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Abstract

In basic neuroscience research, data are often clustered or collected with repeated measures, hence 

correlated. The most widely used methods such as t-test and ANOVA do not take data dependence 

into account, and thus are often misused. This Primer introduces linear and generalized mixed-

effects models that consider data dependence, and provides clear instruction on how to recognize 

when they are needed and how to apply them. The appropriate use of mixed-effects models will 

help researchers improve their experimental design, and will lead to data analyses with greater 

validity and higher reproducibility of the experimental findings.
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1. Overview

The importance of using appropriate statistical methods for experimental design and 

data analysis is well recognized across scientific disciplines. The growing concern over 

reproducibility in biomedical research is often referred to as a “problem of inadequate rigor” 

(Kilkenny et al., 2009; Prinz et al., 2011). The reproducibility crisis has been attributed to 

various factors that include lack of adherence to good scientific practices, underdeveloped 

experimental designs, and the misuse of statistical methods (Landis et al., 2012; Steward 

and Balice-Gordon, 2014). Further compounding these challenges, we are in the midst of 

an ever-expanding biomedical research revolution. “Big Data” are being produced at an 

unprecedented rate (Margolis et al., 2014). Proper analysis of Big Data requires up-to-date 

statistical methodologies that take complex features of data such as explicit and implicit 

data dependencies into consideration. Better matching of statistical models that take data 

characteristics into account will allow for better interpretation of data outcomes. It will also 

boost the confidence in biomedical research of all stakeholders in the scientific enterprise, 

including the industry and the taxpaying public (Alberts et al., 2014; Freedman et al., 2015; 

Macleod et al., 2014). Despite recent advances in statistical methods, current neuroscience 

research is often conducted using a limited set of well-known statistical tools. Many models 

and tests assume that the observations are independent of each other. Failure to account for 

this dependency in the data often leads to an increased number of false positives, a major 

cause of the irreproducibility crisis (Aarts et al., 2014).

The t-test and ANOVA are familiar methods to all neuroscience researchers. Both methods 

assume that individual observations are independent of each other. For example, data 

measurements from multiple mice observed under different conditions, e.g., different mouse 

genetic models, are taken to be unique. However, this assumption of independence is false 

for animals clustered into cages or litters and for neuroanatomical and neurophysiological 

studies that rely on large scale longitudinal recordings and involve repeated measurements 

over time of the same neurons and/or animals (Aarts et al., 2014; Galbraith et al., 

2010; Wilson et al., 2017). In those cases, data are structured as clusters of multiple 

measurements collected from single units of analyses (neurons and/or animals), leading 

to natural dependence and correlation between the observations (Figure 1).

A quick examination of recently published articles indicate that reported results in basic 

neuroscience research often use inappropriate statistical methods for which the experimental 

designs and the ensuing/resulting data dependencies are not taken into account (Aarts et 

al., 2014; Boisgontier and Cheval, 2016). Our conclusion is supported by our survey of the 

studies published in prestigious journals over the past few years. In total we identified over 

100 articles where recordings of individual neurons from multiple animals were pooled for 

statistical testing. Alarmingly, about 50% of these articles accounted for data dependencies 
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in any meaningful way. Our finding is in agreement with an investigation published a few 

years ago (Aarts et al., 2014), which found that 53% of neuroscience articles failed to 

account for the dependence in their data. Representative descriptions of the inappropriate 

analyses read, “t(28656)=314 with p<10−10 over a total of n=28657 neurons pooled across 

six mice”, “n=377 neurons from four mice, two-sided Wilcoxon signed rank test …”, 

“610 A cells, 987 B cells and 2584 C cells from 10 mice, one-way ANOVA and Kruskal–

Wallis test”, “two-sided paired t-test, n=1597 neurons from 11 animals, d.f.=1596”, among 

numerous others. Such analyses can lead to astonishingly high type I error (false positive) 

rates (see below). Even in cases for which data dependencies are obvious, investigators 

continue to use repeated ANOVA, paired t-test, or their nonparametric versions. In many 

cases, errors due to the use of inappropriate statistics affect the article’s main conclusion 

(Fiedler, 2011).

Statisticians have developed effective methods to analyze correlated data. Several widely 

used statistical tools that take data dependencies into account are the linear and generalized 

mixed-effects models, which include t-test and ANOVA as special cases. Although the value 

of analyzing correlated data has been increasingly recognized in many scientific disciplines, 

including clinical research, genetics, psychological science studies, mixed-effects (ME) 

models have been under-utilized in basic neuroscience research.

The purpose of our article is to provide a readable primer to neuroscience experimentalists, 

who do not have extensive training in statistics. We illustrate and discuss what features 

of the experimental questions require an appropriate consideration of adequate design 

and data structure, and how the proper use of mixed-effects models will lead to more 

rigorous analysis, reproducibility and richer conclusions. We provide concrete data examples 

on how to properly use mixed-effects models. In addition to providing an improved 

perspective on appropriate statistical analyses, we provide easy-to-follow instructions for 

the implementation of mixed-effects models with access to code and practice data sets to all 

interested users. See Glossary Box 1 for a useful glossary related to this Primer.

2. Introduction to linear and generalized linear mixed-effects (LME, GLMM) 

models

2.1 Important concepts and definitions related to statistical testing

To understand the practical issues of mixed-effects models in the context of neuroscience 

research, we next introduce several important concepts and definitions using real-world 

data illustrations. Considering 5000 cells measured from five mice, what is the effective 

sample size in this study? Is it 5000 or 5? Perhaps it is neither. The number of biological 

units, experimental units, and observational units can be quite distinct from each other. A 

detailed discussion of sample size in cell cultures and animal experiments is provided by an 

earlier paper (Lazic et al., 2018). Here we will use an example data set collected from our 

laboratory to illustrate the concept and definition of intra-class-correlation (ICC), which is a 

metric to quantify the degree of correlation due to clustering. We also introduce the concepts 

of “design effect” and “effective sample size,” and discuss why conventional methods such 

as t-test and ANOVA are not appropriate for this example.
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ICC is a widely used metric to quantify the degree to which measurements from the 

same group are correlated. Depending on the specific settings that are concerned, different 

definitions have been proposed. For simplicity, let us consider the simple one-way ANOVA 

setting, where each animal is considered as a class. The total variance of data can be 

partitioned into the between- (inter-) and within- (intra-) class variances. The population ICC 

(Fischer, 1944) is defined as the ratio of the between-class variance to the total variance:

ICC =
σb

2

σb
2 + σe2

,

where σb
2 denotes the between-class variance and σe2 denotes the within-class variance. 

For naturally occurring clusters, ICC often falls between 0 and 1. If ICC=0, the data can 

be treated as uncorrelated; if ICC=1, all the observations in each cluster are perfectly 

correlated.

In our study of ketamine effects on neuroplasticity (Example 1, see detailed information 

in Section 3 below), we measured pCREB immunoreactivity of 1200 putative excitatory 

neurons of mouse visual cortex at different time points: collected at baseline (saline), 24, 48, 

72 hours, and 1 week following ketamine treatment from 24 mice (Figure 2). The original 

data and full description of the experiments can be found in (Grieco et al., 2020). For this 

example, a large ICC suggests that neurons from the same mouse tend to be more similar 

to each other than neurons from different mice. For larger values of ICC, there is greater 

homogeneity within clusters and greater heterogeneity between clusters. As shown in Figure 

2, the pCREB values of the 357 neurons in the saline group tend to cluster into groups 

indexed by the seven mice. The estimated ICC (Wolak and Wolak, 2015a) is 0.61, which 

implies that the 357 observations should not be treated as independent data points.

