
Understanding and Improving Graph Algorithm Performance

by

Scott Beamer III

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Krste Asanović, Chair
Professor David Patterson
Professor James Demmel
Professor Dorit Hochbaum

Fall 2016

Understanding and Improving Graph Algorithm Performance

Copyright 2016
by

Scott Beamer III

1

Abstract

Understanding and Improving Graph Algorithm Performance

by

Scott Beamer III

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

Graph processing is experiencing a surge of renewed interest as applications in social networks
and their analysis have grown in importance. Additionally, graph algorithms have found new
applications in speech recognition and the sciences. In order to deliver the full potential of
these emerging applications, graph processing must become substantially more e�cient, as
graph processing’s communication-intensive nature often results in low arithmetic intensity
that underutilizes available hardware platforms.

To improve graph algorithm performance, this dissertation characterizes graph process-
ing workloads on shared memory multiprocessors in order to understand graph algorithm
performance. By querying performance counters to measure utilizations on real hardware,
we find that contrary to prevailing wisdom, caches provide great benefit for graph process-
ing and the systems are rarely memory bandwidth bound. Leveraging the insights of our
workload characterization, we introduce the Graph Algorithm Iron Law (GAIL), a simple
performance model that allows for reasoning about tradeo↵s across layers by considering al-
gorithmic e�ciency, cache locality, and memory bandwidth utilization. We also provide the
Graph Algorithm Platform (GAP) Benchmark Suite to help the community improve graph
processing evaluations through standardization.

In addition to understanding graph algorithm performance, we make contributions to im-
prove graph algorithm performance. We present our direction-optimizing breadth-first search
algorithm that is advantageous for low-diameter graphs, which are becoming increasingly rel-
evant as social network analysis becomes more prevalent. Finally, we introduce propagation
blocking, a technique to reduce memory communication on cache-based systems by blocking
graph computations in order to improve spatial locality.

i

To my family

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Focus on Shared Memory Multiprocessor Systems 2
1.2 Thesis Overview . 3

2 Background on Graph Algorithms 5
2.1 The Graph Abstraction . 5
2.2 Topological Properties of Graphs . 6
2.3 Graphs in this Work . 7
2.4 Graph Algorithms in this Work . 8
2.5 Other Types of Graph Algorithms . 11

3 Direction-Optimizing Breadth-First Search 13
3.1 Introduction . 13
3.2 Conventional Top-Down BFS . 14
3.3 Bottom-Up BFS . 17
3.4 Direction-Optimizing BFS Algorithm . 18
3.5 Evaluation . 20
3.6 Discussion . 31
3.7 Related Work . 33
3.8 Conclusion . 35

4 GAP Benchmark Suite 37
4.1 Introduction . 37
4.2 Related Work . 38
4.3 Benchmark Specification . 39
4.4 Reference Implementation . 45
4.5 Conclusion . 48

iii

5 Graph Workload Characterization 49
5.1 Introduction . 49
5.2 Methodology . 50
5.3 Memory Bandwidth Potential . 52
5.4 Single-Core Analysis . 57
5.5 Parallel Performance . 62
5.6 NUMA Penalty . 64
5.7 Limited Room for SMT . 65
5.8 Related Work . 68
5.9 Conclusion . 71

6 GAIL: Graph Algorithm Iron Law 73
6.1 Introduction . 73
6.2 Graph Algorithm Iron Law . 75
6.3 Case Studies Using GAIL . 77
6.4 Using GAIL to Guide Development . 85
6.5 Frequently Asked Questions . 86
6.6 Conclusion . 87

7 Propagation Blocking 89
7.1 Introduction . 89
7.2 Background on PageRank . 90
7.3 Locality Challenges for PageRank . 92
7.4 Propagation Blocking . 94
7.5 Communication Model . 96
7.6 Evaluation . 99
7.7 Implementation Considerations . 107
7.8 Related Work . 109
7.9 Conclusion . 110

8 Conclusion 112
8.1 Summary of Contributions . 112
8.2 Future Work . 113

Bibliography 116

A Most Commonly Evaluated Graph Kernels 131

B GBSP: Graph Bulk Synchronous Parallel 134

iv

List of Figures

1.1 Performance per core versus core count for June 2015 Graph 500 rankings [66].
Performance measures traversed edges per second (TEPS) executing breadth-first
search. 2

3.1 Conventional BFS algorithm . 15
3.2 Single step of top-down approach. Vertex v unvisited if parents[v] = �1. 15
3.3 Classification of neighbors of frontier in terms of absolute totals (left) or normal-

ized per depth (right) for a BFS traversal on kron graph (synthetically-generated
social network of 128M vertices and 2B undirected edges). A single undirected
edge can result in two neighbors of the frontier if both endpoints are in the frontier. 16

3.4 Categorization of the neighbors of the highlighted vertex for an example BFS
traversal. The vertices are labelled with their depths from the BFS, and the
arrows point from child to parent from the BFS. 16

3.5 Single step of bottom-up approach . 18
3.6 Example search on kron graph (synthetically-generated social network of 128M

vertices and 2B undirected edges) on IVB platform from same source vertex as
Figure 3.3. The left subplot is the time per depth if done top-down or bottom-up
and the right subplot is the size of the frontier per depth in terms of either vertices
or edges. The time for the top-down approach closely tracks the number of edges
in the frontier, and depths 2 and 3 constitute the majority of the runtime since
they constitute the majority of the edges. 19

3.7 Finite-state machine to control the direction-optimizing algorithm. When tran-
sitioning between approaches, the frontier must be converted from a queue (top-
down) to a bitmap (bottom-up) or vice versa. The growing condition indicates
the number of active vertices in the frontier (n

f

) increased relative to the last
depth. 20

3.8 Speedups on IVB relative to top-down-bitmap. 23
3.9 Performance of hybrid-heuristic on each graph relative to its best performance on

that graph for the range of ↵ examined. We select ↵ = 15. 25
3.10 Performance of hybrid-heuristic on each graph relative to its best performance on

that graph for the range of � examined. We select � = 18. 25

v

3.11 Comparison of edges examined by top-down and bottom-up on example graph
when frontier is at depth 1. Vertices labelled with their final depth. 26

3.12 Types of edge examinations for top-down versus direction-optimizing for a single
search on flickr graph. The direction-optimizing approach switches to the bottom-
up direction at depth 5 and back to the top-down direction at depth 9. Due to
extremely small frontier sizes, depths 0–4 and 9–17 are di�cult to distinguish,
however, for these depths the direction-optimizing approach traverses in the top-
down direction so the edge examinations are equivalent to the top-down baseline. 27

3.13 Categorization of edge examinations by hybrid-heuristic 28
3.14 Categorization of execution time by hybrid-heuristic 29
3.15 Speedups on IVB versus reductions in edges examined for hybrid-heuristic relative

to top-down-bitmap baseline. 30

5.1 Parallel pointer-chase microbenchmark for k-way MLP 53
5.2 Memory bandwidth achieved by parallel pointer chase microbenchmark (random)

in units of memory requests per second (left axis) or equivalent e↵ective MLP
(right axis) versus the number of parallel chases (application MLP). Single core
using 1 or 2 threads and di↵ering memory allocation locations (local, remote, and
interleave). 54

5.3 Memory bandwidth achieved by parallel pointer chase microbenchmark with vary-
ing number of nops inserted (varies IPM). Using a single thread with di↵ering
numbers of parallel chases (application MLP). 55

5.4 Impact of 2MB and 1GB page sizes on memory bandwidth achieved by single-
thread parallel pointer chase for array sizes of small (1GB) and large (16GB). . 56

5.5 Random bandwidth of a socket or the whole system with di↵erent memory allo-
cations. 57

5.6 Single-thread performance in terms of instructions per cycle (IPC) of full workload
colored by: codebase (top), kernel (middle), and input graph (bottom). 58

5.7 Single-thread performance of full workload relative to branch misprediction rate
colored by memory bandwidth utilization. 59

5.8 Single-thread achieved memory bandwidth of full workload relative to instructions
per miss (IPM). Note: Some points from road & web not visible due to IPM>1000
but model continues to serve as an upper bound. 60

5.9 Histogram of MPKI (in terms of LLC misses) of full workload specified in Sec-
tion 5.2 executing on a single thread. Most executions have great locality (low
MPKI), especially those processing the web or road input graphs. 60

5.10 Single-thread achieved memory bandwidth of GAPBS for all kernels and graphs
varying the operating system page size. 2MB Pages - THP uses Transparent
Hugepages (THP) and lets the operating system choose to promote 4KB to 2MB
pages (happens frequently). 1GB Pages - best is the fastest execution using
manually allocated 1GB pages for the output array, the graph, or both. 61

vi

5.11 Improvements in runtime and memory bandwidth utilization of full workload for
full system (32 threads on 16 cores) relative to single thread performance. 63

5.12 Full system (32 threads on 16 cores) performance of full workload. Vertical lines
are maximum achieved bandwidths (Section 5.3) for a single socket (socket), both
sockets with interleaved memory (interleave), and both sockets with local memory
(system). 63

5.13 Single-thread achieved memory bandwidth of full workload executing out of re-
mote memory. Calculating e↵ective MLP with remote memory latency (instead of
local memory latency) returns a result similar to local memory results (Figure 5.8). 64

5.14 Full workload slowdowns for single-socket (8 cores) executing out of remote mem-
ory or interleaved memory relative to executing out of local memory. 65

5.15 Distribution of speedups of using two threads per core relative to one thread
per core of full workload for one core, one socket (8 cores), and whole system (2
sockets). Dotted line is median. 66

5.16 Improvements in runtime and memory bandwidth utilization of full workload for
one core using two threads relative to one thread. 67

5.17 Achieved memory bandwidth of full workload relative to instructions per miss
(IPM) with one or two threads on one core. 67

6.1 Impact of calculating TEPS based on input edges or actual edges traversed when
scaling the degree of a 8 million vertex synthetically-generated Kronecker graph.
Uses GAP direction-optimizing BFS implementation executing on IVB. 74

6.2 GAIL metrics for delta-stepping implementation while varying�-parameter travers-
ing the road graph using 8-cores on the IVB platform. From the GAIL metrics,
we see the U-shape in execution time is caused by the L-shape of the number of
memory requests per traversed edge and the backwards L-shape for the number
of traversed edges. 80

6.3 GAIL metrics for strong scaling (varying number of cores utilized) on IVB for
direction-optimizing BFS implementation traversing the kron graph (left) and
the road graph (right). Since the implementation is deterministic, the traversed
edges GAIL metric is constant for each graph (not shown). 82

6.4 GAIL metrics (memory requests per traversed edge versus inverse memory band-
width) for GAP Benchmark kernels executing on IVB and T4 to process the kron
and urand graphs. Contours show GTEPS for edges actually traversed. 83

6.5 Speedup of IVB over T4 versus IVB’s improvement over T4 in GAIL metrics
(memory requests per traversed edge versus inverse memory bandwidth) for GAP
benchmark kernels processing the kron and urand graphs. 85

7.1 PageRank communication for pull direction (left) and push direction (right). In
the pull direction, the active vertex (shaded) reads the contributions of its incom-
ing neighbors and adds them to its own sum. In the push direction, the active
vertex adds its contribution to the sums of its outgoing neighbors. 91

vii

7.2 PageRank implemented in both directions . 92
7.3 Accesses needed to process one vertex and its neighbors for PageRank, with or

without 1D cache blocking for both pull (row-major) and push (column-major)
directions. All approaches enjoy high locality when accessing the adjacency ma-
trix (edge tra�c). The vertex value arrays (contributions or sums) are much
larger than the cache size, and thus accessing a sparse range within them could
have low locality. Without blocking (left), one vertex value access obtains high
locality at the expense of the other. Pull has high temporal locality on the sums,
but low locality reading the contributions. Push has high locality reading the
contributions, but low locality for the sums. Cache blocking (right) reduces the
range of vertex values to the current block in order to improve locality. 93

7.4 Propagation blocking. In the binning phase, vertices pair their contributions
with their destination indices and insert them into the appropriate bins. In the
accumulate phase, the contributions are reduced into the correct sums. 95

7.5 PageRank by propagation blocking . 96
7.6 Fraction of read memory tra�c to read graph from CSR 102
7.7 Execution time improvement over baseline . 104
7.8 Communication reduction over baseline . 104
7.9 GAIL metrics across benchmark suite. Traversed edge totals not shown since

equal for all implementations. Contours represent millions of traversed edges per
second (MTEPS), so processing rates increase toward the origin. 105

7.10 Communication e�ciency for varying number of vertices of a degree=16 uniform
random graph . 106

7.11 Communication e�ciency for varying degree of a 128M vertex uniform random
graph . 106

7.12 Bin width impact on total memory communication for DPB by graph 108
7.13 Bin width impact on execution time for DPB by graph 108

B.1 Single-threaded performance comparison . 137
B.2 GBSP parallel strong-scaling speedup relative to single-threaded performance . . 137

viii

List of Tables

2.1 Graphs used for evaluation. All of the graphs come from real-world data except
kron and urand. In subsequent chapters, we list the subsets of these graphs we use. 8

2.2 Number of graph framework evaluations using each graph algorithm, categorized
by hardware platform. Only 12 most commonly evaluated algorithms are shown.
See Appendix A for more information on survey of graph processing frameworks. 9

3.1 Low-diameter graphs used for evaluation. All of the graphs come from real-world
data except kron and urand. 21

3.2 IVB system specifications . 21

4.1 Trial counts and output formats for benchmark kernels 44

5.1 Graphs used for characterization . 50
5.2 Specifications for IVB system used for characterization 51
5.3 Improvement for specialized platform over baseline platform for random and

graph algorithm benchmarks. Random benchmarks (e.g. GUPS) are poor pre-
dictors of graph algorithm performance and often underestimate graph algorithm
performance of baseline platform. 70

6.1 Graphs used for case studies . 77
6.2 IVB and T4 systems used for case studies . 78
6.3 GAIL metrics for BFS implementations traversing kron using IVB 78
6.4 Speedups executing GAP benchmark kernels of IVB relative to T4 84

7.1 Graphs used for evaluation. All of the graphs come from real-world data except
kron and urand. The kron, urand, and twitter graphs are also in our GAP
Benchmark Suite. 100

7.2 IVB system specifications . 100
7.3 PageRank iteration on 128M vertex 2B undirected edge uniform random graph . 101
7.4 Detailed performance results for baseline and DPB 102

A.1 Graph kernels used in framework evaluations . 132

B.1 Workload (graph kernels with their input graphs) for evaluation 136

ix

Acknowledgments

Many people enriched the amazing learning experience I had during my years at UC Berkeley.
First, I would like to thank my co-advisors Krste Asanović and David Patterson. They

have been a great advising team, and together, they provided me with wonderful opportu-
nities and invaluable lessons. Krste gave me tremendous freedom and encouraged me to go
out and measure and build things. Dave repeatedly taught me not only the lesson of keeping
things simple, but also the importance of being able to simply explain an idea. Di�culty ex-
plaining an idea simply is an indication that more e↵ort may be required by the explainer to
distill the key insight. I would also like to acknowledge the gracious assistance from the rest
of my dissertation committee members, James Demmel and Dorit Hochbaum. Jim provided
useful information on sparse linear algebra, and Dorit provided helpful critiques.

I’m especially indebted to the great colleagues I had the pleasure of working with through-
out my studies. Sarah Bird and Henry Cook were the other computer architecture students
in my incoming cohort, and I could not have asked for better company during the long jour-
ney. The other Cosmic Cube co-inhabitants Andrew Waterman and Chris Celio provided
camaraderie, thoughtful advice, and essential feedback on early ideas. The architecture
group has a contagious energy, and I want to acknowledge the other barchitects: Rimas
Avižienis, Yunsup Lee, Eric Love, Martin Maas, Adam Izraelevitz, Colin Schmidt, Palmer,
Dabbelt, Sagar Karandikar, Donggyu Kim, Jack Koenig, David Biancolin, Albert Magyar,
Brian Zimmer, and Ben Keller. The senior students Zhangxi Tan and Heidi Pan set great
examples and o↵ered useful advice.

The ParLab introduced me to superb colleagues. Chris Batten was a fantastic mentor
and collaborator during the beginning of my graduate studies. Andrew Gearhart provided
crucial expertise on the inner workings of Intel performance counters. Shoaib Kamil was
a terrific collaborator on the SEJITS e↵ort. Sam Williams provided a deep understanding
of multicore performance optimizations. My interactions with Leo Meyerovich led to my
dissertation topic. I originally wanted to build a web browser hardware accelerator, but
the tree traversals within Leo’s parallel page layout code motivated me to consider graph
algorithms.

I am grateful to have been a member of both the ParLab and the ASPIRE Lab and
for the financial support their sponsors provided. The labs have a sensational support sta↵
that eased or even enabled much of my research. Kostadin Ilov and Jon Kuroda’s technical
support was indispensable, and they gracefully handled odd requests and pre-production
hardware with ease. Tami Chouteau and Roxana Infante skillfully kept the labs and all
other matters running smoothly. I am also appreciative of the advice and collaborations
provided by other faculty within the labs from Armando Fox, Jonathan Bachrach, and
Vladimir Stojanović.

I am thankful for the patience and willingness to help from the members of the graph
research community. Aydın Buluç has been a great collaborator and resource for learning
more about graph algorithms and their application. Kamesh Madduri taught me much about

x

graph processing, especially when I was just getting started. Jason Riedy continually teaches
me new things about graphs and provided access to the mirasol platform.

I want to recognize those that helped guide me throughout my time at Berkeley, including
the time before I even attended graduate school. Dan Garcia infected me with not only an
excitement for teaching, but also an excitement for computer architecture, which became
the focus of my graduate studies. Sheila Humphreys has always been a wonderful resource
and a great supporter.

I am also grateful for support from the community outside of the university. Friends and
ultimate frisbee teammates helped make everything more worthwhile. I want to thank Zeph
Landau for being a great teammate, coach, friend, and mentor. My family has always placed
a high value on education, and they provided me with continual encouragement, especially
when it was most needed. Kim Long provided both resiliency and inspiration, and getting
to know her has been the best part of the last three years.

1

Chapter 1

Introduction

Graphs represent connections, and graphs can be used to represent many types of connections
in the real world, whether it be friendships between humans or road segments between
street intersections. The strength of the graph abstraction is that it allows the same graph
algorithms to be reused to process a diverse range of graphs, thus enabling a diverse range of
applications. Although the graph abstraction has been used for centuries, there is a renewed
interest in graph processing driven in large part by emerging applications in social network
analysis [91, 110, 170], science [132], and speech and image recognition [96, 174]. To better
support these increasingly relevant graph processing applications, research is ongoing at all
levels, including applications, algorithms, implementations, frameworks, and even hardware
platforms.

Unfortunately, graph algorithms are notoriously di�cult to execute e�ciently on current
processors [98], and so there has been considerable recent e↵ort to improve the performance
of processing large graphs. The connection-centric nature of graph processing results in
a communication-centric workload that often has low arithmetic intensity. On a shared
memory multiprocessor, graph processing can often simultaneously underutilize both the
compute throughput and the memory bandwidth. Such low utilization provides a tremendous
opportunity, as it increases the potential speedup possible with a better-utilized similarly-
sized hardware platform.

In this dissertation, we strive to understand graph algorithm performance in order to
improve performance. To understand graph algorithm performance, we characterize graph
processing workloads on real hardware. By understanding how graph algorithm software
implementations interact with hardware platforms, we can improve e�ciency. Changes to
an algorithm can not only impact the amount of algorithmic work, but also change which
hardware bottlenecks constrict performance. To help others improve graph algorithm perfor-
mance via a better understanding of performance, we leverage our workload characterization
to contribute a benchmark suite and a simple performance model to reason across abstrac-
tion layers. To improve performance, we also provide a novel breadth-first search algorithm
that is advantageous for low-diameter graphs and an implementation technique to reduce
memory communication on cache-based systems.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Performance per core versus core count for June 2015 Graph 500 rankings [66].
Performance measures traversed edges per second (TEPS) executing breadth-first search.

1.1 Focus on Shared Memory Multiprocessor Systems

We focus on single-node shared memory systems for this work. Graph processing research is
ongoing for a variety of hardware platforms, such as clusters, semi-external memory systems,
and even GPU-based systems, but many of these platforms are built from multiprocessor sys-
tems. Analyzing and improving multiprocessor systems first should immediately benefit the
other platforms that are built from multiprocessors. Furthermore, we argue multiprocessor
systems are well suited for many graph processing applications.

A large cluster is the typical tool for large computational problems, but graph processing
frequently exacerbates the communication bottlenecks of large clusters. Since the interpro-
cessor network of a distributed memory cluster is substantially slower than that of a shared
memory multiprocessor system, clusters obtain substantially less performance per core for
graph processing. For example, on Graph 500 [66], a world ranking of the fastest super-
computers for graph algorithms, the performance per core of distributed memory systems is
often one to two orders-of-magnitude lower than that of shared memory systems (Figure 1.1).
The high core count shared memory systems are implemented with interconnects similar to
cluster interconnects, and their performance is similarly bottlenecked. This communication-
bound behavior has led to surprising results, where a single Mac Mini operating on a large
graph stored in an SSD is able to outperform a medium-sized cluster [92].

CHAPTER 1. INTRODUCTION 3

Due to the ine�ciency of distributed graph processing, the primary reason to use a
cluster for graph processing is if the data is too large to fit on a single node [105]. However,
many interesting graph problems are not large enough to justify a cluster. For example, the
entire Facebook friend graph can be held in only a few terabytes of uncompressed data [8],
which can reside in a current high-end server’s memory. Additionally, semi-external memory
approaches that expand a server’s capacity by using storage (flash or hard drives), are a much
more economical means to handle larger problems. Multiprocessor systems have additional
benefits, as they are easier to program than the other platforms, and their flexibility allows
them to implement the most sophisticated optimized algorithms. For graph processing,
multiprocessor systems are surprisingly capable systems that deliver robust performance.

1.2 Thesis Overview

In Chapter 2, we provide context for this work. We review our graph terminology to famil-
iarize the reader with our notation. We also introduce the graphs we use and highlight their
relevant topological properties. Finally, we survey graph processing research to identify the
most commonly evaluated graph kernels that will constitute our workload for analysis.

Breadth-first search is a commonly used graph traversal within other algorithms, and in
Chapter 3, we introduce our novel direction-optimizing breadth-first search algorithm. Our
algorithm has been widely adopted, both by graph processing frameworks and within the
Graph 500 competition. On low diameter graphs, our algorithm is able to avoid traversing
a large fraction of the graph while still producing the correct result. In practice on real
hardware, the speedup obtained by our algorithm is substantially less than the reduction in
edges examined, which implies that the implementation of our algorithm is less e�cient per
traversed edge than our conventional baseline. This loss of e�ciency motivates the rest of
this work, as an algorithmic improvement resulted in substantial e�ciency degradation on
current hardware.

To characterize graph algorithms as a workload, we first need a workload to analyze. In
Chapter 4, we introduce our GAP Benchmark Suite. We created the benchmark not only
to create a workload for our own analysis, but also to help ameliorate the evaluation pitfalls
we observe in graph processing research. With our benchmark suite, we hope to guide the
community away from common evaluation mistakes such as using too few kernels, using too
few input graphs, using input graphs that are too small, using only synthetically generated
graphs, or inconsistent methodologies. In addition to a specification of our benchmark, we
also provide a high-quality reference implementation for use as a baseline for evaluations.

In Chapter 5, we characterize the workload specified by our benchmark on real hardware.
To identify hardware bottlenecks, we access our platform’s performance counters to measure
utilizations throughout the system. We use a simple model and synthetic microbenchmarks
to establish how much memory bandwidth is available on our evaluation platform under
various conditions. With this insight into the platform’s available memory bandwidth, we
observe that contrary to conventional wisdom, graph algorithms are typically not memory

CHAPTER 1. INTRODUCTION 4

bandwidth-bound. We find this low bandwidth utilization is due in large part to the cache
hierarchy delivering a substantial number of cache hits.

To ease reasoning about graph algorithm performance, in Chapter 6 we introduce the
Graph Algorithm Iron Law (GAIL). GAIL is a simple performance model that attributes
performance di↵erences to changes in algorithmic work, cache utility, or memory band-
width utilization. Using GAIL, we perform a variety of case studies including analyzing our
direction-optimizing breadth-first search algorithm. We determine our breadth-first search
algorithm is less e�cient per edge because it has worse cache locality and lower memory
bandwidth utilization. In the chapter, we also argue how GAIL could be useful to a vari-
ety of graph researchers, as it can help weigh tradeo↵s between algorithms, implementation
decisions, and hardware platforms.

To reduce memory communication for graph algorithms, in Chapter 7 we introduce propa-
gation blocking. Our technique is motivated by the observation that communication behavior
for graph algorithms is di↵erent when accessing values associated with vertices versus ac-
cessing graph edges. Our propagation-blocking technique is designed to improve poor spatial
locality when accessing vertex values. Despite performing more theoretical communication,
our propagation-blocking technique achieves reductions in memory communication on real
hardware.

In Chapter 8 we not only conclude this work by summarizing its contributions, but also
suggest potential future work based on the results of this dissertation.

5

Chapter 2

Background on Graph Algorithms

In this chapter, we provide a background on graph processing in order to provide context for
the rest of this work. We review the terminology and notation we use to describe graphs.
We also introduce the input graphs we use for evaluations, and we highlight their relevant
topological properties. Finally, we describe the graph kernels we use and our justification
for selecting them based on their popularity in prior work.

2.1 The Graph Abstraction

The graph abstraction is a way to model the connections between objects and the nature of
these connections can have many properties. More formally, a graph G(V,E) is composed of
a set of vertices V and a set of edges E. An edge (u, v) connects the two vertices u and v. A
directed edge (u, v) represents a connection from u to v, while an undirected edge represents
a bidirectional connection. If a graph is composed exclusively of undirected edges, it is an
undirected graph, otherwise, it is a directed graph. The degree of a vertex is the number
of edges connected to it. The degree of a graph is the average degree of all of its vertices
(|E|/|V |). To capture the diversity of vertex degrees within a graph, the degree distribution
is the distribution of degrees over the vertices within a graph.

The distance d(u, v) between vertex u and vertex v is the fewest number of hops between
u to v. The depth of a vertex is the distance between a vertex and a starting source vertex
of a traversal. The diameter of a graph is the largest distance between any two vertices in
the graph. More informally, diameter often refers to the largest distance that is typical when
ignoring outliers. In this work, we use the 99th-percentile distance to define our e↵ective
diameter.

Most graph algorithms operate on more than connectivity information and they associate
metadata with vertices and edges. For example, many traversal algorithms associate a
boolean value with each vertex indicating if it has been visited. A weighted edge (u, v, w)
associates a numerical cost w with traversing the edge and a weighted graph is composed of
weighted edges. The distance d(u, v) between vertex u and vertex v in a weighted graph is

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 6

the sum of the edge weights of the minimum total weight path between u and v.
We use some notation to enable concise expressions in this work. We use n and m to

refer to the number of vertices (|V |) and the number of edges (|E|) respectively. We use
k = m/n to represent a graph’s average degree. The set of vertices directly reachable from
vertex v (outgoing neighborhood) is N+(v) and the set of vertices with edges pointing to
vertex v (incoming neighborhood) is N�(v). If the graph is undirected, both neighborhoods
are the same N+(v) = N�(v).

2.2 Topological Properties of Graphs

Graph applications are characterized not only by the algorithms used, but also by the struc-
ture of the graphs that make up their workload. In this work, we divide commonly used
graphs into two broad categories named for their most emblematic members: meshes and
social networks [16]. Meshes tend to be derived from physically spatial sources, such as road
maps or the finite-element mesh of a simulated car body, so they can be relatively readily
partitioned along the few original spatial dimensions. Due to their physical origin, they
usually have a high diameter and a degree distribution that is both bounded and low.

Conversely, social networks come from non-spatial sources, and consequently are di�cult
to partition using any reasonable number of dimensions. Additionally, social networks have a
low diameter (“small-world”) and a power-law degree distribution (“scale-free”). In a small-
world graph, most vertices are not neighbors of one another, but most vertices can be reached
from every other by a small number of hops [160]. More quantitatively, a small-world graph
can be recognized by a low diameter. A scale-free graph has a degree distribution that follows
a power law, at least asymptotically [14]. The fraction of vertices in a scale-free graph having
k connections to other vertices is P (k) ⇠ k��, where � is a parameter typically in the range
2 < � < 3. These two properties can be readily recognized in real life social networks, as
typically only a few people have many friendships (scale-free), and a surprisingly low number
of friendships connects any two people (small-world) [109].

Meshes are perhaps the most common mental model for graphs, since they are typically
used in textbook figures. Unfortunately, they do not capture the challenges posed by the
small-world and scale-free properties of social network topologies. The small-world property
makes them di�cult to partition (few cut edges relative to enclosed edges), while the scale-
free property makes it di�cult to load balance a parallel execution since there can be many
orders of magnitude di↵erence between the work for di↵erent vertices. Although the highest
degree vertices are rare, their incident edges constitute a large fraction of the graph.

A graph’s sparsity is determined by its average degree. If vertices are connected to nearly
every other vertex, it is a dense graph. If vertices are connected to only a few other vertices,
it is a sparse graph. There is no specific degree cuto↵ between sparse graphs and dense
graphs, but for a graph of n vertices, a dense graph has O(n2) edges (the maximum) while a
sparse graph has O(n) edges. This work restricts itself to sparse graphs since they are used

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 7

in more emerging graph processing applications and because processing sparse graphs incurs
greater communication ine�ciencies.

2.3 Graphs in this Work

In this work, we use the diverse set of graphs listed in Table 2.1 to guide our investigations.
In Chapter 5, we demonstrate that it is important to have a diverse set of graphs, as a
graph’s topology greatly impacts the workload’s characteristics. To keep our work relevant,
most of our graphs are generated from real-world datasets. We primarily focus on social
network topologies, as they are more challenging than meshes and they are at the epicenter
of the renewed interest in graph processing.

The real-world data we use to generate our graphs comes from a variety of sources.
Real-world social network data is often di�cult to obtain due to anonymity concerns, so we
are grateful for the publicly available real-world data we are able to use. The graphs face-
book, flickr, friendster, livejournal, orkut, and twitter all represent the links between users
on their respective online communities. In addition to considering social relationships, we
also consider professional relationships with the hollywood graph that represents film actors
and links them if they have performed together. Using the data on academic publications
provided by the Microsoft Academic Graph [149], we generate a graph of all paper citations
and a graph of all coauthorships. We also include two graphs (web and webbase) generated
from web crawls that represent hyperlinks between websites. All of the real-world graphs in
this study except the road graph have the social network topology, as they have low e↵ective
diameters and a power-law degree distribution. To contrast with the social networks, we
include the road graph as an example of a mesh topology with its high diameter, low average
degree, and low maximum degree.

Even though our graph suite includes some of the largest publicly available real-world
graphs, they do not fully use the memory capacity of our evaluation system. As is done
in the Graph 500 benchmark, we synthetically generate arbitrarily large graphs to fill our
memory capacity. We generate the kron graph from the Kronecker generator [94] and we
generate the urand graph from a uniform random graph generator [58]. We use the kron
graph to model a social network and we select the generator parameters to match those of
Graph 500 [66]. The urand graph has no locality by design, however, it is also the most
unrealistic and serves to discover lower bounds of performance. The urand graph generates
the desired number of edges by giving each generated edge an equal probability of connecting
any two vertices. Hence, in our urand graph, each vertex tends to be accessed roughly the
same number of times, unlike social networks in which the scale-free property causes a few
vertices to be accessed disproportionately often. Since urand is generated to be the same
size as kron, contrasting the two graphs allows us to observe the impact of the scale-free
property.

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 8

Graph Description Ve
rt
ice
s (
M
)

Ed
ge
s (
M
)

De
gr
ee

Di
am
et
er

Di
re
ct
ed

Kron Kronecker generator [66, 94] 134.2 2,111.6 15.7 5
Urand uniform random [58] 134.2 2,147.4 16.0 6
Citations academic citations [149] 49.8 949.6 19.0 12 X
Coauthors academic coauthorships [149] 119.9 646.9 5.4 10
Facebook social network [163] 3.0 28.3 9.2 6
Flickr social network [110] 1.8 22.6 12.2 12 X
Friendster social network [170] 124.8 1,806.1 14.5 7
Hollywood movie collaborations [27, 28, 47] 1.1 57.5 50.5 5
LiveJournal social network [110] 5.3 79.0 14.7 9 X
Orkut social network [110] 3.0 223.5 72.8 5
Road USA road network [50] 23.9 58.3 2.4 6,277 X
Twitter social network [91] 61.5 1,468.3 23.8 7 X
Web crawl of .sk domain [47] 50.6 1,949.4 38.5 13 X
WebBase 2001 web crawl [47] 118.1 632.1 5.4 16 X

Table 2.1: Graphs used for evaluation. All of the graphs come from real-world data except
kron and urand. In subsequent chapters, we list the subsets of these graphs we use.

2.4 Graph Algorithms in this Work

In this work, we analyze six graph kernels, and we select them based on their popularity in
graph processing framework research evaluations (Table 2.2). For more information on the
frameworks we survey, please consult Appendix A. Broadly speaking, the kernels we use can
be categorized as either traversal-centric or compute-centric. Traversal-centric kernels (BFS,
SSSP, and BC) start from a given source vertex and perform their computation outwards
from the source vertex. Compute-centric kernels (PR, CC, and TC) receive no source vertex
as input and operate on the entire graph in parallel.

• Breadth-First Search (BFS)
BFS is not even a graph algorithm, but is only a graph traversal order. It is commonly
used within other graph algorithms, but BFS can be turned into an algorithm by
tracking information related to the traversal. BFS traverses all vertices at one depth
before moving onto the next depth. We analyze BFS thoroughly in Chapter 3.

