility sharing mechanism π is free-riding-proof

if for all the players it is better off to participate in the sequential production than not

participating. That is, u(i) ≥ 0 for all i ∈ I that has invested efforts before t′ = t(θ, e).

To be economically feasible, a utility sharing mechanism should be budget constrained. That

is, the total amount of the rewards should not exceed a fixed portion ϑ ∈ R>0 of the total

aggregated efforts.

123



Definition 8.3 (Budget Constraint). A utility sharing mechanism π is budget constrained

if ∑
i∈I

π(i) ≤ ϑ · et′ .

8.3 Sequential Contest Mechanism

We introduce the sequential contest mechanism (SCM) to encourage agents to contribute to

the utility production. The intuition of the SCM is that it performs a sequential contest

among the players that have exerted positive efforts before the terminating time t′ = t(θ, e).

At time t, the mechanism first assign the tokens ci,t to a player i that exerts an effort of

ei,t > 0. At time t + 1, the mechanism first checks if t + 1 ≥ t(θ, e). If it is not, the

mechanism updates the tokens for all players by ci,t+1 = λ · ci,t where λ ∈ R≥1. Here λ serves

as a discounting factor, it encourages the players to exert efforts as early as possible because

early contributions weigh more. If t + 1 ≥ t(θ, e), the mechanism conduct a ratio-form

contest among all the players that have positive number of tokens. Player i’s probability of

winning is

Pr(ci,t′) =
(ci,t′)

ρ∑
j∈I(cj,t′)

ρ
, (8.9)

where ρ ∈ (0, 1] is the noise factor of the contest, and t′ = t(θ, e). Here, Pr(ci,t′) ∈ [β, 1],

where β ∈ (0, 1] is the minimum possibility that the principal set for a player to receive the

rewards.

Given the the budget constraint, the mechanism distributes a total amount of α · et′ . There-

fore, the expected rewards for player i that has exerted efforts before the terminating time

t′ are

E(π(i)) = Pr(ci,t′) · α · et′ , (8.10)

where Pr(ci,t′) and et′ are determined by Eq. 8.10 and Eq. 8.1, respectively.

124



To satisfy the free-riding-proofness, player i’s expected utility should be always non-negative.

To achieve this requirement, the parameter α should be carefully chosen. Since E(si,t′) = 0.5,

by Eq. 8.8 Eq. 8.1 and Eq. 8.10, we have

E(u(i)) =
1

2
E(π)−

t′∑
t=0

ei,t

=
1

2
α · Pr(ci,t′) · et′ −

t′∑
t=0

ei,t

=
1

2
α · Pr(ci,t′) · (

∑
k∈I

∑
j≤t′

ek,j)−
t′∑
t=0

ei,t

=
1

2
α · Pr(ci,t′) · (

t′∑
t=0

ei,t +
∑

k∈I/{i}

∑
j≤t′

ek,j)−
t′∑
t=0

ei,t

= (
1

2
α · Pr(ci,t′)− 1)

t′∑
t=0

ei,t +
1

2
α · Pr(ci,t′)

∑
k∈I/{i}

∑
j≤t′

ek,j

≥ (
1

2
αβ − 1)

t′∑
t=0

ei,t +
1

2
α · Pr(ci,t′)

∑
k∈I/{i}

∑
j≤t′

ek,j

> (
1

2
αβ − 1)

t′∑
t=0

ei,t (8.11)

Let α = 2
β
, we have 1

2
αβ− 1 ≥ 0. Thus, we have (1

2
αβ− 1)

∑t′

t=0 ei,t ≥ 0. Therefore, we have

E(u(i)) > 0.

The mechanism π only reward the agents that have made positive contributions before the

terminating time t′ and have a probability of winning that is no less than the minimum value

β. The SCM thus satisfies the free-riding-proofness.

The sequential contest mechanism (See Algo. 8.1) operates in a online fashion. Each time, the

mechanism checks if the principal’s utility of the aggregated efforts exceed the threshold value

θ (See line 1, Algo. 8.1). If so, it first updates the tokens of the players that have invested

efforts in previous times by multiplying a discounting factor λ (See lines 2–4, Algo. 8.1). It
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Algorithm 8.1 Sequential Contest Mechanism

Input: θ-the threshold of the utility production.
Output: π-payment for each player i ∈ I
Initialize: π(i) = 0, ci,0 = 0 for all i ∈ I

1: while time t is less than t(θ, e) do
2: for existing player i ∈ I and ci,t > 0 do
3: Update tokens ci,t+1 ← λ · ci,t
4: end for
5: for each newly joined player i ∈ I and ei,t > 0 do
6: Assign tokens ci,t ← ei,t
7: end for
8: end while
9: for each player i ∈ I and ci,t′ > 0 do

10: Calculate player i’s Pr(ci,t′) by Eq. 8.9.
11: if Player i’s Pr(ci,t′) ≥ β then
12: Update rewards π(i)← π(i) + Pr(ci,t′) · α · et′
13: end if
14: end for
15: return π

then assign tokens to the newly joined players that have exerted positive efforts (See lines

5–7, Algo. 8.1).

