
UCSF
UC San Francisco Previously Published Works

Title
Reverse translation of adverse event reports paves the way for de-risking preclinical off-
targets

Permalink
https://escholarship.org/uc/item/4jq232kd

Authors
Maciejewski, Mateusz
Lounkine, Eugen
Whitebread, Steven
et al.

Publication Date
2017

DOI
10.7554/elife.25818
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jq232kd
https://escholarship.org/uc/item/4jq232kd#author
https://escholarship.org
http://www.cdlib.org/


*For correspondence:matt@

mattmaciejewski.com (MM);

bshoichet@gmail.com (BKS);

laszlo.urban@novartis.com (LU)

Present address: †Pfizer, Inc.,

Cambridge, United States

Competing interest: See

page 20

Funding: See page 20

Received: 10 February 2017

Accepted: 04 July 2017

Published: 08 August 2017

Reviewing editor: Fiona M

Watt, King’s College London,

United Kingdom

Copyright Maciejewski et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Reverse translation of adverse event
reports paves the way for de-risking
preclinical off-targets
Mateusz Maciejewski1*†, Eugen Lounkine1, Steven Whitebread1, Pierre Farmer2,
William DuMouchel3, Brian K Shoichet4*, Laszlo Urban1*

1Novartis Institutes for Biomedical Research, Cambridge, United States; 2Novartis
Institutes for Biomedical Research, Basel, Switzerland; 3Oracle Health Sciences,
Oracle Health Sciences, Burlington, United States; 4University of California, San
Francisco, United States

Abstract The Food and Drug Administration Adverse Event Reporting System (FAERS) remains

the primary source for post-marketing pharmacovigilance. The system is largely un-curated,

unstandardized, and lacks a method for linking drugs to the chemical structures of their active

ingredients, increasing noise and artefactual trends. To address these problems, we mapped drugs

to their ingredients and used natural language processing to classify and correlate drug events.

Our analysis exposed key idiosyncrasies in FAERS, for example reports of thalidomide causing a

deadly ADR when used against myeloma, a likely result of the disease itself; multiplications of the

same report, unjustifiably increasing its importance; correlation of reported ADRs with public

events, regulatory announcements, and with publications. Comparing the pharmacological,

pharmacokinetic, and clinical ADR profiles of methylphenidate, aripiprazole, and risperidone, and of

kinase drugs targeting the VEGF receptor, demonstrates how underlying molecular mechanisms

can emerge from ADR co-analysis. The precautions and methods we describe may enable

investigators to avoid confounding chemistry-based associations and reporting biases in FAERS,

and illustrate how comparative analysis of ADRs can reveal underlying mechanisms.

DOI: 10.7554/eLife.25818.001

Introduction
Safety assessment of drug candidates is crucial for drug discovery, enabling the development of

medicines that achieve the desired therapeutic effects with the least risk of adverse side effects. Pre-

clinical regulatory investigations and clinical trials are designed to address safety of drug candidates

and eliminate those that do not meet risk-benefit expectations (Cook et al., 2014). However, limited

access to large, diverse patient populations in clinical trials, untested drug co-administrations, as

often occurs, especially with elderly patients on multiple medications, and development of ADRs

associated with chronic treatment, often results in post-marketing labeling and occasional with-

drawals (Wysowski and Swartz, 2005; Lasser et al., 2002; Friedman et al., 1999; Downing et al.,

2017). Thus, postmarketing pharmacovigilance is essential to track ADRs and ultimately reduce over

1 million serious drug-related side effects that occur each year in the USA. Between 5% and 10% of

these ADRs are fatal (Lazarou et al., 1998), and many others cause patient suffering, hospitalization,

and increased health system burden (Moore et al., 1998). Indeed, the fatality rate attributed to

ADRs puts them among the top causes of death in the USA (over 40,000 in 2011), similar to suicide-

related mortality (Hoyert and Xu, 2012).