• Single-Source Shortest Paths (SSSP)
SSSP returns the distances of shortest paths from a given source vertex to every other
reachable vertex. SSSP typically operates on weighted graphs, so the shortest paths
consider the edge weights. In this work, we restrict ourselves to non-negative edge

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 9

Platform T
ot
al

P
ag
eR

an
k

S
in
gl
e-
so
u
rc
e
S
h
or
te
st

P
at
h
s

C
on

n
ec
te
d
C
om

p
on

en
ts

B
re
ad

th
-fi
rs
t
S
ea
rc
h

T
ri
an

gl
e
C
ou

nt
in
g

B
et
w
ee
n
n
es
s
C
en
tr
al
it
y

C
on

d
u
ct
an

ce

n
-H

op
Q
u
er
ie
s

A
lt
er
n
at
in
g
L
ea
st

S
qu

ar
es

S
tr
on

gl
y
C
on

n
ec
te
d
C
om

p
on

en
ts

A
p
p
ro
xi
m
at
e
D
ia
m
et
er

R
an

d
om

W
al
k
S
am

p
li
n
g

Shared Memory 11 8 7 5 4 2 3 1 1 - 1 2 -
Semi-external Memory 7 5 2 5 6 3 1 1 1 2 1 - -
Distributed Memory 29 21 13 13 7 5 4 2 3 2 2 1 3
GPU 4 4 3 2 4 - 1 - - - - - -
HW Accelerator 3 3 3 - 1 - - 2 - - - - -
Total 54 41 28 25 22 10 9 6 5 4 4 3 3
Percentage (%) 76 52 46 41 19 17 11 9 7 7 6 6

Table 2.2: Number of graph framework evaluations using each graph algorithm, catego-
rized by hardware platform. Only 12 most commonly evaluated algorithms are shown. See
Appendix A for more information on survey of graph processing frameworks.

weights. If the graph is unweighted, BFS can return the shortest paths since all edges
will have the same unit weight.

In addition to the distances, some SSSP implementations also return the parent vertices
along the shortest paths. In Section 6.3 we evaluate the tradeo↵s in implementing
delta-stepping [107], a pragmatic parallel SSSP algorithm.

• PageRank (PR)
PageRank determines the “popularity” of vertices in a graph, and it was originally
used to sort web search results [127]. PageRank determines the popularity of a vertex
v not only by the number of vertices that point to v, but also the popularity of the
vertices that point to v. More formally, the PageRank score (PR) for a vertex v with
a damping factor d (0.85) is:

PR(v) =
1� d

|V | + d
X

u2N�(v)

PR(u)

|N+(u)|

The above recurrence often results in cyclic dependencies, but as long as the graph is
aperiodic, the scores will converge [22]. PageRank typically iterates until the scores

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 10

converge within a specified tolerance of a fixed point.

PageRank is a popular graph benchmark because it exposes many of the challenges
of graph processing while still being simple enough to ease analysis and implementa-
tion. Correspondingly, there is considerable prior work on accelerating PageRank. A
common optimization for PageRank exploits the di↵erences in vertices’ convergence
rates by not processing vertices whose scores change too little relative to the previous
iteration [96, 146]. Another common optimization is to apply the Gauss-Siedel method
and update scores “in-place” by overwriting the previous score with the new score [90].
This optimization improves the convergence rate since the computation will often be
operating on newer data.

• Connected Components (CC)
The connected components algorithm labels the components of a graph. If there is a
path between two vertices, those two vertices are connected. A connected component
is a subgraph such that all of its vertices are connected to each other. A connected
component is maximal, as any vertex that is connected to the component is part of
the component.

In a directed graph, connection relationships can be asymmetric and thus not commu-
tative. For example, if there is a directed edge from u to v, u is connected to v, but
v may not be connected to u. In a directed graph, connected components can either
be strongly connected or weakly connected. A strongly connected component is a sub-
graph such that there is a directed path between every pair of its vertices. A weakly
connected component is a connected component when ignoring edge directions, and a
strongly connected component is also a weakly connected component. On a directed
graph, the term “connected components” is ambiguous, but typically refers to weakly
connected components.

The connected components algorithm labels vertices such that all vertices in the same
component get the same label. Vertices of zero degree are not connected to any other
vertices and are thus their own components so they get their own labels.

• Betweenness Centrality (BC)
Betweenness centrality is a metric that attempts to measure the importance of vertices
within a graph. In particular, BC creates a score for each vertex that measures the
fraction of shortest paths that pass through that vertex. More formally, if �

st

is the
number of shortest paths between vertices s and t, and �

st

(v) is the number of those
shortest paths that pass through vertex v, the betweenness centrality score for v is:

BC(v) =
X

s,t2V,s 6=v 6=t

�
st

(v)

�
st

BC can be computationally demanding as it requires computing all of the shortest
paths between all pairs of vertices. In practice, this is often accomplished by executing

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 11

SSSP from every vertex as a source. Executing SSSP for every vertex is not only a
great deal of shortest paths to compute, but can also consume a great deal of memory
capacity to store all of the computed shortest paths. The Brandes algorithm greatly
reduces memory requirements, as it is able to compact the critical information from
a single SSSP execution into a single value per vertex [29]. The reduction in memory
capacity requirements greatly improves the tractability of computing BC, however,
to compute the exact scores the Brandes algorithm still needs to perform SSSP from
every vertex. Many use cases of BC only care about the relative ordering of vertices,
so approximations can be su�cient. The easiest way to approximate BC scores is to
only perform SSSP from a subset of the vertices, and if these vertices are selected in a
su�ciently random way, the approximation is reasonable [13]. The final BC scores are
typically normalized to one. Since BC is often performed on unweighted graphs, the
SSSP executions can be accomplished by using BFS traversals.

• Triangle Counting (TC)
Triangle counting is used to measure the interconnectedness of a graph. A clique is
a set of vertices that are all directly connected to each other. As the size of a clique
grows, the number of edges it contains grows quadratically, so within real-world graphs,
large cliques are rarely seen. A triangle is a clique of size 3, and due to its small size,
it occurs often in nature. For example, in a friendship network, a triangle represents
two friends having another friend in common. The presence of many triangles in a
graph implies the graph has densely interconnected clusters, even if these clusters do
not form perfect cliques.

As triangle counting’s name suggests, the algorithm counts the number of triangles in
a graph. In some usage scenarios the list of triangles is desired, but in our usage, the
output of TC is the total number of triangles in the graph. Triangles are invariant to
permutation, so three interconnected vertices can only be counted as a triangle once.
We do not consider edge directions when defining a triangle, so for TC, all edges can
be treated as undirected.

2.5 Other Types of Graph Algorithms

Graphs can be used in many contexts and ways, and this work focuses on some of the more
classic and widely used types of graphs and graph algorithms. In this section, we briefly
highlight some of the other types of graph processing.

For some graph processing applications, there is so much graph data it cannot fit into
the processing system’s memory simultaneously. In streaming graph processing, the graph
“streams” through the system and the algorithms must be able to operate on the edges
as they flow through. Depending on the usage scenario, the graph could be read from
storage [92] or a network source [151].

CHAPTER 2. BACKGROUND ON GRAPH ALGORITHMS 12

For some applications, the data the graph represents is changing in real-time, and so the
graph topology also needs to change [54]. In dynamic graph processing, the graph topology is
changing independently of the algorithm. This plasticity is in contrast to a graph algorithm
that deliberately mutates the graph topology as part of its computation. Some sophisticated
dynamic graph algorithms can update a prior solution by only computing on the parts of
the graph that have changed [55].

The graph abstraction is fundamentally centered around edges, and an edge models a
relation between two vertices. A hypergraph generalizes this relation, and a hyperedge can
represent a relation between any number of vertices. Although a conventional graph can
connect more than two vertices by using multiple edges, a hyperedge semantically conveys
that those vertices are connected by the same relation. Hypergraphs can sometimes be
challenging to implement e�ciently, so they are often transformed into conventional bipartite
graphs. Each hyperedge can be represented as a vertex with an outgoing edge for each
of the hyperedge’s connections. An interesting application of hypergraphs is partitioning
conventional graphs [35].

Graph algorithms can also be expressed with linear algebra [87]. A graph can be rep-
resented as a matrix in which each non-zero represents a relation between the row and the
column. Since many graphs of interest are sparse, their corresponding matrices are also
sparse. Using the linear algebra abstraction not only provides great notational conciseness
and expressivity, it can often allow for reusing optimized linear algebra libraries. Unfortu-
nately, the parallelism expressed by linear algebra prevents some algorithmic optimizations
such as our bottom-up search optimization presented in the next chapter [20].

13

Chapter 3

Direction-Optimizing Breadth-First
Search

In this chapter, we present direction-optimizing BFS, an algorithmic innovation we use to
motivate the rest of this work’s focus on understanding graph algorithm performance. We
not only demonstrate practical speedups using our direction-optimizing algorithm, we also
provide insight into the topological properties that enable the drastic reduction in edges
examined that enables our algorithm’s speedup. The execution time speedup of our approach
is typically less than the reduction in edges examined, implying our implementation is less
e�cient per edge examined. We further explain the architectural causes of this gap in
Chapter 6.

3.1 Introduction

Breadth-First Search (BFS) is an important building block used in many graph algorithms,
and it is commonly used to test for connectivity or compute the single-source shortest paths
of unweighted graphs. Due to its simplicity and wide use, BFS is often used as a graph pro-
cessing benchmark [66], but its low computational intensity often results in low performance.
To accelerate BFS, there has been significant prior work to change the algorithm and data
structures, in some cases by adding additional computational work, to increase locality and
boost overall performance [2, 33, 77, 173]. However, none of these previous schemes attempt
to reduce the amount of computational work (number of edges examined).

We present the direction-optimizing BFS, a hybrid algorithm that combines the conven-
tional top-down approach with a novel bottom-up approach [16]. By examining substantially
fewer edges, the new algorithm obtains speedups of 1.5–6.7⇥ on a suite of synthetic and real-
world social network graphs. In the top-down approach, vertices in the active frontier search
for an unvisited child, while in our new bottom-up approach, unvisited vertices search for
a parent in the active frontier. In general, the bottom-up approach will yield speedups
when the active frontier is a substantial fraction of the graph, which commonly occurs in

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 14

small-world graphs such as social networks.
The bottom-up approach is not always advantageous, so we combine it with the conven-

tional top-down approach, and use a simple heuristic to dynamically select the appropriate
approach to use at each step of a BFS. We show that our dynamic on-line heuristic achieves
performance within 15% of the optimum possible using an o↵-line oracle. An early ver-
sion of the direction-optimizing BFS algorithm [15] running on a stock quad-socket Intel
server was ranked 17th in the Graph500 November 2011 rankings [66], achieving the fastest
single-node implementation and the highest per-core processing rate, and outperforming spe-
cialized architectures and clusters with more than 150 sockets. In the following Graph500
competitions, the direction-optimizing algorithm was adopted by most of the top finishers
[38, 59]. Additionally, the direction-optimizing algorithm has also been widely adopted in
graph frameworks and benchmark suites [18, 31, 61, 118, 122, 146, 158].

3.2 Conventional Top-Down BFS

Top-down BFS starts from a source vertex, expands the frontier outwards during each step,
and visits all of the vertices at the same depth before visiting any at the next depth (Fig-
ure 3.1). During a step of the conventional top-down approach (Figure 3.2), each vertex
checks all of its neighbors to see if any of them are unvisited. Each previously unvisited
neighbor is added to the next frontier and marked as visited by setting its parent variable.
This algorithm yields the BFS tree, which spans the connected component containing the
source vertex. Other variants of BFS may record other attributes instead of the parent
(predecessor) at each vertex in the BFS tree, such as a simple boolean variable that marks
whether it was visited, or an integer representing its depth in the tree.

The behavior of BFS on social network topologies follows directly from their defining
properties: small-world and scale-free. Because social networks are small-world graphs,
they have a low e↵ective diameter, which reduces the number of steps required for a BFS
traversal, which in turn causes a large fraction of the vertices to be visited during each step.
The scale-free property requires some vertices to have much higher degrees than average,
allowing the frontier growth rate to outpace the average degree. As a result of these two
properties, the size of the frontier ramps up and down exponentially during a BFS traversal
of a social network. Even if a social network graph has hundreds of millions of vertices, the
vast majority will be reached in the first few steps.

The majority of the computational work in BFS is finding unvisited neighbors of the
frontier. Unvisited neighbors are found by “checking” the edges of the frontier to see if
the endpoint has been visited. The total number of edge checks for an entire BFS with the
conventional top-down approach is equal to the number of edges in the connected component
containing the source vertex, as on each step every edge in the frontier is checked.

Figure 3.3 shows a breakdown of the result of each edge check for each step during a
conventional parallel top-down BFS traversal on the kron graph (synthetic social network
graph used for the Graph500 benchmark [66]). The middle steps (depths 2 and 3) consume

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 15

breadth-first-search(graph, source)

frontier {source}
next {}
parents [-1,-1,. . . -1]
while frontier 6= {} do
top-down-step(graph, frontier, next, parents)
frontier next
next {}

end while
return parents

Figure 3.1: Conventional BFS algorithm

top-down-step(graph, frontier, next, parents)

for v 2 frontier do
for u 2 neighbors[v] do
if parents[u] = -1 then
parents[u] v
next next [{u}

end if
end for

end for

Figure 3.2: Single step of top-down approach. Vertex v unvisited if parents[v] = �1.

the vast majority of the runtime, which is unsurprising since the frontier is then at its
largest size, requiring many more edges to be examined. During these steps, most attempts
to become the parent of a neighbor are unsuccessful because the neighbor has already been
visited. These visited neighbors can be broken down into three di↵erent categories based on
their depth relative to the candidate parent: potential parent, peer, and unavailable child.
A potential parent is any neighbor at depth d � 1 of a vertex at depth d. A peer is any
neighbor at the same depth. An unavailable child is any neighbor at depth d+1 of a vertex
at depth d, but at the time of examination it has already been claimed by another vertex at
depth d. Successful checks result in a claimed child. Figure 3.4 demonstrates these neighbor
categorizations for a trivial example search. Figure 3.3 shows most of the edge checks are
unsuccessful (not claimed children) and thus represent redundant work, since a vertex in a
correct BFS tree only needs one parent.

The progression of neighbor types in Figure 3.3 is typical among the social networks
examined. During the first few steps, the percentage of claimed children is high, as the
vast majority of the graph is unexplored, enabling most edge checks to succeed. During the
next few steps, the percentage of unavailable children rises, which is unsurprising since the
frontier has grown larger, and multiple potential parents fight over children. As the frontier

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 16

Figure 3.3: Classification of neighbors of frontier in terms of absolute totals (left) or nor-
malized per depth (right) for a BFS traversal on kron graph (synthetically-generated social
network of 128M vertices and 2B undirected edges). A single undirected edge can result in
two neighbors of the frontier if both endpoints are in the frontier.

0

1

1

2

2Potential Parent

Peer

Claimed Child

Unavailable
Child

Graph Edge
BFS Parent

Figure 3.4: Categorization of the neighbors of the highlighted vertex for an example BFS
traversal. The vertices are labelled with their depths from the BFS, and the arrows point
from child to parent from the BFS.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 17

reaches its largest size, the percentage of peer edges dominates. Since the frontier is such
a large fraction of the graph, many edges must connect vertices within the frontier. As the
frontier size rapidly decreases after its apex, the percentage of potential parents rises since
such a large fraction of edges were in the previous step’s frontier.

If a traversal was guided by an omniscent oracle, the theoretical minimum number of
edges that need to be examined in the best case is one less than the number of vertices in
the BFS tree, since that is how many edges are required to connect them. For the example
in Figure 3.3, only 63,036,109 vertices are in the BFS tree, so at least 63,036,108 edges
need to be considered, which is about 1

67

th

of all the edge examinations that would happen
during a top-down traversal. This factor of 67 is substantially larger than the input degree
of 16 for two reasons. First, the input degree is for undirected edges, but during a top-down
search each edge will be checked from both endpoints, doubling the number of examinations.
Secondly, there are a large number of vertices of zero degree, which misleadingly decreases
the average degree. Since for this example the classic top-down approach will examine 67⇥
more edges than necessary, there is clearly substantial room for improvement by checking
fewer edges, although in the worst case, every edge might still need to be checked.

3.3 Bottom-Up BFS

When the frontier is large, there exists an opportunity to perform the BFS traversal more
e�ciently by searching in the reverse direction, that is, bottom-up. Note that at depth 3 in
the example (Figure 3.3), there are many potential parents, but those same edges mostly
result in unavailable children when examined in the opposite direction during the previous
step at depth 2. We can exploit this phenomenon to reduce the total number of edges
examined. Instead of each vertex in the frontier attempting to become the parent of all of
its neighbors, each unvisited vertex attempts to find any parent among its neighbors. A
neighbor can be a parent of an unvisited vertex if the neighbor is a member of the frontier.
The advantage of this approach is that once a vertex has found a parent, it does not need
to check the rest of its neighbors. Figure 3.3 demonstrates that for some steps, a substantial
fraction of neighbors are valid parents, so the probability of not needing to check every edge
is high. Figure 3.5 shows the algorithm for a single step of this bottom-up approach.

The bottom-up approach also removes the need for some atomic operations in a parallel
implementation. In the top-down approach, there could be multiple parallel writers to the
same child, so atomic operations are needed to ensure mutual exclusion. With the bottom-
up approach, only the child writes to itself, removing any contention. This advantage, along
with the potential reduction of edges checked, comes at the price of serializing the work for
any one vertex, but there is still massive parallelism between the work for di↵erent vertices.

If the graph is undirected, performing the bottom-up approach requires no modification
to the graph data structures as both directions are already represented. If the graph is
directed, the bottom-up step will require the inverse graph, which if not already available,
can nearly double the graph’s memory footprint. The bottom-up approach is advantageous

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 18

bottom-up-step(graph, frontier, next, parents)

for v 2 vertices do
if parents[v] = -1 then
for u 2 neighbors[v] do
if u 2 frontier then
parents[v] u
next next [{v}
break

end if
end for

end if
end for

Figure 3.5: Single step of bottom-up approach

when a large fraction of the vertices are in the frontier, but will result in more work if the
frontier is small. Hence, an e�cient BFS implementation must combine both the top-down
and bottom-up approaches.

3.4 Direction-Optimizing BFS Algorithm

The top-down approach and the bottom-up approach are complementary, since when the
frontier is its largest, the bottom-up approach will be at its best whereas the top-down
approach will be at its worst, and vice versa. The runtime for either the top-down approach
or the bottom-up approach is roughly proportional to the number of edges they examine. The
top-down approach will examine every edge emanating from the frontier while the bottom-
up approach could examine every edge attached to an unvisited vertex, but hopefully fewer.
Figure 3.6 illustrates this behavior by showing the time per step for each approach using
the same example search as in Section 3.2. As the size of the frontier ramps up, the time
per step of the top-down approach rises correspondingly to track the number of edges in the
frontier, but the time per step for the bottom-up approach drops.

Our hybrid algorithm uses the top-down approach for steps when the frontier is small
and the bottom-up approach for steps when the frontier is large. We begin each search with
the top-down approach and continue until the frontier becomes too large, at which point
we switch to the bottom-up approach. Although it is di�cult to tell from Figure 3.6, it
is usually worthwhile to switch back to the top-down approach for the final steps. During
some searches there can be a long tail, and edges that are not in the connected component
continue to consume runtime using the bottom-up approach. Since we perform the BFS
traversal in whichever direction will be less work, we name it direction-optimizing BFS.

The step when transitioning from the top-down approach to the bottom-up approach
provides an enormous opportunity to skip work, since all of the edge checks that would

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 19

Figure 3.6: Example search on kron graph (synthetically-generated social network of 128M
vertices and 2B undirected edges) on IVB platform from same source vertex as Figure 3.3.
The left subplot is the time per depth if done top-down or bottom-up and the right subplot
is the size of the frontier per depth in terms of either vertices or edges. The time for the
top-down approach closely tracks the number of edges in the frontier, and depths 2 and 3
constitute the majority of the runtime since they constitute the majority of the edges.

happen during that top-down step (all of the edges in the frontier) can be skipped. For this
reason, the optimum point to switch is typically when the number of edges in the frontier is
at its largest. This is fortuitous, since the first bottom-up step will probably benefit from a
high percentage of valid parents, as Figure 3.3 shows.

To control the hybrid approach, we use a dynamic heuristic based on: the number of edges
to check from the frontier (m

f

), the number of vertices in the frontier (n
f

), and the number
of edges to check from unexplored vertices (m

u

). These metrics are e�cient to compute,
since they only require: summing the degrees of all vertices in the frontier, counting the
number of vertices added to the frontier, or counting how many edges have been checked.
Note that with an undirected graph, m

f

or m
u

might be counting some edges twice since
each edge will be explored from both ends. Figure 3.7 shows the overall control heuristic,
which compares m

f

and n
f

against two thresholds parameterized by ↵ and �.
Since a step of the top-down approach will always check m

f

edges, and the bottom-up
approach will check at most m

u

edges, if m
u

is ever less than m
f

, there is a guarantee that
switching to the bottom-up approach at that step will check fewer edges. Since m

u

is an
overly pessimistic upper-bound for the number of edges the bottom-up approach will check,

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 20

Top-
Down

Bottom-
Up

mf >

nf <
mf ≤

nf ≥

Start
mu
α

n
βmu

α

n
β

AND !growing

growing
OR

Figure 3.7: Finite-state machine to control the direction-optimizing algorithm. When tran-
sitioning between approaches, the frontier must be converted from a queue (top-down) to
a bitmap (bottom-up) or vice versa. The growing condition indicates the number of active
vertices in the frontier (n

f

) increased relative to the last depth.

we use a tuning parameter ↵. This results in the condition for switching from top-down to
bottom-up:

m
f

>
m

u

↵

Switching back to the top-down approach at the end of the traversal should occur when
the frontier is small and there is no longer benefit to use the bottom-up approach. In
addition to the overhead of checking edges outside the main connected component, the
bottom-up approach becomes less e�cient with a small frontier because it scans through all
of the vertices to find unvisited vertices. While the frontier is still growing, we stay with
the bottom-up approach, but once the frontier becomes too small, we switch back to the
top-down approach and we use a heuristic parameterized by �:

n
f

<
n

�

3.5 Evaluation

Methodology

This section evaluates the performance of the direction-optimizing BFS approach empirically.
Chapter 6 examines direction-optimizing BFS performance more deeply, and by leveraging
insights from our workload characterization (Chapter 5), explains the processor architecture’s
impact on the algorithm. We elide formal worst-case complexity analysis for our algorithm,
as the bounds will be too large to be informative. The number of edges examined by our
algorithm is topology-dependent, and so the bounds will be dependent on how specific the
model is. In practice, the direction-optimizing BFS is substantially faster for low-diameter
graphs because it examines fewer edges.

We evaluate the performance of our hybrid algorithm using the low-diameter graphs in
Table 3.1 (a subset of the graphs in Table 2.1). Our suite of test graphs includes both

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 21

Graph Description Ve
rt
ice
s (
M
)

Ed
ge
s (
M
)

De
gr
ee

Di
am
et
er

Di
re
ct
ed

Kron Kronecker generator [66, 94] 134.2 2,111.6 15.7 5
Urand uniform random [58] 134.2 2,147.4 16.0 6
Citations academic citations [149] 49.8 949.6 19.0 12 X
Coauthors academic coauthorships [149] 119.9 646.9 5.4 10
Facebook social network [163] 3.0 28.3 9.2 6
Flickr social network [110] 1.8 22.6 12.2 12 X
Friendster social network [170] 124.8 1,806.1 14.5 7
Hollywood movie collaborations [27, 28, 47] 1.1 57.5 50.5 5
LiveJournal social network [110] 5.3 79.0 14.7 9 X
Orkut social network [110] 3.0 223.5 72.8 5
Twitter social network [91] 61.5 1,468.3 23.8 7 X
Web crawl of .sk domain [47] 50.6 1,949.4 38.5 13 X

Table 3.1: Low-diameter graphs used for evaluation. All of the graphs come from real-world
data except kron and urand.

Architecture Ivy Bridge EP
Intel Model E5-2667 v2
Released Q3 2013
Clock rate 3.3GHz
Sockets 2
Cores/socket 8
Threads/core 2
LLC/socket 25MB
DRAM Capacity 128GB

Table 3.2: IVB system specifications

synthetic (kron and urand) graphs as well as real social networks. The synthetic graph
generators as well as their parameters are selected to match the Graph500 Competition [66]
(Kronecker (A,B,C) = (0.57,0.19,0.19)). The real social networks are taken from a variety of
web crawls [26–28, 47, 91, 110, 149, 161, 163]. A deeper discussion of the input graphs and
their topological properties can be found in Section 2.3. For direction-optimizing BFS, the
small-world property and the scale-free property are the most relevant topological properties
to understand the algorithm’s performance.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 22

For our performance results, we use a dual-socket Intel Ivy Bridge server (IVB) that is
representative of a compute node for a cluster (Table 3.2). We disable Turbo Boost to obtain
consistent performance results. We operate on graphs stored in memory in Compressed
Sparse Row (CSR) format after removing duplicate edges and self-loops. For each plotted
data point, we perform BFS 64 times from pseudo-randomly selected non-zero degree vertices
and average the results. During the BFS, we record the predecessor (parent) in the traversal
for each visited vertex. The time for each search includes the time to allocate and initialize
search-related data structures (including the parents array).

Implementations

For consistency, we perform all of our evaluation using implementations derived from the
same C++/OpenMP codebase, and our optimized direction-optimizing implementation is
publicly available as part of the GAP benchmark suite [60]. We incorporate best implemen-
tation practices, often exemplified by the original Graph500 omp-csr reference code [66].
Our top-down implementations represent the frontier with a shared queue that has thread-
local bu↵ers to prevent false sharing. For our optimized baseline, like Agarwal et al., we
add a bitmap to track which vertices have already been visited [2]. This bitmap helps to
reduce the number of costly random memory accesses to o↵-chip DRAM caused by checking
if neighbors have been visited. By checking the bitmap first, many of these o↵-chip memory
accesses can be avoided because the bitmap is often small enough to fit in the last-level
cache.

For each search direction within our direction-optimizing implementation, we use a fron-
tier representation specialized to the needs of each search direction’s implementation. When
switching search directions, the frontier representation must be appropriately converted, but
the conversion should happen when the frontier is small, so the conversion cost is typically
far less than the penalty of using the wrong data structure. The frontier is essentially a
set, and based on the size of the frontier, it is more memory e�cient to store it sparsely
with an unordered queue or densely with a bitmap. The bottom-up approach also leverages
the frontier bitmap to obtain a constant-time test for whether a particular vertex is in the
frontier. In addition to saving memory, the top-down approach uses a frontier queue instead
of a frontier bitmap since it is more e�cient to iterate over when the frontier is small.

For the top-down implementation included within our direction-optimizing implementa-
tion, we perform an additional optimization to reduce the amount of time spent calculating
how many edges exit the current frontier. The number of edges in the frontier is used in
the top-down steps to determine if the frontier is large enough to justify switching to the
bottom-up approach. Computing this total can have many irregular accesses, as it is sum-
ming the degrees of an unordered list of vertices. Our optimization is to add a step during
initialization before the search that stores the degree of each vertex in the parent array as
a negative number and this takes little time as the vertices can be processed in order with
high spatial locality. The previous convention of -1 representing an unvisited vertex is now
revised to be any negative number represents an unvisited vertex. With this new encoding,

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 23

Figure 3.8: Speedups on IVB relative to top-down-bitmap.

the degree of a newly reached vertex is already known because the parent array was just
checked to see if that vertex was unvisited. This optimization obviates the time for totaling
the degrees of the frontier because it can now be done during the search. For low-diameter
graphs, this yields a modest performance improvement, but for high-diameter graphs that
will only use the top-down approach, this can yield a speedup of nearly 2⇥.

Comparing Algorithms

We first compare our own implementations executing on IVB for a range of low-diameter
graphs (Figure 3.8). We use the following five implementations that leverage the techniques
and optimizations described in the previous subsection:

Top-down is a standard parallel queue-based top-down BFS, very similar to the original
Graph500 reference code.

Top-down-bitmap improves upon top-down by using the optimization of a bitmap to track
previously visited vertices.

Bottom-up performs the bottom-up approach for all depths.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 24

Hybrid-heuristic is our direction-optimizing implementation using our online control heuris-
tic with ↵ = 15 and � = 18, and in the next subsection we describe how we tune ↵
and � for IVB.

Hybrid-oracle repeatedly runs the direction-optimizing algorithm trying all possible tran-
sition points and then reports the best-performing to represent an oracle-controlled
direction-optimizing implementation.

In Figure 3.8, we normalize execution time speedups to top-down-bitmap since it is
representative of the current state-of-the-art. The use of a bitmap to track previously visited
vertices typically delivers a substantial speedup over the standard top-down implementation.
The direction-optimizing approach (hybrid implementations) provides large speedups across
all of the graphs, with an average speedup of 3.4⇥ and a speedup no lower than 1.5⇥.
The on-line heuristic (hybrid-heuristic) often obtains performance within 10% of the oracle
(hybrid-oracle), indicating that most of the time the heuristic chooses the correct step for
the transition and the computational cost of the heuristic is reasonable. The pure bottom-up
approach yields only modest speedups or even slowdowns, which highlights the importance
of combining it with the top-down approach for the direction-optimizing approach.

Tuning ↵ and �

For our direction-optimizing implementation (hybrid-heuristic) measured above, we tune the
values of ↵ and �. We first tune ↵ before tuning �, as it has the greatest impact. Sweeping
↵ across a wide range demonstrates that once ↵ is su�ciently large (>10), BFS performance
for many graphs is relatively insensitive to its value (Figure 3.9). This is because the frontier
grows so rapidly that small changes in the transition threshold do not change the step at
which the switch occurs. When trying to pick the best value for the suite, we select ↵ = 15
since it maximizes the average and minimum. Note that even if a less-than-optimal ↵ is
selected, the hybrid-heuristic algorithm still executes within 15–20% of its peak performance
on most graphs. Additionally, a potential loss in performance due to a mistuned ↵ is still
far smaller than the speedup provided by direction-optimizing BFS (Figure 3.8).

Tuning � is less important than tuning ↵. We select � = 18, as this works well for
the majority of the graphs (Figure 3.10). The value of � has a smaller impact on overall
performance because the majority of the runtime is taken by the middle steps when the
frontier is at its largest, even when those steps are accelerated by the bottom-up approach.
We explore a much larger range for � since it needs to change by orders of magnitude in
order to have an impact on which step the heuristic will switch. On IVB, setting � to 15 to
make it equal to ↵ does not substantially degrade performance, but in general there is no
guarantee that ↵ should equal �. For greater generality, we allow for the ↵ and � thresholds
to be set independently.

Although there is some variation between graphs for tuning the ↵ and � parameters
(Figure 3.9 & Figure 3.10), the performance of the top-down implementation relative to the

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 25

Figure 3.9: Performance of hybrid-heuristic on each graph relative to its best performance
on that graph for the range of ↵ examined. We select ↵ = 15.

Figure 3.10: Performance of hybrid-heuristic on each graph relative to its best performance
on that graph for the range of � examined. We select � = 18.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 26

1

1

10 2

Disconnected

Graph Edge
Top-Down Check

3

-1 -1

Premature

Bottom-Up Check

Frontier

Figure 3.11: Comparison of edges examined by top-down and bottom-up on example graph
when frontier is at depth 1. Vertices labelled with their final depth.

performance of the bottom-up implementation is the primary determinant of performance.
For this reason, tuning the parameters can be done once for the platform, and should deliver
reasonable performance for a range of input graphs.

Explaining the Performance Improvement

The speedup of the direction-optimizing approach demonstrated in Figure 3.8 is due to the
reduction in edges examined. In a classical top-down BFS, every edge in the connected
component containing the starting vertex will be checked, and for an undirected graph,
each edge will be checked in both directions. The bottom-up approach skips checking some
edges in two ways. First, once an unvisited vertex finds a parent, it can immediately stop
examining its neighbors (early termination). Secondly, the step that transitions from the
top-down approach to the bottom-up approach will skip edges on the transition itself.

A transition to the bottom-up approach at depth d skips all of the peer, potential parent,
and unavailable child edges at depth d. These edge types can constitute the vast majority
of the edges at a transition depth, as depth 2 of the example in Figure 3.3 exemplifies. The
only edges from depth d that are not skipped by the transition are e↵ectively the claimed
child edges, and these edge are the requisite inter-depth edges between depths d and d + 1,

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 27

Figure 3.12: Types of edge examinations for top-down versus direction-optimizing for a
single search on flickr graph. The direction-optimizing approach switches to the bottom-up
direction at depth 5 and back to the top-down direction at depth 9. Due to extremely small
frontier sizes, depths 0–4 and 9–17 are di�cult to distinguish, however, for these depths the
direction-optimizing approach traverses in the top-down direction so the edge examinations
are equivalent to the top-down baseline.

as every vertex in the frontier at depth d+ 1 must have exactly one parent at depth d.
To concretely demonstrate the savings in edge examinations from transitioning to the

bottom-up approach, Figure 3.11 shows a simple example. With the frontier currently at
depth 1, performing the traversal in the top-down direction requires examining every edge
outgoing from a vertex at depth 1. By contrast, performing the traversal in the bottom-up
direction possibly examines every edge incoming to a vertex of depth 2 or greater (if it is
reached). Within the bottom-up traversal, the vertex at depth 2 is able to terminate its
search for a parent early once it finds a neighbor of depth 1. Because the bottom-up search
considers all unvisited vertices, some of these vertices are not adjacent to the frontier and
thus result in wasteful edge examinations because there is no chance of them succeeding in
finding a parent. The vertex at depth 3 is simply too far from the frontier, so we refer to
its edge examination as premature. We refer to the edge examinations to vertices outside
the main connected component (depth -1) as disconnected. In this simple example when the
frontier is at depth 1, despite the wasteful examinations, the bottom-up approach examines
fewer edges that the top-down approach (5 instead of 10).