After the production utility reaches the threshold θ, the mechanism conduct a contest among

the players that have positive number of tokens (See Lines 9–14, Algo. 8.1). In doing so,

the mechanism first calculates the probability of winning according to a ratio-form contest

function that is defined by 8.9 (See Line 10, Algo. 8.1). It then updates the rewards for each

player pi that has a probability of winning no less than the minimum possibility β by adding

the rewards Pr(ci,t′) · α · et′ (See line 12, Algo. 8.1).

The SCM π is computationally efficient. It takes O(|T ||I|) time to compute the tokens for

all the players (See Lines 1–8, Algo. 8.1). Calculating the rewards takes O(|I|) time (See

Lines 9–14, Algo. 8.1). Therefore, the time complexity for the SCM is O(|T ||I|).

Theorem 8.1 (Free-Riding-Proofness). The utility sharing mechanism π is free-riding-proof.
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Proof. Let β = min{Pr(ci,t′)}, and α = 2
β
. By Eq. 8.11, it follows that E(u(i)) > 0 for all

i ∈ I. This completes the proof.

The utility sharing mechanism π satisfies the budget constraint by construction.

Theorem 8.2 (Budget Constraint). The utility sharing mechanism π is budget constrained.

Proof. The mechanism π satisfies the budget constraint by construction because the total

rewards are α · et′ . Let ϑ ≤ α, we have the total rewards
∑

i∈I π(i) = α · et′ ≤ ϑ. This

completes the proof.

The SCM depends on several parameters such as the noise factor ρ, the discounting factor

λ, and the principal’s threshold θ. Thus, it is desirable to understand how its performance

is influenced by these parameters in practice.

8.4 Experiments

This section describes the numerical experiments we conducted to evaluate the performance

and the robustness of the sequential contest mechanism. Before presenting the results, we

first introduce the dataset and the method.

8.4.1 Experimental Settings

Dataset In our experiments, we used the Kaggle ranked user data [Salvatore, 2018] as the

initial dataset. The dataset reflects 4,767 individual users’ efforts in Kaggle competitions.

The dataset contains 4,767 rows with each row representing a ranked player. In each row,

there are six data fields: the register date of the user, the current points earned by the user,

the current ranking of the user, the highest ranking of the user, the country that the user
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is located at, and the continent that the user belongs to. In our work, we removed two

irrelevant data fields: the country and the continent.

The original dataset does not contains all the necessary data fields for the experiments.

Before conducting the experiments, we performed data processing. We first normalized

the players’ data points by dividing each value by the maximum value observed in the

data samples. We then selected the normalized data points as lower bound of the efforts

that minimum efforts that the players would receive non-negative expected utilities (i.e.

E(u(i)) ≥ 0). Let e′i denote player i’s lower bound of the effort, we estimated the maximum

efforts that player i could invest by

êi = e′i ·
r̂i
ri
, (8.12)

where ri, and r̂i denote the current ranking and the highest ranking of player i, respectively.

To estimate the expected utility, an agent needs to have her cost coefficient. Unfortunately,

the original dataset does not include this information. We estimated each agent’s cost

efficient δi by assuming her utility was zero. This is without of loss generality because agent

i’s utility is positively correlated to the cost coefficient according to Eq. 8.10. Thus, we have

δi =
R− ri
R · ei

, (8.13)

where R = 4767, and ei is player i’s normalized points number.

Method We selected the total efforts and the total utilities as the main metrics. The

principal was interested in the total efforts while the players are interested in the total

utilities. We also compared the average efforts, standard deviation of the efforts, the average

utilities, and the standard deviation of the utilities for the first group of experiments. We

performed four groups of experiments. In the first group of experiments, we compared the

performance of the sequential contest mechanisms with different noise factors. In the second
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group, we varied the discounting factor to study how different discounting factors influenced

the performance of the sequential contest mechanism. In the third one, we evaluated the

performance of the sequential contest mechanism when we changed the threshold of the

utility production. In the last group, we measured the robustness of the mechanism as the

percentage of free riders increased.

We ran each group of experiments for 30 times and reported the average numbers of each

metrics. All the simulations were conducted on the same 3.7 GHz 6-core linux machine.

8.4.2 Results

Noise Factor We varied the noise factor from 0.0 to 1.0 with an increment of 0.02. Fig. 8.2

shows that all the four effort metrics – the total efforts, the average efforts, the maximum

efforts, and the standard deviation of individual efforts initially increased to the peaks and

then fall gradually as the noise factor increased. The trends indicated that the generated

contest mechanism performed the best when the noise factor is low (e.g. noise factor ρ =

0.06). Fig. 8.3 demonstrates that the players’ utilities first increased when the noise factors

were low (e.g. noise factor ρ ≤ 0.1) and then decreased with fluctuations as the noise factor

increased. From Figs. 8.2 and 8.3, we can see that a low noise factor (e.g. ρ = 0.06)

is the most beneficial to both the principal and the players. Two factors contributed to

this phenomenon: a majority of the agents were players with common or low ability (i.e.

they had high cost coefficients); contests with a low noise factor favor players with average

abilities [Jia et al., 2013, Shen et al., 2019a,b]. Thus, a low noise factor is typically optimal

for the principal to solicit efforts while also providing incentives for agents to contribute.