To understand why conventional methods (t-test, ANOVA) fail when data dependencies are 

not taken into account, it is helpful to quantify the magnitude of clustering of an experiment 

using the design effect (Deff) (Kish, 1965), which is defined as:

Deff = 1 + M − 1 ICC

where M denotes the average cluster size of an experiment design. It is a useful metric to 

recalibrate the standard error of an estimate in the presence of clustering or adjusting sample 

size when designing an experiment. For the saline group, with n=357 and ICC=0.61, the 

design effect is 32, i.e., on average 32 neurons under the current design are equivalent to one 

uncorrelated neuron. This experimental design may call for more measurements, but how 

many should be made?

Another closely related concept that helps answer this question is the effective sample size 

(neff), which is the equivalent sample size if there is no clustering / correlation. It is defined 

as neff =n/Deff, where n is the total sample size (number of observations). This definition is 

also an interpolation of the two extreme cases of ICC=0 or 1, with ICC=0 leading to neff 

=n (no correlation) and ICC=1 leading to neff =n/M (complete correlation). In sample size 
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calculations, the design effect can be interpreted as a multiplying factor to obtain the desired 

sample size under the assumption of independence. With Deff=32 in the saline example, the 

effective sample size based on the 357 neurons is neff=357/32≈11, which is only about 50% 

more than the number of mice. The ICC, design effects, and effective sample sizes for the 

five groups are shown in Table 1. The results indicate that there is substantial dependence in 

data. Unfortunately, when researchers analyze data under such circumstances, the methods 

they choose often make the wrong assumption that all the observations are independent from 

each other. One well known consequence of ignoring correlations in data is an increased 

number of false positives, which will be discussed in the next sub-section.

2.2 Failing to account for data dependence leads to high type I error (false positive) rates

When dependence is ignored in the data analysis, null hypotheses can be erroneously 

rejected and confidence intervals do not have enough coverage. In the statistical literature, 

the action of erroneously rejecting a null hypothesis (see Glossary Box 1 and Appendix 1 of 

the Supplemental Materials) is called a “false positive”. For a given test, its size, or type I 

error rate, is defined as the probability that the null hypothesis is erroneously rejected. We 

say that a test has an inflated type I error rate when its type I error rate is greater than its 

significance level, which is often denoted as α. To evaluate the severity of inflated type I 

error rates due to failure to consider data dependencies in realistic scenarios, we simulated 

data using the dependence structure of Example 1. The number of neurons from each of the 

24 animals, the number of animals from each of the five groups, and the ICCs from Example 

1, illustrated in Figure 2 and Table 1, were used to generate simulated data. To ensure that 

the data were simulated under the null hypothesis, the responses in each of the five groups 

were simulated from a multivariate normal distribution with mean 0 and correlation structure 

based on the ICC of that group. Thus, the a priori known ground truth is that the five groups 

(baseline (saline), 24, 48, 72 hours, and 1 week) share the same population mean.

We simulated 10,000 data sets, and each of which were analyzed using the linear model 

(LM) by pooling all neurons, or were analyzed using the linear mixed-effects (LME) model, 

to test equal population means of the five groups. The histogram of LM p-values indicates 

most of the p-values are small (Figure 3a, left panel); the type I error rate is about 90% when 

α = 0.05 is used. Thus, with no difference between the five groups, the probability that LM 

will reject the null hypothesis is 90%. This strikingly large type I error rate of LM confirms 

that when substantial data dependency exists, the cost of failure to take data dependency into 

account is very serious due to the higher probability of false positives.

In comparison, the histogram of LME p-values is approximately uniform between 0 and 1 

(Figure 3b, right panel); if the significance level is chosen at α=0.05, the estimated type 

I error rate is 8.6%, which indicates that the LME test is effective in accounting for data 

dependency. This convincingly illustrates the need for use of the LME in neuroscience 

research. Next, we provide some background and describe the method of linear mixed-

effects model (LME).
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2.3 Linear mixed-effects model

The word “mixed” in linear mixed-effects (LME) means that the model consists of both 

fixed and random effects. Fixed effects refer to fixed but unknown coefficients for the 

variables of interest and the explanatory covariates, as identified in the traditional linear 

model (LM) developed by Francis Galton more than a century ago. Random effects, first 

proposed in (Fisher, 1919), refer to variables that are not of direct interest - however, 

they may potentially lead to correlated outcomes. A major difference between fixed and 

random effects is that the fixed effects are considered as unknown parameters whereas 

the random effects are considered as random variables drawn from a distribution (e.g., a 

normal distribution). LME was pioneered by C. R. Henderson in his series of work on 

animal breeding (Henderson, 1949). It is now widely accepted and has been successfully 

applied in various scientific disciplines such as economics, genetics, psychology, medicine 

and sociology (Fitzmaurice et al., 2012; Jiang and Nguyen, 2021; Laird and Ware, 1982). 

Depending on the disciplines and application domains, alternative names have been used for 

LME, including random-effects model, multi-level model, hierarchical model, and variance 

component model. In order to apply LME, it is necessary to understand its assumptions and 

representation in sufficient detail, especially with respect to simpler methods. We start by 

reviewing the two-sample t-test, one-way ANOVA, and the linear model, and then introduce 

the linear mixed-effects model.

2.3.1 Background: Two-sample t-test, one-way ANOVA, and linear model—We 

start from the familiar two-sample case with n0 observations (Y1, …, Yn0) from a control 

group and n1 observations from a treatment group (Yn0+1, …, Yn0+n1). Under independence 

and normality assumptions, the t-test statistic, which standardizes the difference of the 

sample means by its standard error, follows a t distribution. Equivalently, one can use a 

simple linear model (LM) to model the difference between treatment and control.

Let xi denote a covariate (predictor) variable such that xi = 1 if the observed outcome Yi is 

from a subject assigned to the treatment group and xi =0 otherwise. Then, we can assume a 

linear relationship between the outcome and the treatment assignment as follows:

Y i = β0 + xi × β1 + εi, i = 1, …, n0, n0 + 1, …, n0 + n1 . (1)

In this model, β0 is the mean of the control group and (β0+ β1) is the mean of the treatment 

group. The null hypothesis of no effect of the treatment versus control is expressed as H0: 

β1 = 0 and the test statistic of the well-known t-test is identical to the least square estimate 

of the coefficient β1 divided by its standard error. The Ԑi is the random error term. The 

generalization from one treatment to p treatments is e p indicator variables, also known as 

dummy variables, for each of the treatment labels:

Y i = β0 + xi,1 × β1 + … + xi,p × βp + εi, i = 1, …, n, (2)

where n is the total number of observations. In the above multiple linear regression, β0 

indicates the population mean of the reference group (which is often just the control group). 