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 28

Figure 3.13: Categorization of edge examinations by hybrid-heuristic

Figure 3.12 compares the number and types of edges examined by the direction-optimizing
approach versus the top-down approach for a single traversal of the flickr graph. We select
the flickr graph because its traversal is less e�cient for the direction-optimizing approach
(only 2.6⇥ speedup from a 3.2⇥ reduction in edges examined), making its overheads more
visible. For depths 0–4, both implementations examine the same number of edges since the
hybrid implementation is still traversing in the top-down direction. At depth 5 the hybrid
transitions to the bottom-up direction, and it enjoys a large reduction in edges examined,
not only from early termination but also from the transition itself. At depth 5, the pre-
mature edge examinations are substantial, but as the traversal progresses, there are fewer
unvisited vertices and thus fewer premature edges to examine. The overhead of disconnected
examinations becomes more substantial as the frontier decreases in size, and at depth 8 it
even causes the hybrid implementation to examine more edges than the top-down imple-
mentation. However, since the frontier dramatically reduces in size for the later depths,
these penalties are drowned out, and the direction-optimizing approach is able to deliver a
substantial reduction in overall edges examined.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 29

Figure 3.14: Categorization of execution time by hybrid-heuristic

Figure 3.13 plots the types of edges examined or skipped by the direction-optimizing
implementation relative to the number of edges examined by the top-down baseline for all
of our input graphs. The edge examinations skipped are split between those skipped in the
transition and those skipped by the bottom-up approach. Since the bottom-up approach
is used when the frontier is large, the top-down approach in the hybrid implementation
processes only a small fraction of the edges. Unsurprisingly, the graphs with the least speedup
(citations, coauthors, and web) skip fewer edges and have the most wasteful examinations.
These graphs have a substantially higher e↵ective diameter, causing more steps after the
transition (more premature examinations). These graphs also have more vertices and edges
outside the main connected component, causing more disconnected examinations.

Examining where the time is spent during an entire search reveals the majority of it
is spent in the bottom-up implementation (Figure 3.14). Since the bottom-up approach
skips so many examinations, the e↵ective search rate for the bottom-up steps is much higher
(order of magnitude) than the top-down approach. Conversion and initialization take a
non-negligible fraction of the runtime, but this overhead is worthwhile due to the extreme
speedup provided by the bottom-up approach.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 30

Figure 3.15: Speedups on IVB versus reductions in edges examined for hybrid-heuristic
relative to top-down-bitmap baseline.

Figure 3.15 shows the speedups for the suite is reasonably correlated with the reduction
in number of edges examined. There are some notable outliers within Figure 3.15, namely
the points for the kron graph and the urand graph. The direction-optimizing approach
traversing the kron graph experiences a far greater reduction in edges examined due to
the strength of its scale-free property, allowing many edges from high-degree vertices to
be skipped (Figure 3.13). The urand graph appears to obtain a disproportionate speedup
relative to the reduction in edges examined, however, this is actually due to a slower baseline
time from top-down-bitmap rather than an exceptionally fast execution time from hybrid-
heuristic. The urand graph induces worse cache locality for the processor due to its large size
and its lack of the scale-free property (worse temporal locality). The slope of a best-fit line for
Figure 3.15 is approximately 0.2. A slope of less than 1.0 implies the direction-optimizing
implementation spends more time on each edge it actually traverses than the top-down-
bitmap baseline. In later chapters we discuss the impact of the processor architecture on
graph algorithm performance, and in particular in Chapter 6 we explain the di↵erence in
actual search rates.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 31

3.6 Discussion

After demonstrating the direction-optimizing approach delivers practical speedups and that
these speedups are caused by examining substantially fewer edges, we now turn our attention
to explaining how so many edges can be skipped. In particular, we discuss the topological
properties that enable so many edges to be skipped and how our heuristics are able to
correctly predict when traversing in the bottom-up direction will be more e�cient.

An active frontier that constitutes a large fraction of the graph is a critical feature for
the direction-optimizing approach’s success. A large frontier increases the number of edges
that can be skipped on the transition to the bottom-up approach as well as enabling the
bottom-up approach itself to skip more edges. The right side of Figure 3.6 shows an extreme
example in which the frontier reaches a maximum size of 68% of the graph. The frontier size
generally follows this convex shape of increasing in size until an apex and then decreasing
in size. Arbitrary synthetic graphs can break this trend, but in general, real-world graphs
have this shape due to statistical averaging of distances. The average degree of the frontier
is not constant across all depths, so the frontier is largest in terms of its constituent edges or
its constituent vertices on di↵erent depths. In particular, the frontier size often reaches its
apex in terms of edges one depth less than the apex in terms of vertices. This relationship
is also typical, as the high-degree vertices are more interconnected and thus reached sooner
in the traversal. Once the high-degree vertices are traversed, the search continues to their
many low-degree neighbors, which results in the vertex frontier apex one depth later.

For the bottom-up approach to reduce the number of edges examined, it must skip more
edges than it examines redundantly. More specifically, the number of edges skipped during
the transition from top-down to bottom-up plus the number of edges skipped in the first
bottom-up step must be less than the overhead of examining necessary edges (premature or
disconnected). In general, the best depth to switch to bottom-up is when the frontier is at
its largest in terms of edges. This maximizes the number of edges skipped in the transition,
as well as providing a large edge frontier to increase the probability of skipping edges during
the first bottom-up step.

It is challenging to predict if the current step is the edge frontier apex and thus the
appropriate time to switch to the bottom-up approach because the size of the next edge
frontier is not yet known. Our practical heuristic decides the frontier is su�ciently large
(and probably the apex) if the number of edges exceeds 1/↵th of the remaining edges. The
size of the edge frontier apex and the depth at which it occurs varies and depends not only
on the input graph, but also the source vertex for the BFS traversal. By picking a single
↵ for a hardware platform and using it for all graphs, we are attempting to minimize the
number of mispredictions by achieving the right balance between false positives (switching
early) and false negatives (switching late). Switching early (↵ too big) not only reduces
the number of edges skipped on transition, but the first bottom-up step will be slower as a
smaller frontier reduces the probability it can skip edges. Switching late (↵ too small) causes
the last top-down step to process the many edges that would have been skipped altogether
on the transition. It is also important to make sure the bottom-up approach is not used at

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 32

all if the frontier never gets large enough, which typically happens on high-diameter graphs.
Overall, our pragmatic heuristic along with tuning with the implementations used on the
target hardware does well at this, as exemplified by the wide range of acceptable values for
↵ in Figure 3.9.

Once the direction-optimizing approach has switched to using the bottom-up approach,
it is usually profitable to stay in the bottom-up approach for a few additional steps. After
the first bottom-up step, the savings in edge examinations from the transition have already
accrued and thus whether it is profitable to stay with the bottom-up approach for an ad-
ditional step depends solely on whether the bottom-up approach for that step will examine
fewer edges than the top-down approach for that step. The bottom-up approach will ex-
amine fewer edges if the number of edges it skips by early termination are greater than the
number of examinations of premature and disconnected edges. This comparison is typically
advantageous for the bottom-up approach if the frontier size is rapidly shrinking, as the
future redundant work is outnumbered by the current savings. During a traversal, it is often
hard to predict how big the next depth will be, so our other practical heuristic decides the
frontier is too small for the bottom-up approach if it contains fewer than 1/�th of the graph’s
vertices. We consider the number of vertices instead of the number of edges because our
bottom-up implementation scans all of the vertices to find unvisited vertices, so that fixed
cost for scanning is only worthwhile if the frontier is su�ciently large.

We increase the robustness of our control heuristic by sticking with the bottom-up ap-
proach if the number of vertices in the frontier is growing. If the traversal happens to
prematurely switch to the bottom-up approach, the worst thing that could happen is if the
traversal also prematurely switches back to top-down before switching to the bottom-up
approach a second time. Transitioning to bottom-up twice will examine more edges than if
the traversal stubbornly remains in the bottom-up state. The second bottom-up switch will
only be motivated if the frontier continues to grow, and so using frontier growth as an ad-
ditional condition is able to avoid this perfromance pathology. This condition will of course
not a↵ect the typical transition from bottom-up to top-down when the frontier is shrinking,
and it only has an impact on a few input graphs (e.g. coauthors). High-diameter graphs
have more gradual frontier growth rates and frontier shrinking rates, and are thus the most
susceptible to this premature transition that could lead to a costly double-transition, but
the growing condition is able to avoid most cases.

Fundamentally, the most important topological property for the success of the direction-
optimizing approach is the apex of the frontier size. The larger the largest frontier size, the
more edges the direction-optimizing approach can skip. Such sharp frontier apexes occur
most often in low-diameter graphs since such a large fraction of the graph is reached in so
few steps. The success of the direction-optimizing approach (Figure 3.8) is indicative of how
common these sharp frontier apexes are in real-world low-diameter graphs.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 33

3.7 Related Work

Buluç and Madduri [33] provide a thorough taxonomy of related work in parallel breadth-
first searches. In this section, we focus on the work most relevant to this study, principally
parallel shared-memory implementations. Much of the work prior to the direction-optimizing
approach focuses on improving performance by increasing parallelism or locality.

Bader and Madduri [9] demonstrate large parallel speedups for BFS on an MTA-2. Par-
allelism is extracted both at the level of each vertex as well as at each edge check, and the
fine-grained synchronization mechanisms of the MTA are used to e�ciently exploit this par-
allelism. Their implementation does not need to optimize for locality since the MTA does
not use caches and instead uses many hardware threads to hide its shared main memory
latency.

In contrast, Agarwal et al. [2] optimize for locality to push the limits of a quad-socket
system built from conventional microprocessors, and show speedups over previous results
from clusters and custom supercomputers, including the MTA-2 [9]. Careful programming
is used to reduce o↵-socket tra�c (memory and inter-socket) as much as possible. Threads
are pinned to sockets and utilize local data structures such that all the work that can be
done within a socket never leaves the socket. Bitmaps are used to track completed vertices
to avoid accessing DRAM. Whenever an edge check must go to another socket, it utilizes a
custom inter-socket messaging queue.

Hong et al. [77] improve upon Agarwal et al. with a hybrid algorithm that utilize multiple
CPU implementations and a GPU implementation. As in our work, the algorithm switches
at step boundaries and makes decisions based on on-line heuristics, but in this case to
select between CPU and GPU implementations of a purely top-down approach. The GPU
implementation outperforms the CPU implementation for a su�ciently large frontier, and
heuristics select which implementation to use. The CPU implementation is accelerated by
the read-array approach, which improves locality by combining the frontier with the output
array. Their implementation outputs the depth of each vertex (instead of the parent like
ours), so the output depth array can also act as the frontier. On each step, the depths of
all vertices are scanned searching for the current depth, and then edge examinations are
performed from any vertex found in the implicit frontier. The action of setting an unvisited
vertex’s output to depth+1 implicitly adds it to the next frontier. Furthermore, since Hong
et al. bound the depth to be less than 256, the output array can be compacted by using only
one byte per vertex. Best of all, by using the output array to act as the frontier, duplicate
entries are squashed, and spatial locality is increased due to the sequential array accesses to
the graph.

Merrill et al. [106] improve the performance of BFS on GPUs through the use of prefix
sum to achieve high utilization of all threads. The prefix sum is used to compute the o↵sets
from the frontier expansion, which reduces contention for atomic updates to the frontier
queue. Using a prefix sum to allocate work to threads also allows the graph exploration to
have little control divergence between threads. They also leverage various filtering techniques
enabled by bitmaps to reduce the number of edges processed. This approach is beneficial for

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 34

all diameters of graphs, and they present results indicating they are the fastest at the time
of publication for shared memory systems, especially with their quad-GPU parallelization.

Chhugani et al. [40] perform a multitude of optimizations to improve memory utilization,
reduce inter-socket tra�c, and balance work between sockets. Their memory performance
is improved by reordering computation and data layout to greatly increase spatial locality.
The load balancing techniques proposed are dynamic and can adapt to the needs of the
current graph. Furthermore, they demonstrate an analytic model derived from the platform’s
architectural parameters that accurately predicts performance. Many of these optimizations
are complementary to our work and could be added on top of our implementation.

An early implementation of our direction-optimizing algorithm on a single-node system
reached 17th place in the November 2011 rankings of the Graph500 competition [15, 66]. This
earlier implementation used a cruder heuristic and included an alternate top-down step that
integrated the conversion for bottom-up. It achieved the highest single-node performance
and the highest per-core processing rate. Using just a single quad-socket system, the hybrid
BFS algorithm outperformed clusters of >150 sockets and specialized architectures such as
the Cray XMT2 [111] and the Convey HC-1ex [45]. Its processing rate per-core was over 30⇥
the top-ranked cluster system, highlighting the performance penalty a cluster experiences
when crossing the network.

This chapter presents the current state-of-the-art of direction-optimizing breadth-first
search, and it contains simplifications and refinements to the algorithm since it was first for-
mally published [16]. As an improvement, we reduce the overhead of computing the number
of outgoing edges of the frontier (n

f

) by using the optimization described in Section 3.5.
Furthermore, the results in this chapter also include larger real-world graphs that became
available since the original publication. For consistency with the rest of this dissertation,
these results have also been executed on IVB (newer hardware). Finally, the implementation
used in this chapter is available as part of the GAP Benchmark Suite [60]. The original pub-
lication provides direct performance comparisons to the aforementioned prior work (Hong et
al. [77], Merrill et al. [106] and Chhugani et al. [40]) demonstrating the direction-optimizing
BFS’s performance advantage when using the same input graphs and similar if not identical
hardware [16].

We also extend our direction-optimizing BFS algorithm to make it appropriate for clus-
ters [20, 32]. The main contribution of the cluster research is a distributed bottom-up imple-
mentation, since it can be combined with an existing distributed top-down implementation to
obtain a distributed direction-optimizing BFS implementation. Implementing the bottom-
up search strategy on distributed memory poses multiple challenges. First, the bottom-up
approach needs fast frontier membership tests to find a neighbor in the frontier, but the
frontier is far too large to replicate in each processor’s memory. Second, each vertex’s search
for a parent must be sequentialized in order to skip checking unnecessary edges once a parent
is found. If a vertex’s search for a parent is fully parallelized, there is potential the search
will not terminate as soon as a parent is found, resulting in redundant work that could nul-
lify any performance gains. We tackle the first challenge by adapting the two-dimensional
graph partitioning approach that reduces the amount of the frontier that needs to be locally

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 35

replicated for each processor [33, 173]. We tackle the second challenge by using systolic shifts
that provide a good compromise between work e�ciency and parallelism. Overall, we obtain
speedups over a purely top-down implementation similar to what we obtain in this chapter
on shared memory. By reducing the number of edges examined, our implementation not only
reduces the amount of computation, but it also reduces the amount of communication which
is critical for distributed memory. Due to the sub-linear performance scaling that is typical
for distributed graph computation, by using our distributed BFS implementation, one can
use substantially fewer processors to achieve the same performance. This implementation is
now available as part of the CombBLAS framework [31].

The direction-optimizing approach has been widely adopted, as a number of noteworthy
graph frameworks for di↵erent hardware platforms contain implementations, including Galois
(shared memory) [122], Gunrock (GPU) [158], and Grappa (cluster) [118]. The direction-
optimizing approach has also become widely adopted in the Graph500 competition [66], in-
cluding the IBM implementations [38] and CREST implementations [59] that frequently dom-
inate the top of the rankings. Additionally, an implementation of the direction-optimizing
algorithm is now the reference code for the Graph500 competition [66]. The Ligra frame-
work generalizes the direction-optimizing concept to other graph algorithms [146]. The Ligra
framework takes care of the decision of whether to go top-down (push) or bottom-up (pull)
and it also takes care of the conversion between appropriate frontier data structures. Like
this work, Ligra is only advantageous for low-diameter graphs but delivers equivalent per-
formance for high-diameter graphs.

3.8 Conclusion

A low-diameter graph features short paths between nearly every pair of vertices. The mul-
titude of these short paths lead to great interconnectedness amongst the vertices, making
many of these paths redundant. This path redundancy manifests itself during a top-down
traversal when the frontier is large and most edge examinations fail to discover an unvisited
vertex. Most of the edges within this large frontier stay within the frontier (peer edges) and
are thus unnecessary to examine since they do not help identify the next frontier. Transi-
tioning to the bottom-up approach avoids the redundancy of the large frontier by considering
the remainder of the graph which is less redundant. With the help of the bottom-up ap-
proach, the direction-optimizing approach is able to dramatically reduce the number of edges
examined to deliver a substantial speedup.

The results of this work demonstrate the performance improvement potential of integrat-
ing the bottom-up approach into BFS, but it will not always be advantageous. Fortunately,
the same top-down implementation that is used for the steps when the frontier is small can
be used for entire searches when the bottom-up approach is not advantageous. The heuristic
will allow this to happen automatically, as searches that do not generate a massive fron-
tier will not trigger the transition. In this sense, the bottom-up approach can be seen as a
low-risk, powerful way to accelerate a BFS on a low-diameter graph.

CHAPTER 3. DIRECTION-OPTIMIZING BREADTH-FIRST SEARCH 36

High-diameter graphs will not benefit from the bottom-up approach, but they are much
easier to partition and rearrange for locality, making them easier to parallelize than low-
diameter graphs. This work presents an algorithmic innovation to accelerate the processing
of the more di�cult-to-parallelize graphs for BFS.

Our direction-optimizing approach yields the current best-known BFS performance for
low-diameter graphs. The success of transitioning to the bottom-up approach on a large
frontier can be interpreted as a philosophical lesson: When confronted with a great deal of
work to do, instead consider the desired result and work backwards.

37

Chapter 4

GAP Benchmark Suite

In this chapter, we present our Graph Algorithm Platform (GAP) Benchmark Suite to
address the shortcomings we observe in graph processing research evaluations. In addi-
tion to specifying the benchmark and describing the reference implementation, we also in-
clude the rationale for many of our decisions and recount the lessons learned from prior
work. In Chapter 5, we use the workload specified by this benchmark for our characteriza-
tion study. Our benchmark specification and reference implementation are available online
(gap.cs.berkeley.edu/benchmark.html).

4.1 Introduction

A lack of a standard for evaluations has clouded the results from the growing body of
graph processing research. To compare a new result to prior work, ideally everything other
than the new contribution should be the same. Unfortunately, there is often insu�cient
overlap between di↵erent published results to make such meaningful comparisons. Simple
methodology di↵erences (e.g., treating input edges as directed or undirected) can impact
performance by more than the claimed improvement. Even for a particular well-known graph
problem, there are often many variations (e.g., tracking parent vertices or vertex depths for
breadth-first search) that alter what optimizations are possible. The input graphs themselves
can be misleading, as similar or identical names can refer to very di↵erent graph datasets.
A standard for graph processing evaluations could combat these problems.

Other graph processing evaluation mistakes would be harder to make if there is a well-
known evaluation standard. With a standard set of diverse input graphs, if an optimization
is only compatible with certain topologies, this weakness could be exposed. A standard set
of input graphs could also prevent the use of graphs that are trivially small or unrealisti-
cally synthetically generated. A standard high-quality reference implementation could help
discourage the use of low-performance baselines.

We present the GAP Benchmark Suite to ameliorate these evaluation concerns. The
benchmark specifies graph kernels, input graphs, and measurement methodologies. The

CHAPTER 4. GAP BENCHMARK SUITE 38

benchmark also includes an optimized reference implementation that is representative of
state-of-the-art performance [60]. To create our benchmark, we learned from the best prac-
tices of the community, and we co-developed this benchmark with our graph workload char-
acterization (Chapter 5). An important lesson from our characterization is the importance
of putting together a diverse workload consisting of multiple kernels and input graphs.

A key aspect of our benchmark is the benchmark specification [18]. Other research
e↵orts have released their code [105, 122, 146, 153], which eases comparisons to themselves,
but the evaluator is still responsible for creating a workload and an evaluation methodology.
Furthermore, since these frameworks were developed independently, they may require some
modification to ensure the implementations are computing the same thing and using the
same timing practices.

The benchmark specification and the reference implementation are two separate artifacts
that can be used independently. By specifying the benchmark explicitly, any implemen-
tation on any platform that conforms to the benchmark’s specifications can be compared.
Consequently, these benchmark-compliant comparisons do not require the use of our refer-
ence implementation. Additionally, the reference implementation can be used to execute
workloads other than the benchmark.

This benchmark suite can be used in a variety of settings. Graph framework devel-
opers can demonstrate the generality of their programming model by implementing all of
the benchmark’s kernels and delivering competitive performance on all of the benchmark’s
graphs. Algorithm designers can use the input graphs as a workload and the reference
implementation as a baseline to demonstrate their contribution. Platform designers and
performance analysts can use the suite as a workload representative of graph processing.

Our reference implementation targets shared memory multiprocessor systems, but that
platform is not required to use this benchmark. Our benchmark focuses on the execution
of the graph kernels and does not consider the time required to load the graph data or
to build the graph itself. Di↵erent platforms might load the graphs in di↵erent manners,
but the input graphs, kernels, and methodologies are all platform-agnostic. Semi-external
memory approaches could demonstrate their competitiveness with shared memory baselines.
A distributed graph framework should prove itself worthy of cluster resources by substantially
outperforming an optimized baseline running on a single node instead of only comparing
against itself running on a single node [105].

4.2 Related Work

There have been prior attempts at graph benchmark suites, and we try to leverage their
strengths. Unfortunately, none of the prior benchmarks are without weaknesses, and we
created our GAP Benchmark Suite to improve graph processing evaluations.

The Graph 500 [66] competition has been a great success for the graph community, so
we use its strengths and expand upon them. Graph 500 has strong community adoption
that has led to innovation in both algorithms and implementations. For example, the top

CHAPTER 4. GAP BENCHMARK SUITE 39

finisher from the first competition in November 2010 is 5450⇥ slower than the most recent
top finisher (June 2016), and it would place no higher than 116th in the current rankings.
The biggest shortcomings of Graph 500 are its focus on one kernel (breadth-first search)
and only one synthetic input graph topology (Kronecker). Although there are e↵orts to add
additional kernels to Graph 500, they are still under review [67].

The Scalable Synthetic Compact Applications #2 (SSCA) [12] specifies a synthetic ap-
plication consisting of four graph kernels. These kernels combined are intended to model a
graph analysis workload, and they operate on a single synthetically-generated RMAT [36]
graph. The four kernels are: building the graph, finding the largest weight edges, extracting
subgraphs, and computing betweenness centrality scores. SSCA is a well-designed bench-
mark, which includes both a specification and clear reference code. We improve upon SSCA
by considering more graph kernels and more input graph topologies. In particular, our input
graphs include real-world datasets.

The Problem-based Benchmark Suite (PBBS) [147] is another noteworthy benchmark
e↵ort. We improve upon it by providing substantially higher performance reference code,
using real-world graphs, and focussing on graph algorithms alone.

After our benchmark’s initial release, two more graph benchmarks have been released:
CRONO [3] and GraphBIG [116]. CRONO is designed for future tiled manycore systems,
while GraphBIG supports both conventional multiprocessors and GPUs. GraphBIG also
provides a useful taxonomy of graph kernels, and GraphBIG’s greatest strength is its focus on
applications. Unfortunately, both benchmarks make some of the mistakes our benchmark is
designed to fix. Both CRONO and GraphBIG do not explicitly specify what they benchmark,
which complicates comparisons because users must examine their code to infer what they are
benchmarking. Additionally, the input graphs used by both benchmarks are small relative
to the platforms they execute on. The largest graphs in our benchmark are 50⇥ larger than
the largest graph in CRONO and 25⇥ larger than the largest graph in GraphBIG. Finally,
their included reference implementations do not provide competitive performance.

4.3 Benchmark Specification

This work is motivated by the evaluation shortcomings we observe in prior work. We created
this benchmark based on our experiences competing in Graph500 [15], performing our work-
load characterization (Chapter 5), and analyzing prior work (Appendix A). We designed
this benchmark with the following goals in mind, each intended to solve existing evaluation
problems:

• Explicit benchmark specifications to standardize evaluations in order to improve com-
parability and reduce confusion

• Diverse representative workload to ensure evaluations have relevant target

CHAPTER 4. GAP BENCHMARK SUITE 40

• High-quality reference implementation to ground evaluations with strong baseline per-
formance

In this section, we specify the benchmark by describing the graph kernels and input
graphs. We also describe the required evaluation methodologies and provide rationale for
our decisions.

Graph Kernels

We select six kernels based on how commonly they are used (Appendix A). These kernels
are representative of many applications within social network analysis, engineering, and sci-
ence. This set of kernels is computationally diverse, as it includes both traversal-centric and
compute-centric kernels. Across the suite, di↵erent kernels will consider or ignore di↵erent
properties of the graph including edge weights and edge directions. For more background on
what the algorithms compute, please consult Section 2.4. To remove ambiguity, we describe
which variant of each graph problem we require and what constitutes a correct solution.

• Breadth-First Search (BFS)
We make BFS into a kernel by tracking the parent vertices during the traversal, akin
to Graph 500 [66]. For any reached vertex, there is often more than one possible parent
vertex, as any incoming neighbor with a depth one less than the reached vertex could
be a parent. Multiple legal parent vertices cause there to be more than one correct
solution to BFS from a given source vertex. For this reason, we define the correct
solution to BFS starting from a source vertex to be a parent array that satisfies the
following:

– parent[source] = source

– parent[v] = -1 if v is unreachable from source

– if v is reachable and parent[v] = u, there exists an edge from u to v

– if v is reachable and parent[v] = u, depth[v] = depth[u] + 1

Some uses of BFS only track reachability or depth, but we choose to track the parent
since it is the most helpful to the community. If we instead chose to track reachability,
there would be no way to verify the traversal was performed in a breadth-first manner,
because reachability only returns a boolean value for each vertex. Tracking depth
would be a better choice than reachability since it allows for verifying the traversal,
but BFS implementations that track depth can perform optimizations not possible in
the more challenging BFS implementations that track parents [106].

• Single-Source Shortest Paths (SSSP)
For SSSP, we require the distances of the shortest paths. We do not request the parent
vertices, since BFS already provides this. There is a unique solution to our variant

CHAPTER 4. GAP BENCHMARK SUITE 41

of SSSP, since the solution is the distances and not the shortest paths themselves.
Although there may be more than one shortest path between two vertices, all shortest
paths will have the same distance. All of our benchmark graphs have positive edge
weights. We define the correct solution of SSSP to be the distance array from a source
vertex such that:

– distance[source] = 0

– distance[v] = 1 (or some known sentinel value) if v is unreachable from source

– if v is reachable from source, there is no path of combined weight less than dis-
tance[v] from the source to v

• PageRank (PR)
For PR, we require the PageRank scores for all of the vertices such that a single addi-
tional iteration will change all of the scores by a sum of less than 10�4. More formally,
if the benchmark kernel returns scores PR

k

and a classical implementation generates
PR

k+1 in one iteration from PR
k

, a solution is correct if it obeys the tolerance:

X

v2V

|PR
k

(v)� PR
k+1(v)| < 10�4

Selecting the required tolerance is a tradeo↵ between score convergence and execution
time. We pragmatically select 10�4 since the scores will have mostly converged and it
results in a reasonable number of iterations (5 - 20) for most graphs. Our tolerance
bound also implicitly allows for a little numerical noise due to di↵erences in accumu-
lation order. We allow for more advanced implementations as long as they meet this
bound and any changes to the graph or preprocessing optimizations are included in
the trial time.

• Connected Components (CC)
For CC, we require all vertices to be labelled by their connected component and each
connected component to get its own unique label. If the graph is directed, we only
require weakly connected components, so if two vertices are in the same connected
component, it is equivalent to there being a path between the two vertices if the graph’s
edges are interpreted as undirected. Vertices of zero degree (disconnected) should each
get their own label. To define correctness, we require the following equivalence relation:

– vertices u and v have the same component label if and only if there exists an
undirected path between u and v

• Betweenness Centrality (BC)
For BC, we require the approximate BC scores for all vertices, and these centrality
scores should be normalized to one. For the approximation, the BC scores should
be computed by considering the shortest paths from 4 di↵erent sources. We expect

CHAPTER 4. GAP BENCHMARK SUITE 42

most implementations to accomplish this by using Brandes algorithm [29] and per-
forming 4 BFS traversals, but the use of Brandes algorithm is not required. The BC
implementation should treat all input graphs as unweighted.

For correctness, we recommend comparing the output to the output from a simple
correct implementation of an alternate algorithm using the same source vertices. In this
case, the verifier may need to allow for a little numerical noise since the accumulations
can happen in di↵erent orders.

• Triangle Counting (TC)
For TC, we define the correct solution to be the total number of triangles within the
input graph. We define a triangle to be three vertices that are directly connected to
each other (clique of size 3). A triangle is invariant to permutation, so the same three
vertices should be counted as only one triangle no matter the order in which they
are listed. Additionally, for our definition of a triangle, we ignore the directions of
the edges, so the input graph can be interpreted as undirected. For TC, the solution
is unique, so comparing the result is trivial. Unfortunately, there is no easy way to
verify the total number of triangles without actually computing it. For verification, we
recommend comparing the result from the benchmark implementation with the result
from an alternate implementation.

Input Graphs

We select five input graphs for our benchmark and they are diverse in both topology and
origin (synthetic versus real-world). Our real-world data models the connections between
people, websites, and roads. The graph sizes are selected to be small enough to fit comfort-
ably in most servers’ memory yet large enough to be orders of magnitude bigger than the
processors’ caches. When selecting real-world benchmark graphs, we considered the ease of
users acquiring the graph data and the graphs selected are amongst the easiest to obtain
both in terms of licensing requirements and bandwidth availability. For more information
on the graphs and their topological properties, please consult Section 2.3.

• Twitter (|V |=61.6M, |E|=1,468.4M, directed) is an example of a social network topol-
ogy [91]. This particular crawl of Twitter has been commonly used by researchers and
thus eases comparisons with prior work. By virtue of it coming from real-world data, it
has interesting irregularities and the skew in its degree distribution can be a challenge
for some implementations.

• Web (|V |=50.6M, |E|=1,949.4M, directed) is a web-crawl of the .sk domain (sk-2005) [47].
Despite its large size, it exhibits substantial locality due to its topology and high av-
erage degree.

CHAPTER 4. GAP BENCHMARK SUITE 43

• Road (|V |=23.9M, |E|=58.3M, directed) is all of the roads in the USA [50]. Although
it is substantially smaller than the rest of the graphs, it has a high diameter which can
cause some synchronous implementations to have long runtimes.

• Kron (|V |=134.2M, |E|=2,111.6M, undirected) uses the Kronecker synthetic graph
generator [94] with the same parameters as Graph 500 (A=0.57, B=C=0.19, D=0.05) [66].
It has been used frequently in research due to Graph 500, so it also provides continuity
with prior work.

• Urand (|V |=134.2M, |E|=2,147.4M, undirected) is synthetically generated by the
Erdős–Réyni model (Uniform Random) [58]. With respect to locality, it represents
the worst case as every vertex has equal probability of being a neighbor of every other
vertex. When contrasted with the similarly sized kron graph, it demonstrates the
impact of kron’s scale-free property.

All of the graphs except road are unweighted, so weights must be added to the graphs
before executing SSSP. To generate weights for the other graphs, we adopt the practice from
Graph 500’s SSSP proposal of using uniformly distributed integers from 1 to 255 [67]. We
recommend using our reference code for generating these weights as it is deterministic.

Measurement Methodologies

Given the input graphs and kernels, we now specify the measurement methodologies. Build-
ing on the success of Graph 500 [66], we reuse many of its best practices.

Executing only a subset of the benchmark kernels is allowed, as some users of this suite
may only be investigating a single graph problem. However, it is highly recommended to
always use all of the input graphs as they are selected to be diverse. A new innovation may
not work well for all input graphs, so it is important to understand the topologies for which
the innovation is advantageous.

Since the benchmark does not focus on graph loading or graph building, each trial can
assume the graph is already loaded. For example, on a shared-memory multiprocessor, a
loaded graph might reside completely in memory in the CSR format. There are no restrictions
on the layout of the graph in memory, however, the same graph layout must be used for all
kernels. Any optimizations done to the graph layout must not be beneficial to only one
algorithm. It is legal to remove duplicate edges and self-loops from the graph. It is also
legal to reorder the neighbors of a vertex. If the graph is anyhow transformed or converted
from the format used for the other kernels, the graph conversion time should be included in
the trial time. If the graph is relabelled, outputs of the graph kernel must use the original
vertex labels and this label conversion time should also be included in the trial time.

We select the number of trials each kernel should run with the goal of minimizing eval-
uation time while capturing enough samples to return significant results. In general, the
kernels can be grouped into two classes: “single-source” kernels take a source vertex to start
from and “whole-graph” kernels process the entire graph every time in the same way. For

CHAPTER 4. GAP BENCHMARK SUITE 44

Kernel Trials Output per Trial
BFS 64 trials from 64 sources |V |-sized array of 32-bit integers (vertex identifiers)
SSSP 64 trials from 64 sources |V |-sized array of 32-bit integers (distances)
PR 16 trials |V |-sized array of 32-bit floating point numbers
CC 16 trials |V |-sized array of 32-bit integers (component labels)
BC 16 trials each from 4 sources |V |-sized array of 32-bit floating point numbers
TC 3 trials 64-bit integer (number of triangles)

Table 4.1: Trial counts and output formats for benchmark kernels

single-source kernels (BFS, SSSP, and BC), there is naturally substantial variation in exe-
cution time so we execute 64 trials from di↵erent source vertices. The source vertices are
randomly selected non-zero degree vertices from the graph, and we recommend the vertex
selector from the reference code as it is deterministic. For the whole-graph kernels (PR, CC,
and TC), we execute just enough trials to capture any performance non-determinism. We
reduce the number of trials for TC since most implementations typically have little variance
in execution time and the execution time for TC is typically orders of magnitude longer than
the rest of the suite. The trial counts are summarized in Table 4.1.