Discounting Factor We evaluated the total efforts and the total utility when we changed

the discounting factor λ from 1.00 to 1.10 with an increment of 0.0005. Fig. 8.4 demonstrates

that both the total efforts and the total utility increased gradually to the peaks when the
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Figure 8.2: A comparison of four effort metrics by varying the noise factor from 0.0 to 1.0.

discounting factor was ranging from 1.05 to 1.07. They then dropped slightly. The sequential

contest mechanism received the highest performance for both metrics when the discounting

factor was moderately high (e.g. discounting factor λ = 1.06). An explanation for this

trend was that a relatively high discounting factor encouraged players to contribute early.

This would enable to receive more efforts before the deadline (i.e. the time when the utility

production exceeded the threshold).
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Figure 8.3: A comparison of four utility metrics by varying the noise factor from 0.0 to 1.0.

Threshold of Production We measured the performance of the sequential contest mecha-

nism when we changed the threshold of utility production from 0.0 to 1.0 with an increment

of 0.005. As the threshold increased, the total efforts and the total utility first increased

significantly until θ = 0.05 and then fluctuated around the same level (See. Fig. 8.5). The

reason is that initially the players needed to exert more efforts to receive a higher utility

as the threshold of utility production increased. When the threshold reached a level, the

131



1.00 1.025 1.050 1.075 1.10
Discounting Factor

0

25

50

75

100

125

150

175

200
E

ff
o

rt
s

Total

(a) Total efforts

1.00 1.025 1.050 1.075 1.10
Discounting Factor

0

100

200

300

400

500

600

U
ti

lit
y

Total

(b) Total utility.

Figure 8.4: A comparison of total efforts and total utility by varying the discounting factor
from 1.00 to 1.10 with threshold θ = 0.50, noise factor ρ = 0.06.

players did not exert more efforts because otherwise they would receive fewer utilities or the

required efforts were beyond their capacities.

Robustness to Free Riding To evaluate the robustness of the sequential contest mecha-

nism, we evaluated the performance of the mechanism by varying the percentage of the free

riders from 0% to 100% with an increment of 0.5%. Fig. 8.6 demonstrates that both the

total efforts and the total utility first dropped sharply and then decreased gradually as the

percentage of free riders increased. This results further indicate that the sequential contest

mechanism is free-riding-proof.

Discussion Via extensive experiments, we demonstrate that stakeholders can both optimize

the total efforts and counter agents’ free riding behavior when they use the sequential contest

mechanisms with proper (optimal) configurations (e.g. noise factor ρ = 0.06, threshold

θ = 0.05, and discounting factor λ = 1.06 in our experiments).
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Figure 8.5: A comparison of total efforts and total utility by varying the threshold from 0.0
to 1.0 with noise factor ρ = 0.06 and discounting factor λ = 1.06.

0 25 50 75 100

Percent (%) of Free Riders

0

25

50

75

100

125

150

175

200

E
ff

o
rt

s

Total

(a) Total efforts.

0 25 50 75 100

Percent (%) of Free Riders

0

100

200

300

400

500

600

U
ti

lit
y

Total

(b) Total utility

Figure 8.6: A comparison of total efforts and total utility by percentage of free riders from
0% to 100% with threshold θ = 0.50, noise factor ρ = 0.06 and discounting factor λ = 1.06.
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8.5 Related Work

Free riding reduces the efficiency of the utility sharing in the sense that it results in the

under-production or over-consumption of the utility (or the good). It is harmful to both the

stakeholders and the individuals that have made contributions [Grossman and Hart, 1980,

Kim and Walker, 1984].

Because of its significance, many attempts have been made to address the free rider problem.

For instance, Groves et al. [1977] introduced government provision or taxation to achieve the

Pareto-optimal allocation of public goods. This methods imposed taxes on individuals that

receive benefits from the utility sharing. It is convenient the the stakeholders have the author-

ity but not feasible for non-government entities or individuals. Another method to counter

the free riding behavior is through assurance contracts [Runge, 1984, Tabarrok, 1998]. This

approach is suitable to the scenarios (e.g. crowdfunding) when the stakeholders can provide

guarantees or refunds when the utility production fails to be delivered as promised. When

the stakeholders cannot provide such assurance, however, this method is not implementable

in practice. If the stakeholders can exclude individual players, they can established privileged

groups such as clubs [Hampton, 1987]. Alternatively, the stakeholders may use the Coasian

solution to pool the resources until a goal of production has been met [Coase, 1960]. Despite

the insightfulness of these methods, they require strong assumption on the rationality of the

agents usually does not hold in practice. This is particularly true in scenarios that consist

of a large number of agents.

Our work distinguishes itself from previous work in three aspects. First, it does not impose

strong rationality assumption on agents. The agents have private thresholds (i.e. cost

coefficient) to trigger their actions. Second, we take a different approach to counter agents’

free riding behavior: introducing a sequential contest to increase the competitions among

the agents. In order to receive rewards, the agents needs to compete with each other by
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investing efforts in utility production. This practice enables the stakeholders to attract

contributions from the players that otherwise would not exert their efforts. Third, with

appropriate configurations of the sequential contest mechanism, both the stakeholders and

the players can receive the reasonably good utilities.