Then each coefficient βk is the difference in population means between the kth treatment 
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and the reference group, since xi,k = 1 if observation i belongs to the kth treatment group 

and xi,k =0 otherwise. Most often, we are interested in whether there is any difference in 

population means among all the (p +1) groups, i.e., H0: β1 = … = βp = 0. If the random 

errors (Ԑi) are independently and identically distributed (i.i.d.) from a normal distribution, 

we can use an F-test to assess the null hypothesis H0. The same F-test is probably more 

familiar to practitioners from the one-way analysis of variance (ANOVA). The idea is to 

decompose the total variance of the data into different sources. The two sources modeled in 

the multiple linear regression are the variation due to different treatments and the variation 

due to randomness. The F statistic used in the F-test characterizes the variation due to 

treatments relative to the variation due to randomness. Thus, ANOVA, in a broad sense, is 

a method of understanding the contributions of different factors to an outcome variable by 

studying the proportion of variance explained by each factor (Gelman, 2005).

Unfortunately, ANOVA is frequently misused in neuroanatomical and neurophysiological 

studies due to a failure of the practitioner to account for the collection of multiple 

observations from the same animal. Many investigators tend to use the default setup in 

statistical software or packages, and may not be familiar with more advanced regression 

framework. Mixed-effects models are a generalization of the previous methods (t-test, 

ANOVA, LM) and provide researchers with an effective strategy to analyze correlated data 

by taking dependence into account.

2.3.2 A practical guidance to the linear mixed-effects model—We consider the 

data in Example 1. The data consist of 1200 observed pCREB immunoreactivity values 

from 24 mice under five groups, which include the baseline group (7 mice) and 24 hours (6 

mice), 48 hours (3 mice), 72 hours (3 mice), and 1 week after ketamine treatment (5 mice), 

as shown in Table 1 and Figure 2. Here the data are recorded as multiple measurements 

from each mouse, which represents a single unit (cluster) of analysis. Let Yij indicate the jth 

observation of the ith mouse, and (xij,1, …, xij,4) are the dummy variables for the treatment 

labels with xij,1 = 1 for 24 hours, xij,2 = 1 for 48 hours, xij,3 = 1 for 72 hours, and xij,4 = 1 for 

1 week after ketamine treatments, respectively. Because there are multiple observations from 

the same animal, the data are naturally clustered by animal. We account for the resulting 

dependence by adding an animal-specific effect to the regression framework discussed in the 

previous section, as follows:

Y ij = β0 + xij,1 × β1 + … + xij,4 × β4 + ui + εij, i = 1, …, 24; j = 1, …, ni; (3)

where ni is the number of observations from the ith mouse, ui indicates the deviance between 

the overall intercept β0 and the mean specific to the ith mouse, and Ԑij represents the 

deviation in pCREB immunoreactivity of observation (cell) j in mouse i from the mean 

pCREB immunoreactivity of mouse i. Among the coefficients, the coefficients of the fixed-

effects component, (β0, β1, β2, β3, β4), are assumed to be fixed but unknown, whereas 

(u1, …, u24) are treated as independent and identically distributed random variables from a 

normal distribution with mean 0 and a variance parameter that reflects the variation across 

animals. It is important to notice that the cluster/animal-specific means are more generally 

referred to as random intercepts in an LME. Equivalently, one could write the previous 
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equation by using a vector (zij,1, …, zij,24) of dummy variables for the cluster/animal IDs 

such that zij,k=1 for i=k and 0 otherwise:

Y ij = β0 + xij,1 × β1 + … + xij,4 × β4 + zij,1 u1 + … + zij,24 u24 + εij, I = 1, …,
24; j = 1, …, ni . (4)

In the model above, Yij is modeled by four components: the overall intercept β0, which 

is the population mean of the reference group in this example, the fixed-effects from the 

covariates (xij,1, …, xij,4), the random-effects due to the clustering (zij,1, …, zij,24), and the 

random errors Ԑij’s, assumed to be i.i.d. from a normal distribution with mean 0.

In the application of these methods, one practical issue is to determine which effects should 

be treated as fixed and which should be considered as random. A number of definitions of 

fixed-effects and random-effects have been given (Gelman and Hill, 2006). It is generally 

agreed that a fixed effect captures a parameter at the population level; as such, it should 

be a constant across subjects / clusters. Population-level treatment effects, which are often 

of direct scientific interest, are included in the fixed-effects. When scientifically relevant, 

predictors (such as age and gender) whose effects are not expected to change across subjects 

should also be treated as fixed effects. In contrast, a random effect captures cluster-specific 

effects (e.g., due to the animal or the cell considered), which are only relevant for capturing 

the dependence among observations and are typically of no direct relevance for assessing 

scientific hypotheses. Indeed, the mice in a study are a sample from a large population 

and they are randomly chosen among all possible mice. Thus, the animal-specific effects 

are often not of primary interest; hence, they are added to the random-effects component. 

In Example 1, the mean in pCREB immunoreactivity from a particular mouse is not 

relevant for the final analysis; however, including the mouse-specific means accounts for 

the correlation between observations from the same animal.

In addition to cluster-specific means, a linear mixed effects model may include additional 

terms that describe the variability observed within a cluster (e.g., an animal or cell). Most 

often, this is the case when measurements are taken at different times from within the same 

animal and cell and it may be important to account for possibly different cluster-specific 

trajectories over time. We will discuss this in more detail as it pertains to Example 3 in 

Section 3 below.

2.3.3 The LME in a matrix format—It is often convenient to write the LME in a very 

general matrix form, which was first derived in (Henderson et al., 1959). This format gives a 

compact expression of the linear mixed-effects model:

Y = 1β0 + Xβ + Z u + ε, (5)

where Y is an n-by-1 vector of individual observations, 1 is the n-by-1 vector of ones, the 

columns of X are predictors whose coefficients β, a p-by-1 vector, are assumed to be fixed 

but unknown, the columns of Z are the variables whose coefficients u, a q-by-1 vector, 

are random variables drawn from a distribution with mean 0 and a partially or completely 

unknown covariance matrix, and Ԑ is the residual random error.
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In addition to being compact, the matrix form is convenient from a data analysis perspective, 

since many software packages for LMEs often require that the data are organized according 

to the so-called “long format”, i.e., each row of the dataset contains only the values for one 

observation. For example, using the long format, the data in Example 1 can be stored in a 

matrix with 1200 rows; the dummy variables introduced in Section 2.3.2 for the treatment 

labels and the cluster / animal IDs are used as the columns for X and Z, respectively. 

Because many software packages such as Matlab and R can take categorical variables and 

convert them to dummy variables automatically in their internal computation, the data for 

Example 1 can be stored in a 1200-by-3 matrix, with the first column being the pCREB 

immunoreactivity values, the second column being the treatment labels, and the last column 

being the animal identification numbers (see the Supplemental Materials Part I).

Since the LME model consists of both fixed and random effects, it is highly versatile 

and includes the traditional linear regression model (LM), the random effects model, 

t-test, paired t-test, ANOVA, and repeated ANOVA as special cases. In fact, software 

implementing the LME model can also be used to implement the LM, ANOVA, two-sample 

t-test, paired t-test, and other methods. In order to determine whether and which LME model 

should be used, one needs to understand the sources of correlation. Data visualization, as 

depicted in Figure 2, is the first step we recommend to have a good understanding of the 

data. It is helpful to have a visual inspection of model assumptions, especially regarding 

whether there is any data dependency due to factors that should be modeled. The decision 

chart in Figure 4 provides a user friendly guide to determine whether some variables should 

be included in the matrix Z to model the correlation in animal experiments appropriately. 