Each trial of a kernel should be timed individually and it should include every aspect
of its execution. Each trial can assume the graph is already loaded. Any time to construct
data structures other than the graph used by the kernel, including memory allocated for
the solution, must be included in the trial time. Additionally, the graph is the only data
structure that can be reused between trials, as the purpose of repeated trials is to measure
variance, not to amortize optimizations.

For each kernel, there must be only one implementation used for all input graphs. If
di↵erent approaches will be better for di↵erent graph topologies, they should be combined
into a hybrid implementation that includes a runtime heuristic (included in kernel time) to
decide which approach to use. The same restriction applies to tuning parameters. None
of the kernels may take parameters specific to the input graph with the exception of a
� parameter for SSSP. We allow � because it is di�cult to achieve high-performance on
SSSP without it [128]. Fortunately, when SSSP is used in practice, � is available since
its determining factors (graph diameter and edge weight distribution) are known within an
application domain. For more information on delta-stepping and the impact of �, please see
Section 6.3. A kernel can take tuning parameters specific to the hardware platform that are
the same for all input graphs.

The particular output formats are summarized in Table 4.1. Our benchmark allows for
the use of 32-bit vertex identifiers, which is in contrast to Graph 500 which requires at least
48-bit vertex identifiers. Unlike Graph500, for our benchmark, the graphs are of a known size
and 32 bits comfortably accommodates them. Using larger identifiers unnecessarily penalizes
the performance of cache-based systems, as none of the graphs will utilize more than 28 bits

CHAPTER 4. GAP BENCHMARK SUITE 45

per identifier. However, benchmark implementations must support graphs with more than
232 edges, and this is typically accomplished with 64-bit pointers. This mix of 32-bit and
64-bit types may seem inconsistent, but this is common practice due to the size of graphs
that can fit within the memory of today’s multiprocessor platforms. When the memory
capacity of systems increases substantially, the input graphs will need to be expanded and
this requirement may be increased.

4.4 Reference Implementation

In addition to the benchmark specification, we also provide a reference implementation
that includes all six benchmark kernels. This implementation serves multiple purposes.
At a minimum, the implementation is compliant with the benchmark specifications and
can serve as a high-performance baseline for evaluations. The implementation implements
state-of-the-art algorithms that provide it with competitive performance that is the best for
some of the kernels. Additionally, the implementation serves an educational purpose, as it
clearly demonstrates how to implement some leading algorithms that may not be clearly
described by their original algorithmic descriptions. Furthermore, the implementation can
help researchers, as much of the infrastructure can be reused as a starting point for high-
performance graph algorithm implementations.

To serve all of these purposes, extra e↵ort has been taken to improve code quality. Doing
so not only helps those that read it, but it also makes it easier to modify and more portable.
Our code follows Google’s C++ style guide [65] and uses many best practices for C++ soft-
ware engineering [82, 108]. Our code leverages many of the features of C++11 that allow us
to program safely without any loss of performance. For example, the kernel implementations
and most of the core infrastructure do not perform manual memory management or even use
pointers. For parallelism, we leverage OpenMP (version 2.5 or later) and restrict ourselves
to its simpler features in order to keep our code portable. We have successfully built and
run our code on the x86, ARM, SPARC, and RISC-V ISA’s using the gcc, clang, icc, and
suncc compilers.

The core infrastructure for our reference code includes support for loading graphs from
files, synthetically generating graphs, and building graphs in memory. We support multiple
file formats, including the popular METIS [86] and Matrix Market formats [25]. As a fallback
method for importing graphs into our infrastructure, we also support an extremely simple
plain text format that is easy to convert to. Once our infrastructure has built a graph, it
can serialize it to a file so later invocations can simply load the serialized graph directly into
memory to skip building the graph. Loading the serialized graph saves time and reduces peak
memory consumption. We also provide synthetic graph generators for urand and kron. The
synthetic graph generators take advantage of seeding and C++11’s strict random number
generator specifications to deterministically produce the same graph in parallel even on
di↵erent platforms or with di↵erent numbers of threads.

CHAPTER 4. GAP BENCHMARK SUITE 46

Our reference code includes testing throughout. In addition to testing the code for loading
a graph from a file, generating a graph synthetically, or building a graph in memory, our
kernel implementations can verify the correctness of their outputs. When there is more than
one correct output (BFS, PR, and CC), our verifiers test the output for the properties of a
correct solution. For the other kernels (SSSP, BC, and TC), we compare the output from the
benchmark implementation to the output of a simple serial implementation that implements
the kernel with a di↵erent algorithm.

In the remainder of this section we describe some of the most noteworthy or novel opti-
mizations employed by our kernel implementations, but we recommend examining the code
itself [60] to answer detailed questions.

• Breadth-First Search (BFS)
For BFS, we implement the state-of-the-art direction-optimizing algorithm [16], and
we describe our implementation and its optimizations in great detail in Chapter 3.

To verify the output of our BFS implementation, we test for the properties this bench-
mark specifies for BFS. We check that the parent of the source is the source. We check
that there is an edge from the parent of v to v. Finally, we use a trivial serial BFS
implementation to obtain the depths of all vertices from the source, and we use those
depths to check that parents have depth one less than their children.

• Single-Source Shortest Paths (SSSP)
For SSSP, we implement the delta-stepping algorithm [107] with some implementation
optimizations from Madduri et al. [100]. For a description of the delta-stepping al-
gorithm and the impact of the � parameter, please refer to the third case study in
Section 6.3. A common challenge for implementing delta-stepping is implementing the
bins used to radix sort the vertices by distance. These bins are challenging to im-
plement correctly because they need to be high-performance and support concurrent
insertions. This task is further complicated by determining the sizes of these shared
bins. If the bins are allowed to grow, they must be able to grow concurrently. If the bins
are sized su�ciently large to not need to grow, there is the possibility of substantial
wasted memory capacity.

We sidestep the challenge of implementing high-performance, concurrent, resizable
bins by using thread local bins. Since the bins are thread local, there are no atomicity
concerns and we can use existing serial resizable containers. To allow for work-sharing
across threads, we use a single shared bin. This shared bin holds the vertices within the
current minimum distance range. The shared bin is easy to implement since the threads
only need read-only access. Every iteration, we copy all of contents of the thread-local
bins for the minimum distance range into the shared bin. Since these aggregations are
done in bulk, there is much less contention, which improves performance. Since there
is only a single shared bin, it can be over-allocated such that it does not need to grow.
Our design decision to use thread-local bins greatly simplifies our implementation as
there are no longer parameters to tune for bin size or the number of bins to pre-allocate.

CHAPTER 4. GAP BENCHMARK SUITE 47

To verify the output of our SSSP implementation, we compare the distances to the
output of a simple serial implementation of Dijkstra’s algorithm. If the edge weights
and distances are floating point, there are fortunately no concerns about numerical
reproducibility. All known practical SSSP implementations add the edge weights in
the same order, starting from the root vertex continuing along the shortest path.

• PageRank (PR)
For PR, we implement the naive iterative approach that is quite similar to sparse
matrix vector multiplication (SpMV). In Chapter 7, we discuss implementation con-
siderations for PR, including the tradeo↵s between implementing PR in the push or
pull directions. To avoid the use of atomic memory operations, we perform all updates
in the pull direction. Unlike the rest of our implementations in this suite, for PR we
deliberately choose to not implement the most sophisticated state-of-the-art algorithm
in order to be easily comparable. PR is the most commonly used benchmark, and
most often it is implemented in this same classical way. By using the classic approach,
our implementation can be directly compared to many implementations since they will
both perform the same amount of algorithmic work. Furthermore, many optimized
implementations not only change the amount of algorithmic work, but in actuality do
not obtain the tolerance bounds they advertise. Our benchmark specification allows
for optimized PageRank implementations, but they must meet the tolerance bounds.
Our implementation computes the tolerance every iteration and can be sure it is met
when it decides to terminate.

We verify the output of our PR implementation by performing an additional iteration
and computing the sum of the scores’ changes. To contrast from our reference imple-
mentation, our verifier’s implementation is serial and performs updates in the push
direction.

• Connected Components (CC)
For CC, we implement the Shiloach-Vishkin [144] algorithm with parallelization tech-
niques from Bader et al. [11].

We verify the result of our CC implementation by checking for the equivalence stated
in the CC specification. We accomplish this by performing a single traversal for each
label. During each traversal, we check that a di↵erent label is not encountered. After
all of these traversals, we assert that every vertex has been reached by a traversal. If
two components share the same label, they will have unreached vertices because there
is only a single traversal per label. Vertices of zero degree have their own label so they
will each be traversed trivially.

• Betweenness Centrality (BC)
For BC, we implement a fine-grained parallelization of Brandes [29] algorithm with
the lock-free improvements from Madduri et al. [101]. To obtain a slight speedup and

CHAPTER 4. GAP BENCHMARK SUITE 48

a large reduction in memory use, we record the successors identified during the BFS
pass in a bitmap instead of a list for each vertex.

We verify the output of our BC implementation by comparing it to the output from a
simple serial implementation. Our verifier implementation also uses Brandes algorithm,
however, it is implemented in a di↵erent way and it does not record the successors
during the BFS pass.

• Triangle Counting (TC)
For TC, we implement two well-known optimizations [42]. To count triangles, we sum
the sizes of the overlap between a vertex’s neighbor list and its neighbors’ neighbor
lists. Our first optimization leverages our neighbor lists being sorted and terminates
these intersection computations once the triangles found will not obey the invariant of
u > v > w. Terminating these intersection computations early prevents each triangle
from being counted six times. Our second optimization relabels the graph by degree,
so when the first ordering optimization is applied, we get additional algorithmic sav-
ings. Relabelling the graph is compute-intensive, but counting triangles exactly is also
compute-intensive so the relabelling optimization is often worthwhile even for a single
execution. We find relabelling the graph is typically beneficial for scale-free graphs,
and we use a heuristic to decide when to do it. Our heuristic samples the degrees of
vertices and decides if the degree distribution is su�ciently skewed by comparing the
sample’s median degree with the graph’s average degree.

We verify the total from our TC implementation by comparing it the total returned
by a trivial serial implementation that uses a standard library implementation of set
intersection. Our simple verifier implementation counts each triangle six times so we
divide its initial total by six.

4.5 Conclusion

We believe our GAP Benchmark Suite provides a solution to many of the problems plagu-
ing evaluations in the graph processing research community. By separating our benchmark
specification from our reference implementation, we allow other compliant implementations
to be easily compared. Our benchmark workload is diverse and features large real-world
graphs. Finally, our reference implementation provides a high-performance baseline for fu-
ture research to compare against. We designed our benchmark based on current workloads
and platform memory capacities. To allow for future changes necessitated by new workloads
or larger systems, we version both the benchmark specification and the reference implemen-
tation. We have already updated both more than once. Since our benchmark suite’s initial
release, the reference implementation has already been used as a baseline to evaluate two
new architecture proposals [113, 126]. We hope others use our benchmark to improve their
graph processing evaluations.

49

Chapter 5

Graph Workload Characterization

In this chapter, we characterize the graph processing workload specified by our benchmark
in the previous chapter. With our measurements, we determine the most important factors
of the hardware platform for graph algorithm performance.

5.1 Introduction

To best understand graph algorithm performance, we analyze the performance of three high-
performance graph processing codebases each using a di↵erent parallel runtime, and we
measure results for these graph libraries using five di↵erent graph kernels and a variety of
input graphs. We use microbenchmarks and hardware performance counters to analyze the
bottlenecks these optimized codes experience when executed on an Intel Ivy Bridge server.
We derive the following insights from our analysis:

• Memory bandwidth is not fully utilized - Surprisingly, the other bottlenecks described
below prevent the o↵-chip memory system from achieving full utilization on well-tuned
parallel graph codes. In other words, there is the potential for significant performance
improvement on graph codes with current o↵-chip memory systems.

• Graph codes exhibit substantial locality - Optimized graph codes experience a moder-
ately high last-level cache (LLC) hit rate.

• Reorder bu↵er size limits achievable memory throughput - The relatively high LLC hit
rate implies many instructions are executed for each LLC miss. These instructions fill
the reorder bu↵er in the core, preventing future loads that will miss in the LLC from
issuing early, resulting in unused memory bandwidth.

• Multithreading has limited potential for graph processing - In the context of a large
superscalar out-of-order multicore, we see only modest room for performance improve-
ment on graph codes from multithreading, and that is likely achievable with only a
modest number of threads (two) per core.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 50

Graph Description Ve
rt
ice
s (
M
)

Ed
ge
s (
M
)

De
gr
ee

De
gr
ee

Di
st
rib
ut
io
n

Di
am
et
er

Road USA road network [50] 23.9 58.3 2.4 bounded 6,277
Twitter social network [91] 61.6 1,468.4 23.8 power 7
Web crawl of .sk domain [47] 50.6 1,949.4 38.5 power 13
Kron Kronecker generator [66, 94] 134.2 2,111.6 15.7 power 5
Urand uniform random [58] 134.2 2,147.4 16.0 normal 6

Table 5.1: Graphs used for characterization

We also confirm conventional wisdom that the most e�cient algorithms are often the
hardest to parallelize, and that these algorithms have their scaling hampered by load im-
balance, synchronization overheads, and non-uniform memory access (NUMA) penalties.
Additionally, we find that di↵erent input graph sizes and topologies can lead to very di↵er-
ent conclusions for algorithms and architectures, so it is important to consider a range of
input graphs in any analysis.

Based on insights from our empirical results, we make recommendations for future work
in both hardware and software to improve graph algorithm performance.

5.2 Methodology

To generate a representative graph workload, we select the graph kernels and input graphs
from the GAP Benchmark and execute them with three di↵erent high-performance graph
codebases running on a modern high-end server. Unless otherwise stated, we measure the
full workload for each system configuration on all 75 combinations of codebases (3), kernels
(5), and input graphs (5).

Characterization Workload: Kernels, Graphs, and Frameworks

The five graph kernels we selected from the GAP Benchmark are:

• Breadth-First Search (BFS)

• Single-Source Shortest Paths (SSSP)

• PageRank (PR)

• Connected Components (CC)

• Betweenness Centrality (BC)

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 51

Core System
Architecture Ivy Bridge EP Released Q3 2013
Intel Model E5-2667 v2 # Sockets 2
Clock rate 3.3GHz Cores/socket 8
Threads/core 2 LLC/socket 25MB
TLB 4KB Entries 64 L1, 512 L2 DRAM Capacity 128GB
TLB 2MB Entries 32 DRAM Type DDR3-1600
TLB 1GB Entries 4 DRAM DIMMs 16

Table 5.2: Specifications for IVB system used for characterization

We omit Triangle Counting as it is not available in two of the codebases and its runtime
is too onerous when executed by only a single core. We use the five input graphs from the
GAP Benchmark, and we re-list them in Table 5.1. The GAP suite is diverse, as it includes
both real-world and synthetic data, both low-diameter and high-diameter graphs, and both
mesh and social network topologies. Please refer to Chapter 2 for more information on the
graphs or algorithms and Chapter 4 for the GAP Benchmark’s rationale for selecting them.

For this study, we use three of the fastest graph codebases available, which each use a
di↵erent parallel runtime.

Galois uses its own custom parallel runtime specifically designed to handle irregular fine-
grained task parallelism [122]. Algorithms implemented in Galois are free to use au-
tonomous scheduling (no synchronization barriers), which should reduce the synchro-
nization otherwise needed for high-diameter graphs. Additionally, Galois’ scheduler
takes into consideration the platform’s core and socket topology.

Ligra uses the Cilk [24] parallel runtime and is built on the abstractions of edge maps
and vertex maps [146]. When applying these map functions, Ligra uses heuristics to
determine in which direction to apply them (push or pull) and what data structures
to use (sparse or dense). These optimizations make Ligra especially well suited for
low-diameter graphs.

GAP Benchmark Suite (GAPBS) is our reference implementation [18, 60] for the GAP
Benchmark (Section 4.4). GAPBS is a collection of high-performance implementations
written directly in OpenMP with C++11. Since GAPBS is not a framework, it does
not force common abstractions onto all implementations, but instead frees each to do
whatever is appropriate for a given algorithm.

All three codebases are competitive, and depending on the input graph or kernel, a di↵er-
ent codebase is the fastest. For descriptions of the implementations and their parallelization
strategies, we refer the reader to the original publications.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 52

Hardware Platform

To perform our measurements, we use a dual-socket Intel Ivy Bridge server (IVB), similar to
what one would find in a datacenter (Table 5.2). To access hardware performance counters,
we use Intel PCM [81] and PAPI [112]. We compile all code with gcc-4.8, except Ligra, which
uses Cilk Plus gcc-4.8. To ensure consistency across runs, we disable Turbo Boost (dynamic
voltage and frequency scaling).

When reporting memory tra�c from the performance counters, we focus on memory
requests caused by LLC misses, as these are the most problematic for performance. We
do not include prefetch tra�c measurements because they obscure the results, but benefits
of successful prefetching appear indirectly as fewer cache misses. During our study, we
observed IVB intelligently prefetching aggressively when the memory bandwidth utilization
would otherwise be low, but ceasing prefetching when the application is using a large fraction
of the memory bandwidth. That is the hardware prefetcher does not prevent full memory
bandwidth utilization.

5.3 Memory Bandwidth Potential

Any LLC miss will cause even a large out-of-order processor to stall for a significant number
of cycles. Ideally, while waiting for the first cache miss to resolve, at least some useful
work could be done, including initiating loads early that will cause future cache misses.
Unfortunately, a load must satisfy the following four requirements before it can be issued:

1. Processor fetches load instruction - Control flow reaches the load instruction (possibly
speculatively).

2. Space in instruction window - The Reorder Bu↵er (ROB) is not full.

3. Register operands are available - The load address can be generated.

4. Memory bandwidth is available - At the core level there is a miss-status holding register
(MSHR) available and there is not excessive contention within the on-chip interconnect
or at the memory controller.

If any of the above requirements are not met, the load will be unable to issue. In particular,
memory bandwidth cannot be a bottleneck unless the first three requirements are satisfied,
thus the other factors can prevent memory bandwidth from being fully utilized.

We execute a parallel pointer-chase as a synthetic microbenchmark on our IVB platform
to understand the interactions between the requirements for issuing a load and to quantify the
platform’s limits. A parallel pointer-chase exposes the needed parameters to control which
load requirements are in e↵ect, but is otherwise quite simple [2, 120]. With a single pointer-
chase, there is no memory-level parallelism (MLP) and the memory latency is exposed since
requests must be completed serially. To generate more MLP, we simply add more parallel
pointer chases to the same thread (Figure 5.1).

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 53

for (int i=0; i<n; i++) {

ptr1 = *ptr1

ptr2 = *ptr2

:

ptrk = *ptrk

}

Figure 5.1: Parallel pointer-chase microbenchmark for k-way MLP

To force loads to access the memory system beyond the on-chip caches, we set pointers
to point randomly within an array sized large enough such that LLC hit rates are less than
1.5% (typically � 2 GB). We report bandwidths in terms of memory references per second as
measured by performance counters. We also report achieved bandwidths in terms of e↵ective
MLP, which is the average number of memory requests in flight according to Little’s Law
(memory bandwidth ⇥ memory latency). It is worth distinguishing this from application
MLP, which is how much memory-request parallelism is allowed by the application’s data
dependencies, which will be always greater than or equal to the achieved e↵ective MLP.

Our simple microbenchmark is designed to trivially satisfy the first two requirements
above, allowing us to focus on and measure the last two. Branch mispredictions should
be rare since the loop repeats many times, so fetching the load instructions should not be
hindered. The microbenchmark is a tight loop, so there should be a relatively high density
of loads and the microbenchmark randomly accesses a large array, so the vast majority of
the loads should miss the LLC. Frequent cache-missing loads reduces the impact of the
instruction window size (168 for Ivy Bridge). By changing the number of parallel pointer-
chases, we can artificially control the maximum application MLP possible, which allows us
to moderate the operand availability requirement. We can then observe what bandwidths
are possible and even what the bandwidth limits are.

Figure 5.2 shows the microbenchmark results for a single core. The local memory latency
is 86 ns (MLP=1). Local bandwidth for a single thread appears to saturate when MLP�10,
implying the core supports 10 outstanding misses, and this is confirmed by published sources
on the Ivy Bridge microarchitecture [80]. Using a second thread on the same core does not
change the maximum bandwidth regardless of how the outstanding memory requests are
spread across the two threads.

To see the impact of Non-Uniform Memory Access (NUMA) on our dual-socket system,
instead of allocating the memory being used by our microbenchmark on the same socket
(local), we allocate on the other socket (remote) or interleaved across both sockets (inter-
leaved). NUMA may introduce bandwidth restrictions, but for a single core in isolation,
the primary consequence is a doubling of the latency (⇡184 ns). When accessing remote
memory, the maximum bandwidth is halved due to the same number of outstanding data
requests experiencing twice the latency.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 54

Figure 5.2: Memory bandwidth achieved by parallel pointer chase microbenchmark (random)
in units of memory requests per second (left axis) or equivalent e↵ective MLP (right axis)
versus the number of parallel chases (application MLP). Single core using 1 or 2 threads and
di↵ering memory allocation locations (local, remote, and interleave).

After exploring how application MLP changes bandwidth (requirement 3) and how many
outstanding misses the hardware supports (requirement 4), we now return to the impact
of the instruction window size (requirement 2). Using inline assembly, we add nops to our
pointer-chase loop, thus moving the loads farther apart in the instruction stream. To examine
the net result, we use the metric instructions per miss (IPM), which is the inverse of the
common misses per kilo-instruction metric (MPKI = 1000/IPM).

As shown in Figure 5.3, window size is an important constraint on our platform, as
bandwidth is inversely related to IPM, which confirms our intuition that memory requests
must fit in the window in order to be issued. Assuming the loads are evenly spaced, we
obtain a simple model for an upper-bound (with w as the window size):

MLP
model

= min(MLP
max

, w/IPM + 1)

For our IVB core, the maximum memory bandwidth (MLP
max

) is 10 and the instruction
window size (w) is 168. The curved region adds one because if the window can hold n IPM-
sized intervals, it can hold n + 1 endpoints. Our model is pessimistic as it assumes cache
misses are evenly spaced. If there is substantial variation in the miss interval (jitter), it is

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 55

Figure 5.3: Memory bandwidth achieved by parallel pointer chase microbenchmark with
varying number of nops inserted (varies IPM). Using a single thread with di↵ering numbers
of parallel chases (application MLP).

possible to exceed the model bound, but we find this simple model instructive for the rest
of the study as we observe bandwidth is inversely related to IPM.

Memory bandwidth can also be constrained by frequent TLB misses. The four require-
ments above are necessary for a load to issue, but once issued, missing in the TLB incurs a
latency penalty for its refill, which in turn will decrease bandwidth for the same number of
outstanding memory requests. IVB’s Linux distribution supports Transparent Huge Pages
(THP) [117], which eagerly combines consecutive 4KB pages into 2MB pages when possible.
IVB also supports 1GB pages, but these must be set aside by Linux in advance and require
substantial application code modifications. Larger pages not only reduce the chance of a
TLB miss, but they also reduce the time per TLB refill by needing fewer hops to walk the
page table and by reducing the size of the page table working set (better cache locality).

Figure 5.4 varies the page size (2MB or 1GB) and the array size (1GB or 16GB) for our
pointer-chase synthetic microbenchmark. With 2MB pages provided by THP, most loads
for both array sizes will result in a cache miss and a TLB miss (IVB has only 32 2MB
TLB entries), but the maximum bandwidth obtained with the larger array is substantially
reduced due to increases in TLB refill time (confirmed by performance counters). The TLB
refill time increases due to worse cache locality during the page table walks, as a greater
number of page table entries are needed to encompass the larger array. Using 1GB pages
restores the bandwidth because it reduces the TLB refill time by improving cache locality

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 56

Figure 5.4: Impact of 2MB and 1GB page sizes on memory bandwidth achieved by single-
thread parallel pointer chase for array sizes of small (1GB) and large (16GB).

during the page table walks. With 1GB pages, the page table for the large array will need
only 16 entries, and even though these entries will be frequently reloaded (IVB only supports
4 1GB TLB entries), the entries will likely remain in the L1 cache.

Our random microbenchmark exemplifies the worst case for the TLB, so any form of
locality will reduce the performance penalties from TLB misses. The di↵erence also becomes
more pronounced as application MLP increases because the increased concurrency increases
the refill time as there is a limit to the number of simultaneous page table walks so the
waiting time to start a walk will increase too.

We further parallelize our pointer-chase microbenchmark to see the bandwidth potential
of the entire system (Figure 5.5). We achieve a maximum system throughput of 76GB/s.
When accessing remote memory, bandwidth is halved just as in the single-core case. A core
is capable of using more than its fair share of bandwidth, as there are 8 cores per socket that
are each capable of 10 misses outstanding, but the socket appears to be e↵ectively capable
of just over 50. Compared to the single-core case (Figure 5.2), the bandwidth saturates
more gradually and requires oversubscription (application MLP > e↵ective MLP) due to
stochastic e↵ects from queuing. When loading k banks, it is statistically unlikely that with
only k random requests, there will be exactly one request per bank.

The data in this section shows the maximum achievable memory bandwidth for a core,
socket, or entire system given the amount of application MLP, IPM, memory location
(NUMA), and page size. In the following section, we measure the memory bandwidths
achieved by the high-performance graph codebases.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 57

Figure 5.5: Random bandwidth of a socket or the whole system with di↵erent memory
allocations.

5.4 Single-Core Analysis

In this section, we begin to characterize our workload using only a single thread on a single
core in order to remove any parallel execution e↵ects (multithreading, poor parallel scal-
ing, load imbalance, and NUMA penalties). Despite being amongst the highest-performance
implementations, all three codebases often execute instructions at a surprisingly low IPC
(Figure 5.6), and this disappointing performance observed is not specific to any graph algo-
rithm or codebase. The input graph does have a large impact as we will discuss later in this
section.

Figure 5.6 shows that there is an unsurprising tradeo↵ between computation and com-
munication, as no executions sustain both a high IPC and a high memory bandwidth. A
processor can only execute instructions at a high rate if it rarely waits on memory, and
hence consumes little memory bandwidth. Conversely, for a processor to use a great deal
of memory bandwidth, it must have many memory requests outstanding, causing it to be
commonly waiting on memory and will thus execute instructions slowly. Although some
executions do use an appreciable amount of compute (upper left of Figure 5.6) or use an
appreciable fraction of the memory bandwidth (lower right), most do not. Many executions
are actually in the worst lower-left quadrant, where they use little memory bandwidth, but
their compute throughput is also low, presumably due to memory latency.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 58

Figure 5.6: Single-thread performance in terms of instructions per cycle (IPC) of full work-
load colored by: codebase (top), kernel (middle), and input graph (bottom).

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 59

Figure 5.7: Single-thread performance of full workload relative to branch misprediction rate
colored by memory bandwidth utilization.

In general across our codebases, kernels, and inputs graphs, a single core struggles to use
all of the raw bandwidth available (10 outstanding misses). With the same communication
volume, utilizing more bandwidth should lead to higher performance. Using the four re-
quirements from Section 5.3, we investigate what is limiting the core’s bandwidth utilization
for what should be a memory-bound graph processing workload.

To have many loads outstanding, the processor must first fetch those load instructions,
and this typically requires correctly predicting the control flow. Although frequent branch
mispredictions will be harmful to performance in theory, if the processor is already waiting
on memory (achieving moderate memory bandwidth utilization), performance is insensitive
to the branch misprediction rate (Figure 5.7), implying many of these branches are miss
independent. When the processor is not memory-bound, frequent branch mispredictions
will hurt performance, but a low misprediction rate is no guarantee for good performance,
implying there are other bottlenecks.

Once the processor fetches the future outstanding loads, those loads need to be able to
fit into the instruction window, and the model from Section 5.3 serves as an upper bound
for our workload (Figure 5.8). Although the model is technically a pessimistic upper bound
since it assumes outstanding loads are evenly spaced apart, in practice this seems to be a
suitable approximation. In spite of the core being capable of handling 10 outstanding misses,
an IPM of greater than 18.7 will not allow all these loads to fit in the window according to
our model. Most of the executions have an IPM greater than this cuto↵, and thus have their

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 60

Figure 5.8: Single-thread achieved memory bandwidth of full workload relative to instruc-
tions per miss (IPM). Note: Some points from road & web not visible due to IPM>1000 but
model continues to serve as an upper bound.

Figure 5.9: Histogram of MPKI (in terms of LLC misses) of full workload specified in
Section 5.2 executing on a single thread. Most executions have great locality (low MPKI),
especially those processing the web or road input graphs.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 61

Figure 5.10: Single-thread achieved memory bandwidth of GAPBS for all kernels and graphs
varying the operating system page size. 2MB Pages - THP uses Transparent Hugepages
(THP) and lets the operating system choose to promote 4KB to 2MB pages (happens
frequently). 1GB Pages - best is the fastest execution using manually allocated 1GB pages
for the output array, the graph, or both.

e↵ective bandwidth limited by the instruction window size. The caches achieve a modest hit
rate (Figure 5.9), which raises the IPM by absorbing much of the memory tra�c.

As mentioned above, the properties of the graph can have a substantial impact on the
cache performance, which in turn will a↵ect not only the amount of memory tra�c, but also
how fast it can be transferred. For example, in Figure 5.8 the graph road has a high IPM
because it is much smaller than the other graphs. The topology can also have an impact, as
the graphs kron and urand are about the same size and diameter, and yet urand typically
uses more bandwidth because it has a lower IPM caused by more cache misses. The graph
kron experiences fewer cache misses because it is scale-free, as a few high degree vertices
will be accessed frequently (great temporal locality). Finally, the graph web has a higher
degree, which allows for longer contiguous reads (better spatial locality) causing more cache
hits and thus a higher IPM.

Although there is not typically substantial benefit from using 1GB pages, using 4KB
pages does have quite a performance penalty. Fortunately, THP is on by default and requires
no application modifications. We vary the operating system page size for the GAPBS code-
base in Figure 5.10. Relative to the baseline using THP (2MB pages whenever possible),
using 1GB pages improves performance by more than 10% in only 4/25 cases but disabling

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 62

THP, which forces all pages to be 4KB, decreases performance by at least 10% in 19/25
cases. To use 1GB pages, we modify GAPBS to allocate 1GB pages for the graph, the
output array, or both (typically the best) and pick whichever one is fastest. The general
insensitivity to the 1GB page size for our graph workload is another indication of locality.

We compare data dependencies versus branch mispredictions to explain performance
slowdown, and while di�cult to disentangle, the evidence points much more strongly to
the former than to the latter. With a combination of knowledge of IVB’s architecture and
confirmation from performance counters, we eliminate other possible performance limiters.
Due to sophisticated hashing of memory addresses, there is no significant bank contention in
the LLC or at the memory controllers. The load bu↵er can hold 64 entries, so it rarely limits
outstanding loads before the ROB (168 entries) or the MSHRs (10 per core). Mis-speculated
loads are already counted by the performance counters we utilize. The graph workloads we
measure have clearly dominant application phases (no substantial temporal variation).

None of the executions of actual graph processing workloads are able to achieve a mem-
ory bandwidth corresponding to the 10 outstanding misses our synthetic microbenchmarks
demonstrate the cores are capable of sustaining, and most are not even close. For a single
thread, the biggest bandwidth limiter is fitting loads into the instruction window, which
prevents o↵-chip memory bandwidth from becoming a bottleneck.

5.5 Parallel Performance

With an understanding of the limits and capabilities of a single thread, we move on to the
whole system. Running the codebases at full capacity delivers speedups for all executions,
and with 32 threads on 16 cores we achieve a speedup greater than 8⇥ (relative to single-
thread) in 49 of 75 cases and a median speedup of 9.3⇥ (Figure 5.11). Unfortunately, some
of the executions (typically road and web) increase their bandwidth consumption by more
than they improve runtime, implying their parallel executions have more memory tra�c than
their single-threaded counterparts.

The compute and throughput utilization for the parallel executions (Figure 5.12) is strik-
ingly similar to utilizations for a single core (Figure 5.6). Although web and sometimes road
break the trend by simultaneously using more compute throughput and memory bandwidth,
they do move extra data. The similarities between parallel utilization and serial utilization
suggest that the bottlenecks of the core persist and hurt utilization at the system scale. Due
to the generally linear relation between performance and memory bandwidth, fully utilizing
the o↵-chip memory system could improve performance by 1.3–47⇥ (median 2.4⇥).

There may be graph algorithm implementations with better parallel scaling properties,
but the advanced algorithms were used in this chapter because they deliver better absolute
performance. Parallel scaling can be hampered by software issues (poor scalability, load
imbalance, synchronization overheads, and redundant communication), but in the remainder
of this work we will consider hardware imposed complications for parallelization: NUMA and
multithreading.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 63

Figure 5.11: Improvements in runtime and memory bandwidth utilization of full workload
for full system (32 threads on 16 cores) relative to single thread performance.

Figure 5.12: Full system (32 threads on 16 cores) performance of full workload. Vertical lines
are maximum achieved bandwidths (Section 5.3) for a single socket (socket), both sockets
with interleaved memory (interleave), and both sockets with local memory (system).

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 64

Figure 5.13: Single-thread achieved memory bandwidth of full workload executing out of
remote memory. Calculating e↵ective MLP with remote memory latency (instead of local
memory latency) returns a result similar to local memory results (Figure 5.8).