8.6 Summary

To counter agents’ free riding behavior in utility sharing, we introduce a sequential contest

mechanism. The mechanism rewards players that have made contributions before the re-

alization of the utility production. It distributes the rewards through a ratio-form contest

among the qualified players. We demonstrates that the mechanism is resistant to free riding

and also satisfies the budget constraints. Through extensive experiments on real-world data,

we demonstrate that the sequential contest mechanism can produce good performance when

the parameters (e.g. the noise factor, the threshold, and the discounting factor) of contest

are selected appropriately. The experimental results also confirmed the mechanism’s robust-

ness to free riders. Our work advances the state-of-the-art by offering a new approach to

countering agents’ free riding behavior in utility sharing.

Our work opens several exciting revenues for further research. In our model, we assumed

that the agents have fixed cost coefficient. It would be interesting to study how to counter

agents’ free riding behavior when they have adaptive cost coefficient. A possible solution is

through online learning of agents’ preferences [Fürnkranz and Hüllermeier, 2010]. Another

fruitful area is to develop novel methods to automatically select optimal parameters of the

sequential contest mechanism. To do so, the stakeholders need to conduct inference and

perform realistic simulations with real-world data. We also find it very rewarding to bring

contests into other domains such as cybersecurity and disaster response.
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Chapter 9

Conclusions and Future Directions

In this dissertation, we introduced a unified framework called mechanism design with thresh-

olding agents to relax some of the unrealistic assumptions (i.e. full rationality, direct pref-

erence revelation, and no group manipulations) in mechanism design. We demonstrated

the promising prospects by applying the framework to addressing real-world challenges in

crowdfunding, transportation systems, information diffusion, and utility sharing. Our work

complements traditional mechanism design in the sense that it enables a principal to influ-

ence agents’ decisions or behavior when they do not necessarily obtain perfect rationality or

when they are unwilling to reveal their preferences directly.

9.1 Our Contributions

Chapters 2 – 3 discussed the background of traditional mechanism design and introduced

the theory of mechanism design with thresholding agents.

Chapter 4 proposed to use information design as a tool to help the entrepreneur to increase

revenue by influencing backers’ beliefs of a campaign’s probability of success. In this work,

we introduced a heuristic algorithm to dynamically compute information-disclosure policies

for the entrepreneur and conducted numerical simulations to demonstrate its competitiveness
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over the widely-adopted immediate-disclosure policy. The experimental results demonstrated

that the immediate-disclosure policy is not optimal when backers use cutoff policies. With

appropriate heuristics, an entrepreneur can benefit from dynamic information disclosure.

Our work presented the first study on information design where a sender interacts with

multiple receivers that follow thresholding policies.

Chapter 5 introduced a post-price online mechanism called the Integrated Online RideShar-

ing (IORS) mechanism to promote ridesharing in autonomous mobility-on-demand systems.

We showed that the IORS mechanism is ex-post incentive compatible. Simulation results

demonstrated that the IORS outperformed the auction-based mechanism and was compara-

ble to the optimal offline algorithm.

Chapter 6 proposed a novel multi-winner contests mechanism to counter false-name at-

tacks in strategic information diffusion. The mechanism is false-name-proof, individually

rational, budget-constrained, monotonic, subgraph-constrained, and computationally effi-

cient. Experimental results demonstrated that false-name attacks are unprofitable under

the MWC mechanism. Stakeholders can significantly boost the aggregated efforts of players

when they slect parameters of the MWC mechanism appropriately.

Chapter 7 presented a generalized contest mechanism to counter both false-name attacks

and collusion. We identified conditions for a diffusion mechanism to be false-name-proof

and collusion-proof. The generalized contest mechanism integrates both conditions into a

single mechanism. It is both false-name-proof and collusion-proof. Experimental results

showed that the generalized contest mechanism not only can beat the state-of-the art mech-

anism in terms of total efforts but is also more robust to false-name attacks and collusive

manipulations.
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Chapter 8 introduced a sequential contest mechanism to counter agents’ free riding behav-

ior by providing rewards to the players that have made contributions before the realization of

the utility production. The mechanism distributes the rewards through a ratio-form contest

among qualified players. We demonstrated that the sequential contest mechanism is resistant

to free riding and can produce good performance when the parameters of the contest are

selected appropriately. Our work provides a new approach to countering agents’ free riding

behavior in utility sharing.

9.2 Future Directions

This dissertation opens several avenues for future research. In our model, we assumed that

the agents have fixed thresholds. It would be rewarding to study how to design mechanisms

when agents have dynamic thresholds. A possible solution is through online learning of

agents’ preferences.

Another fruitful area is to develop algorithms to automatically select the parameters of the

mechanisms. To do so, the mechanism designer needs to conduct inference and perform

realistic simulations from real-world data.

Learning and simulation have the potential to substantially reduce the mechanism designer’s

workloads and make it possible to form a new paradigm of mechanism design with threshold-

ing agents (See Fig. 9.1 for an overview). The framework learns agents’ behavioral models

from the empirical data (i.e. revealed preferences). Based on the learned agents’ models, it

then provides a mechanism prototype that is not necessarily optimal. The framework then

conducts theoretical analysis (e.g. competitive analysis and regret analysis) about the mech-

anism. It then tunes the parameters of the mechanism. This brings the revised mechanism.

The principal then can deploy the mechanism if possible, producing new empirical data.
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Figure 9.1: A new paradigm of mechanism design with thresholding agents.