Please also refer to our sections below for implementation details.

2.4 Generalized linear mixed-effects model (GLMM)

In this section we discuss how to model data dependency for a broader range of outcome 

types. Traditional linear models and the LME are designed to model a continuous outcome 

variable with a fundamental assumption that its variance does not change with its mean. 

This assumption can be violated for commonly collected outcome variables, such as the 

choice made in a two-alternative forced choice task (binary data), the proportion of neurons 

activated (proportional data), the number of neural spikes in a given time window, and the 

number of behavioral freezes in each session (count data). For example, a natural choice 

of distribution for count data is the Poisson distribution, for which its mean and variance 

are equal. This violates the homoscedasticity (meaning “constant variance”) assumption 

that is a fundamental assumption of a standard linear regression model. In addition, 

negative predictive values might occur in a linear model, which is undesirable for count or 

proportional data. These issues can be addressed by the generalized linear model framework, 

which is an important extension of the linear model.

We first present a unified framework to analyze various outcome types, known as the 

generalized linear model (GLM) (McCullagh and Nelder, 2019; Nelder and Wedderburn, 

1972). It includes the conventional linear regression (for continuous variables), logistic 

regression (for binary outcomes), and Poisson regression (for count data) as special cases. 

Let Yi be the ith outcome variable and Xi=(Xi,1, …, Xi,p) be the corresponding covariates. 
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The critical operation of GLM is to link the expected value of Yi and a linear predictor (i.e., 

a linear combination of the covariates) through a “link” function g:

g E Y i Xi = β0 + Xi,1 × β1 + … + Xi,p × βp; (6)

The link function g connects the expected mean of the outcome variable to a linear predictor. 

An equivalent expression is E(Yi | Xi)=g−1(β0+Xi,1 x β1 +… + Xi,p x βp), where g−1 denotes 

the inverse function of g. For example, the link function of the liner regression model is the 

identity function, which implies that

E Y i Xi = β0 + Xi,1 × β1 + … + Xi,p × βp . (7)

To further help understand the link function g, we then consider the situation when the 

outcome variable is binary, which is often modeled using a logistic regression. Note that 

a logistic regression is a special GLM with the link function g being the logit function; in 

other words, we model the logit-transformed success probability using a linear combination 

of the covariates:

logit πi = log πi
1 − πi

= β0 + Xi,1 × β1 + … + Xi,p × βp (8)

where the success probability πi= E(Yi | Xi)=Pr(Yi =1| Xi), with the last equation due 

to the fact that Yi is either 0 or 1. The logit function ensures that the estimated success 

probabilities are always between 0 and 1, thus preventing negative predictive values or 

predictive values greater than 1. To complete the specification of the model, a data 

generating mechanism for the outcomes is needed. One natural choice is the Bernoulli 

distribution, i.e.:

Y i πi Bernoulli πi . (9)

The corresponding likelihood function can then be used to make inference on parameters 

using the maximum likelihood. The distributional assumptions can be relaxed by specifying 

the relationship between mean and variance, rather than the full distribution, which 

is expected to have good robustness. This approach is known as the quasi-likelihood 

method. We refer the interested readers to this publication (Wedderburn, 1974). The GLM 

generalizes the conventional LM for various types of outcomes by using appropriate link 

functions and by distributional assumptions of the outcomes. Like the conventional LM, all 

coefficients in the GLM are assumed to be unknown but fixed parameters. Next, we further 

extend GLM to generalized linear mixed-effects models so that the data dependence due to 

the underlying experimental design can be appropriately accounted for by including random 

effects.

To account for data dependency, the GLM has been extended to the generalized linear 

mixed-effects model (GLMM) (Breslow and Clayton, 1993; Liang and Zeger, 1986; 

Stiratelli et al., 1984; Wolfinger and O’connell, 1993; Zeger and Karim, 1991; Zeger and 

Liang, 1986):
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g E Y ij Xi = β0 + Xij,1 × β1 + … + Xij,p × βp + Zij,1 × u1 + … + Zij,q × uq; (10)

The random-effects terms in LME (equation 4) and GLMM (equation 10) play the same 

role; they explicitly model the dependence structure by specifying subject-specific or other 

relevant random effects and their joint distribution. With appropriate assumptions on the 

distribution of the outcome variables Yij’s and the mean assumption specified in equation 

(10), likelihood-based approaches are often used for parameter estimation. Compared to 

LME, the computation involved in GLMM with non-normal data is substantially more 

challenging, both in computational speed and stability. As a result, several strategies have 

been developed to approximate the likelihood (Bolker et al., 2009).

A robust alternative is the generalized estimating equation (GEE) (Zeger et al., 1988)-

approach. GEE makes assumptions based on the first two moments rather than imposing 

explicit distributional assumptions. The idea of GEE is to estimate coefficients using 

a “working” correlation structure, which does not have to be identical to the unknown 

underlying true correlation. An incorrect correlation structure, while it would not bias the 

estimates, would affect the estimate of the variance. Thus, a correction approach is applied 

to obtain consistent estimates of variance and covariance. However, caution is merited, 

as GEE and GLMM might lead to different estimates and interpretations (Fitzmaurice et 

al., 2012). Moreover, the correction procedure in GEE relies on aggregated information 

across subject-level data, but for cases of animal studies that only use a few animals in an 

experiment, the accuracy of GEE results may be questionable.

2.5 Bayesian analysis

In the LME and GLMM framework, the random-effects coefficients are drawn from a 

given distribution (typically Gaussian). Therefore, Bayesian analysis provides a natural 

alternative for analyzing the data considered in this Primer. One inherent advantage of 

Bayesian analysis is that it is easy to incorporate prior information on all the parameters in 

the model, including both the fixed-effects coefficients and the parameters involved in the 

variance-covariance matrices. In particular, the Bayesian framework allows practitioners to 

consider distributions of the random effects that are far from Gaussian, or to consider more 

flexible covariance structures needed to characterize the underlying data generating process. 

In the frequentist framework (see Glossary Box 1 and Appendix 1 of the Supplemental 

Materials), computational algorithms can become formidably complex and prohibitive in 

those cases. The Bayesian framework obtains inference on the parameters of interest by 

means of the posterior distribution, which results from combining the prior information 

with the data using the Bayes’ theorem. Therefore, Bayesian inference does not rely on 

asymptotic approximations that may be invalid with limited sample sizes.