5.6 NUMA Penalty

With multi-socket systems, non-uniform memory access (NUMA) penalties are a common
challenge. From the results of Section 5.3, it would appear that NUMA should halve perfor-
mance, but our results indicate the penalty for NUMA may be substantially less severe in
practice.

For a single thread using only remote memory, performance is halved as it transfers the
same amount of data with the same number of outstanding memory requests but at twice the
latency for e↵ectively half the bandwidth. Calculating the e↵ective MLP with the remote
memory latency instead of the local memory latency shows the workload still obeys the
simple bandwidth model (Figure 5.13).

With more cores, this NUMA penalty is reduced (Figure 5.14), and for executions that use
less memory bandwidth (higher IPM), the NUMA penalty is reduced further. A core using
only remote memory is clearly an adversarial worst case. For a full system workload without
locality, half of the tra�c should still go to local memory. Consequently, the interleaved
pattern in Figure 5.14 is more realistic and it has one third the performance loss of remote
(median 1.16⇥ slowdown vs. 1.48⇥ slowdown).

We confirm that NUMA has a moderate performance penalty. Unfortunately, many
graphs of interest are low diameter and hard to partition e↵ectively [63], so it is challenging

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 65

Figure 5.14: Full workload slowdowns for single-socket (8 cores) executing out of remote
memory or interleaved memory relative to executing out of local memory.

to avoid inter-socket communication. Therefore, e↵orts to move computation (rather than
data) have fared the best when optimizing graph processing for NUMA [2, 40].

5.7 Limited Room for SMT

Multithreading, and in this work’s context of a superscalar out-of-order processor, simultane-
ous multithreading (SMT) [56], aims to increase utilization. The additional software-exposed
parallelism threads provide can be used to mitigate unresolved data dependences by increas-
ing application MLP as well as reducing the demand placed on branch prediction since each
thread will have fewer instructions in flight. Using IVB, we measure the performance gains of
using a second thread per core, which evaluates how well SMT reduces the performance loss
from unresolved data dependencies and branch predictions without incurring new overheads.
On IVB, all SMT threads on a core share the same instruction window, so multithreading
will be unable to ameliorate the memory bandwidth bottleneck induced by the instruction
window size that we observe to limit performance in the rest of this work.

Across all scales (single core, single socket, or single system), the second thread is usually
beneficial, but only to a modest degree (Figure 5.15) as most speedups are less than 1.5⇥.
As more cores are used, multithreading becomes less beneficial (median 1.26⇥ for 1 core
versus median 1.12⇥ for two sockets). This is unsurprising since at the socket and system

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 66

Figure 5.15: Distribution of speedups of using two threads per core relative to one thread
per core of full workload for one core, one socket (8 cores), and whole system (2 sockets).
Dotted line is median.

level, parallel performance challenges (load imbalance, synchronization overhead, and NUMA
penalties) also limit performance and they make what multithreading aims to ameliorate
(unresolved data dependencies and branch misprediction penalties) a comparatively smaller
fraction of the performance limiters. Even so, these modest speedups from SMT are not
inconsequential, as SMT economically improves system performance.

Multithreading also has the potential to introduce new performance challenges. More
threads increase parallelism, which in turn can worsen the damage caused by load imbalances
and synchronization overheads. Worse yet, more threads can compete for capacity in the
cache resulting in increased memory tra�c. Analogous to the results for parallel execution
(Section 5.5), the road and web graphs in Figure 5.16 are examples of this competition as
the improvement in bandwidth is greater than the improvement in runtime.

For a single thread, we find the biggest performance limiter to be fitting loads into the
instruction window, and SMT is no di↵erent as the addition of a second thread to the same
core still mostly obeys our simple model since it shares the same window (Figure 5.17). If
the workload of the two threads is heterogenous it is possible for an SMT core to exceed our
simple model. One thread could generate most of the cache misses sustaining a high e↵ective
MLP while the other thread (unencumbered by cache misses) could execute instructions
quickly to increase IPM. In practice, the variation between threads is modest and thus most
measured results are not far above our model.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 67

Figure 5.16: Improvements in runtime and memory bandwidth utilization of full workload
for one core using two threads relative to one thread.

Figure 5.17: Achieved memory bandwidth of full workload relative to instructions per miss
(IPM) with one or two threads on one core.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 68

Multithreading can improve performance, but in the context of this study (graph pro-
cessing workload on a superscalar out-of-order multi-socket system), it has limited potential.
The modest improvements two-way multithreading provides in this study cast doubt on how
much more performance is to be gained by additional threads.

5.8 Related Work

Our study touches on many aspects of computer architecture, so we focus this section specif-
ically on prior work relevant to graph algorithms. Compared to our prior publication [19],
this chapter goes into additional detail throughout. Compared to prior work on the archi-
tectural requirements for graph algorithms, our study has a much larger and more diverse
graph workload. We study 5 kernels from 3 codebases with 5 input graphs (some of which
are real and not synthetic).

A survey [98] of both hardware and software concerns for parallel graph processing lists
“poor locality” as one of its chief concerns. Although it is cognizant of the greater cost of
heavily multithreaded systems, it argues they are better for graph algorithms due to their
memory latency tolerance and support for fine-grained dynamic threading. Bader et al. [11]
also endorse heavily threaded systems because of concerns of memory accesses being mostly
non-contiguous (low locality).

Cong et al. [43] compare a Sun Niagara 2 to a IBM Power 7 when executing graph
algorithms to understand architectural implications. Both platforms are multithreaded, but
the Niagara 2 is in-order with 8-way threading and the Power 7 is out-of-order with 4-way
threading. They find memory latency (not memory bandwidth) to be a bottleneck for both
platforms, and neither platform has enough threads to fully hide it. Additionally, they
find algorithmic tricks to increase locality that are beneficial for both platforms. They also
present analytical models to explain the stochastic challenges of keeping a multithreaded
pipeline fully utilized.

To better understand graph algorithm architectural requirements, prior work has ex-
plicitly examined the locality behavior of graph algorithms. Cong et al. [44] study several
Minimum Spanning Tree algorithms with a reuse distance metric (temporal locality). They
find graph algorithms do have less (but not no) locality, but observe some algorithms with
less locality sometimes perform better, and hypothesize this is due to not accounting for
spatial locality. Analytical models for BFS can accurately predict the reuse distance of BFS
on certain random graphs [175]. Murphy et al. [114] examine serial traces from a variety
of benchmark suites including graph algorithms. Despite locality metrics based on an ex-
tremely small cache for the time of publication, they observe that integer applications tend
to have less locality than floating-point applications, but are still far better than random.

E↵orts to improve performance by explicit NUMA optimizations typically require compli-
cated manual modifications and are not generally applicable to all graph algorithms. Agar-
wal et al. [2] improve BFS performance using custom inter-socket queues. With a high-end
quad-socket server, they are able to outperform a Cray XMT. Chhugani et al. [40] minimize

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 69

inter-socket communication for BFS, and provide a detailed performance model for their
implementation.

Although hardware prefetchers may struggle to predict non-streaming memory accesses,
explicit software prefetching has been investigated as a means to improve graph algorithm
performance [2, 43, 77]. Not unlike explicit NUMA optimizations, for graph algorithms,
using software prefetching requires human intervention. Software prefetching can be di�cult
to implement e↵ectively for all graph algorithms because it is often hard to generate the
addresses desired su�ciently before they are needed.

Green et al. investigate improving graph algorithm performance by reducing branch mis-
predictions using conditional moves [68]. They conclude that branch mispredictions are
responsible for a 30%–50% performance loss, but in our results (Section 5.4) we do not ob-
serve such a large penalty when considering the limitations imposed by data dependences
and fitting loads into the instruction window.

Runahead execution is a technique to improve processor performance in the presence of
cache misses [53], and in the case of an out-of-order core, runahead execution attempts to
economically obtain the benefits of a larger instruction window [115]. Rather than stalling
the instruction window on a miss, runahead checkpoints and attempts to go forward. Much
of the work after the checkpoint will have to be redone when the data for the original load
returns, but hopefully by being able to move forward more cache misses will be exposed, thus
leading to better bandwidth utilization. Van Craeynest et al. choose to not enter runahead
mode to reduce the number of re-executed instructions if their predictor guesses runahead
execution will be unable to expose more cache misses [156].

Prior work on SMT performance also casts doubt on how much performance remains to
be exploited by SMT on large out-of-order processors. Raasch et al. investigate resource al-
location within SMT processors and they conclude storage resources such as the instruction
window should be statically partitioned while execution resources should be dynamically
partitioned [135]. Their reasoning is that storage resources tend be held longer (e.g. instruc-
tion window blocked on a cache miss), so static partitioning helps prevent starvation. The
long occupancy of storage resources gets at the crux of the problem of using SMT to improve
the performance of out-of-order processors. SMT is ideal for multiplexing execution units to
fill idle slots, but it can only subdivide storage resources. Since these storage resources are
held for so long, there are no “idle slots” to fill. SMT provides a bigger performance boost
for in-order processors than out-of-order processors because in-order processors have less of
these contested storage resources [121]. Hily et al. demonstrate the result of this by showing
that a large in-order SMT processor is able to achieve much of the performance of a large
out-of-order processor while using substantially less resources [72].

The Cray XMT is a system explicitly designed to handle irregular problems including
graph algorithms [154]. Designed for workloads without locality, it feature many hardware
threads and no data caches. When considering its architecture, it is worth keeping in mind its
ancestry, which going back in time includes the MTA-2 [6], the Tera [5], and the HEP [150].
The MTA-2 has full bisection bandwidth but no caches, and it uses heavy multithreading
to tolerate memory latency. The XMT was intended to be cheaper than the MTA-2 by

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 70

Random Random Graph Graph
Publication Benchmark Performance Algorithm Performance
Bader [11] Random List Ranking 35.0⇥ CC 5.5⇥
Madduri [101] GUPS 2.8⇥ BC 1.8⇥
Nelson [118] GUPS 2.2⇥ BFS 1.6⇥

GUPS 2.2⇥ PR 4.4⇥

Table 5.3: Improvement for specialized platform over baseline platform for random and graph
algorithm benchmarks. Random benchmarks (e.g. GUPS) are poor predictors of graph
algorithm performance and often underestimate graph algorithm performance of baseline
platform.

leveraging an interconnect originally developed for other Cray systems [154]. This repur-
posed network hinders scalability because it does not provide full bisection bandwidth, so
small caches were added to the memory controllers (no replication so need for coherence) to
increase the e↵ective memory bandwidth. The acknowledgment that caches were expected
to provide performance improvement for graph algorithms demonstrates exploitable locality
within graph algorithms [154].

There has been substantial e↵ort characterizing graph processing workloads on GPUs.
Since GPUs are optimized for regular data parallelism, Burtscher et al. propose metrics to
quantify control-flow irregularity and memory-access irregularity and they perform perfor-
mance counter measurements on real hardware [34]. For some graph algorithms, they observe
the performance characteristics depend substantially on the inputs. A continuation of that
research uses a software simulator to change GPU architectural parameters and observes
performance is more sensitive to L2 cache parameters than to DRAM parameters, which
suggests there is exploitable locality [125]. Xu et al. also use a simulator and identify syn-
chronization with the CPU (kernel invocations and data transfers) as well as GPU memory
latency to be the biggest performance bottlenecks [166]. Che et al. profile the Pannotia suite
of graph algorithms and observe substantial diversity across algorithms and inputs [37]. Wu
et al. investigate the most important primitives needed for higher-level programming models
for graph algorithms [164]. Contrasting these GPU works from our work, in addition to
the di↵erence in hardware platform (CPU versus GPU), we use much larger input graphs
enabled by executing on real hardware (no downsizing to reduce simulation time) and by
using server-sized memory (not constrained by GPU memory capacity).

Some prior work compares graph algorithm performance with random benchmarks. The
Giga Updates per Second (GUPS) metric, also known as the RandomAccess within the HPC
Challenge Benchmark [52], measures a system’s ability to perform updates to randomly
generated locations. GUPS is not publicly stated to be representative of graph algorithms,
and yet some still use it when comparing a specialized platform to a baseline for graph
processing. Comparing the results of random bandwidth focused custom graph platforms
with cache-centric conventional baselines, we observe that the random metrics are a poor

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 71

predictors of graph algorithm performance in practice (Table 5.3). The random benchmarks
frequently overestimate the benefit of the specialized hardware because some algorithms may
not scale perfectly or there is exploitable locality within them.

5.9 Conclusion

Our diverse workload (varied implementations, algorithms, and input graphs) demonstrates
there is no single representative benchmark and we find the input graph to have the largest
impact on the performance characteristics.

Most of our workload fails to fully utilize IVB’s o↵-chip memory bandwidth due to having
an insu�cient number of outstanding memory requests. The biggest bandwidth bottleneck
is the instruction window, because it cannot hold a su�cient number of instructions to
incorporate the needed number of rare cache-missing instructions. A high LLC hit rate makes
these cache misses rare, and we find this challenges the misconception that graph algorithms
have little locality. TLB misses are only measurably detrimental when at least a moderate
amount of memory bandwidth is utilized, and we find transparent huge pages to be e↵ective
at ameliorating much of the performance loss due to TLB misses. Branch mispredictions
and unresolved data dependences can also hinder memory bandwidth utilization, but they
are secondary to the interaction between the cache hit rate and the instruction window
size. Bandwidth is also moderately hindered by NUMA e↵ects, so software techniques to
increase intra-socket locality or hardware techniques to decrease inter-socket latency will be
beneficial.

The parallel scaling of our workload indicates that performance typically scales linearly
with memory bandwidth consumption. Since our workload fails to fully utilize IVB’s memory
bandwidth, an improved processor architecture could use the same memory system but
improve performance by utilizing more memory bandwidth. For our workload on IVB, SMT
is typically beneficial, and when it improves performance, it does so by using more memory
bandwidth. Unfortunately, in the context of an out-of-order core, SMT helps only modestly,
and additional techniques will be needed to utilize the rest of the unused memory bandwidth.

Recognizing there is substantial locality in graph algorithms is one of our results that most
strongly contradicts prior conventional wisdom. The implication is that graph algorithm
implementations on current hardware platforms should optimize for cache locality. When
designing a new architecture specialized for graph algorithms, it should be designed so it
can exploit locality. Hardware managed caches are one of the most robust and easiest
means to exploit locality in current processors, but perhaps something specialized for graph
algorithms will work better. Ignoring locality and designing a system for peak random
memory bandwidth (e.g. GUPS) unnecessarily increases the cost of the system.

Leveraging locality will decrease cost in a number of ways. By exploiting locality, less
data needs to go o↵-chip for the same system throughput, so the system can reduce not
only manufacturing costs by building less o↵-chip bandwidth, but it can also reduce energy
consumption as data will move shorter distances on average.

CHAPTER 5. GRAPH WORKLOAD CHARACTERIZATION 72

Overall, we see no perfect solution to the performance challenges presented by graph
algorithms. Many techniques can improve performance, but all of them will have quickly
diminishing returns, so greatly improving performance will require a multifaceted approach.

73

Chapter 6

GAIL: Graph Algorithm Iron Law

In this chapter, we build on the insights of the workload characterization from the previous
chapter to create the Graph Algorithm Iron Law (GAIL). GAIL is a simple model that eases
understanding of graph algorithm performance across abstraction layers.

6.1 Introduction

To support the growing interest in applications using graph algorithms, there has been a
corresponding growth in graph-processing acceleration research. This interest in improving
graph processing performance is not confined to any one area, and is ongoing at all layers of
the computational stack (algorithms, implementation, frameworks, and hardware platforms).
As each new innovation is shown to be beneficial by demonstrating a speedup, it is often
unclear what causes the speedup since many of the recent innovations span multiple layers
of the stack.

Execution time is the most important metric, but is unfortunately not instructive on its
own. It allows us to quantify how much faster one execution is than another, but for those
executions to be comparable using time, many parameters should be kept the same (e.g.,
input graph and graph kernel). Using a rate, such as traversed edges per second (TEPS),
gives an idea of execution speed and the potential to compare executions using di↵erent
input graphs. However, TEPS can be misleading, especially if the ways edges are counted
for TEPS di↵er.

According to the Graph 500 [66] benchmark specifications, TEPS is the ratio of the num-
ber of undirected input edges (including duplicates and self-loops) in the traversed connected
component and the execution time. Since this rate is often in the millions or billions, TEPS
is often scaled to become Mega-TEPS (MTEPS) or Giga-TEPS (GTEPS). A common mis-
take, which is misleading, is to count an undirected edge as two directed edges. This mistake
changes TEPS by a factor of two, which is often greater than the margin of improvement
for a new optimization.

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 74

Figure 6.1: Impact of calculating TEPS based on input edges or actual edges traversed when
scaling the degree of a 8 million vertex synthetically-generated Kronecker graph. Uses GAP
direction-optimizing BFS implementation executing on IVB.

Our direction-optimizing BFS algorithm (Chapter 3) exemplifies how an optimized al-
gorithm can further complicate the meaning of TEPS. The Graph500 definition of TEPS
implicitly assumes that each input edge is traversed exactly once as done by the conventional
top-down BFS approach, but our direction-optimizing BFS often skips a large fraction of the
graph. If the TEPS rate is calculated based only on the number of actual edges traversed,
a faster algorithm could appear to be slower due to a lower TEPS rate. Calculating TEPS
based on the number of input edges does capture the speedup of an optimized algorithm,
and it is similar in spirit to measuring GFLOPS for an optimized matrix multiplication algo-
rithm such as Strassen in terms of the classic O(N3) algorithm. Unfortunately, calculating
TEPS based on the number of input edges for an optimized algorithm has the drawback of
making TEPS somewhat artificial in that the algorithm is only e↵ectively – but not actually
– traversing that many edges per second. With direction-optimizing BFS, increasing the
degree of a graph can artificially inflate the GTEPS rate [95]. Figure 6.1 shows that for our
direction-optimizing BFS implementation, GTEPS calculated with input edges scales with
degree even though GTEPS calculated by actual edges traversed decays. This phenomenon
is possible because increasing the degree increases the number of input edges at a rate greater
than the number of edges our BFS algorithm actually needs to traverse.

The shortcomings of TEPS demonstrate that a single metric cannot be used, and instead
it should be complemented by other metrics. For example, reporting TEPS would be less

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 75

confusing if the number of traversed edges was also reported. Furthermore, the number of
traversed edges only considers algorithmic impacts and fails to consider architectural impacts.
In this chapter, we introduce the Graph Algorithm Iron Law (GAIL) [17]. In addition
to incorporating execution time and the number of traversed edges, GAIL also includes
memory requests, since the memory system is often the biggest architectural bottleneck (as
we observe in Chapter 5). Instead of simply quantifying which execution is faster as execution
time and TEPS do, GAIL provides a high-level intuition as to the cause of performance
di↵erences. With GAIL, we concisely factor out the performance impacts from the algorithm,
the implementation, and the hardware platform. In the rest of this work, we describe GAIL
in detail and demonstrate its utility with case studies considering the impact of algorithm,
implementation, input graph, and hardware platform.

6.2 Graph Algorithm Iron Law

Algorithms continue to be the most important factor for performance. Complexity anal-
ysis, the classic tool for evaluating algorithms, can sometimes be less instructive for high-
performance graph-processing evaluations. Worst-case analysis often yields overly pessimistic
performance bounds that di↵er greatly from the common case. Additionally, the amount of
algorithmic work for many advanced graph algorithms depends heavily on the input graph
topology, which is often di�cult to quantify. Furthermore, as the field matures, many inno-
vations will be implementation optimizations and not algorithmic optimizations, but these
innovations would appear to provide no improvement if compared analytically. A good al-
ternative in these challenging scenarios is to empirically measure the amount of algorithmic
work.

Once the impact of the algorithm is understood, it is important to understand the po-
tential and limitations of the hardware platform. Depending on the input graph and the
algorithm, there can be a variety of hardware performance bottlenecks; however, graph al-
gorithms are typically memory bound and not compute bound. As we demonstrate in our
workload characterization in Chapter 5, the memory bottleneck is due to memory latency
much more often than it is due to memory bandwidth, because memory bandwidth is typ-
ically underutilized. A modest cache hit rate can cause cache misses to be so rare that
an insu�cient number of them fit into the instruction window to fill all of the outstanding
memory request slots. With an insu�cient number of outstanding memory requests, the
processor is unable to fully utilize the memory bandwidth. The challenge of fitting a su�-
cient number of cache missing instructions into the instruction window leads to a common
tradeo↵: improving cache hit rates results in memory bandwidth becoming further underuti-
lized. Other factors (branch mispredictions, low instruction-level parallelism, and temporal
variation) can also hinder memory bandwidth, but good locality is often the most impact-
ful. Given all of this, the most important architectural features a↵ecting graph processing
execution are cache e↵ectiveness and memory bandwidth utilization.

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 76

Taking the insights we have learned above, we present a simple model to understand
graph algorithm performance. Analogous to how the Iron Law of CPU performance [57, 129]
factors execution time into the product of the number of instructions executed, cycles per
instruction, and the cycle time, our Graph Algorithm Iron Law (GAIL) factors execution
time into the product of the number of traversed edges, the number of memory requests per
traversed edge, and the inverse of the memory bandwidth:

execution time

kernel
=

traversed edges

kernel
⇥ memory requests

traversed edge
⇥ seconds

memory request

This model combines the three characteristics we find most relevant for graph algorithm
performance: algorithmic e�ciency, cache e↵ectiveness, and memory bandwidth utilization.
Naturally, since GAIL breaks execution time into the product of three metrics, lower is better
for all metrics. To measure the amount of algorithmic work, we use edges examined instead
of vertices examined because the amount of work per edge is roughly constant, while the
amount of work per vertex can vary dramatically (it is often a function of its degree). With
the help of execution time and edges examined, we break down communication (DRAM
memory requests) into two instructive rates that measure cache e↵ectiveness (second term)
and memory bandwidth utilization (third term). The third term (seconds per memory re-
quest) is best thought of as inverse of bandwidth rather than the average time per memory
request. If there is more than one memory request outstanding, this metric will understand-
ably become smaller than the actual average memory latency. For memory requests, we are
referring to cache misses that go to DRAM. We do not count cache hits since we assume
out-of-order execution can hide their latency.

Although GAIL may appear simple, there are some noteworthy elements hidden inside
its formulation. The product of the first two terms is the number of memory requests per
kernel, which is proportional to the amount of data moved from DRAM. The product of the
second term and the third term is seconds per traversed edge, which is the inverse of TEPS.

When counting memory requests, GAIL users should include prefetches in addition to
cache misses. Although counting prefetches can be more arduous than counting only cache
misses, including prefetch tra�c is worthwhile because it increases the accuracy of GAIL.
When the prefetches are beneficial, accounting for that tra�c prevents underreporting the
number of memory requests necessary to complete the kernel. When the prefetches are
not helpful, counting prefetches overstates the number of memory requests necessary for
the kernel, but we consider potentially overstating to be less misleading than not counting
prefetches and underreporting. Furthermore, most modern processors are designed to de-
crease the amount of hardware prefetching to keep these unneeded prefetches from being
too detrimental to performance. Unused prefetches will consume memory bandwidth, but
a reasonably designed system will give cache misses priority over the hardware prefetcher.
Throughout our experiments on IVB, we never observed the hardware prefetcher consuming
all of the remaining memory bandwidth.

The GAIL metrics provide intuition by decomposing performance into the amount of
work to do (traversed edges), work e�ciency (memory requests per traversed edge), and

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 77

Graph Description Ve
rt
ice
s (
M
)

Ed
ge
s (
M
)

De
gr
ee

De
gr
ee

Di
st
rib
ut
io
n

Di
am
et
er

Road USA road network [50] 23.9 58.3 2.4 bounded 6,277
Kron Kronecker generator [66, 94] 134.2 2,111.6 15.7 power 5
Urand uniform random [58] 134.2 2,147.4 16.0 normal 6

Table 6.1: Graphs used for case studies

throughput (inverse bandwidth). The coarse-grained intuition GAIL provides can be in-
structive to a variety of potential users. Algorithm designers can use it to demonstrate the
work reduction (fewer edges examined), and doing this empirically can be helpful when it
is di�cult to quantify analytically. A framework developer can demonstrate the e�ciency
of their implementation by achieving either higher memory bandwidth utilization or fewer
memory requests per traversed edge. Even a hardware platform designer could use GAIL to
demonstrate an improvement in memory bandwidth utilization.

6.3 Case Studies Using GAIL

For any evaluation, introspective measurements should be taken to attempt to explain the
results, and some of the metrics used may be specific to that study. GAIL is useful as
a high-level starting point, as it is a simple way to verify if the improvements reduce the
amount of algorithmic work, increase locality, or improve memory bandwidth utilization. To
demonstrate the utility of GAIL, we perform case studies to investigate tradeo↵s in software
implementations and changes to the hardware platform.

For our case studies, we use the GAP Benchmark reference implementations (Chapter 4).
We select three input graphs for size and topological diversity (Table 6.1). A proper eval-
uation will use more input graphs, but we believe these brief case studies are su�cient to
demonstrate GAIL’s utility. For more information on the graphs and their relevant topolog-
ical properties, please refer to Section 2.3.

Table 6.2 specifies the IVB and T4 platforms we use to perform our case studies demon-
strating the utility of GAIL. We use IVB for all of our case studies in this section and IVB
is the same platform we use in the rest of this work. For our final case study, we also use T4
to provide a di↵erent hardware platform for comparisons to IVB.

Understanding Software Implementation Performance

In our first case study, we use GAIL to examine the impacts of algorithmic innovations
and implementation optimizations on BFS traversing the kron graph. We utilize the three

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 78

IVB T4
Architecture Ivy Bridge S3 Core
Model Intel E5-2667 v2 SPARC T4-4
Released 2013 2011
Clock rate 3.3GHz 3.0GHz
Sockets 2 4
Cores/socket 8 8
Threads/core 2 8
LLC/socket 25MB 4MB
DRAM Capacity 128GB 1024GB
Maximum Achieved

1204M/s (0.831 ns/req) 2049M/s (0.488 ns/req)
Memory Request Rate

Table 6.2: IVB and T4 systems used for case studies

Memory Traversed Memory ns
Implementation Time Requests Edges Requests Memory

(s) (M) (M) Edge Request
Top-down 3.964 3,292.88 4,223.22 0.780 1.204
Top-down-bitmap 2.255 1,024.31 4,223.22 0.243 2.201
Direction-optimizing 0.424 209.50 183.78 1.140 2.022

Table 6.3: GAIL metrics for BFS implementations traversing kron using IVB

BFS implementations introduced in Section 3.5: top-down, top-down-bitmap, and direction-
optimizing. For these implementations traversing kron, Table 6.3 shows the GAIL metrics
(last three columns) as well as the raw data that produces them (second, third, and fourth
columns).

As a simple example, we first examine the GAIL metrics for the top-down baseline in
Table 6.3. As expected, the number of traversed edges is twice the number of input edges
(Table 6.1) since each undirected input edge is traversed once in each direction. The cache
provides some benefit, as the number of memory requests per traversed edge is less than
one. From the last GAIL term (1.204 ns / memory request) we can see that the top-down
execution uses 69% of the platform’s memory bandwidth when compared to the maximum
we achieve with our bandwidth microbenchmark (Section 5.3).

The bitmap optimization in top-down-bitmap does improve performance relative to top-
down (1.75⇥ speedup to 2.255 seconds), but from the GAIL metrics we can clearly see the
optimization is not algorithmic since it traverses the same number of edges. The benefit of
the bitmap optimization is visible in the reduction in memory requests per edge, as fewer
edge traversals miss in the LLC because the cache-resident bitmap is able to satisfy many

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 79

of the edge traversals. In spite of utilizing less memory bandwidth (higher ns per memory
request), top-down-bitmap is still faster than top-down because of the larger reduction in
memory requests per traversed edge. The GAIL metrics easily decompose this beneficial
tradeo↵ of one metric (cache locality) improving by more than another metric (memory
bandwidth utilization) worsens.

From the execution times (Table 6.3), we see the direction-optimizing implementation is
the fastest, but without more information we cannot be sure of the cause. From our expe-
rience in Chapter 3, we have intuition that the direction-optimizing implementation derives
its speedup by performing algorithmically less work, but in Figure 3.15 the speedups for the
direction-optimizing implementation are substantially less than the reductions in algorithmic
work. The same phenomenon occurs in this case study, as the direction-optimizing imple-
mentation’s 23⇥ reduction in traversed edges is substantially greater than its 5.3⇥ speedup
over the top-down-bitmap implementation. Now, unlike in Chapter 3 in which we only use
algorithmic tools, with the help of the GAIL metrics we can confirm that the direction-
optimizing implementation traverses edges at a slower rate because it misses the LLC more
often and it utilizes less memory bandwidth. The higher cache miss rate is probably due
in large part to bottom-up traversals terminating early once a parent is found. The early
terminations will reduce spatial locality, causing fewer words per transfered cache line to be
used, which in turn increases number of memory requests per traversed edge. The memory
bandwidth utilization is reduced because the more serial nature of the inner-loop of the
bottom-up approach reduces the amount of application MLP.

Understanding Algorithmic Performance Impacts

GAIL is also useful to understand tradeo↵s between di↵erent layers of the computational
stack. Changing an algorithm can e↵ect not only the amount of algorithmic work to do, but
also how well the implementation executes on a given hardware platform. As a case study to
investigate these tradeo↵s, we consider the delta-stepping algorithm and vary its � param-
eter. Delta-stepping is an optimized algorithm for single-source shortest paths (SSSP) that
attempts to pragmatically increase parallelism without adding substantial algorithmic over-
head [107]. Delta-stepping can be thought of as a generalization of the classic Dijkstra [49]
and Bellman-Ford algorithms [172].

Dijkstra’s algorithm – the classic optimal algorithm for SSSP – often lacks su�cient
parallelism to fully utilize current multicore platforms. Dijkstra’s algorithm obtains its
algorithmic e�ciency by processing vertices in order of increasing distance from the root
vertex, and this order guarantees each vertex is processed only once. Unless multiple vertices
are the same distance from the root vertex, only one vertex can be processed at a time by
Dijkstra’s algorithm. To schedule the vertex processing order, Dijkstra’s algorithm uses a
priority queue of unvisited vertices sorted by distance, and updating the priority queue can
often become another bottleneck restricting parallelism.

The delta-stepping algorithm increases parallelism by relaxing the strictness of the vertex
processing order. Instead of perfectly sorting all vertices by distance, delta-stepping coarsely

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 80

Figure 6.2: GAIL metrics for delta-stepping implementation while varying �-parameter
traversing the road graph using 8-cores on the IVB platform. From the GAIL metrics, we
see the U-shape in execution time is caused by the L-shape of the number of memory requests
per traversed edge and the backwards L-shape for the number of traversed edges.

radix sorts the vertices by distance into buckets of width�. Delta-stepping allows all vertices
in the current minimum distance bucket to be processed in parallel. By processing vertices in
parallel, there is the potential some vertices will be processed prematurely and thus need to
be processed again later, but in practice, this happens rarely if the � parameter is su�ciently
small. The width of the buckets is parameterized by �, which is what gives the algorithm its
name. Changing the � parameter to change the width of the buckets is a tradeo↵ between
exposing more parallelism and performing more redundant algorithmic work. Delta-stepping
generalizes the classic SSSP algorithms. If � = 1 (or whatever the minimum distance
increment is), delta-stepping behaves like Dijkstra’s algorithm. If � =1, all vertices are in
the same bucket and delta-stepping behaves like the Bellman-Ford algorithm.

In Figure 6.2, we sweep the� parameter while searching the road graph. We use the GAP
Benchmark’s reference implementation of delta-stepping (Chapter 4), and we execute on a
single socket of the IVB platform. As we vary �, the execution times forms a U-shape (left
side of Figure 6.2), indicating the optimal range for � is somewhere in the middle and the
optimal range is quite large (spans an order of magnitude). From our algorithmic intuition,
we expect a � that is too small to limit “parallelism” and a delta too large to be burdened by
redundant work, but with GAIL we can fully understand the tradeo↵s involved with changing
� (right side of Figure 6.2). First, we examine the number of edges traversed, and we see

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 81

that as expected, increasing � does increase the number of edges traversed. It is interesting
to note that the number of edges traversed grows rather slowly as � increases, indicating
there is plenty of slack available in the vertex processing order without causing substantial
redundant work. Second, we observe the number of memory requests per traversed edge
decreases substantially as we increase �. With a larger �, more vertices are processed per
super-step, which allows for better amortization of compulsory memory tra�c. The inverse
bandwidth generally has the same U-shape as the execution time with some second-order
e↵ects at the extremes. For very small �, there is so much extra data to move and it is so
predictable that bandwidth improves (more benefit from prefetching). Additionally for very
large �, the majority of vertices can be processed simultaneously, which improves spatial
locality and once again allows the prefetcher to help more.

From a purely algorithmic point-of-view without GAIL, we would attribute performance
increases from increasing � to increased “parallelism” (more cores busy), but from GAIL we
can see that this increased algorithmic parallelism actually helps by improving communica-
tion e�ciency. From GAIL, we can see that the U-shape in execution time from a �-sweep
is the combination of the L-shape for the number of memory requests per traversed edge and
the backwards L-shape for the number of traversed edges.

Understanding Parallel Scaling Performance

To demonstrate the utility of GAIL for evaluating hardware platforms, we vary the number
of cores our workload uses. By varying the number of cores we allocate, we are not only
increasing the potential computational throughput, but we are also increasing the potential
for cache thrashing in the LLC and increasing synchronization overheads due to an increased
number of participants. For these strong scaling experiments, we use the direction-optimizing
BFS implementation executing on the IVB platform. Figure 6.3 shows the GAIL metrics
for two graphs: kron and road. The number of traversed edges is not shown because the
implementation is deterministic and so the number of traversed edges does not change for a
given graph.