It is also interesting to bring the framework of mechanism design with thresholding agents

to other domains. For example, in cybersecurity, a defender can use the framework to design

mechanisms that have different level of security given economical or physical constraints. To

promote open source software development, stakeholders can use contests to provide high

incentives for players to contribute.
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Appendix A

Derivations and Proofs

for Chapter 4

A.1 Proofs

A.1.1 Proof of Proposition 1

By condition, |s(k1)| = |s(k2)|. That means the revenue does not increase between time k1

to time k2. Since k1 < k2, we have T − k2 < T − k1, which means less time is left to achieve

the fundraising goal G. Thus, the campaign’s PoS decreases or stays the same, regardless of

backers’ arrivals from time k1 to k2. That is,

r(t, (s(k1), t)) ≥ r(t, (s(k2), t)) . (A.1)

By Equation 4.2, the utility of all the subsequently arriving backers weakly decreases. That

is, ∀t ≥ k2,∀i ∈ I(t) :

ui((s(k1), t)) ≥ ui((s(k2), t)) . (A.2)

By Definition 4.2, we have (s(k1), t) % (s(k2), t) for all t ≥ k2, and for all i ∈ I(t).
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A.1.2 Proof of Proposition 2

By assumption ∀t ∈ T , b(t) ∈ {0, 1}, we have that the number of arrivals from time k1 to k2

is:
k2∑
k1

b(t′) ≤ k2 − k1 . (A.3)

Since |s(k2)|−|s(k1)| ≥ (k2−k1)·P/G, we have that at least (k2−k1) backers have contributed

from time k1 to k2. Without loss of generality, one can assume that each time from k1 to

k2, at least one backer arrives at the campaign and makes a contribution. In other words,

the revenue of the campaign grows faster than or equal to the arrival of backers between k1

and k2. Thus, the campaign’s PoS increases or stays the same. That is, r(t, (s(k2), t)) ≥

r(t, (s(k1), t)). By Equation 4.2, the utility of all the subsequently arriving backers weakly

increases, i.e.

∀t ≥ k2,∀i ∈ I(t) : ui(s(k2), t2) ≥ ui((s(k1), t1)) . (A.4)

By Definition 4.2, we have

∀t ≥ k2,∀i ∈ I(t) : ε2 % ε1 . (A.5)

A.1.3 Proof of Lemma 1

By condition, we have ε2 % ε1. By relation of preferences and utility [Chambers and

Echenique, 2016], ε2 % ε1 ⇐⇒ ui(t, ε2) ≥ ui(t, ε1). According to backers’ utility func-

tion (Equation 4.2), ri(t, ε2) ≥ ri(t, ε1). Depending on the order of the backer i’s threshold

φi, his belief ri(t, ε1) when given report ε1 and the belief ri(t, ε2) given report ε2, there are

the following three cases.
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• ri(t, ε1) ≤ ri(t, ε2) < φi: in this case, backer i will not contribute to the campaign

given either ε2 or (ε1, ε2). That is,

E(αi = 1|ε2) = E(αi = 1|(ε1, ε2)) = 0 . (A.6)

• ri(t, ε1) ≤ φi ≤ ri(t, ε2): given report ε2, backer i will contribute to the campaign and

leave the system. An additional signal about the project status cannot improve his

possibility of pledging, i.e, E(αi = 1|ε2) ≥ E(αi = 1|(ε1, ε2)).

• φi < ri(t, ε1) ≤ ri(t, ε2): under this condition, backer i will contribute to the campaign

and leave the system given either of the two reports. That is,

E(αi = 1|ε2) = E(αi = 1|(ε1, ε2)) = 1 . (A.7)

A.1.4 Proof of Lemma 2

We prove it by contradiction. Assume, to the contrary, that ∃t ≥ max{k1, k2},

j ∈ I(t) : rj(t, (ε1, ε2)) > max{rj(t, ε1), rj(t, ε2)} . (A.8)

Depending on the order of backer j’s threshold φj, rj(t, (ε1, ε2)), and max{rj(t, ε1), rj(t, ε2)},

we have the following three cases:

• rj(t, (ε1, ε2)) > max{rj(t, ε1), rj(t, ε2)} ≥ φj: if rj(t, ε1) > rj(t, ε2), we have

rj(t, (ε1, ε2)) > rj(t, ε1) ≥ φj . (A.9)

152



By utility function (Equation 4.2),

uj((ε1, ε2)) = uj(ε1) = cj · αj(t) . (A.10)

By the relation of preferences and utility [Chambers and Echenique, 2016], (ε1, ε2) ∼ ε1,

where ∼ denotes indifferent to. This contradicts that

rj(t, (ε1, ε2)) > rj(t, ε1) . (A.11)

A similar contradiction occurs if rj(t, ε2) > rj(t, ε1).