To describe how Bayesian analysis works for mixed-effects model, consider again the model 

(equation 4) in Section 2.3:

Y ij = β0 + Xij,1 × β1 + … + Xij,p × βp + Zij,1 × u1 + … + Zij,q × uq + εij . (11)
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For simplicity of presentation and to avoid advanced statistical and mathematical details 

required for more general models, we assume independently and identically distributed 

(i.i.d.) random effects, i.e., the random effects are i.i.d. from N(0, σ2
u). We also assume 

the errors are i.i.d. from N(0, σ2). While we focus here for simplicity on the linear model 

(equation 4) from Section 2.3, our discussion can also be extended to the generalized linear 

framework of Section 2.4. Using the Bayes’ theorem, the posterior distribution, f(β0, β1, …, 

βp,σ2
u, σ2|Y), is proportional to the product of the likelihood function f Y |β0, β1…, βp, σu2, σ2

and the prior distribution π β0, β1, …, βp, σu2, σ2  (summarizing the available knowledge on the 

parameters):

f β0, β1, …, βp, σu2, σ2 Y = f Y β0, β1…, βp, σu2, σ2 π β0, β1, …, βp, σu2, σ2

f Y , (12)

where f(Y) is a constant that depends only on the observed data but does not depend on the 

model parameters. If possible, the prior distribution π β0, β1, …, βp, σu2, σ2  should be chosen 

to reflect the beliefs or information investigators may have about the parameters. In the 

absence of prior knowledge about the parameters, uninformative prior distributions are often 

employed. These types of priors are also known as flat, weak, objective, vague, or diffuse 

priors. For example, a uniform distribution over a wide range or a normal distribution with a 

very large variance can be regarded as a weak prior for the fixed-effects coefficients.

Once the likelihood and the priors have been specified, Bayesian inference often requires 

the use of sophisticated sampling methods to get quantities from the posterior distribution, 

generally denoted as Markov chain Monte Carlo (MCMC) algorithms like the Gibbs 

sampling (Gelfand and Smith, 1990), the Metropolis-Hastings algorithm (Casella and 

George, 1992; Hastings, 1970; Metropolis et al., 1953), and the Hamiltonian Monte Carlo 

algorithm (Betancourt, 2017; Duane et al., 1987; Hoffman and Gelman, 2014; Neal, 2011; 

Shahbaba et al., 2014). However, in practical applications, it is possible to employ existing 

software packages to conduct Bayesian analysis of mixed-effects models without the 

necessity of an in-depth knowledge of the underlying computational details (Bürkner, 2017; 

Bürkner, 2018; Fong et al., 2010; Hadfield, 2010). Inference on a parameter can then be 

conducted using its marginal posterior distribution. For example, one can consider the mean 

of the posterior distribution as a point estimate of the unknown parameter as well as a 95% 

credible interval to obtain the Bayesian counterpart of a confidence interval in frequentist 

analysis. In a Bayesian framework, the 95% credible interval is an uncertainty estimate that 

identifies the shortest interval containing 95% of the posterior distribution of the parameter 

of interest (highest posterior density interval). Hypothesis testing on the parameters of the 

mixed-effects models can be conducted by comparing the marginal likelihoods under two 

competing models, via the so-called Bayes factor. The use of a Bayesian approach and 

Bayes factors has been sometimes advocated as an alternative to p-values since the Bayes 

factor represents a direct measure of the evidence of one model versus the other (Benjamin 

and Berger, 2019; Held and Ott, 2018; Kass and Raftery, 1995).
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3. Practical applications of the linear mixed-effects model (LME) and 

generalized linear mixed-effects model (GLMM)

We provide practical examples to demonstrate why conventional LM, including t-test and 

ANOVA fail for the analysis of correlated data, and why LME should be used instead, with 

its advantages in each practical example explained.

3.1 Example 1.

As described in Section 2.1, we measured pCREB immunoreactivity of 1200 putative 

excitatory neurons in mouse visual cortex at different time points: collected at baseline 

(saline), 24, 48, 72 hours, and 1 week following ketamine treatment, collected from 24 

mice (Figure 2). If we use ANOVA or a linear model (LM) to compare each time point 

to the baseline (saline), as shown in Table 1, we find that the p-values of all comparisons 

are less than 0.05 and the overall difference between the five groups is highly significant 

(p=1.2×10−78). However, recall that the 1200 neurons are clustered in 24 mice. The 

ICC, design effect, and effective sample sizes (Table 1) indicate that the dependency due 

to clustering is substantial. Therefore, the 1200 neurons should not be treated as 1200 

independent cells. The lesson from this example is that the number of observational units 

is much larger than the number of experimental units (see reference (Lazic et al., 2018) 

for helpful discussion). We used an LME with animal-specific random effects to handle 

the dependency due to clustering. The p-values are much larger than those from LM, thus 

less likely to reach the threshold of significance (Table 2). Note that the difference between 

saline and 72h or 1wk by LME analysis is not significant after accounting for dependency of 

the data.

3.2 Example 2.

Data were derived from an experiment designed to determine how in vivo calcium (Ca++) 

activity of PV cells (measured longitudinally) changes over time after ketamine treatment 

(Grieco et al., 2020). Ca++ event frequencies were measured from brain cells of four mice 

at 24h, 48h, 72h, and 1 week after ketamine treatment; Ca++ event frequencies at 24h 

were compared to the other three time points. In total, Ca++ event frequencies of 1724 

neurons were measured. The boxplot in Figure 5A and LM (or ANOVA, t-test) analysis 

results in Table 3 indicate significantly reduced Ca++ activity at 48h relative to 24h with 

p=4.8×10−6, and significantly increased Ca++ event frequency at 1 week compared to 24h 

with p=2.4×10-3. However, if we account for repeated measures due to cells clustered in 

mice using LME with random intercepts (the model is similar to Equation (4) in Section 

2.3.2), most of the p-values are greater than 0.05 and thus fail to reach significance except 

that the overall p-value is 0.04.

To understand the discrepancy between the results from LM and LME, we created boxplots 

for the pooled data and for each mouse (Figure 5B). Although the pooled data (Figure 5A) 

and the corresponding p-value from the LM show significant reduction in Ca++ activities 

from 24h to 48h, we noticed that the only mouse showing a noticeable reduction was Mouse 

2. In fact, close examination of Figure 5B suggests that there might be small increases in 

the other three mice. To examine why the pooled data follow the pattern of Mouse 2 and 
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not that of other mice, we checked the number of neurons in each of the mouse-by-time 

combinations (Table 4). The last column of Table 4 shows that Mouse 2 contributed 43% of 

all cells, which likely explains why the pooled data are more similar to Mouse 2 than to the 

other mice. The lesson from this example is that naively pooling data from different animals 

is a potentially dangerous practice, as the results can be dominated by a single animal that 

can misrepresent a substantial proportion of the measured data. Investigators limited to using 

LM often notice outlier data of a single animal and they may agonize about whether they 

are justified in “tossing that animal” from their analysis, sometimes by applying “overly 

creative post-hoc exclusion criteria”. The other way out of this thorny problem is the brute 

force approach of repeating the experiment with a much larger sample size – a more honest, 

but expensive solution. The application of LME solves this troubling potential problem as it 

takes dependency and weighting into account.