Strong scaling on the kron graph (left side of Figure 6.3) is an example of successful
parallel scaling, as the implementation achieves a 10⇥ speedup when using 16 cores. The
speedup is driven by the system successfully utilizing more memory bandwidth, as the re-
duction in execution time closely tracks the inverse memory bandwidth (ns per memory
request). The increase in memory bandwidth utilization is indicative of more parallelism in
the computation (more cores). Crucial to the success of this scaling is that the amount of
communication (memory requests / traversed edge) does not change significantly.

Strong scaling on the road graph (right side of Figure 6.3) is an example of lackluster
parallel scaling. The road graph’s high diameter and small size complicate parallel scala-
bility for our implementation. Since it is a high diameter graph, the direction-optimizing
implementation will never switch into the bottom-up approach and will perform the entire
search top-down. Since the graph road has fewer edges and a high diameter, there is less
work per step and more steps (greater synchronization overhead), further complicating par-

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 82

Figure 6.3: GAIL metrics for strong scaling (varying number of cores utilized) on IVB
for direction-optimizing BFS implementation traversing the kron graph (left) and the road
graph (right). Since the implementation is deterministic, the traversed edges GAIL metric
is constant for each graph (not shown).

allel scalability. Using only one socket (up to 8 cores), achieves a 4⇥ speedup by utilizing
more bandwidth than it moves additional data. Once the implementation starts using both
sockets to traverse the road graph, it actually goes slower (hitch at 9 cores). With the help
of GAIL, we can clearly see the cause is a sharp increase in the number of memory requests
per edge that overpowers the increase in utilized memory bandwidth. Since the increase
in memory bandwidth utilization is somewhat comparable to the successful kron parallel
scaling, this is an indication to the hardware designer that the cache is likely thrashing. To
the software implementor, this scaling behavior suggests that the graph may be too small to
continue strong scaling on this 16-core platform.

Understanding Hardware Platform Performance Impacts

In the this final case study, we use GAIL to compare the IVB and T4 hardware platforms from
Table 6.2. Even when the performance of the two hardware platforms is comparable, they
may achieve their performance through di↵erent means. By using GAIL for this comparison,

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 83

Figure 6.4: GAIL metrics (memory requests per traversed edge versus inverse memory band-
width) for GAP Benchmark kernels executing on IVB and T4 to process the kron and urand
graphs. Contours show GTEPS for edges actually traversed.

we can understand how each platform achieves its performance. For this analysis, we execute
the GAP Benchmark reference code on each platform to process the kron and urand graphs.
IVB is representative of a “scale-out” server in a datacenter while T4 is representative of a
standalone “scale-up” server. Although T4 is a few years older than IVB, it is a substantially
larger system capable of nearly double the peak theoretical throughput. T4’s cores are
weaker than IVB’s cores, but they support a greater number of active threads. IVB has
the advantage of substantially greater LLC capacity. Comparing these platforms indirectly
evaluates tradeo↵s between more small cores versus fewer large cores and more memory
bandwidth versus more on-chip memory.

Before comparing the two hardware platforms head-to-head, we first calibrate our ex-
pectations for the second and third GAIL metrics in Figure 6.4. We do not visualize the
first metric (traversed edges) since we use the same implementation on both platforms so
the number of traversed edges is either the same (BC, BFS, PR, and TC) or close to the
same (CC and SSSP). In Figure 6.4, the contours represent traversed edges per second so
moving towards the origin represents higher throughput achieved by either better memory
bandwidth utilization (moving down) or reduction in memory communication (moving left).
From Figure 6.4, we see both platforms have a range of memory bandwidth utilizations and
cache e�ciencies depending on the input graph and kernel. The ranges for the two platforms
largely overlap, indicating the workload di↵erences are more impactful than the hardware

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 84

Graph BC BFS CC PR SSSP TC
kron 0.983 3.411 2.499 0.826 5.230 2.481
urand 0.818 3.513 2.186 0.662 5.385 0.620

Table 6.4: Speedups executing GAP benchmark kernels of IVB relative to T4

di↵erences. Comparing the two platforms, there are some cases in which T4 utilizes substan-
tially less bandwidth than IVB (points corresponding to BFS and SSSP). Although harder
to see, there are also some points in which T4 utilizes more bandwidth than IVB. Comparing
the two input graphs for a given kernel and platform, the points for kron are typically to the
left of the points for urand, demonstrating the locality benefits of kron’s power-law degree
distribution in practice.

Table 6.4 shows the speedups of IVB relative to T4. We see that although IVB is substan-
tially faster in 7/12 cases, in the remaining 5/12 cases T4 is faster. The kernel implementa-
tions (BC and PR) that execute faster on T4 are the more regular implementations, and this
suggests T4’s slowdowns relative to IVB may be due to poor parallel utilization. The more
irregular implementations are more di�cult to balance across threads, and T4 must balance
across 8⇥ as many threads. This behavior is best exemplified by the TC implementation
where T4 is faster than IVB on urand but slower on kron. For our TC implementation,
processing the urand graph results in work units more regular than the those for the kron
graph. Our TC implementation recognizes kron is scale-free, and this observation triggers
an optimization to relabel the graph by degree, which increases the variance of the work
units. On IVB, OpenMP’s dynamic scheduling is able to successfully adaptively balance
these varied work units, but when scaled to 8⇥ as many threads, dynamic scheduling on
T4 is not as successful. This result demonstrates the challenge of obtaining great parallel
utilization for optimized algorithms which are often more irregular.

Figure 6.5 shows IVB’s improvement over T4 on the second and third GAIL metrics
relative to speedup. On the left side of Figure 6.5, we observe no correlation between
di↵erences in memory requests per traversed edge and speedup. Despite a sizable LLC
capacity advantage, IVB does not obtain a substantial reduction in memory requests per
traversed edge. The lack of substantial di↵erence in memory requests per traversed edge
also suggests that IVB and T4 are caching the same working set, and IVB’s LLC will need
to be substantially larger to contain the next largest working set.

On the right side of Figure 6.5, we see a strong correlation between speedup and the
improvement of inverse bandwidth. This indicates that for this platform comparison, higher
overall performance tracks memory bandwidth utilization because the number of traversed
edges and the number of memory requests per traversed edge do not vary substantially across
platforms. The outlier is TC processing kron, and this point is skewed by IVB’s prefetcher
aggressively using available memory bandwidth, which artificially increases the number of
memory requests. Overall, this case study demonstrates the importance of not only peak
theoretical throughput, but the importance of being able to utilize that throughput.

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 85

Figure 6.5: Speedup of IVB over T4 versus IVB’s improvement over T4 in GAIL metrics
(memory requests per traversed edge versus inverse memory bandwidth) for GAP benchmark
kernels processing the kron and urand graphs.

6.4 Using GAIL to Guide Development

In the previous section, we demonstrate GAIL’s utility with experimental case studies to
understand existing performance di↵erences, and in this section, we discuss how GAIL can
also be used to guide algorithm, software, or hardware development. At the start of a new
project, a designer can pick which GAIL metrics they hope to improve, and which metrics
they hope to hold constant or degrade only slightly. With GAIL, simple back-of-the-envelope
math can provide bounds on potential performance improvements when considering potential
bottlenecks. Before even prototyping an idea, these simple calculations can help the designer
decide if an idea has su�cient potential. As the project progresses, the GAIL metrics can
give the designer further guidance on which challenges are the most important to solve. In
this section, we use GAIL to discuss probable tradeo↵s experienced when creating a new
algorithm, a new software framework, or a new hardware platform.

To create a new optimized algorithm, its designer will attempt to reduce the number of
traversed edges, but to be faster in practice, the new algorithm must not worsen the other
GAIL metrics by more than the algorithmic improvement. For example, the new algorithm
could be slowed if it has a more irregular memory access pattern that increases the number
of memory requests per traversed edge. The new algorithm could also be more di�cult to

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 86

parallelize, and a reduction in throughput could be visible using GAIL as an increase in
inverse bandwidth. Our direction-optimizing BFS algorithm exemplifies these challenges,
as its increased irregularity worsens cache locality and bandwidth utilization, but due to a
drastic reduction in traversed edges, it provides an overall speedup.

The challenges of creating a new high-performance graph processing framework can also
be analyzed with GAIL. Presumably, the new framework will provide a programming model
to increase its users’ productivity, but it is important that the programming model does not
preclude optimized algorithms. Being forced to use less optimized algorithms could increase
the number of edges traversed and dampen any speedups. Additionally, the framework needs
to lay out its data structures compactly and intelligently to not increase the number of mem-
ory requests per traversed edge. Finally, the framework needs to allow for high throughput.
This challenge is more than good parallel scalability, as in practice, the framework may be
bottlenecked by poor memory bandwidth utilization. If the framework adds too many in-
structions, the increase in IPM can decrease memory bandwidth utilization (as we observe
in Chapter 5).

GPUs provide a concrete example of a substantially di↵erent hardware platform, and
the challenge of obtaining peak graph processing performance with GPUs are similar to the
challenges a graph processing hardware accelerator will face. GPUs have the potential for
substantial throughput, as they can execute many threads simultaneously and have tremen-
dous memory bandwidth. Unfortunately, this throughput potential comes at the price of
reduced programmability and less on-chip memory. Prior work on high-performance graph
processing on GPUs experiences these challenges, but their penalties can be better explained
with GAIL by examining the number of edges traversed and the number of memory requests
per traversed edge. Some algorithmic optimizations may be impractical for GPUs, as GPUs
often require high control convergence in order to obtain high utilization. Akin to the chal-
lenge faced by software frameworks of providing a su�ciently flexible programming model,
being forced to use a less optimized algorithm could increase the number of traversed edges.
With the reduced on-chip memory available on GPUs, the implementation also needs to be
careful not to increase the number of memory requests per traversed edge.

6.5 Frequently Asked Questions

In talking to others about using GAIL, some questions have arisen:
Q: What if GAIL users have di↵erent definitions for what constitutes a traversed
edge?
A: Di↵erent traversed edge definitions will of course change the numerical results of GAIL,
but by whatever factor the number of traversed edges is scaled will also inversely scale the
number of memory requests per traversed edge. For example, deliberately undercounting
traversed edges to appear algorithmically better will result in appearing to perform more
memory requests per edge (worse). This concern should generally not be problematic since

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 87

what constitutes a traversed edge is typically unambiguous and most evaluations will be
performed by the same evaluator.
Q: Are the inputs to GAIL (time, traversed edges, and memory requests) the
only important metrics for graph algorithm performance?
A: No, but we believe those to be the three most important. Branch mispredictions can
definitely hinder performance [68]. Considering the number of instructions per traversed
edge is another interesting metric for implementation e�ciency, but we find it to be less
instructive than memory requests per edge. Instruction throughput for graph algorithm
execution is much more likely to be stalled by waiting on memory requests than a lack of
available function units to execute ready instructions [19].
Q: Could GAIL be modified to consider energy?
A: Yes. Replacing time with energy in the GAIL equation results in an interesting new term:
joules per memory request. Unfortunately, this modification to the GAIL equation may be
less instructive due to tradeo↵s between dynamic power and static power [41].
Q: Does GAIL work for distributed memory or semi-external memory imple-
mentations?
A: GAIL is designed for single-node shared memory systems since its metrics focus on the
platform’s most impactful architectural features (cache utility and memory bandwidth). For
other platforms, substituting memory requests within GAIL for the other platform’s most im-
portant bottleneck could make a similarly instructive equation. For example, for distributed
memory (cluster) implementations [31], counting network packets will be more helpful. For
semi-external memory (SSD/hard drive) implementations [92], counting blocks read from
storage could be more useful.
Q: Does GAIL work for non-traditional architectures (those without caches)?
A: Yes. The Cray XMT is such an architecture, with a high thread count and no processor
caches [154]. Even without the cache acting as a filter, the number of memory requests and
the rate they execute can vary substantially. For example, di↵erent algorithms could result
in di↵erent numbers of memory requests per traversed edge. Di↵erent implementations or
compiler optimizations could change whether variables are kept in architectural registers or
re-read from memory.
Q: Does GAIL work for all algorithms?
A: GAIL is designed for graph algorithms and it only requires a notion of traversing an edge.
For algorithms that do not operate on graphs, we believe other analogous iron laws could be
defined.

6.6 Conclusion

More specialized metrics should be a part of many graph processing evaluations, but GAIL
provides a simple starting point by factoring out the tradeo↵s between algorithmic work (tra-
versed edges), cache locality (memory requests per traversed edge), and memory bandwidth
utilization. GAIL is easy to use, since beyond execution time, the only additional data that

CHAPTER 6. GAIL: GRAPH ALGORITHM IRON LAW 88

needs to be collected is the number of memory requests and the number of traversed edges.
If widely adopted, GAIL could allow for concise comparisons with metrics already familiar to
the community. Fundamentally, GAIL is encouraging the use of deeper and more instructive
metrics. A new research contribution is much more useful if the community understands
why the contribution is faster, rather than simply knowing it outperforms the predecessor.

89

Chapter 7

Propagation Blocking

In this chapter, we introduce propagation blocking, a graph algorithm implementation opti-
mization to improve spatial locality in order to reduce memory communication. In Chapter 5,
we observe that many graph processing workloads have locality and are consequently not
memory bandwidth-bound, but there are a handful of low-locality workloads that break this
trend. Our propagation optimization targets these low-locality graph workload executions.
Propagation blocking is most advantageous when the input graph is sparse and has a large
number of vertices relative to the cache size of the execution platform. We evaluate the ef-
fectiveness of propagation blocking on PageRank and demonstrate memory communication
reductions on real hardware.

7.1 Introduction

The bounty of transistors provided by Moore’s Law has enabled increased computational
speed and throughput, but total communication bandwidth has failed to keep up. As a con-
sequence, some low arithmetic intensity workloads are often bottlenecked by communication
on today’s platforms. For these communication-bound workloads, the only way to improve
performance is to either increase their e↵ective memory bandwidth or decrease the amount
of communication. Reducing communication can also save energy, as moving data consumes
more energy than the arithmetic operations that manipulate it [41].

The amount of memory communication needed to execute a graph processing workload
is a function of many things including: the cache size, the graph size, the graph layout, and
the software implementation. To reduce communication, prior work has examined improving
the graph layout or reordering the computation to increase locality, and these optimizations
are often beneficial. However, there are some graphs that are less amenable to layout or
reordering transformations. Low-diameter graphs, such as social networks, are often such
stubborn graphs with low locality.

In this chapter, we present propagation blocking, an optimization that improves spatial
locality of low-locality graph workloads. By improving the spatial locality of a workload, our

CHAPTER 7. PROPAGATION BLOCKING 90

optimization accelerates the workload by reducing the amount of memory communication.
Performing propagation blocking adds additional computation, but for a communication-
bound workload, the benefit from improving spatial locality makes this tradeo↵ beneficial.

We select PageRank to evaluate propagation blocking, since it is often communication-
bound due to its low arithmetic intensity. In Figure 5.8, the datapoints in the upper left
corner that experience the lowest locality and use the most memory bandwidth correspond
to PageRank processing the largest graphs in the study. In Chapter 5, we observe the
tremendous impact the input graph’s topology can have on the characteristics of a graph
processing workload, and PageRank can be the most a↵ected by a low-locality input graph.
PageRank is an application of the linear algebra Sparse Matrix Multiplying Dense Vector
(SpMV) kernel, so our propagation-blocking technique can also be applied to SpMV.

We evaluate our approach on a suite of eight real-world and synthetic graphs using hard-
ware performance counter measurements. Compared to our baseline implementation, our
new approach reduces communication by 1.6 – 3.6⇥ on the seven low-locality graphs, but
increases communication by 1.6⇥ on the one high-locality graph. Compared to conventional
cache blocking, our approach reduces communication by 1.0 – 2.5⇥ on five of the low-locality
graphs. It communicates 1.1-1.2⇥ more than conventional cache blocking on the remaining
two low-locality graphs that have fewer vertices and more edges per vertex (denser). Deter-
mining whether to use cache blocking or our proposed propagation blocking could be done
at runtime based on the number of vertices and the degree.

7.2 Background on PageRank

PageRank [127] has emerged as a popular graph benchmark as it exposes many of the chal-
lenges of graph processing while still being simple enough to ease analysis and implementation
(Chapter 4). PageRank determines the “popularity” of a vertex by summing the scaled pop-
ularities of the vertices that point to it. This analysis often results in cyclic dependencies,
so PageRank typically iterates until the scores converge on a fixed point. PageRank scores
can also be computed or approximated by other techniques including spectral methods, but
in this work we focus on the power method.

The PageRank score for a vertex u is (d = 0.85):

PR(u) =
1� d

|V | + d
X

v2N�(u)

PR(v)

|N+(v)|

At the core of this computation is the propagation of a vertex’s score PR(v) scaled by its
out degree |N+(v)| to the vertex u it points to. In other words, a vertex’s score PR(u)
is the sum of the contributions (scaled scores) from its incoming neighbors N�(u). In our
discussion of implementing PageRank, we focus on the propagation of scaled scores between
vertices as the other multiplications or additions are on scalar or on often reused values.

We perform much of this work’s analysis of PageRank from the graph algorithm perspec-
tive, but to ease some explanations, we sometimes take the sparse linear algebra perspective,

CHAPTER 7. PROPAGATION BLOCKING 91

+
+

Pull

+

Push

graph edge data transfer sum contribution

Figure 7.1: PageRank communication for pull direction (left) and push direction (right).
In the pull direction, the active vertex (shaded) reads the contributions of its incoming
neighbors and adds them to its own sum. In the push direction, the active vertex adds its
contribution to the sums of its outgoing neighbors.

where the input graph can be viewed as a sparse adjacency matrix A such that each non-zero
element A

ij

represents an edge from vertex i to vertex j. The propagation and reduction of
contributions in PageRank is an application of SpMV. There are two restrictions on SpMV
within PageRank not present in generalized SpMV. First, the matrix A must be square
since the rows and columns represent the same set of vertices. Second, the matrix is binary
(graph is unweighted), so the indices themselves are the useful information as there are no
associated values to read with them. Additionally, the binary matrix results in each output
element being a sum reduction instead of a dot product. Our proposed technique does not
rely on these restrictions, and it could be extended to handle generalized SpMV.

There are two directions to perform the computation (Figure 7.1): pull (akin to row-
major SpMV) and push (akin to column-major SpMV). In the pull direction, each vertex
reads the contributions of its incoming neighbors and computes its own score (Figure 7.2a).
In the push direction, each vertex adds its contribution to the sums of its outgoing neighbors
(Figure 7.2b). After propagating the contributions in the push direction, a later pass will
use those sums to compute the new scores. The pull direction is often more e�cient since it
only reads each neighbors’ contributions rather than doing an atomic add to each neighbor’s
sum. Implementing the pull direction requires the transpose graph if the graph is directed,
as the computation will need to know the incoming edges for each vertex. Both directions
compute the same result, and the distinction is whether the sum (pull) or the contribution
(push) is the vertex value immediately reused. The tradeo↵s between push and pull are
analogous to the tradeo↵s between performing breadth-first search top-down and bottom-up
in Chapter 3.

CHAPTER 7. PROPAGATION BLOCKING 92

scores[:] 1 / |V |
base (1 - d) / |V |
for i until max iters do
for u 2 V do
contributions[u] scores[u] / |N+(u)|

end for
for u 2 V do
sum 0
for v 2 N�(u) do
sum sum + contributions[v]

end for
scores[u] base + d ⇥ sum

end for
end for

(a) Pull direction

scores[:] 1 / |V |
sums[:] 0
base (1 - d) / |V |
for i until max iters do
for u 2 V do
contribution scores[u] / |N+(u)|
for v 2 N+(u) do
sums[v] sums[v] + contribution

end for
end for
for u 2 V do
scores[u] base + d ⇥ sums[u]
sums[u] 0

end for
end for

(b) Push direction

Figure 7.2: PageRank implemented in both directions

7.3 Locality Challenges for PageRank

Locality is extremely important to PageRank performance, as improved locality can reduce
communication which in turn will improve performance. Although a given algorithm may
have a predictable number of reads and writes based on its input size, those reads and writes
may translate into a variable number of memory requests to DRAM based on cache locality.
Although modern processors have multiple levels of caches, in this work we consider only
a single cache level representative of the last-level cache (LLC). This is reasonable, as the
bandwidth between the LLC and DRAM is typically the communication bottleneck.

The propagation of a contribution to a sum is the core of PageRank’s communication. To
perform a propagation, the computation must read the graph adjacencies to identify which
vertices are connected and subsequently access the contribution for the source vertex and
the sum for the destination vertex. We categorize the memory tra�c for this PageRank
communication into “edge” tra�c, which accesses the graph adjacency information, and
“vertex” tra�c, which accesses the contributions or sums associated with vertices. The edge
tra�c typically enjoys good spatial locality, as most implementations process the neighbors
of a vertex consecutively and many graph layouts (e.g., CSR) store neighbor identifiers
continuously. The vertex tra�c has the potential to have much lower locality, since a vertex
could potentially be connected to any other vertex, and so the vertex value accesses are
unlikely to be consecutive. For graphs with many vertices, the corresponding arrays that
associate a value with each vertex are much larger than the cache, so non-consecutive accesses
to these arrays are likely to have poor cache locality.

CHAPTER 7. PROPAGATION BLOCKING 93

source

de
st
in
at
io
n

No Blocking Cache Blocking

Contributions

Adjacency
Matrix

Sums

PushPull

Bl
oc

k

PushPull

Single Vertex Value Vertex Value Range Edge Range

Figure 7.3: Accesses needed to process one vertex and its neighbors for PageRank, with or
without 1D cache blocking for both pull (row-major) and push (column-major) directions.
All approaches enjoy high locality when accessing the adjacency matrix (edge tra�c). The
vertex value arrays (contributions or sums) are much larger than the cache size, and thus
accessing a sparse range within them could have low locality. Without blocking (left), one
vertex value access obtains high locality at the expense of the other. Pull has high temporal
locality on the sums, but low locality reading the contributions. Push has high locality
reading the contributions, but low locality for the sums. Cache blocking (right) reduces the
range of vertex values to the current block in order to improve locality.

Vertex tra�c is composed of accesses for the contributions as well as accesses for the sums,
and it is challenging to improve locality for both access streams simultaneously. One of the
vertex value accesses will have high temporal locality (probably even register allocated), but
the other will have potentially low locality as there is no restriction on a vertex’s location
relative to its neighbor (Figure 7.3). For example, in the pull direction, the sum of incoming
contributions will have high locality, but reading the neighbor’s contributions could have
low locality. For the push direction, the outgoing contribution will have high locality, but
reading (and writing) its neighbors’ sums could have low locality. The low locality vertex
value accesses not only increase the number of memory requests (low temporal locality), but
the low locality can also result in unused words within transferred cache lines (poor spatial
locality). These unused words are problematic, as they waste bandwidth and energy.

Since the vertex values are stored contiguously in arrays, the graph labelling (or “layout”)
has a tremendous impact on the locality of the vertex value accesses. For accesses that will
potentially have low locality, whether they actually experience low locality is determined by
the graph’s layout. An ideal high-locality graph layout has all of its non-zeros in a narrow
diagonal when viewed by its adjacency matrix. Not only does this improve the spatial locality
for processing one vertex, since all of its neighbors’ vertex values will be adjacent, but it also
improves the temporal locality between vertices because there will be large overlaps between
their neighbors. Unfortunately, some graphs’ topologies make it di�cult to find such an ideal

CHAPTER 7. PROPAGATION BLOCKING 94

layout. These graphs of interest are often low-diameter and are often social networks [145].
Alternatively, there may be situations in which the time to compute and transform the graph
into such a layout is not warranted.

Cache blocking [123] is a technique to reduce the negative impact of low-locality vertex
value accesses. By partitioning the graph into blocks, the potential range for vertex values
is reduced su�ciently such that the corresponding array segments for the vertex values are
small enough to reside in cache, thus improving the locality of that access stream (Figure 7.3).
Unfortunately, this gain for the low-locality access stream comes at the expense of the high-
locality access stream. For example, blocking in the pull direction will improve the locality
of reading the neighbors’ contributions, but worsen the locality of accessing the sum, as the
sum must be re-read and written for each block. The more blocks the graph is partitioned
into, the more times the sums must be re-accessed. The block size is a tradeo↵ between the
localities of the two access streams, with the optimum size resulting in moderate locality
for both streams. Cache blocking can be done in one or two dimensions and can be applied
to either direction (push or pull). It is also worth distinguishing cache blocking for sparse
matrices from register blocking for sparse matrices, which is often done to reduce the amount
the index array is read [123].

To implement cache blocking, the graph data structure needs to be modified to accomo-
date easy access to each block. One technique is to store the graph blocks each as their own
graph (in CSR). If the graph is su�ciently sparse (e.g. expected number of nonzeros per
row per block < 1), it may be advantageous to store each block as an edge list instead to
cut down on the index tra�c.

The challenge for PageRank communication is that it is di�cult for both vertex value
memory access streams to obtain high locality simultaneously. With the push technique or
the pull technique, one stream does well at the expense of the other. Cache blocking allows
for a more continuous locality tradeo↵ between the two streams, but it does not allow for
them both to have high locality simultaneously.

7.4 Propagation Blocking

To improve the low locality vertex value accesses, we propose propagation blocking. Unlike
cache blocking that blocks the graph itself, we block the propagations. Propagation blocking
stores the propagation to memory in a semi-sorted manner, so when the propagations are read
later, they will have better locality. We split the propagation of contributions for the push
technique into two phases: binning and accumulate (Figure 7.5). In the binning phase, all of
the contributions are read, but instead of adding them directly to their sums, we insert them
into bins corresponding to their destination vertices. Each bin corresponds to a contiguous
range of vertices, but the number of bins is small enough (e.g., 64) that the insertion points
of these bins can fit in cache simultaneously. This binning phase is analogous to a radix
partitioning done for a database join or a sorting kernel. When inserting a contribution into

CHAPTER 7. PROPAGATION BLOCKING 95

source
de
st
in
at
io
n

Contributions

Bins

Binning Phase

Sums

+

Accumulate Phase

Bins

Single Vertex Value

Vertex Value RangeEdge Range

(Contribution,Destination)

Figure 7.4: Propagation blocking. In the binning phase, vertices pair their contributions
with their destination indices and insert them into the appropriate bins. In the accumulate
phase, the contributions are reduced into the correct sums.

one of these bins, the destination vertex identifier is also included to create (contribution,
destination) pair.

In the accumulate phase, one bin is processed at a time and the contributions are added
to their appropriate sums (Figure 7.4). Because the bin corresponds to a reduced range of
vertices, all of the corresponding sums should fit in cache at once. Reading the (contribu-
tion, destination) pairs from the bin will also enjoy high spatial locality since they will be
contiguous.

Propagation blocking reduces communication through the use of additional memory space
to store the propagations. The amount of additional memory required can be substantial,
since each directed edge in the graph will need space for two words (contribution and des-
tination). The additional memory is split into bins, and the number of bins is the number
of vertices in the graph divided by the bin width. The bin “width” is chosen such that the
number of vertices associated with each bin is small enough that their corresponding slice of
the sums array can fit in cache.

To further reduce communication, propagation blocking can leverage a deterministic
layout for the bins. If the locations that contributions are written to within a bin are always
the same for multiple invocations on the same graph, the destination identifiers can be stored
in a separate data structure. This halves the number of writes during the binning phase, as
only the contributions and not their destinations need to be written. During the accumulate
phase, the bin is read in lockstep with the destination indices to determine the destinations

CHAPTER 7. PROPAGATION BLOCKING 96

scores[:] 1 / |V |
sums[:] 0
bins[:] {}
base (1 - d) / |V |
for i until max iters do
for u 2 V do
contribution scores[u] / |N+(u)|
for v 2 N+(u) do
bins[v/num bins] bins[v/num bins] + (contribution, v)

end for
end for
for b 2 1 . . . num bins do
for (contribution, v) 2 bins[b] do
sums[v] sums[v] + contribution

end for
bins[b] {}

end for
for u 2 V do
scores[u] base + d ⇥ sums[u]
sums[u] 0

end for
end for

Figure 7.5: PageRank by propagation blocking

for each contribution. The separate arrays containing the destination indices for the bins
can be reused after the first iteration of PageRank or even computed in advance.

Propagation blocking performs more load and store instructions than an unblocked
PageRank in order to insert propagations into the bins and read propagations back from
the bins. Since propagation blocking makes use of every word in each transferred cache line,
it can transfer fewer cache lines to achieve a net memory communication reduction. Whether
propagation blocking is advantageous depends on how well the baseline makes use of every
word in each cache line it transfers.

7.5 Communication Model

We present simple analytic models for the amount of communication each PageRank imple-
mentation strategy performs in order to gain qualitative insights into their tradeo↵s. Our
models assume a uniform random input graph due to its simplicity, but we acknowledge a
random graph is the worst case for many of these implementations due to its lack of locality.
For communication volume, we use units of cache lines since that is the unit of transfer with

CHAPTER 7. PROPAGATION BLOCKING 97

main memory. Within cache lines we use the unit of words (e.g., 32-bit words). We model
only a single global iteration of PageRank, since each implementation strategy we model
communicates the same amount each iteration. We use the following parameters:

n number of vertices (|V |)

k average directed degree (nk = |E|)

b number of words per cache line

c number of words in cache

r number of graph blocks for cache blocking

Pull Baseline

To read the graph from a CSR layout requires kn/b cache lines to read the adjacencies and
2n/b cache lines to read the indices. Our index uses 64-bit pointers to support greater than
4 billion edges, so we count each of these pointers as two words. To read the vertex values,
looking up the destination sums requires reading n/b cache lines. The source contributions
could potentially be in cache. We approximate the cache hit rate as 1�c/n (assuming n > c)
and since there are kn directed edges, reading the contributions requires (1� c/n)kn cache
lines. To output the final scores requires writing n/b cache lines. Altogether, the number of
cachelines the pull technique reads is:

✓⇣
1� n

c

⌘
+

1

b
+

3

kb

◆
nk

Cache Blocking

We model the communication for 1D cache blocking in the push direction using a CSR
data structure for each block. Reading the adjacencies still requires reading kn/b cache
lines, however, with r blocks we will also read r index arrays, so reading in all of the graph
requires a total of (k + 2r)n/b cache line reads. Presumably, the blocks are small enough
such that n/r < c, so the only vertex value tra�c needed is compulsory, but the blocked
vertices will be re-read, yielding (r + 1)n/b cache line reads. To output the final scores
requires writing n/b cache lines. Altogether, the number of cachelines 1D cache blocking on
CSR requires reading is:

(k + 3r + 1)n

b

If the graph is su�ciently sparse (k < 2r), using an edge list to hold each block instead
of CSR reduces the index communication, yielding a cacheline read total of:

(2k + r + 1)n

b

CHAPTER 7. PROPAGATION BLOCKING 98

We do not model 2D cache blocking since in our context, 2D cache blocking will not
communicate significantly less than 1D cache blocking. As 2D cache blocks are processed
temporally, they will e↵ectively merge into a 1D cache block along the dimension they are
being processed along. This e↵ective 1D cache block will communicate the same as if it were
truly a 1D cache block.

Propagation Blocking

We assume there are an adequate number of blocks such that n/r < c. Like the pull case,
reading the CSR graph requires reading (k + 2)n/b cache lines. Reading the source vertex
values requires n/b cache line reads and outputting the final scores requires n/b cache line
writes. Propagating contributions writes 2kn/b cache lines in the binning phase and reads
2kn/b cache line in the accumulate phase. Reusing the destination indices saves kn/b writes
from the binning phase. Altogether, the number of cachelines propagation blocking reads is:

✓
3 +

3

k

◆
kn

b

and writes (when reusing destination indices):

✓
1 +

1

k

◆
kn

b

Commentary

For the pull technique, the miss rate (1 � c/n) strongly impacts the amount of tra�c.
Comparing the total communication of propagation blocking to the pull technique, we see
propagation blocking will be advantageous when:

b � 3

1� c/n

This tradeo↵ is intuitive, as the opportunity for propagation blocking is if the pull technique
frequently misses the cache.

Propagation blocking is advantageous to cache blocking using an edge list when:

r � k +
3

2

To first order, the amount of tra�c for cache blocking is proportional to r, while for propa-
gation blocking it is proportional to k. These dominant factors correspond to the attribute
each technique is blocking. Cache blocking breaks up the graph, and r is proportional to
n/c. For larger graphs, cache blocking will use more blocks and reload the vertex values
more times, which will decrease its communication e�ciency. Propagation blocking breaks

CHAPTER 7. PROPAGATION BLOCKING 99

up the propagations, which are proportional to k. Thus, propagation blocking will not have
a change in communication e�ciency for larger graphs. From our simple models, we see
propagation blocking will communicate less than cache blocking when the graph is sparse
enough and has su�ciently more vertices than can fit in the cache.

7.6 Evaluation

To perform our evaluation, we use the suite of sparse, low-diameter graphs in Table 7.1 and
we provide more background on them in Section 2.3. Each graph uses the vertex labelling
provided by its original data source, which is often chosen intelligently. The graph webbase
has an optimized vertex labelling, and to show the benefit of that labelling, we randomize
webbase’s labelling to produce webrnd. Since PageRank computation is proportional to the
number of directed edges, in this chapter we use the directed degree since we find it to be
a more instructive metric. The directed degree of an undirected graph is twice its average
degree.

For consistency, we start all of our implementations from the same codebase, and we use
our GAP Benchmark Suite’s reference implementation of PageRank (Section 4.4). We use
the following implementations:

Baseline is the reference implementation and it computes PageRank in the pull direction.

Cache Blocking (CB) improves our baseline by performing 1D cache blocking. It com-
putes PageRank in the push direction, and it uses a CSR data structure for each block.

Propagation Blocking (PB) implements our propagation-blocking technique in the push
direction.

Deterministic Propagation Blocking (DPB) improves upon PB by using the optimiza-
tion of storing the destination indices separately so that during the binning phase, only
the contributions need to be written.