• φj > rj(t, (ε1, ε2)) > max{rj(t, ε1), rj(t, ε2)}: in this case, by Equation 4.2,

uj((ε1, ε2)) = uj(ε1) = uj(ε2) = 0 . (A.12)

By the relation of preferences and utility [Chambers and Echenique, 2016], (ε1, ε2) ∼

ε1 ∼ ε2. This contradicts that

rj(t, (ε1, ε2)) > max{rj(t, ε1), rj(t, ε2)} (A.13)

• rj(t, (ε1, ε2)) ≥ φj > max{rj(t, ε1), rj(t, ε2)}: by Equation 4.2, we have

uj((ε1, ε2)) = cj · αj(t) , (A.14)

and

uj(ε1) = uj(ε2) = 0 . (A.15)

By the relation of preferences and utility [Chambers and Echenique, 2016], (ε1, ε2) �

ε1, (ε1, ε2) � ε2 and ε1 ∼ ε2, where � denotes strictly preferred to. If ε1 ∼ ε2, then

(ε1, ε2) ∼ ε1 ∼ ε2. This contradicts that (ε1, ε2) � ε1, (ε1, ε2) � ε2.
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A.1.5 Proof of Theorem 2

If the information is vertical, we have E(α
′
i = 1) ≥ E(α

′′
i = 1) by Lemma 4.1. If it is

horizontal, ri(t, (ε1, ε2)) ≤ max{ri(t, (ε1)), ri(t, (ε2))} by Lemma 4.2. By Equation 4.2, there

are three cases:

• φi ≤ ri(t, (ε1, ε2)) ≤ max{ri(t, ε1), ri(t, ε2)}: in this case, backer i will contribute for

both conditions, E(α
′
i = 1) = E(α

′′
i = 1) = 1.

• ri(t, (ε1, ε2)) ≤ max{ri(t, ε1), ri(t, ε2)} < φi: in this case, backer i will not contribute

for both conditions, E(α
′
i = 1) = E(α

′′
i = 1) = 0.

• ri(t, (ε1, ε2)) < φi ≤ max{ri(t, ε1), ri(t, ε2)}: in this case, backer i will not contribute if

given (ε1, ε2), i.e. E(α
′′
i = 1) = 0. If given either ε1 or ε2, backer i will either contribute

or not contribute, i.e. E(α
′
i = 1) ≥ 0.

A.1.6 Proof of Lemma 3

⇐= If the right side holds for all t′ ≤ t, i ∈ It′ , then ∀t′ ≤ t: |s(t′)| − |s(t′ − 1)| ≥ P/G =

(t′ − (t′ − 1)) · P/G. According to Proposition 4.2, ∀i ∈ I(t) : (s(t′), t) % (s(t′ − 1), t), where

t ≥ t′. That is, immediate disclosure is always preferred by all the backers in the campaign.

=⇒ We prove it by contradiction. Assume, to the contrary, that |s(t′)| − |s(t′ − 1)| < P/G

such that DPim(t) is optimal for some i, t′. Without loss of generality, we let |s(t′)| =

|s(t′− 1)|+ |∆s|, where |∆s| < P/G. Since |s(t′)| = |s(t′− 1)|+
∑

j∈I(t′) αj(t
′) ·P/G, where

αi ∈ {0, 1}, we have |∆s| =
∑

j∈I(t′) αj(t
′)·P/G < P/G. Therefore, |∆s| = 0, which indicates

that |s(t′)| = |s(t′ − 1)|. According to Proposition 4.1, ∀t ≥ t′ : (s(t′ − 1), t) % (s(t′), t),

which contradicts the supposition that DPim is optimal.
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A.1.7 Proof of Lemma 4

We prove it by contradiction. Assume, to the contrary, that: DPim is not optimal for some

d(i, t′) = (s(t′), t′). This indicates that at time t′ ≥ t, the entrepreneur could possibly profit

by delaying information disclosure. Without loss of generality, we assume that d(i, t′)opt =

(s(k′), t′) is the disclosure strategy used in the optimal disclosure policy for backer i ∈ I(t′) ,

where k′ < t′. Depending on the relation between t and k′, there are two cases (since t′ ≥ t)

: (i) t ≤ k′ < t′; (ii) k′ < t ≤ t′.

• t ≤ k′ < t′: at time t′, the project has already succeeded, which means there is no

uncertainty for backer i since the campaign’s PoS is 1. Therefore, delaying disclosure

does not increase backer i’s estimate on PoS, which contradicts the proposition that

d(i, t′) = (s(t′), t′) is not optimal.

• k′ < t ≤ t′: at time t′, backer i’s estimate ri(t
′, d(i, t′)opt) ≤ 1, while ri(t

′, d(i, t′)) = 1.

That is, d(i, t′) % d(i, t′)opt (∀i ∈ I(t′)), which contradicts the proposition that DPim

is not optimal.

A.2 Expert Algorithms

A.2.1 Random Selection

The random algorithm picks the project status s(ksel) at random from s(k) ∈ Hi(t) with

equal probability. The expected increase of revenue Υ(s(k), i, t) is computed by averaging

the revenue received when the entrepreneur disclosed the project status s(k).
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A.2.2 Greedy Selection

The greedy selection algorithm chooses the project status s(ksel) based on the empirical

responses that the entrepreneur has received from the backers, using a one-step-look-ahead

approach.

At time t, given the disclosure strategy d(i, t) = (s(k), t), the entrepreneur establishes a

historical belief Υold(s(k), i, t) of the expected increase in the revenue, where i ∈ I(t), and

s(k) ∈ Hi(t):

Υold(s(k), i, t) =
1

nk(t)
·
t−1∑
t′=1

∑
j∈I(t′)

αj(t
′)

η(t′)/η(t)
, (A.16)

where nk(t) denotes the times that s(k) has been revealed to backers up to time t. αj(t
′) is

backer j’s action given disclosure strategy (s(k), t′). η(t′) = |s(t′)|/t′, and η(t) = |s(t)|/t are

the revenue growth rates up to time t′ and t, respectively. Note that Υold = 0 if nk(t) = 0

or t = 1.