In this example there are only four mice. This number may be smaller than the one 

recommended for using random-effects models. However, as discussed in (Gelman and Hill, 

2006), using a random-effects model in this situation will not provide much gain versus 

simpler analyses, but probably will not do much harm either. An alternative would be to 

include the animal ID variable as a factor with fixed animal effects in the conventional 

linear regression. However, a recent study suggests that clusters should be modeled using 

random effects as long as the software does not incur any computational issue such as 

flags due to convergence (Oberpriller et al., 2021). Note that neither of the two analyses is 

the same as fitting a linear model to the pooled cells together, which erroneously ignores 

the between-animal heterogeneity and fails to account for the data dependency due to 

the within-animal similarity. In a more extreme case, for an experiment using only two 

monkeys for example, naively pooling the neurons from the two animals faces the risk 

of making conclusions mainly from one animal and unrealistic homogeneous assumptions 

across animals, as discussed above. A more appropriate approach is to analyze the animals 

separately and check whether the results from these two animals “replicate” each other. 

Exploratory analysis such as data visualization is highly recommended to identify potential 

issues.

3.3 Example 3.

In this experiment, Ca++ event integrated amplitudes are compared between baseline (saline) 

and 24h after ketamine treatment (Grieco et al., 2020). 1248 cells were sampled from 11 

mice and each cell was measured twice (baseline and after ketamine treatment). As a result, 

correlation arises from both cells and animals, which creates a three-level structure: repeated 

measurements (baseline and after treatment) within cells, and cells within animals. It is clear 

that the ketamine treatment should be included as a fixed effect. The choice of the random 

effects deserves more careful consideration. The hierarchical structure, i.e., two observations 

per cell and multiple cells per animal, suggests that the random effects of the cells should 

be nested within individual mice. We first consider a basic model that includes random 

intercepts at both cell and animal levels:

Y ijk = β0 + xijk × β1 + ui + uij + εijk, i = 1, …, 11; j = 1, …, ni; k = 0, 1; (13)
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where the indices i, j, k stand for the ith mouse, the jth cell, and the kth measurement of 

neuron j from mouse i. Similarly, xijk = 1 if the measurement is taken after treatment and 0 

if it is taken at baseline. By including the cell variable in the random effect, we implicitly 

capture the change from “before” to “after” treatment for each cell. This is similar to how 

paired data are handled in a paired t-test. Moreover, by specifying that the cells are nested 

within individual mice, we essentially model the correlations within both mouse and cell 

levels. As explained in the Supplemental Materials (Part II Example 3), when the cell IDs 

are not unique, specifying nested random effects is necessary; otherwise two cells with the 

same cell ID from two different mice will be considered as sharing a cell-specific effect 

(known as crossed random effects, in comparison to nested random effects), which does 

not make sense. We recommend that users employ unique cell IDs across animals to avoid 

confusion and mistakes in the model specification.

For the treatment effect, LME and LM produce similar estimates; however, the standard 

error of the LM was larger. Thus, the p-value based on LME was smaller (0.0036 for LM 

vs 0.0001 for LME). In this example, since the two measures from each cell are positively 

correlated (Figure 6), the variance of the differences is smaller when treating the data as 

paired than as independent. As a result, the more rigorous practice of using cell effects 

as random effects leads to lower but more accurate p-values. The lesson in this example 

is that the LME can actually yield lower p-values than conventional approaches. This is 

opposite to Example 1 and Example 2 and dispels the potential notion that LME incurs a 

“cost” by always leading to greater p-values. Rigorous statistical analysis is not a hunt for 

the smallest p-value (commonly known as p-hacking or significance chasing); the objective 

of the experimenter should be always to use the most appropriate and thorough analysis 

method.

In this example, the random effects involve more than one level and the LME model 

we fit includes neuron-specific and animal-specific random intercepts. Sometimes, models 

incorporating additional random effects might be appropriate to account for additional 

sources of variability (Barr et al., 2013; Ferron et al., 2002; Heisig and Schaeffer, 2019; 

Kwok et al., 2007; Matuschek et al., 2017). For example, both the overall mean levels and 

the treatment effects may vary across animals and neurons. A mouse may have a higher 

(lower) treatment response than the average population response, e.g., due to unobserved 

individual physiology. The plausibility of including extra random effects can often be 

assessed visually by linearly interpolating the observed response over the values of the 

predictor of interest in each cluster (e.g., all the recorded Ca++ event integrated amplitudes 

pre- and post-treatment within a specific animal); that is, by conducting an LM regression 

within each cluster. Suppose the interpolation suggests that the slopes of the regression differ 

across clusters/animals along with their intercepts. In that case, the LME may incorporate 

both random intercepts and random slopes to capture how each mouse responds differently 

to the treatment. It might also be helpful to allow correlations between the different random-

effect components. In the example considered here, there is a nested structure of clusters: 

cells within animals. Therefore, it is possible to conceive three other models with additional 

random effects: a model that includes random slopes only at the neuron level, a model 

with random slopes only at the animal level, and a model with random slopes for both 

neurons and animals. By conducting likelihood ratio tests to compare these models, we find 
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that including random slopes at the neuron level leads to substantial improvement in the 

likelihood. On the other hand, random slopes at the animal level seem unnecessary. More 

detailed analyses and technical remarks are provided in our accompanying Supplemental 

Materials. It should be noted that the modeling decisions should not be based on tests and 

p-values alone, as the result might be significant even with a very small effect size if the 

sample size is large enough or be insignificant with a moderate or large effect size for 

small sample sizes. Rather, the modeling decision should always be guided by the combined 

information provided by the study design, scientific reasoning, and previous evidence. For 

example, different animals are expected to have different mean levels on outcome variables; 

thus, it is reasonable to model the variation due to animals by considering animal-specific 

random effects. A similar argument is the inclusion of baseline covariates such as age in 

many biomedical studied even when they are not significant. Also, when random slopes are 

included, it is typically recommended to include the corresponding random intercepts. If 

random slopes (for treatment) are included at the animal level, it is sensible to also include 

the animal-specific random intercepts.

3.4 Example 4.

In this example, we will illustrate how to use both frequentist and Bayesian GLMM 

approaches to analyze binary outcomes. The data set analyzed here is simulated based on 

a published study (Wei et al., 2020), in which eight mice were trained in a tactile delayed 

response task to use their whiskers to predict the location (left or right) of a water pole 

and report it with directional licking (lick left or lick right). The behavioral outcome we 

are interested in is whether the animals made the correct predictions. Therefore, we code 

correct left or right licks as 1 and erroneous licks as 0. In total, 512 trials were generated 

in our simulation, which includes 216 correct trials and 296 wrong trials. One question we 

would like to answer is whether a particular neuron is associated with the prediction. For this 

purpose, we analyze the prediction outcome and mean neural activity levels (measured by 

neuronal calcium signal changes, dF/F) from the 512 trials using a GLMM. The importance 

of modeling correlated data by introducing random effects has been shown in the previous 

examples. In this example, we focus on how to interpret results from a GLMM model for the 

mouse behavioral and imaging experiment.

The result from a frequentist approach shows that with the increase of one percent of mean 

calcium intensity (dF/F), the odds that the mice will make a correct prediction will increase 

by 6.4% (95% confidence interval: 2.4%−10.7%) and the corresponding p-value is 0.0016 

based on the large-sample Wald test. The large-sample likelihood ratio test and a parametric 

bootstrap test give similar p-values.

The Bayesian analysis requires the specification of the prior distributions for the model 

parameters. Due to the lack of prior information, we select priors that are relatively non-

informative, i.e., those have large variances around their means. More specifically, we use a 

normal prior with mean 0 and large standard deviation 10 for the fixed-effect coefficients. 