For our blocking implementations, we first tune the block width and then compute the
number of blocks based on the width. After testing many block widths, we determined our
implementations performed best when the corresponding vertex value array segments are
2MB. We explore the bin width tradeo↵s for propagation blocking later in this section.
Each result in this section is the average of multiple trials of a single iteration of PageRank.
We do not include the time to block the graph for CB or to allocate the bins for PB, as these
can be done in advance or reused for other algorithms.

To perform our evaluation, we use a dual-socket Intel Ivy Bridge server (IVB), similar to
what one would find in a datacenter (Table 7.2). To access hardware performance counters,
we use Intel PCM [81]. We compile all code with gcc-4.8, except the external baselines that
use Cilk from icc 14. To ensure consistency across runs, we disable Turbo Boost (dynamic

CHAPTER 7. PROPAGATION BLOCKING 100

Graph Description Ve
rt
ice
s (
M
)

Ed
ge
s (
M
)

Di
re
ct
ed

De
gr
ee

Di
re
ct
ed

Urand uniform random [58] 134.2 1,073.7 16.0
Kron Kronecker generator [66, 94] 134.2 1,062.8 15.8
Citations academic citations [149] 49.8 949.6 19.0 X
Coauthors academic coauthorships [149] 119.9 646.9 10.8
Friendster social network [170] 124.8 1,806.1 28.9
Twitter social network [91] 61.5 1,468.3 23.8 X
WebBase 2001 web crawl [47] 118.1 632.1 5.4 X
WebRnd WebBase randomly relabelled [47] 118.1 632.1 5.4 X

Table 7.1: Graphs used for evaluation. All of the graphs come from real-world data except
kron and urand. The kron, urand, and twitter graphs are also in our GAP Benchmark Suite.

Architecture Ivy Bridge EP
Intel Model E5-2667 v2
Released Q3 2013
Clock rate 3.3GHz
Sockets 2
Cores/socket 8
Threads/core 2
LLC/socket 25MB
DRAM Capacity 128GB
DRAM Type DDR3-1600

Table 7.2: IVB system specifications

voltage and frequency scaling). Our experiments are single-threaded to get precise commu-
nication measurements. All of the implementations could be parallelized, but the focus of
this chapter is on communication.

Baseline Validation

To ground our work, we validate the performance of our baseline implementation by com-
paring it to three established codebases. We use the PageRank implementations from Galois
(pull version) [122] and Ligra (non-delta version) [146]. We also use the Compressed Sparse
Blocks (CSB) SpMV implementation, but since it does not perform the additional compu-
tations necessary for PageRank, our measurements overestimate its performance [30].

CHAPTER 7. PROPAGATION BLOCKING 101

Time Memory Reads Reads / second Instructions Executed
Codebase (s) (M) (M) (B)
Baseline 42.6 4,442 104.3 33.6
CSB (SpMV) 81.9 5,448 66.5 116.9
Galois 100.6 4,946 49.2 82.0
Ligra 129.5 13,180 101.8 114.4

Table 7.3: PageRank iteration on 128M vertex 2B undirected edge uniform random graph

Table 7.3 presents the performances of our baseline and the three established codebases
using a single-thread to process a uniform random graph of 128M vertices and 2B undirected
edges (directed degree of 32). Although our baseline implementation is simple, its litheness
allows it to communicate the least and execute the fewest instructions while still using the
most memory bandwidth. Both our baseline and Ligra obtain nearly full memory band-
width utilization (we achieve a maximum of 108M memory requests/second with synthetic
microbenchmarks), but Ligra performs 3⇥ the total communication. CSB and Galois both
execute so many additional instructions that their memory bandwidth utilization is bottle-
necked by the instruction window size, as we discussed in Chapter 5. Overall, our baseline
implementation is substantially faster than prior work, so any performance improvements
over our baseline represent very substantial improvements over prior work.

Quantifying the Opportunity for Propagation Blocking

To gauge the opportunity for how much our blocking techniques can improve locality, we
first measure how much locality there is in our benchmark graphs. In theory, the amount of
memory communication for the vertex tra�c and the edge tra�c (reading the graph) should
be equal, but if the vertex value accesses have low locality, the vertex tra�c can consume
much more than half of the memory tra�c. Figure 7.6 shows that most of our input graphs
have low-locality layouts, as the edge tra�c consumes far less than the expected 50%. To
measure the fraction of edge memory tra�c, we process each graph twice: once with our
baseline implementation, and once only reading the graph. The tra�c we measure for reading
only the graph is also in close agreement with our model from Section 7.5.

The detailed results of our baseline in Table 7.4 shows the impact of a graph’s layout and
topology on communication volume. The webbase and webrnd graphs have exactly the same
topology, but webbase’s optimized layout enjoys many more cache hits for its vertex accesses,
which in turn reduces the total number of memory requests. This impact is also visible in
Figure 7.6, as the same number of accesses to read the webbase graph now constitute a
much larger fraction of the memory tra�c. Although the kron graph is the same size as
the urand graph, its power-law degree distribution improves the temporal locality of vertex
value accesses, and so it too enjoys more cache hits, reducing its vertex tra�c. Overall, all of
our input graphs except webbase have low locality and could thus be amenable to blocking.

CHAPTER 7. PROPAGATION BLOCKING 102

Figure 7.6: Fraction of read memory tra�c to read graph from CSR

Baseline DPB
Time Memory (M) Instructions Time Memory (M) Instructions

Graph (s) Reads Writes Exec. (B) (s) Reads Writes Exec. (B)
urand 21.8 2,247.6 33.6 19.9 13.6 458.4 164.1 77.6
kron 17.7 1,536.8 32.1 18.7 13.7 454.5 163.9 79.6
citations 7.9 756.5 12.7 8.0 5.6 199.0 70.6 33.8
coauthors 8.5 628.8 26.4 12.2 8.0 291.3 106.6 48.3
friendster 33.4 3,237.9 36.3 28.1 21.4 732.7 256.2 129.0
twitter 8.6 652.5 15.2 11.0 8.0 301.4 105.8 51.7
webbase 2.2 106.4 23.4 7.7 3.8 164.7 63.1 25.9
webrnd 7.2 644.5 25.3 8.5 5.2 165.0 63.5 26.2

Table 7.4: Detailed performance results for baseline and DPB

CHAPTER 7. PROPAGATION BLOCKING 103

Comparing Blocking Approaches

All three blocking implementations deliver substantial performance (Figure 7.7) and commu-
nication (Figure 7.8) improvements relative to our baseline. The reductions in communica-
tion are greater than the reductions in execution time, because our baseline implementation
utilizes more memory bandwidth. DPB’s optimization of reusing destination indices does
provide a modest improvement over PB. In terms of execution time, DPB and CB are com-
petitive with each other.

The detailed results in Table 7.4 show that DPB greatly reduces the amount of read
tra�c, but its overall communication reduction is reduced by the additional write tra�c
to store propagations to bins. To perform propagation blocking, DPB performs on average
four times as many instructions as the baseline, and this reduces DPB’s memory bandwidth
utilization.

We use the GAIL metrics (Chapter 6) to visualize the locality-bandwidth tradeo↵ the
blocking implementations experience (Figure 7.9). Since all implementations process the
same number of edges, we do not display the number of traversed edges. For the GAIL met-
rics shown, moving towards the origin represents faster edge processing, since moving to the
left represents better cache locality, and moving down represents greater memory bandwidth
utilization. The baseline implementation generally obtains high memory bandwidth utiliza-
tion, but it has a wide range of memory requests per edge caused by the varying localities
of the input graphs. All three blocking implementations (CB, PB, and DPB) generally im-
prove performance because they improve locality (farther to left) by more than they worsen
memory bandwidth (farther up). The propagation blocking implementations (PB and DPB)
have less variation in their performance since their communication is less sensitive to topol-
ogy. The reduced performance variation makes the performance of the propagation blocking
implementations more predictable.

Comparing DPB to CB on each graph (Figure 7.7 and Figure 7.8), DPB does succeed in
reducing communication more often than CB. Since both CB and DPB are slower than the
baseline on webbase, we focus on the remaining graphs that have worse layouts. Of those
remaining seven graphs, DPB moves less data on five of them. Those two graphs where
CB communicates less have the fewest vertices and are amongst the densest. Since our
CB implementation uses a constant block width, a graph with fewer vertices will use fewer
blocks, which will result in fewer times the vertex values are reloaded (less communication).
Additionally, the increased density gives CB more useful work to amortize the reloading of
the vertex values.

To quantify the topological properties necessary for blocking to be advantageous, we ar-
tificially control locality by generating graphs of the same degree but with varying numbers
of vertices (Figure 7.10). With fewer vertices, the vertex values are more likely to remain
in cache. We normalize these communication volumes to the number of edges in the graph
(second GAIL metric). For our baseline, once the graph becomes su�ciently large, it over-
flows the cache and moves more data. For CB, the number of blocks increases along with the
number of vertices, which causes the vertex values to be re-read more times. The constant

CHAPTER 7. PROPAGATION BLOCKING 104

Figure 7.7: Execution time improvement over baseline

Figure 7.8: Communication reduction over baseline

CHAPTER 7. PROPAGATION BLOCKING 105

Figure 7.9: GAIL metrics across benchmark suite. Traversed edge totals not shown since
equal for all implementations. Contours represent millions of traversed edges per second
(MTEPS), so processing rates increase toward the origin.

number of memory requests per edge for DPB indicates that the number of edges is the
primary determinant of memory tra�c, and it is not the expected hit rate (c/n) like the
baseline, or the number of blocks r (proportional to n/c) for CB. Thus, which approach
communicates the least depends on the number of vertices relative to the cache size. For the
smallest graphs, blocking is unmerited and our baseline is the most communication e�cient.
For mid-size graphs, cache blocking is the most e�cient, but as the graph gets too large,
the overhead of reloading the vertex values makes it less e�cient. For the largest graphs,
propagation blocking provides the most scalable communication.

In Figure 7.11 we vary the degree to find the sparsity for which DPB is advantageous to
CB. Since all of the graphs have the same number of vertices, CB will use the same number of
blocks. For denser graphs, CB will have more useful work to amortize the compulsory tra�c
of reloading vertex values for each block, and thus it becomes more e�cient on average. In
this experiment with a 128 million vertex uniform random graph, DPB will communicate
less than CB if the directed degree is 36 or less. For graphs with more vertices, that degree
cuto↵ will be higher, since CB will have more compulsory tra�c to amortize.

CHAPTER 7. PROPAGATION BLOCKING 106

Figure 7.10: Communication e�ciency for varying number of vertices of a degree=16 uniform
random graph

Figure 7.11: Communication e�ciency for varying degree of a 128M vertex uniform random
graph

CHAPTER 7. PROPAGATION BLOCKING 107

Selecting Bin Size

We vary the bin width to determine its impact on propagation blocking’s performance.
Once the vertex value array partitions that correspond to each bin are small enough to
fit in the cache, there is not much change in communication volume (Figure 7.12). The
webbase graph is insensitive to bin width since its high-locality layout obviates blocking.
Once memory communication is minimized, there is additional execution time benefit to
using slightly smaller bins (Figure 7.13). However, making the bins too small makes them
too numerous, which causes more L1 cache misses for bin insertions during the binning
phase. For our platform, we select a partition size of 2MB, as it is typically the fastest while
communicating little.

7.7 Implementation Considerations

To improve the performance of our propagation-blocking technique, we use a number of
optimizations, some of which are platform specific (x86/Linux). Our propagation-blocking
implementation is written in C++, and it performs low-level memory management and
makes use of compiler intrinsics for special instructions. Low-level programming is not a
requirement to use propagation blocking, and propagation blocking can be encapsulated in
a framework to hide its implementation details from a graph algorithm implementor. In
Appendix B, we describe a high-level language for implementing graph algorithms that uses
propagation blocking internally.

To improve the performance of the binning phase, we restrict our bin widths to powers
of two so we can use a shift instructions to quickly compute a destination bin (instead of an
integer divide).

To reduce the amount of communication during the binning phase, we use non-temporal
stores and other optimizations from prior work on radix partitioning [133, 140, 159]. When
writing to the bins, even though we are only writing, the processor will often read the cache
line from memory first before overwriting it in cache (write allocate). By using Intel’s non-
temporal (streaming) store instructions, we instruct the processor to bypass the cache when
performing the writes, which obviates the read from memory for the write allocate [80].

Non-temporal store instructions on their own can be wasteful, as they write only part
of a cache line but still transfer a full cache line. To reduce this waste, we coalesce our
writes together in software by using small cache line-aligned fixed-size bu↵ers. We store into
the bu↵ers with normal store instructions, and since they are small, they reside in cache.
When a bu↵er becomes full, we copy it in bulk to its corresponding bin in memory using
the non-temporal store instructions. To implement our copy routine, we obtain the best
performance using the AVX non-temporal stores, but we also experimented with the SSE2
streaming stores and the ERMSB idiom [80].

We use software prefetch instructions to improve memory bandwidth utilization during
the accumulate phase. In particular, we prefetch ahead within the bin being currently

CHAPTER 7. PROPAGATION BLOCKING 108

Figure 7.12: Bin width impact on total memory communication for DPB by graph

Figure 7.13: Bin width impact on execution time for DPB by graph

CHAPTER 7. PROPAGATION BLOCKING 109

processed. Although that access stream is continuous and should be detected by the hardware
prefetcher, we speculate that the other loads and stores for accessing the sums confuses the
prefetcher. We attempted to use software prefetch instructions in other places, but were
unsuccessful in obtaining an improvement.

Although we do not care about the contents of the bins prior to using them, we still find it
is important to initialize them. If left the bins are left uninitialized, we observe Linux zeroing
out the contents of the corresponding memory pages during our program’s first access, which
substantially increases the amount of write tra�c. Due to lazy memory allocation, although
our program has allocated the memory space, Linux has not yet given our program access
to physical memory pages. To fix this problem, as soon as we allocate the bins, we stride
through the bins to trigger Linux to zero the pages. Since Linux is performing the zeroing,
we only need to stride at an interval equal to the page size.

7.8 Related Work

SpMV is communication-bound, and as a consequence, much of the prior work on optimizing
for performance has naturally also optimized communication [162]. Bender et al. provide
complexity bounds on the amount of communication for SpMV [21], and their I/O model
matches our model of a cache and main memory. Furthermore, our empirical results confirm
their side result that a uniform random sparse matrix requires approximately half the I/Os
of their modeled worst case. Nishtala et al. provide criteria for when cache blocking will
be advantageous for SpMV, and it is consistent with our results [123]. For example, we
find the number of vertices (x in their formulation) and the randomness of the matrix to be
important requirements.

There has been extensive prior work on reordering graphs and sparse matrices in order to
improve locality. The Cuthill-McKee [46] technique and its follow-on RCM [62] apply BFS as
a heuristic to find a good ordering. Shun compares multiple reordering techniques including
DFS on social network topologies [145]. Compressing graphs exposes many of the same
locality challenges, and the WebGraph framework is specifically designed to compress web
crawls [28]. Unfortunately, no reordering technique is beneficial for all input graphs [145].

Relabelling the graph transforms the graph spatially, but the graph can also be trans-
formed temporally. Changing the order in which edges are read from the graph can improve
locality. Cache-oblivious algorithms use space-filling curves to obtain reasonable locality
without any knowledge of the size of the cache, and they have been successfully applied to
SpMV [176] and PageRank [105]. Unfortunately, these temporal transformations can greatly
complicate parallelization.

CHAPTER 7. PROPAGATION BLOCKING 110

7.9 Conclusion

As demonstrated by our benchmark graph webbase, when a high locality graph layout is
available, communication for PageRank is naturally reduced. Unfortunately, such high lo-
cality graph layouts are not always available, which not only results in more cache line reads
from memory, but also fewer words used per transferred cache line.

Blocking is a technique used throughout computing to reduce communication by improv-
ing locality. Blocking improves locality by reducing the working set of the application to
be small enough to fit in the fast memory. The amount of communication for PageRank
for conventional cache blocking is primarily determined by the number of vertices, as this
determines the number of blocks and thus the number of times the vertex values must be
re-read. By contrast, the amount of communication for our proposed propagation-blocking
technique is primarily determined by the number of edges. From the linear algebra per-
spective, propagation-blocking communication is proportional to the number of non-zeros
in the sparse matrix, while conventional cache blocking communication is proportional to
the matrix dimensions. Thus, if the graph is su�ciently sparse, or if the number of vertices
is su�ciently large, propagation blocking will be more communication e�cient than cache
blocking.

Our results demonstrate our propagation-blocking implementation can reduce communi-
cation substantially, but there are cases when our other implementations communicate less.
The locality of the graph determines whether one should use the pull baseline (high locality)
or either blocking approach (low locality). Unfortunately, a graph’s locality is not easy to
measure quickly, but hopefully from the context of the application there should be hints as
to its locality. The degree and the number of vertices determine whether one should use
propagation blocking (lower degree and more vertices) or cache blocking (higher degree and
fewer vertices). Fortunately, those topological parameters are easy to access and the decision
to use propagation blocking or cache blocking could be done dynamically at runtime.

In this chapter, we compare the time it takes to perform PageRank once the graph has
been loaded and optimized, but the time to optimize the graph is also worth considering.
It may be worthwhile to optimize the graph less if the reduction in graph preprocessing
time is greater than the increase in kernel execution time. Relabelling the graph to improve
its locality can be a time consuming optimization, as once the new mapping is selected,
there will be extremely poor locality during the conversion. Partitioning the graph for cache
blocking is less time consuming, as the conversion can be done in a streaming fashion in
order to obtain good spatial locality. Creating the bins needed for propagation blocking is
the least demanding optimization, as it only requires allocating memory. The bins could also
be reused for other graphs that are not bigger than the original graph. Since propagation
blocking requires comparatively less graph preprocessing, its use is beneficial for a greater
number of situations since it requires less execution time to amortize.

In this work we target PageRank, but the propagation-blocking technique could easily
be generalized to other applications. For graph algorithms, it is applicable whenever the
algorithm considers vertex values on both sides of an edge. The benefit of propagation

CHAPTER 7. PROPAGATION BLOCKING 111

blocking is dependent on the locality of the graph’s layout. Propagation blocking could also
be extended to handle generalized SpMV, and it should be beneficial as long as the matrix
is su�ciently sparse.

112

Chapter 8

Conclusion

In this dissertation, we obtain insight into the fundamental factors that determine the speed
of graph algorithms and use that understanding to improve performance. In this conclud-
ing chapter, we outline our main contributions and recommend future directions for the
community to build upon our work.

8.1 Summary of Contributions

This dissertation makes the following main contributions:

1. Direction-optimizing breadth-first search, a novel algorithm that traverses low-diameter
graphs faster by traversing only a small fraction of their edges (Chapter 3). This is the
first algorithmic improvement to breadth-first search, as prior work only improves the
e�ciency of implementations and does not reduce the number of edges examined.

2. The Graph Algorithm Platform (GAP) Benchmark Suite to help the community im-
prove graph processing evaluations via standard benchmarks (Chapter 4). We also
provide a reference implementation that can be used as a high-performance baseline.

3. Workload characterization of graph processing on shared memory multiprocessors (Chap-
ter 5). By using precise hardware performance counters, we demonstrate that contrary
to prior conventional wisdom, most graph processing executions achieve moderate lo-
cality and are consequently typically not memory-bandwidth bound.

4. Graph Algorithm Iron Law (GAIL), a simple performance model to understand trade-
o↵s between a graph algorithm, its implementation, and its hardware execution plat-
form (Chapter 6). GAIL incorporates the most important factors for graph algorithm
performance: algorithmic e�ciency, cache locality, and memory bandwidth utilization.

5. Propagation Blocking, an optimization technique to reduce memory communication of
poor locality graph processing workloads (Chapter 7). Propagation blocking reduces
communication by using additional memory capacity to improve spatial locality.

CHAPTER 8. CONCLUSION 113

8.2 Future Work

We believe promising future work could be built on the two main thrusts of this work:
understanding graph algorithm performance (analysis) and improving graph algorithm per-
formance (synthesis). For many of the projects, we believe our GAP Benchmark Suite will
be essential for evaluation and GAIL will help provide a deeper understanding of the results.

Analysis

Investigate Memory Hierarchy Performance for Graph Processing
One of the key contributions of our workload characterization is the empirical obser-
vation that graph processing workloads typically enjoy moderate cache locality and as
a consequence, are unable to fully utilize the platform’s memory bandwidth. Further
investigation should analyze the properties of this cache locality. First, it would be
interesting to measure the impact of cache size and organization on this locality for
graph processing. In particular, it would be useful to determine whether parallel exe-
cutions interfere constructively or destructively, and how this a↵ects how much cache
capacity should be allocated privately or shared. It would also be helpful to identify
which accesses are most tolerant and most vulnerable to NUMA penalties. To make
these measurements more instructive, it may be beneficial to categorize memory tra�c
in a manner similar to how we di↵erentiate edge tra�c from vertex tra�c in Chapter 7.
O’Neil et al. vary cache parameters in their graph workload characterization, but they
focus on GPUs instead of shared-memory multiprocessors [125].

Characterize Dynamic Graph Processing Workloads
In this work we restrict ourselves to batch processing on immutable graphs, but there
are also graph processing applications that operate on continuously changing real-world
data. These dynamic graph processing workloads make changes to their graphs and
attempt to compute on only the changes. By processing only the graph changes, their
memory access patterns will be sparser and will probably experience worse spatial
locality. However, because they are computing on recent changes, these changes could
still be resident in fast memory due to temporal locality. It is not immediately clear
which e↵ect will be most impactful, so a proper evaluation is merited to be sure of the
outcome.

Identify Bottlenecks for Distributed Graph Processing
Similar to how this work analyzes graph processing performance on shared memory
multiprocessors, we believe an analogous analysis could be done for distributed graph
processing. Distributed graph processing is often extremely ine�cient (Figure 1.1), so
identifying performance bottlenecks is a critical first step to improving performance. In
particular, it would be useful to measure the network to observe not only the average
bandwidth utilization, but whether network tra�c is bursty, latency bound, or simply
poorly balanced across compute nodes.

CHAPTER 8. CONCLUSION 114

Synthesis

Online Determination of �-Parameter
The delta-stepping algorithm we implement for our benchmark reference implemen-
tation is the fastest SSSP algorithm, but the input-sensitivity of its �-parameter is
problematic. Ideally, an online heuristic could determine �, and this heuristic should
depend on the hardware platform and not the input graph, akin to the online heuristic
we use to control our direction-optimizing BFS implementation. The wide range of
reasonable values for � we observe in Figure 6.2 is encouraging, as the heuristic does
not need to be perfect to be beneficial.

Hardware Support for Propagation Blocking
To further improve the performance of propagation blocking, hardware extensions could
help eliminate bottlenecks. As we observe in Section 7.6, our speedups on IVB lag
behind our reductions in communication because we utilize less memory bandwidth.
Modifications to the processor to help it fully utilize its memory bandwidth could allow
for the speedups to equal our communication reductions.

Profiling reveals that the binning phase is partially compute bound, as the memory
bandwidth is only 60% utilized while IPC > 2. Hardware support for quick bin inser-
tions or o✏oading copying could help by reducing the dynamic instruction count.

Traditional scatter and gather instructions available on the newest systems are promis-
ing (e.g., AVX-512 [80]), as they can trivially express the bulk of the accumulate phase.
When looking up sums during the accumulate phase, we frequently miss in the L2
cache but hit in the L3 cache. These L2 misses are so frequent, that we are probably
somewhat bottlenecked by the L3 bandwidth. High-performance scatter and gather
instructions that directly access outer cache levels could use the on-chip bandwidth
more e�ciently.

Improve Out-of-Order Processors for Graph Processing
Since we find the size of the instruction window to be a memory bandwidth bottleneck,
approaches to increase the window size or approximate a larger window (runahead)
seem promising. A larger window size would clearly help out-of-order processors, but
there is surely some size that will be limited by branch mispredictions and data de-
pendencies. However, we don’t know if that practical limit is 250 instructions or 500
instructions, so this merits further investigation.

For our workload, we observe IPCs typically below one even though the processor
we evaluate is 4-wide. A narrower out-of-order core might have not much worse per-
formance and could provide substantial area and energy savings. Despite having a
low average IPC during our workload, there are almost certainly instances when the
processor is able to burst and use its full width advantageously. In spite of this, to
have a low average, the processor must spend much of the time executing instructions
slowly or waiting, and a narrower core could do that just as well. The performance

CHAPTER 8. CONCLUSION 115

loss from making the core narrower will almost certainly be less than the energy and
area savings, resulting in a more e�cient core. We speculate a 2-wide processor might
be the most e�cient design point [7]. Furthermore, the area savings from making the
processor narrower could be used to increase the size of the instruction window.

Graph Processing Hardware Accelerators
In this work, we observe the di�culty scalar processors experience fully utilizing mem-
ory bandwidth for graph processing, so specializing hardware for graph processing may
be the most tractable means to increase memory bandwidth utilization. There is prior
work on graph processing hardware accelerators [4, 48, 124, 126], but we believe there
is still room for improvement. In particular, we observe poor programmability to be
a key limitation of the accelerators proposed so far. This programmability is not only
the ability to execute di↵erent graph kernels on the same hardware instantiation, but
to also provide the flexibility needed to implement leading optimized algorithms such
as direction-optimizing BFS and delta-stepping. A slowdown in Moore’s Law may
make such graph processing accelerators inevitably the only means to further improve
e�ciency.

116

Bibliography

[1] Christopher R Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. Empty-
Headed: A relational engine for graph processing. arXiv, 1503.02368 [cs.DB], 2015.

[2] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A. Bader. Scalable graph
exploration on multicore processors. International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2010.

[3] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. CRONO: A bench-
mark suite for multithreaded graph algorithms executing on futuristic multicores. In-
ternational Symposium on Workload Characterization (IISWC), 2015.

[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
scalable processing-in-memory accelerator for parallel graph processing. International
Symposium on Computer Architecture (ISCA), pages 105–117, 2015.

[5] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. The Tera computer system. International Conference on
Supercomputing (ICS), 1990.

[6] Wendell Anderson, Preston Briggs, C Stephen Hellberg, Daryl W Hess, Alexei
Khokhlov, Marco Lanzagorta, and Robert Rosenberg. Early experience with scientific
programs on the Cray MTA–2. High Performance Computing, Networking, Storage
and Analysis (SC), 2003.

[7] Omid Azizi, Aqeel Mahesri, Benjamin C Lee, Sanjay J Patel, and Mark Horowitz.
Energy-performance tradeo↵s in processor architecture and circuit design: a marginal
cost analysis. International Symposium on Computer Architecture (ISCA), 38(3):26–
36, 2010.

[8] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna.
Four degrees of separation. ACM Web Science Conference, pages 45–54, 2012.

[9] David Bader and Kamesh Madduri. Designing multithreaded algorithms for breadth-
first search and st-connectivity on the Cray MTA-2. International Conference on
Parallel Processing (ICPP), 2006.

BIBLIOGRAPHY 117

[10] David Bader and Kamesh Madduri. SNAP: Small-world network analysis and par-
titioning: an open-source parallel graph framework for the exploration of large-scale
networks. International Symposium on Parallel & Distributed Processing (IPDPS),
2008.

[11] David A Bader, Guojing Cong, and John Feo. On the architectural requirements for ef-
ficient execution of graph algorithms. International Conference on Parallel Processing,
Jul 2005.

[12] David A. Bader, John Feo, John Gilbert, Jeremy Kepner, David Koester, Eugene Loh,
Kamesh Madduri, Bill Mann, and Theresa Meuse. HPCS scalable synthetic compact
applications #2 graph analysis. version 2.2. www.graphanalysis.org/benchmark,
2004.

[13] David A Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Approximating
betweenness centrality. International Workshop on Algorithms and Models for the
Web-Graph, pages 124–137, 2007.

[14] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286:509–512, Oct 1999.

[15] Scott Beamer, Krste Asanović, and David Patterson. Searching for a parent instead
of fighting over children: A fast breadth-first search implementation for Graph500.
Technical Report UCB/EECS-2011-117, EECS Department, University of California,
Berkeley, 2011.

[16] Scott Beamer, Krste Asanović, and David A. Patterson. Direction-optimizing breadth-
first search. Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2012.

[17] Scott Beamer, Krste Asanović, and David A. Patterson. GAIL: The graph algorithm
iron law. Workshop on Irregular Applications: Architectures and Algorithms (IA3), at
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2015.

[18] Scott Beamer, Krste Asanović, and David A. Patterson. The GAP benchmark suite.
arXiv, 1508.03619 [cs.DC], Aug 2015.

[19] Scott Beamer, Krste Asanović, and David A. Patterson. Locality exists in graph pro-
cessing: Workload characterization on an Ivy Bridge server. International Symposium
on Workload Characterization (IISWC), 2015.

[20] Scott Beamer, Aydın Buluç, Krste Asanović, and David A. Patterson. Distributed
memory breadth-first search revisited: Enabling bottom-up search. Workshop on Mul-
tithreaded Architectures and Applications (MTAAP), at the International Parallel &
Distributed Processing Symposium (IPDPS), 2013.

BIBLIOGRAPHY 118

[21] Michael A Bender, Gerth Stølting Brodal, Rolf Fagerberg, Riko Jacob, and Elias Vicari.
Optimal sparse matrix dense vector multiplication in the I/O-model. Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 61–70, 2007.

[22] Pavel Berkhin. A survey on pagerank computing. Internet Mathematics, 2(1):73–120,
2005.

[23] Jonathan Berry, Bruce Hendrickson, Simon Kahan, and Petr Konecny. Software and
algorithms for graph queries on multithreaded architectures. International Symposium
on Parallel & Distributed Processing (IPDPS), 2007.

[24] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An e�cient multithreaded runtime system.
Journal of parallel and distributed computing (JPDC), 37(1):55–69, 1996.

[25] Ronald F Boisvert, Roldan Pozo, and Karin A Remington. The matrix market ex-
change formats: Initial design. National Institute of Standards and Technology Internal
Report, NISTIR, 5935, 1996.

[26] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. UbiCrawler: A
scalable fully distributed web crawler. Software: Practice & Experience, 34(8):711–726,
2004.

[27] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label prop-
agation: A multiresolution coordinate-free ordering for compressing social networks.
International World Wide Web Conference (WWW), 2011.

[28] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression tech-
niques. International World Wide Web Conference (WWW), pages 595–601, 2004.

[29] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163–177, 2001.

[30] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leis-
erson. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using
compressed sparse blocks. Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 233–244, 2009.

[31] A. Buluç and J.R. Gilbert. The Combinatorial BLAS: Design, implementation, and ap-
plications. International Journal of High Performance Computing Applications (IJH-
PCA), 25(4):496–509, 2011.

[32] Aydın Buluç, Scott Beamer, Kamesh Madduri, Krste Asanović, and David Patter-
son. Distributed-memory breadth-first search on massive graphs. In D. Bader, editor,
Parallel Graph Algorithms. CRC Press, Taylor-Francis, 2017 (in press).

BIBLIOGRAPHY 119

[33] Aydın Buluç and Kamesh Madduri. Parallel breadth-first search on distributed mem-
ory systems. International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2011.

[34] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study of irregular
programs on GPUs. IEEE International Symposium on Workload Characterization
(IISWC), pages 141–151, 2012.

[35] Umit V Catalyurek and Cevdet Aykanat. Hypergraph-partitioning-based decompo-
sition for parallel sparse-matrix vector multiplication. Transactions on Parallel and
Distributed Systems, 10(7):673–693, 1999.

[36] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive
model for graph mining. SIAM Data Mining, 2004.

[37] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin Skadron. Pannotia:
Understanding irregular GPGPU graph applications. IEEE International Symposium
on Workload Characterization (IISWC), 2013.

[38] Fabio Checconi and Fabrizio Petrini. Traversing trillions of edges in real time: Graph
exploration on large-scale parallel machines. International Symposium on Parallel &
Distributed Processing (IPDPS), pages 425–434, 2014.

[39] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the pulse
of a fast-changing and connected world. European Conference on Computer Systems
(EuroSys), pages 85–98, 2012.

[40] Jatin Chhugani, Nadathur Satish, Changkyu Kim, Jason Sewall, and Pradeep Dubey.
Fast and e�cient graph traversal algorithm for CPUs: Maximizing single-node e�-
ciency. International Symposium on Parallel & Distributed Processing (IPDPS), 2012.

[41] Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. A roofline model
of energy. International Symposium on Parallel & Distributed Processing (IPDPS),
2013.

[42] Shumo Chu and James Cheng. Triangle listing in massive networks and its applications.
Conference on Knowledge Discovery and Data Mining (KDD), Jun 2011.

[43] Guojing Cong and Konstantin Makarychev. Optimizing large-scale graph analysis
on multithreaded, multicore platforms. International Symposium on Parallel & Dis-
tributed Processing (IPDPS), Feb 2011.

[44] Guojing Cong and Simone Sbaraglia. A study on the locality behavior of minimum
spanning tree algorithms. In High Performance Computing (HiPC), pages 583–594.
Springer, 2006.

BIBLIOGRAPHY 120

[45] Convey HC-1 family. www.conveycomputer.com/Resources/Convey_HC1_Family.

pdf, 2011.

[46] Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric
matrices. ACM National Conference, pages 157–172, 1969.

[47] Timothy Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38:1:1 – 1:25, 2011.

[48] Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Eslick, Raphael
Rubin, Tomas E Uribe, Thomas Jr. Knight, and Andre DeHon. GraphStep: A system
architecture for sparse-graph algorithms. Symposium on Field-Programmable Custom
Computing Machines, pages 143–151, 2006.

[49] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[50] 9th DIMACS implementation challenge - shortest paths. www.dis.uniroma1.it/

challenge9, 2006.