The historical belief represents the entrepreneur’s estimate of the average revenue she receives

by revealing project status s(k) to the backers, with discounting of the revenue growth rates.

It is a rough estimate of revenue increase that d(i, j) = (s(k), t) brings.

At time t, the entrepreneur’s temporal belief Υtmp of the expected revenue increase given

the disclosure decision d(i, t) = (s(k), t), is determined as follows:

Υtmp(s(k), i, t) =
∑

j∈I(t−1)

αj(t− 1)

|I(t− 1)|
, (A.17)

where I(t − 1) denotes the set of backers in the campaign at time t − 1 and αj(t − 1) is

backer j’s action at time t−1. If |I(t−1)| = 0 or t = 1, then Υtmp = 0. The temporal belief

captures the latest decisions of the backers that will most probably stay in the campaign at

time t.
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The entrepreneur estimates the belief of the expected increase of revenue, given d(i, t) =

(s(k), t) for backer i ∈ I(t), with the following equation:

Υ(s(k), i, t) = (1− λ)Υold(s(k), i, t) + λΥtmp(s(k), i, t) , (A.18)

where λ ∈ [0, 1] is the learning rate (we use λ = 0.1).

The greedy algorithm then selects the project status s(ksel) by using the following equation:

s(ksel) = argmax
s(k)∈H

Υ(s(k), i, t) . (A.19)

The probability for selects the project status s(ksel) is 1 and 0 for others.

A.2.3 Epsilon Greedy Exploration

In ε-greedy exploration, with probability ε the algorithm selects a random choice s(k). Oth-

erwise, with probability 1 − ε it selects the greedy choice use the greedy selection. That

is,

Pr(s(k)) =


1− ε+ ε

nk(t)
, greedy selection

ε
nk(t)

, random selection

(A.20)

where nk(t) is the times that s(k) has been reveled to backers up to time t, ε = c/nk(t), and

c ∈ [0, 1] is a constant. Note that ε = c if nk(t) = 0.

A.2.4 Softmax Exploration

Softmax selects the choice using a Boltzmann distribution [Ross, 1996]. At time t, the

algorithm selects choice s(k) with the probability:
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Prob(s(k)) =
eΥ(s(k),i,t)/τ∑

s(k)∈Hi(t) e
Υ(s(k),i,t)/τ

, (A.21)

where τ = max{µ,Ct/ log nk(t)} is the temperature parameter. Here, µ = 0.0001, τ = 1

when nk(t) = 0, and Ct is determined by:

Ct = max
s(k1),s(k2)∈Hi(t)

|Υ(s(k1), i, t)−Υ(s(k2), i, t)| . (A.22)

The softmax exploration selects each choice with a probability that is proportional to the

average Υ.
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Appendix B

Derivations and Proofs

for Chapter 6

B.1 Proofs

B.1.1 Proof of Theorem 1

Proof. By Definition 6.2, the task rewards for player v remain unchanged even if he creates

false identities. To prove the inequality

π(v) ≥
∑
r∈R

π(r) ,

it suffices that if v’s diffusion rewards are greater than or equal to the sum of diffusion reward

of her false identities. That is,

πd(v) ≥
∑
r∈R

πd(r) .

To prove this condition holds, we first show that the virtual credits earned by v are strictly

greater than the sum of the virtual credits earned by the replicas R. That is,

bv >
∑
r∈R

br .
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There are three scenarios according the types of false-name attacks: type 1 attacks, type 2

attacks, and hybrid attacks. We prove each case in turn

• Type 1 attacks: By Equation 6.3, the virtual credits of original node v:

bv = η · (tv)2 + tv ·
∑
u∈κ+v

∑
p∈Pvu

tu · ω(p) · λ|p| . (B.1)

For simplicity, we let b(v) = η · (tv)2 + tv · C(v).

Note that node v shares the same successors with replica rm. Therefore, we have the

virtual credits for replica rm:

brm = η · (trm)2 + trm ·
∑
u∈κ+r

∑
p∈Pru

tu · ω(p) · λ|p|

= η · (trm)2 + trm ·
∑
u∈κ+v

∑
p∈Pvu

tu · ω(p) · λ|p|

= η · (trm)2 + trm · C(v) .

Similarly, we have

brm−1 = η · (trm−1)
2 + trm−1

∑
u∈κ+rm−1

∑
p∈Prm−1u

tu · ω(p) · λ|p|

= η · (trm−1)
2 + trm−1 ·

∑
u∈κ+rm−1

∑
p∈Prm−1u

tu · ω(p) · λ|p|

= η · (trm−1)
2 + λtrm−1 ·

∑
u∈κ+rm

∑
p∈Prmu

tu · ω(p) · λ|p|

+ λtrm−1 · trmη · (trm−1)
2 + λtrm−1 · C(v) + λ · trm−1 · trm .