For the variances of the random intercept and the errors, we imposed a half-Cauchy 

distribution with a scale parameter of 5. The results showed that the odds that the mice 

will make a correct prediction increase by 6.2% (95% credible interval: 2.0%−10.6%) with 
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1% increase in dF/F. The Bayes factor of the model with dF/F versus the null model is 5.02, 

i.e., the posterior odds of the model with dF/F to the null model is five times of the prior 

odds, suggesting moderate association of dF/F with prediction (Held and Ott, 2018; Kass 

and Raftery, 1995). These results are comparable to those from the frequentist GLMM in the 

preceding paragraph.

4. Resources

We provide effective and easy-to-follow instructions for the implementation of LME and 

GLMM with access to the R code, with practice data sets to help with such analysis 

and results interpretation in the Supplemental Materials. We choose R because it is a free 

and open source software (CRAN) (R Development Core Team, 2020), widely adopted 

by the data science community. One major advantage of R over other open source or 

commercial software is that R has a rich collection of user-contributed packages (over 

15,000), greatly facilitating a programing environment for developers and the access to 

cutting-edge statistical methods. There are many statistical packages. A selected (but not 

complete) list of packages that provide statistical inference and tools for mixed-effects 

models is summarized in Table 5. Our sample code, explanations and interpretations of 

results from lme4 (Bates et al., 2014), nlme (Pinheiro et al., 2007), icc (Wolak and Wolak, 

2015b), pbkrtest (Halekoh and Højsgaard, 2014), brms (Bürkner, 2017; Bürkner, 2018), 

lmerTest (Kuznetsova et al., 2017), emmeans (Lenth et al., 2019), car (Fox and Weisberg, 

2018), and sjPlot (Lüdecke, 2018) are provided in the Supplemental Materials.

5. Discussion and Conclusions

Our goal is to raise awareness of the widespread issue in correlated data analysis by t-test 

and ANOVA and to introduce effective solutions and provide clear guidance on how to 

analyze data that are clustered or have repeated measurements. We note that the issues raised 

in our article should be considered ideally in the first steps of experimental design, rather 

than as post-hoc applications. Prior knowledge based on direct experience, information from 

published literature, or pilot studies on possible ranges of ICC are useful for optimizing 

statistical power with fixed available resources. For repeated measurements involving a 

single level of clusters, formulas to obtain the optimal number of clusters (such as animals) 

and the number of observations per cluster (such as cells) can be determined (Aarts et al., 

2014). For more complicated scenarios, simulation-based methods seem to be more suitable 

for accurate power analysis and sample size calculations (Green and MacLeod, 2016).

One might be tempted to use summary statistics such as cluster means to remove 

correlations due to animal effects. These approaches are not applicable to all experimental 

designs, such as those involving crossed random effects (Baayen et al., 2008). When 

methods based on summary statistics work, they give correct type I error rates, but they often 

have lower power than LME (Aarts et al., 2014; Galbraith et al., 2010). Compared to LME, 

the paired t-test and repeated ANOVA are far more familiar to most researchers. For simple 

designs such as paired samples or balanced designs, they are still valuable tools; however, 

they can be less efficient in the presence of missing data. For example, repeated ANOVA 

implements list-wise deletion, i.e., the entire list or case will be deleted if one single measure 
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is missing. Since an incomplete case still provides information about the parameters we are 

interested in, deleting the entire case does not make full use of data. As a comparison, by 

using a likelihood approach, LME is still able to capture information provided by incomplete 

cases.

As generalizations of linear models, mixed-effects models (LME and GLMM) also share 

many of the same challenges: model selection and diagnostics, heterogeneous variances, 

and adjustments for multiple comparisons. What if the outcome data are severely skewed? 

How will one jointly analyze multiple features? Statisticians have developed methods to 

address these challenges. For example, resampling methods have been proposed as robust 

alternatives to LME (Halekoh and Højsgaard, 2014; Zeger et al., 1988). To relax the 

Gaussian assumption of random errors, statisticians have proposed semiparametric methods 

where treatment effects remain parametric and the distributions of random effects are 

estimated using nonparametric methods (Datta and Satten, 2005; Dutta and Datta, 2016; 

Rosner et al., 2006; Rosner and Grove, 1999). In addition, it is important to conduct model 

diagnostics on the random effects when conducting LME. Due to the limited space, it is 

overambitious to cover all the practical issues one may encounter in handling dependent 

data, including the issue of multiple testing and the misuse and misinterpretation of p-values. 

We refer the interested reader to specialized research articles (Aickin and Gensler, 1996; 

Altman and Bland, 1995; Benjamin and Berger, 2019; Benjamini and Hochberg, 1995; 

Gelman and Stern, 2006; Goodman, 2008; Holm, 1979; McHugh, 2011; Storey, 2002; 

Wasserstein and Lazar, 2016) or consult with experienced statisticians.

We believe that proper use of linear and generalized mixed-effects models will help 

neuroscience researchers to improve their experimental design and leverage the advantages 

of more recently developed statistical methodologies. The recommended statistical approach 

introduced in this article will lead to data analyses with greater validity, and will 

enable accurate and informative interpretation of results toward higher reproducibility of 

experimental findings in the neurosciences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1:

Glossary

Clustered data: In neuroscience research, the data from a study are often obtained from 

a number of different experimental units (referred to as clusters). The key feature of 

clustered data is that observations from the same cluster tend to be correlated with each 

other.

Dependent versus independent: For dependent samples, the selection of subjects for 

consideration (e.g., neurons, animals) in one sample is affected by the selection of 

subjects in the other samples. For independent samples, the selection of subjects for 

consideration (e.g., neurons, animals) is not affected by the selection of subjects in the 

other sample.

Effect size: An effect size is a numerical quantity for the magnitude of a certain 

relationship such as the difference between population means or the association between 

two quantitative variables.

Fixed versus random effects: Fixed effects often refer to fixed but unknown population 

parameters such as coefficients in the traditional linear model (LM). Random effects 

often refer to effects at the individual or subject level that are included in the model to 

take into account the heterogeneity/variability of individual observations but are usually 

not of direct interest.

Frequentist versus Bayesian approaches in mixed-effects models: In frequentist 

analysis, a fixed effect is a fixed but unknown population parameter, whereas a random 

effect is a value drawn from a distribution to capture individual variability. In Bayesian 

analysis, both fixed and random effects are random variables drawn from distributions 

(priors); the inference is conducted by computing the posterior distribution for the fixed 

effects and the variance-covariance of the random effects. The posterior distribution 

updates the prior information using the observed data.

Hypothesis testing: A hypothesis is a statement about a parameter (or a set of 

parameters) of interest. Statistical hypothesis testing is formalized to make a decision 

between rejecting or not rejecting a null hypothesis, on the basis of a set of experimental 

observations and measurements. Two types of errors can result from any decision rule 

(test): 1) rejecting the null hypothesis when it is true (a Type I error, “false positive”), and 

2) failing to reject the null hypothesis when it is false (a Type II error, “false negative”).

Independently and identically distributed: A set of random variables are independently 

and identically distributed (i.i.d.) if they are mutually independent and each of them 

follows the same distribution.