[51] Niels Doekemeijer and Ana Lucia Varbanescu. A survey of parallel graph processing
frameworks. Technical Report PDS-2014-003, Delft University of Technology, 2014.

[52] Jack Dongarra and Piotr Luszczek. Introduction to the HPC challenge benchmark
suite. Technical Report ICL-UT-05-01, Innovative Computing Laboratory (ICL), Uni-
versity of Tennessee, 2004.

[53] James Dundas and Trevor Mudge. Improving data cache performance by pre-executing
instructions under a cache miss. International Conference on Supercomputing (ICS),
pages 68–75, 1997.

[54] David Ediger, Karl Jiang, Jason Riedy, and David A Bader. Massive streaming data
analytics: A case study with clustering coe�cients. Workshop on Multithreaded Ar-
chitectures and Applications (MTAAP), at the International Parallel & Distributed
Processing Symposium (IPDPS), pages 1–8, 2010.

[55] David Ediger, Rob McColl, Jason Riedy, and David A Bader. STINGER: High perfor-
mance data structure for streaming graphs. Conference on High Performance Extreme
Computing (HPEC), pages 1–5, 2012.

[56] Susan J Eggers, Joel S Emer, Henry M Leby, Jack L Lo, Rebecca L Stamm, and
Dean M Tullsen. Simultaneous multithreading: A platform for next-generation pro-
cessors. IEEE Micro, 17(5):12–19, 1997.

[57] Joel Emer and Douglas Clark. A characterization of processor performance in the
VAX-11/780. International Symposium on Computer Architecture (ISCA), 1984.

BIBLIOGRAPHY 121

[58] Paul Erdős and Alfréd Réyni. On random graphs. I. Publicationes Mathematicae,
6:290–297, 1959.

[59] Katsuki Fujisawa, Koji Ueno, Hitoshi Sato, Yuichiro Yasui, Keita Iwabuchi, Toyotaro
Suzumura, and Ryo Mizote. A challenge to Graph500 benchmark: Trillion-scale graph
processing on K computer. International Supercomputing Conference (ISC): HPC in
Asia, 2015.

[60] GAP benchmark suite reference code v0.9. github.com/sbeamer/gapbs, 2016.

[61] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu. A
yoke of oxen and a thousand chickens for heavy lifting graph processing. International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages 345–
354, 2012.

[62] Norman E Gibbs, William G Poole Jr, and Paul K Stockmeyer. An algorithm for
reducing the bandwidth and profile of a sparse matrix. SIAM Journal on Numerical
Analysis, 13(2):236–250, 1976.

[63] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. Symposium
on Operating Systems Design and Implementation (OSDI), pages 17–30, 2012.

[64] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. GraphX: Graph processing in a distributed dataflow frame-
work. Symposium on Operating Systems Design and Implementation (OSDI), pages
599–613, 2014.

[65] Google C++ style guide. google.github.io/styleguide/cppguide.html, 2016.

[66] Graph500 benchmark. www.graph500.org, 2010.

[67] Graph500 SSSP proposal. www.cc.gatech.edu/~jriedy/tmp/graph500, 2010.

[68] Oded Green, Marat Dukhan, and Richard Vuduc. Branch-avoiding graph algorithms.
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015.

[69] Douglas Gregor and Andrew Lumsdaine. The parallel BGL: A generic library
for distributed graph computations. Parallel Object-Oriented Scientific Computing
(POOSC), page 2, 2005.

[70] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha
Kim, and Hwanjo Yu. TurboGraph: a fast parallel graph engine handling billion-scale
graphs in a single pc. International Conference on Knowledge Discovery and Data
Mining (KDD), 2013.

BIBLIOGRAPHY 122

[71] Harshvardhan, A Fidel, N Amato, and L Rauchwerger. The STAPL parallel graph
library. Languages and Compilers for Parallel Computing, 7760:46–60, Jan 2013.

[72] Sébastien Hily and André Seznec. Out-of-order execution may not be cost-e↵ective on
processors featuring simultaneous multithreading. International Symposium on High-
Performance Computer Architecture (HPCA), 1999.

[73] Brandon Holt, Jacob Nelson, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan,
and Mark Oskin. Flat combining synchronized global data structures. International
Conference on PGAS Programming Models, 7, 2013.

[74] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-Marl: A dsl
for easy and e�cient graph analysis. International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2012.

[75] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn Ver-
straaten, and Hassan Chafi. PGX.D: A fast distributed graph processing engine. In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2015.

[76] Sungpack Hong, Jan Van Der Lugt, Adam Welc, Raghavan Raman, and Hassan Chafi.
Early experiences in using a domain-specific language for large-scale graph analysis.
Workshop on Graph Data Management Experience and Systems (GRADES), 2013.

[77] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. E�cient parallel graph explo-
ration on multi-core CPU and GPU. Parallel Architectures and Compilation Techniques
(PACT), 2011.

[78] Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun. Simplifying
scalable graph processing with a domain-specific language. International Symposium
on Code Generation and Optimization (CGO), page 208, 2014.

[79] Imranul Hoque and Indranil Gupta. LFGraph: Simple and fast distributed graph
analytics. Conference on Timely Results in Operating Systems (TRIOS), Jan 2013.

[80] Intel 64 and IA-32 architectures optimization reference manual. September 2015.

[81] Intel performance counter monitor. www.intel.com/software/pcm, 2013.

[82] Ralph Johnson, Erich Gamma, Richard Helm, and John Vlissides. Design patterns: El-
ements of reusable object-oriented software. Boston, Massachusetts: Addison-Wesley,
1995.

[83] Shoaib Kamil. Asp: A SEJITS implementation for python. github.com/

shoaibkamil/asp, 2011.

BIBLIOGRAPHY 123

[84] Shoaib Kamil, Derrick Coetzee, Scott Beamer, Henry Cook, Ekaterina Gonina,
Jonathan Harper, Je↵rey Morlan, and Armando Fox. Portable parallel performance
from sequential, productive, embedded domain-specific languages. Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), 47(8):303–304, 2012.

[85] U Kang, Charalampos Tsourakakis, and Christos Faloutsos. Pegasus: mining peta-
scale graphs. Knowledge and information systems, 27(2):303–325, 2011.

[86] George Karypis and Vipin Kumar. METIS–unstructured graph partitioning and sparse
matrix ordering system. version 2.0. www.cs.umn.edu/~metis, 1995.

[87] Jeremy Kepner and John Gilbert. Graph Algorithms in the Language of Linear Algebra.
SIAM, 2011.

[88] Z Khayyat, K Awara, A Alonazi, Hani Jamjoom, Dan Williams, and Panos Kalnis.
Mizan: a system for dynamic load balancing in large-scale graph processing. European
Conference on Computer Systems (EuroSys), 2013.

[89] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. CuSha: vertex-
centric graph processing on gpus. International Symposium on High-performance Par-
allel and Distributed Computing (HPDC), pages 239–252, 2014.

[90] Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang Nejdl. E�cient parallel
computation of pagerank. European Conference on Information Retrieval, pages 241–
252, 2006.

[91] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a
social network or a news media? International World Wide Web Conference (WWW),
2010.

[92] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph com-
putation on just a PC. Symposium on Operating Systems Design and Implementation
(OSDI), pages 1–17, Oct 2012.

[93] Michael M Lee, Indrajit Roy, Alvin AuYoung, Vanish Talwar, KR Jayaram, and
Yuanyuan Zhou. Views and transactional storage for large graphs. In Middleware,
pages 287–306. Springer, 2013.

[94] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos. Real-
istic, mathematically tractable graph generation and evolution, using Kronecker mul-
tiplication. European Conference on Principles and Practice of Knowledge Discovery
in Databases, 2005.

[95] Hang Liu and Howie Huang. Enterprise: breadth-first graph traversal on GPUs. Pro-
ceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2015.

BIBLIOGRAPHY 124

[96] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. GraphLab: A new framework for parallel machine learning.
Uncertainty in Artificial Intelligence, 2010.

[97] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Carlos Guestrin Danny Bickson, and
Joseph M. Hellerstein. Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud. VLDB, 2012.

[98] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. Chal-
lenges in parallel graph processing. Parallel Processing Letters, 17(01):5–20, 2007.

[99] Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. LLAMA:
E�cient graph analytics using large multiversioned arrays. International Conference
on Data Engineering, pages 363–374, 2015.

[100] Kamesh Madduri, David A Bader, Jonathan W Berry, and Joseph R Crobak. An
experimental study of a parallel shortest path algorithm for solving large-scale graph
instances. ALENEX, 7:23–35, 2007.

[101] Kamesh Madduri, David Ediger, Karl Jiang, David A Bader, and Daniel Chavarria-
Miranda. A faster parallel algorithm and e�cient multithreaded implementations for
evaluating betweenness centrality on massive datasets. International Symposium on
Parallel & Distributed Processing (IPDPS), 2009.

[102] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph
processing. International Conference on Management of Data (SIGMOD), Jun 2010.

[103] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and David A
Bader. A performance evaluation of open source graph databases. Workshop on Par-
allel Programming for Analytics Applications, pages 11–18, 2014.

[104] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: a
survey of vertex-centric frameworks for large-scale distributed graph processing. ACM
Computing Surveys (CSUR), 48(2):25, 2015.

[105] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what COST?
Workshop on Hot Topics in Operating Systems (HotOS), 2015.

[106] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph traver-
sal. Principles and Practice of Parallel Programming, 2012.

[107] Ulrich Meyer and Peter Sanders. �-stepping: a parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114–152, 2003.

BIBLIOGRAPHY 125

[108] Scott Meyers. E↵ective C++: 55 specific ways to improve your programs and designs.
Pearson Education, 2005.

[109] Stanley Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

[110] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and analysis of online social networks. Conference on
Internet Measurement (IMC), 2007.

[111] David Mizell and Kristyn Maschho↵. Early experiences with large-scale Cray XMT sys-
tems. International Symposium on Parallel & Distributed Processing (IPDPS), 2009.

[112] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. PAPI: A portable
interface to hardware performance counters. Department of Defense HPCMP Users
Group Conference, 1999.

[113] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Whirlpool: Improving
dynamic cache management with static data classification. International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 113–127, 2016.

[114] Richard C Murphy and Peter M Kogge. On the memory access patterns of supercom-
puter applications: Benchmark selection and its implications. IEEE Transactions on
Computers, 56(7):937–945, 2007.

[115] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order processors. Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages 129–
140, 2003.

[116] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. Graph-
BIG: Understanding graph computing in the context of industrial solutions. Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis
(SC), 2015.

[117] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical, transparent
operating system support for superpages. Symposium on Operating Systems Design
and Implementation (OSDI), 2002.

[118] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Ka-
han, and Mark Oskin. Grappa: A latency-tolerant runtime for large-scale irregular
applications. Technical report, University of Washington, 2014.

[119] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan,
and Mark Oskin. Latency-tolerant software distributed shared memory. USENIX
Annual Technical Conference, pages 291–305, 2015.

BIBLIOGRAPHY 126

[120] Jacob Nelson, Brandon Myers, A. H. Hunter, Preston Briggs, Luis Ceze, Carl Ebel-
ing, Dan Grossman, Simon Kahan, and Mark Oskin. Crunching large graphs with
commodity processors. USENIX Conference on Hot Topics in Parallelism (HotPAR),
2011.

[121] Mario Nemirovsky and Dean M. Tulsen. Multithreading Architecture. Morgan & Clay-
pool Publishers, 2012.

[122] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure
for graph analytics. Symposium on Operating Systems Principles (SOSP), 2013.

[123] Rajesh Nishtala, Richard W Vuduc, James W Demmel, and Katherine A Yelick. When
cache blocking of sparse matrix vector multiply works and why. Applicable Algebra in
Engineering, Communication and Computing, 18(3):297–311, 2007.

[124] Tayo Oguntebi and Kunle Olukotun. GraphOps: A dataflow library for graph analytics
acceleration. International Symposium on Field-Programmable Gate Arrays (FPGA),
pages 111–117, 2016.

[125] Molly A O’Neil and Martin Burtscher. Microarchitectural performance characteriza-
tion of irregular GPU kernels. IEEE International Symposium on Workload Charac-
terization (IISWC), 2014.

[126] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. Energy e�cient architecture for graph analytics
accelerators. International Symposium on Computer Architecture (ISCA), 2016.

[127] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999.

[128] Thap Panitanarak and Kamesh Madduri. Performance analysis of single-source short-
est path algorithms on distributed-memory systems. SIAM Workshop on Combinato-
rial Scientific Computing (CSC), page 60, 2014.

[129] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 4th edition, 2008.

[130] Roger Pearce, Maya Gokhale, and Nancy M Amato. Multithreaded asynchronous
graph traversal for in-memory and semi-external memory. International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2010.

[131] Tiago P. Peixoto. The graph-tool python library. graph-tool.skewed.de, 2014.

[132] Jose B Pereira-Leal, Anton J Enright, and Christos A Ouzounis. Detection of functional
modules from protein interaction networks. PROTEINS: Structure, Function, and
Bioinformatics, 54(1):49–57, 2004.

BIBLIOGRAPHY 127

[133] Orestis Polychroniou and Kenneth A Ross. A comprehensive study of main-memory
partitioning and its application to large-scale comparison-and radix-sort. International
Conference on Management of Data (SIGMOD), pages 755–766, 2014.

[134] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou,
and Maya Haridasan. Managing large graphs on multi-cores with graph awareness.
USENIX Annual Technical Conference, 12, 2012.

[135] Steven E Raasch and Steven K Reinhardt. The impact of resource partitioning on
SMT processors. International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 15–25, 2003.

[136] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: Scale-out graph processing from secondary storage. Symposium on Operating
Systems Principles (SOSP), pages 410–424, 2015.

[137] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-Stream: edge-centric graph
processing using streaming partitions. Symposium on Operating Systems Principles
(SOSP), 2013.

[138] Semih Salihoglu and Jennifer Widom. GPS: A graph processing system. International
Conference on Scientific and Statistical Database Management:1–31, 2013.

[139] Semih Salihoglu and Jennifer Widom. Optimizing graph algorithms on Pregel-like
systems. Technical report, Stanford University, 2014.

[140] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. On the surprising
di�culty of simple things: the case of radix partitioning. VLDB, 8(9):934–937, 2015.

[141] Daniel A Schult and P Swart. Exploring network structure, dynamics, and function
using NetworkX. Python in Science Conferences (SciPy), 2008:11–16, 2008.

[142] J Seo, J Park, J Shin, and M Lam. Distributed SociaLite: A Datalog-based language
for large-scale graph analysis. VLDB, Jan 2013.

[143] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a
memory cloud. International Conference on Management of Data (SIGMOD), pages
505–516, 2013.

[144] Yossi Shiloach and Uzi Vishkin. An o(logn) parallel connectivity algorithm. Journal
of Algorithms, 3(1):57–67, 1982.

[145] Julian Shun. Shared-Memory Parallelism Can Be Simple, Fast, and Scalable. PhD
thesis, Carnegie Mellon University (CMU), 2015.

BIBLIOGRAPHY 128

[146] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework
for shared memory. Symposium on Principles and Practice of Parallel Programming
(PPoPP), 48(8):135–146, 2013.

[147] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: the problem
based benchmark suite. Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 68–70, 2012.

[148] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Pearson Education, 2001.

[149] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, and Kuansan Wang.
An overview of Microsoft academic service (MAS) and applications. World Wide Web
Consortium (W3C), 2015.

[150] Burton J Smith. A pipelined, shared resource MIMD computer. Advanced Computer
Architecture, pages 39–41, 1986.

[151] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed
graphs. International Conference on Knowledge Discovery and Data Mining (KDD),
pages 1222–1230, 2012.

[152] Philip Stutz, Abraham Bernstein, and William Cohen. Signal/collect: graph algo-
rithms for the (semantic) web. International Semantic Web Conference (ISWC), pages
764–780, 2010.

[153] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali Patwary, Sub-
ramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep Dubey.
GraphMat: High performance graph analytics made productive. VLDB, 2015.

[154] Keith D Underwood, Megan Vance, Jonathan Berry, and Bruce Hendrickson. Ana-
lyzing the scalability of graph algorithms on Eldorado. International Symposium on
Parallel & Distributed Processing (IPDPS), pages 1–8, 2007.

[155] Leslie G Valiant. A bridging model for parallel computation. Communications of the
ACM (CACM), 33(8):103–111, 1990.

[156] Kenzo Van Craeynest, Stijn Eyerman, and Lieven Eeckhout. MLP-aware runahead
threads in a simultaneous multithreading processor. International Conference on High-
Performance Embedded Architectures and Compilers (HiPEAC), pages 110–124, 2008.

[157] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and Robert
Schreiber. Presto: distributed machine learning and graph processing with sparse
matrices. European Conference on Computer Systems (EuroSys), pages 197–210, 2013.

BIBLIOGRAPHY 129

[158] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Ri↵el, and
John D. Owens. Gunrock: A high-performance graph processing library on the GPU.
Symposium on Principles and Practice of Parallel Programming (PPoPP), 2016.

[159] Jan Wassenberg and Peter Sanders. Engineering a multi-core radix sort. In Euro-Par
Parallel Processing, pages 160–169. Springer, 2011.

[160] Duncan Watts and Steven Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, June 1998.

[161] Wikipedia page-to-page link database. haselgrove.id.au/wikipedia.htm, 2009.

[162] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms. Parallel Computing, 35(3):178–194, 2009.

[163] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y.
Zhao. User interactions in social networks and their implications. European Conference
on Computer Systems (EuroSys), 2009.

[164] Yuduo Wu, Yangzihao Wang, Yuechao Pan, Carl Yang, and John D. Owens. Perfor-
mance characterization for high-level programming models for GPU graph analytics.
International Symposium on Workload Characterization (IISWC), 2015.

[165] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. GraphX: A
resilient distributed graph system on spark. International Workshop on Graph Data
Management Experiences and Systems (GRADES), 2013.

[166] Qiumin Xu, Hyeran Jeon, and Murali Annavaram. Graph processing on GPUs: Where
are the bottlenecks? IEEE International Symposium on Workload Characterization
(IISWC), 2014.

[167] Jilong Xue, Zhi Yang, Zhi Qu, Shian Hou, and Yafei Dai. Seraph: an e�cient, low-cost
system for concurrent graph processing. International Symposium on High-performance
Parallel and Distributed Computing (HPDC), pages 227–238, 2014.

[168] J Yan, G Tan, and N Sun. GRE: A graph runtime engine for large-scale distributed
graph-parallel applications. arXiv, 1310.5603 [cs.DC], Jan 2013.

[169] Jie Yan, Guangming Tan, Zeyao Mo, and Ninghui Sun. Graphine: Programming graph-
parallel computation of large natural graphs for multicore clusters. Transactions on
Parallel and Distributed Systems, 27(6):1647–1659, 2016.

[170] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. arXiv, 1205.6233, 2012.

BIBLIOGRAPHY 130

[171] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards e↵ective partition
management for large graphs. International Conference on Management of Data (SIG-
MOD), pages 517–528, 2012.

[172] Jin Y Yen. An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Quarterly of Applied Mathematics, 27(4):526–530,
1970.

[173] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hendrickson,
and Ümit Çatalyürek. A scalable distributed parallel breadth-first search algorithm on
BlueGene/L. International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2005.

[174] Kisun You, Jike Chong, Youngmin Yi, Ekaterina Gonina, Christopher Hughes, Yen-
Kuang Chen, Wonyong Sung, and Kurt Keutzer. Scalable HMM-based inference engine
in large vocabulary continuous speech recognition. IEEE Signal Processing Magazine,
2010.

[175] Liang Yuan, Chen Ding, D Tefankovic, and Yunquan Zhang. Modeling the locality in
graph traversals. International Conference on Parallel Processing (ICPP), 2012.

[176] Albert-Jan N Yzelman and Rob H Bisseling. A cache-oblivious sparse matrix–vector
multiplication scheme based on the Hilbert curve. In Progress in Industrial Mathemat-
ics at ECMI, pages 627–633. Springer, 2012.

[177] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and
Alexander S Szalay. FlashGraph: Processing billion-node graphs on an array of com-
modity ssds. Conference on File and Storage Technologies (FAST), pages 45–58, 2015.

[178] Jianlong Zhong and Bingsheng He. Medusa: Simplified graph processing on GPUs.
Transactions on Parallel and Distributed Systems (TPDS), 25(6):1543–1552, 2014.

[179] Xiaowei Zhu, Wentao Han, and Wenguang Chen. GridGraph: Large-scale graph pro-
cessing on a single machine using 2-level hierarchical partitioning. USENIX Annual
Technical Conference, pages 375–386, 2015.

131

Appendix A

Most Commonly Evaluated Graph
Kernels

To guide the selection of evaluation kernels for our work, we surveyed the literature of
graph processing frameworks. We selected the six most commonly evaluated kernels, and
Table A.1 lists the frameworks and shows which graph kernels the frameworks use to eval-
uate themselves. Due to the generality of the graph abstraction, these graph processing
publications are published in a variety of areas including: high-performance computing, the-
ory, databases, and computer architecture. Additionally, the frameworks target a variety of
hardware platforms including shared memory, distributed memory (clusters), semi-external
memory (flash/SSD), or even custom hardware accelerators (FPGA/ASIC). In Table A.1 we
show only the 10 most commonly evaluated kernels, but there is a long tail on the distri-
bution of evaluated kernels, as we observed at least 64 di↵erent kernels. Some frameworks
appear more than once as we track their development over time. Additionally, some frame-
works support multiple classes of hardware platform, but in our table we categorize them by
their most distinguishing platform.

For more information on the breadth of graph processing frameworks, we recommend a
few surveys. Doekemeijer et al. provide a great overview, as they consider multiple hardware
platforms and they provide a taxonomy of programming models and framework features [51].
McCune et al. focus on graph frameworks that use the “think like a vertex model” such as
Pregel [102, 104]. McColl et al. survey open-source graph databases and include performance
comparisons and commentary on usability [103].

APPENDIX A. MOST COMMONLY EVALUATED GRAPH KERNELS 132

Framework Year P
la
tf
or
m

T
ot
al

P
ag
eR

an
k

S
in
gl
e-
so
u
rc
e
S
h
or
te
st

P
at
h
s

C
on

n
ec
te
d
C
om

p
on

en
ts

B
re
ad

th
-fi
rs
t
S
ea
rc
h

T
ri
an

gl
e
C
ou

nt
in
g

B
et
w
ee
n
n
es
s
C
en
tr
al
it
y

C
on

d
u
ct
an

ce

n
-H

op
Q
u
er
ie
s

A
lt
er
n
at
in
g
L
ea
st

S
qu

ar
es

S
tr
on

gl
y
C
on

n
ec
te
d
C
om

p
on

en
ts

O
th
er

MTGL [23] 2007

S
h
ar
ed

M
em

or
y

3 X 2
SNAP [10] 2008 3 3
GraphLab [96] 2010 5 5
Signal/Collect [152] 2010 5 X X 3
Grace [134] 2012 6 X X X X X 1
Green-Marl [74] 2012 5 X X X X 1
Galois [122] 2013 6 X X X X X 1
Ligra [146] 2013 6 X X X X X 1
STINGER [103] 2014 3 X X X 0
EmptyHeaded [1] 2015 3 X X X 0
GraphMat [153] 2015 5 X X X X 1
Pearce et al. [130] 2010

F
la
sh
/S

S
D

3 X X X 0
GraphChi [92] 2012 6 X X X X 2
TurboGraph [70] 2013 2 X X 0
X-Stream [137] 2013 11 X X X X X X X 4
FlashGraph [177] 2015 6 X X X X X 1
GridGraph [179] 2015 4 X X X 1
LLAMA [99] 2015 3 X X X 0
Totem [61] 2012

G
P
U

2 X X 0
CuSha [89] 2014 8 X X X X 4
Medusa [178] 2014 4 X X X 1
Gunrock [158] 2016 5 X X X X X 0
Tesseract [4] 2015

A
cc
. 5 X X X 2

GraphOps [124] 2016 6 X X X X 2
Ozdal et al. [126] 2016 4 X X 2

Table A.1: Graph kernels used in framework evaluations

APPENDIX A. MOST COMMONLY EVALUATED GRAPH KERNELS 133

Framework Year P
la
tf
or
m

T
ot
al

P
ag
eR

an
k

S
in
gl
e-
so
u
rc
e
S
h
or
te
st

P
at
h
s

C
on

n
ec
te
d
C
om

p
on

en
ts

B
re
ad

th
-fi
rs
t
S
ea
rc
h

T
ri
an

gl
e
C
ou

nt
in
g

B
et
w
ee
n
n
es
s
C
en
tr
al
it
y

C
on

d
u
ct
an

ce

n
-H

op
Q
u
er
ie
s

A
lt
er
n
at
in
g
L
ea
st

S
qu

ar
es

S
tr
on

gl
y
C
on

n
ec
te
d
C
om

p
on

en
ts

O
th
er

PBGL [69] 2005

D
is
tr
ib
u
te
d
M
em

or
y

4 X X 2
Pregel [102] 2010 4 X X 2
CombBLAS [31] 2011 2 X 1
Pegasus [85] 2011 4 X X 2
D. Graphlab [97] 2012 3 X 2
Kineograph [39] 2012 3 3
Powergraph [63] 2012 3 X X 1
Sedge [171] 2012 3 X 2
Concerto [93] 2013 5 X 4
D. SociaLite [142] 2013 6 X X X X 2
GPS [138] 2013 4 X X X 1
GraphX [165] 2013 2 X X 0
Grappa [73] 2013 2 X X 0
GRE [168] 2013 3 X X X 0
Green-Marl [76] 2013 3 X X 1
LFGraph [79] 2013 3 X X X 0
Mizan [88] 2013 2 X 1
Presto [157] 2013 6 X X X X X 1
STAPL [71] 2013 3 X X 1
Trinity [143] 2013 4 X X X 1
GPS [139] 2014 5 X X 3
GraphX [64] 2014 2 X X 0
Grappa [118] 2014 4 X X 2
Green-Marl [78] 2014 6 X X X X 2
Seraph [167] 2014 5 X X X 2
Chaos [136] 2015 10 X X X X X X 4
Grappa [119] 2015 4 X X X X 0
PGX.D [75] 2015 6 X X X X 2
Graphine [169] 2016 3 X X X 0

134

Appendix B

GBSP: Graph Bulk Synchronous
Parallel

In this chapter, we introduce a domain-specific language for graph processing that is both
productive and high-performance. Its creation [84] preceded the work in the rest of this
dissertation, but we include this appendix as its creation was the context in which our
propagation blocking technique (Chapter 7) was conceived and first applied.

Introduction

Creating an application that is useful to the world often requires more than simply knowing
how to program, as it often requires knowing about the application’s domain. Applica-
tion domain experts possess a great deal of knowledge about their application area, and
they program in a manner that is most productive for their domain (e.g. MATLAB). By
programming with a domain-specific language (DSL), domain experts are able to focus on
the key parts of the application while worrying less about e�ciency and implementation
details. In addition to defining a language for a domain, creating a DSL requires substan-
tial developer e↵ort to implement an interpreter or an optimizing compiler. To make the
DSL high-performance, the implementation e↵ort also needs the assistance of an e�ciency
programmer who understands the performance challenges of the hardware platform.

In this work, we use the Selective Embedded Just-In-Time Specialization (SEJITS) ap-
proach, which reduces the burden of creating a productive high-performance DSL [84]. By
embedding the DSL in an existing host language, the SEJITS approach is able to reuse the
infrastructure of the host language. To improve performance, a specializer takes the DSL
code and translates it into optimized code in an e�ciency language (e.g., C++) in order to
leverage existing optimizing compilers. To make this source-to-source translation tractable,
the DSL should use domain-specific abstractions to keep the DSL simple and restrict the
scope of legal programs.

Since the DSL is embedded in a host language, programs in the host language can easily
include fragments of DSL code. These fragments are annotated such that when the host

APPENDIX B. GBSP: GRAPH BULK SYNCHRONOUS PARALLEL 135

language executes them, they invoke the DSL’s specializer. The specializer uses the host
language’s reflection capabilities to examine the DSL fragment and decide if it can be spe-
cialized. If the fragment can be specialized, the specializer proceeds with the source-to-source
translation. Once the source translation is complete, the optimized code is compiled, and the
resulting binary is linked back into the current execution. By performing this translation at
runtime, the specializer can consider attributes such as the input and the execution platform
when performing its optimizations. If the fragment cannot be specialized, the DSL fragment
can still be executed in the host language as a fallback since the DSL is embedded.

To ease the creation of specializers, the SEJITS infrastructure provides nearly all of the
reusable functionality needed, allowing the specializer developer to spend more of their time
on the domain-specific optimizations. The SEJITS infrastructure provides mechanisms to
trigger the specializer as well as link the compiled native binary back in. It also provides
utilities to ease writing the transformation passes. Additionally, the infrastructure can also
cache the output of the specializer, so if the DSL input does not change, it can reuse the
compiled binary.

For many domains, commonly used application kernels can easily be packaged and reused
as library functions. The SEJITS approach is most useful when such approaches are insuf-
ficient, typically because the usage scenario requires more customizability or flexibility than
is possible with a library function. This can occur if the application-specific logic is within a
kernel rather than the composition of kernels. For example, a graph application may want to
apply custom application logic at each vertex while reusing a library BFS traversal. Another
advantage of specializing code fragments instead of using library function invocations is that
the operations can be fused together to improve e�ciency.

Graph Bulk Synchronous Parallel (GBSP)

We create the Graph Bulk Synchronous Parallel (GBSP) framework using the SEJITS ap-
proach to enable productive programming of high-performance graph algorithm implemen-
tations. For our GBSP DSL, we select the vertex-centric programming model which has
already been proven successful by Pregel [102] and GraphStep [48]. In the vertex-centric
model, each vertex is a parallel entity in a bulk synchronous parallel (BSP) [155] paradigm,
so all interactions between vertices are performed by message passing. The computation is
divided into global iterations that are synchronized by barriers. Within each iteration, a
vertex can examine messages sent to it in the previous iteration, mutate its own local data,
and send messages to its neighbors. At the end of the iteration, all vertices wait at a barrier
as the messages are delivered. Performing a graph algorithm in this message passing style
of communication is equivalent to performing a graph algorithm in the push direction.

To implement GBSP, we utilize the Asp (Asp is SEJITS in Python) framework [83].
Due to Python’s popularity within the graph analysis domain [141], we select Python as our
host language to ease adoption so that GBSP can be used alongside existing code. Using
Asp, our specializer translates GBSP code snippets to C++ at runtime. The messaging
phase of GBSP potentially has poor locality due to its scattered writes across inboxes, so we

APPENDIX B. GBSP: GRAPH BULK SYNCHRONOUS PARALLEL 136

Graph Kernel Graph Vertices (K) Edges (K) Directed
BFS Kronecker [94] 1,048.6 15,763.2
SSSP webbase-1m [47] 1,000.0 3,105.5 X
TC Kronecker [94] 16.4 212.9

Table B.1: Workload (graph kernels with their input graphs) for evaluation

use propagation blocking (Chapter 7) to improve locality. This application of propagation
blocking is quite natural, as the propagations are explicit messages. The destination vertex
values are inboxes, so the accumulate phase inserts messages into their destination inboxes.
Since we use BSP as our underlying computation model, we are able to trivially parallelize
GBSP, and we do so with OpenMP.

Evaluation

To evaluate GBSP, we compare it against three other graph frameworks:

Boost Graph Library (BGL) is a templated C++ library for graph algorithms [148].
Users of BGL can access implementations of existing kernels as well as specialize those
kernels for their needs via the visitor pattern. BGL is single-threaded, and PBGL [69]
is its parallelized successor, but we do not evaluate PBGL as it is designed for dis-
tributed memory. Since BGL is well implemented in C++, it is representative of
native performance.

NetworkX is a Python framework intended for graph analysis [141]. It provides many great
abstractions, but since it is implemented in Python, its performance is bottlenecked
by the Python interpreter.

graph-tool attempts to combine the performance of BGL with the expressiveness of Python [131].
It allows its users to use BGL while expressing their visitor operations in Python. In-
ternally, graph-tool makes extensive use of Python’s foreign function interface (FFI)
in order to inject its Python snippets into a C++ program using BGL.

To evaluate the frameworks, we use the small graph analysis workload shown in Table B.1.
The graph sizes are small in order to accomodate the limitations of productivity language
frameworks such as NetworkX.

We perform our evaluation on a dual-socket Intel Westmere (X5680) which has 12 hyper-
threaded 3.33GHz cores and 48GB of DRAM. We first evaluate GBSP’s serial performance
since the frameworks we compare it against are all serial. Figure B.1 shows that GBSP
is successful in obtaining native performance, since it is comparable to BGL and orders of
magnitude faster than the productivity language framework NetworkX. The performance
of graph-tool is more comparable to NetworkX than BGL since the time spent in Python
dominates the execution time. GBSP, unlike the other graph frameworks we evaluate, can

APPENDIX B. GBSP: GRAPH BULK SYNCHRONOUS PARALLEL 137

Figure B.1: Single-threaded performance comparison

Figure B.2: GBSP parallel strong-scaling speedup relative to single-threaded performance

APPENDIX B. GBSP: GRAPH BULK SYNCHRONOUS PARALLEL 138

execute in parallel, and doing so results in modest speedups until hyperthreads are used
(Figure B.2). These parallel speedups are a great result, as they require no additional e↵ort
by the GBSP user. GBSP is able to automatically transform the simple expressions of the
algorithms into high-performance parallel code.

Conclusion

Achieving productivity and performance simultaneously is challenging, so GBSP makes two
essential simplifications to the problem. First, rather than converting any Python code into
high-performance code, it restricts itself to a simple well-defined DSL (graph algorithms
expressed as BSP). Second, the specializer only needs to translate GBSP code to C++, so it
can leverage existing optimizing compilers. Overall, GBSP demonstrates that the SEJITS
methodology can be successful.