Likewise, we have:

brm−2 = η · (trm−2)
2 + λ2trm−2 · C(v) + λ2trm−2 · trm + λtrm−1trm−2 ,
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...

bv′1 = η · (tr1)2 + λm−1tr1 · C(v) + λtr1 · tr2 + λ2 · tr1 · tr3 + ...+ λm−1tr1 · trm .

Now we have the sum of the virtual credits for all replicas:

∑
r∈R

br = br1 + ...+ brm−1 + bbm

= η · [(tr1)2 + ...+ (trm−1)
2 + (trm)2]

[λm−1tr1 + λm−2tr2 + ...+ λtrm−1 + trm ] + trm·

C(v) + λtr1 · tr2 + λ2 · tr1 · tr3 + ...+ λtrm−1 · trm

< η · [(tr1)2 + ...+ (trm−1)
2 + (trm)2] + [tr1+

tr2 + ...+ trm ] · C(v) + tr1 · tr2 + ...+ trm−1 · trm

= η[tr1 + tr2 + ...+ trm ]2 + tv · C(v)+

(λ− 2η)[tr1 · tr2 + ...+ trm−1 · trm ]

≤ η(tv)
2 + tv · C(v)

= b(v) .

The first inequality holds since 0 < λ < 1. The second inequality also holds because

λ ≥ η/2. Thus,

bv >
∑
r∈S

br .
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• Type 2 attacks: Note that replicas r1, ..., rm share the same successors with node v:

brj = η · (trj)2 + trj ·
∑
u∈κ+rj

∑
p∈Prju

tu · ω(p) · λ|u|

= η · (trj)2 + trj ·
∑
u∈κ+v

∑
p∈Pvu

tu · ω(p) · λ|p|

= η · (trj)2 + trj · C(v) .

Thus, we have:

∑
r∈R

br = η · [(tr1)2 + ...+ (trm−1)
2 + (trm)2]+

[tr1 + tr2 + ...+ trm ] · C(v)

< η · [tr1 + tr2 + ...+ trm ]2 + tv · C(v)

= bv .

The inequality is by Multinomial Theorem. Thus,

bv >
∑
r∈R

br

• Hybrid attacks: Since hybrid attacks are combinations of type 1 attacks, and type 2

attacks, it is trivial to know that under hybrid attacks

bv >
∑
r∈R

br .

To prove πd(v) ≥
∑

r∈R πd(r), it suffices if the following inequality holds:

(bv)
σ∑

u∈VGv
(bu)σ

>
∑
r∈R

(br)
σ∑

u∈VGr
(bu)σ

. (B.2)
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Note that Gr = Gv \ {v} ∪ R. Let x = (bv)
σ, y =

∑
u∈VGv

(bu)
σ, z =

∑
r∈R(bu)

σ, and

q =
∑

u∈VGr
(bu)

σ, we have 0 < x
y
< 1, x > z > 0, and y > q > 0. Equation B.2 is equivalent

to: x
y
> z

q
. Since 0 < x

y
< 1, we have:

z

q
/
x

y
=
x− d
y − d

/
x

y
=

(x− d)y

x(y − d)
=

1− d/x
1− d/y

< 1 . (B.3)

Thus, x
y
> z

q
. Therefore, πd(v) ≥

∑
r∈RS πd(r). Now it follows that the reward mechanism π

is false-name proof.

B.1.2 Proof of Theorem 2

Proof. By Equations 6.2 and 6.7 , we have player v’s expected utility: U(v) = µ · tv+πd(v)−

δv · tv = (µ − δv) · tv + πd(v). Since the parameter µ is known to the player in advance,

µ− δv ≥ 0. Since πd(v) > 0 if player has exerted diffusion contributions, we have U(v) > 0

for all players that have exerted both task efforts and diffusion contributions.

B.1.3 Proof of Theorem 3

Proof. By Equation 6.7, ∑
v∈G

π(v) =
∑
v∈G

(µ · tv + πd(v)) . (B.4)

By Equation 6.6, ∑
v∈G

πd(v) ≤ φ
∑
v∈G

tv . (B.5)

Thus, we have ∑
v∈G

π(v) ≤ (µ+ φ)
∑
v∈G

. (B.6)

Let ϑ = µ+ φ, we have ∑
v∈G

π(v) ≤ ϑ
∑
v∈G

(B.7)
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B.1.4 Proof of Theorem 4

Proof. Consider that the virtual credits of v1 is bv1 = B when no successor is added. Now

adding a direct successor vi to v2, v1’s virtual credits

bv′1
= B +

∑
p∈Pv1vi

λ|p| · tv1 · tvi · ω(p) . (B.8)

Similarly, if adding a direct successor of a successor of v2, we have v1’s virtual credits

bv′′1
= B +

∑
p∈Pv1vj

λ|p| · tv1 · tvj · ω(p) . (B.9)

Note that dist(v1, vi) < dist(v1, vj), and tvi = tvj , it suffices to show that b′v1 > b′′v1 . Following

the same method shown in Equation B.3, we have the diffusion rewards: πd(v
′
1) ≥ πd(v

′′
1 ).

B.1.5 Proof of Theorem 5

Proof. According to Equation 6.6, player v virtual credits and consequentially the diffusion

rewards are determined by a contest among players in the graph rooted at v, Gv. It follows

that the MWC mechanism satisfies the subgraph constraint.
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