Linear regression model (or linear model): A linear regression model is an approach 

to model the linear relationship between a response variable and one or more explanatory 

variables.

Linear mixed-effects model (LME) and generalized linear mixed model (GLMM): 
The LME is an extension of the linear regression model to consider both fixed and 
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random effects. It is particularly useful when the data are clustered or have repeated 

measurements. The GLMM is an extension to the generalized linear model, in which the 

linear predictor contains random effects in addition to the fixed effects.

Parameters: Parameters are the characteristic values of an entire population, such as the 

mean and standard deviation of a normal distribution. Samples can be used to estimate 

population parameters.

Parametric versus nonparametric tests: A parametric test assumes that the data follow 

an underlying statistical distribution. A nonparametric test does not impose a specific 

distribution on data. Nonparametric tests are more robust than parametric tests as they are 

valid over a broader range of situations.
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Figure 1. Sources of correlation.
A graphical representation shows potential sources of correlated data. (A) The data are 

correlated because neurons from the same animal tend to be more similar to each other than 

neurons from different animals. (B) The observations are dependent when they are taken 

from the same animal temporally, while the data from different animals are independent. (C) 

Correlation arises from two sources: individual observations are made from neurons from 

three different mice before and after a drug treatment.
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Figure 2. Avoiding false positives that arise from correlated measurements taken from the same 
animals.
Normalized pCREB staining intensity values from 1200 neurons (Example 1). The values in 

each cluster were from one animal. In total, pCREB values were measured for 1200 neurons 

from 24 mice at five conditions: saline (7 mice, ICC=0.61), 24h (6 mice, ICC=0.33), 48h 

(3 mice, ICC=0.02), 72h (3 mice, ICC=0.63), 1wk (5 mice, ICC=0.54) after treatment. 

According to ICC, observations at 48h and 72h show the smallest and largest intra-class 

correlations, respectively.
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Figure 3. 
Histograms of p-values using simulated data that assume (1) no treatment effects and (2) the 

same sample sizes and correlation structure with Example 1. (A) Histogram of the p-values 

from the inappropriate method (LM) shows that ignoring the correlation structure of the data 

lead to surprisingly high type I error rate (90%) at significance level α=0.05. (B) Histogram 

of the p-values from LME.
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Figure 4. A decision chart for setting up mixed-effects model analysis.
This basic decision chart shows in a step-wise fashion how to identify the ME application 

scenarios and random effects.
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Figure 5. Weighting effects from single animals.
When data from different animals are naively pooled, the result can be dominated by the 

data from a single animal (Example 2). To illustrate this point, we present the boxplots 

of Ca++ event frequencies measured at four time points using two different ways: (A) 

Boxplot of Ca++ event frequencies using the pooled neurons from four mice. ANOVA 

or t-test showed that Ca++ activity was significantly reduced at 48h relative to 24h with 

p=4.8×10−6, and significantly increased Ca++ activity at 1wk compared to 24h with 

p=2.4×10-3. However, when looking at (B) boxplots of Ca++ event frequencies stratified by 

individual mice, these changes occur only in mouse 2. This is because Mouse 2 contributed 

43% cells, which likely explains why the pooled data are more similar to Mouse 2 than 

to other mice. Note that the comparisons are not significant if we account for repeated 

measures due to cells clustered in mice using LME, thus avoiding an erroneous conclusion.
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Figure 6. LME does not always lead to larger p-values than methods that ignore data 
dependencies.
(A) the scatter plot of Ca++ event integrated amplitude at baseline vs 24h after treatment 

for the neurons from four example mice (labeled as 1, 2, 3 and 4) indicates that the baseline 

and after-treatment measures are positively correlated. (B) boxplot of the baseline and 

after-treatment correlations of all the 11 mice. Due to the positive correlations shown in the 

data, the variance of differences is smaller when treating the data as paired than independent. 

As a result, LME produced a smaller p-value than t-test.

Yu et al. Page 30

Neuron. Author manuscript; available in PMC 2023 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 31

Table 1.

ICC, design effect, and effective sample size for the five groups in Example 1. ICC and the design effect were 

the lowest at 48h, when the data were relatively homogeneous across animals. At baseline and 72h, the data 

are noticeably heterogeneous across animals, leading to high ICC.

Saline (7 mice) 24h (6 mice) 48h (3 mice) 72h (3 mice) 1wk (5 mice)

# of cells 357 209 139 150 245

ICC 0.61 0.33 0.02 0.63 0.54

Design effect 32.0 17.7 1.8 31.8 26.8

Effective sample size 11.1 17.5 76.9 4.7 9.1
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Table 2.

P-values for comparing pCREB immunoreactivity at each time point (24, 48, 72 hours, and 1 week) after 

ketamine treatment to the baseline (saline). The “Overall” column corresponds to the null hypothesis of no 

difference among the five groups (Example 1). The LME p-values are based upon the lme function in the 

nlme package, in which the denominator degrees of freedom are determined by the animal grouping level 

(Pinheiro and Bates, 2006). The methods for obtaining more accurate p-values with adjustments for multiple 

comparisons can be found in the Supplemental Materials.

Overall 24h 48h 72h 1wk

Linear Model (ANOVA) 1.2×10−78 6.0×10−38 6.8×10−26 0.0291 1.1×10−08

LME 0.0029 0.0049 0.0164 0.5601 0.2525
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Table 3.

The results (estimates ± s.e., and p-values) for the Ca++ event frequency data using LM and LME (Example 2).

48h 72h 1wk

LM (est) −0.078±0.017 0.009±0.017 0.050±0.016

LM (p) 4.8×10−6 0.595 2.4×10−3

LME (est) −0.011±0.014 0.020±0.014 0.025±0.014

LME (p) 0.424 0.150 0.069
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Table 4.

The number of neurons by mouse and time in Example 2. In total, Ca++ event frequencies at 1,718 neurons 

were measured. When splitting the number by mouse, Mouse 2 has the largest number of measured neurons 

(43%). Thus, when pooling the cells naïvely, the overall results would be dominated by the results observed in 

Mouse 2.

24h 48h 72h 1wk Total

Mouse 1 81 254 88 43 466 (27%)

Mouse 2 206 101 210 222 739 (43%)

Mouse 3 33 18 51 207 309 (18%)

Mouse 4 63 52 58 37 210 (12%)

Total 383 425 407 509 1,724 (100%)
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Table 5.

Selected R packages and functions for mixed-effects modeling and statistical inference.

Package name Functions related to mixed-effect modeling

nlme lme: fit a linear mixed-effects model

lme4 lmer: fit a linear mixed-effects model
glmm: fit a generalized linear mixed-effects model

brms It can conduct Bayesian mixed-effects modeling.

lmerTest It can perform hypothesis testing on fixed and random effects based on models from lme4::lmer.

emmeans It can provide adjusted p-values for pairwise and treatments versus control comparisons.

pbkrtest It can perform the F test (Kenward-Roger and Satterthwaite-type), and parametric bootstrap test.

car car::Anova provides large-ample Wald test or F test with Kenward-Roger denominator degrees of freedom.

sjPlot It can provide visualization and create manuscript-style tables.
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