Determinant tools in post-marketing pharmacovigilance are databases that aggregate ADR

reports. Foremost among these is the FDA Adverse Event Reporting System (FAERS), which is
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perhaps the most extensive, and among the most widely accessible of these databases, currently

containing over 8.5 million reports and rapidly growing (U.S. Food and Drug Administration,

2016). FAERS and related databases, such as those of the EMEA and of Health Canada, can provide

specific ADR phenotypes typical for either individual drug classes or specific indications and can be

accessed either directly (U.S. Food and Drug Administration, 2016) or by APIs (RELX Intellectual

Properties SA, 2016; U.S. Food and Drug Administration, 2016). These large-scale adverse event

databases enable analysis to relate clinical phenotypes and compounds (Tatonetti et al., 2012), and

they have been widely used by the clinical community with much impact (O’Connell et al., 2006;

Elashoff et al., 2011; Lawrence et al., 2006; Mackey et al., 2007).

It is an attractive proposition to exploit the sheer scale of FAERS to detect drug-ADR associations

that would otherwise be missed. A challenge in doing so has been the heterogeneous data sources

and data conflation in the database.

FAERS, while providing a solid frame for reporting, contains redundancies, biases, and conflations

that affect its analysis and interpretation (McAdams et al., 2008). Our ability to even correlate drugs

with their effects is obscured by something as simple as the tangle of drug synonyms in FAERS - on

average 16 different names for medicines containing each active drug ingredient - which can

obscure associations.

eLife digest New treatments are tested in clinical trials before they are licensed for use in

patients, but until the drugs are available for prescribing it’s not always possible to identify every

side effect. When the drugs enter the clinic, they might be prescribed to patients with multiple

medical conditions, or combined with other treatments. The drugs may also be taken for longer

periods of time than tested in trials. It is therefore common for new adverse reactions to emerge

after a drug is in widespread use.

The FDA Adverse Event Reporting System (FAERS) is a surveillance system used in the United

States for reporting drug side effects after new treatments have been licensed. Healthcare

professionals and patients can submit reports to the database, logging the adverse drug reactions

that they have experienced.

FAERS currently contains over 8.5 million entries, and is growing all the time. However,

Maciejewski et al. show that the database has several shortcomings that are reducing its usefulness.

For instance, on average any given drug will have 16 different names in the system; this makes it

challenging to group all of the reported side effects so that trends and patterns can be correctly

seen.

To address this first problem, Maciejewski et al. grouped together drugs according to their active

ingredients, rather than their name. This made it much easier to account for subsequent, and more

crucial conflating factors such as multiple reports for the same adverse event and patient, or cases

where adverse reactions were confused with the diseases that the drugs are trying to treat. For

example, diabetes was listed as a side effect for drugs used to treat diabetes.

Building on this cleaned-up dataset, Maciejewski et al. monitored how adverse event signals

evolve over time and uncovered biases that were hard to see otherwise. For example, side-effects

were reported more often when drugs were in the news. More strikingly, this bias affected not only

the drug in question, but also other drugs that acted in the same way or on the same molecular

target.

The computational method developed by Maciejewski et al. allows the data in FAERS to be

combined and corrected, making easier to evaluate the safety of different medicines. The link

between adverse side effects and the molecular targets of the drug, via the ingredient’s chemical

structure, furthermore makes it possible to analyze such clinical data reliably by using chemical and

genetic information. In the future, this method could also help to identify previously unknown side

effects and the biological mechanisms behind them. This could help researchers to develop new

drugs with improved side effect profiles.

DOI: 10.7554/eLife.25818.002
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Here, we investigate the effects that these data conflations, inflations, and inaccuracies can have

on ADR and mechanistic inference from FAERS, and methods to address them. We begin by map-

ping drug identifiers in FAERS to normalized chemical structures of their ingredients, which brings

together observations over the ‘full drug’, not just particular drug names and synonyms, which

remain incomplete. Mapped to unique chemical structures, we could compute time-resolved profiles

of drug-ADR associations, which revealed intriguing comorbidities and similarities of ADRs between

drugs, and of their time evolution. We then turned to the origins of and controls for reporting biases

in FAERS, considering stimulated reporting and the several different, often non-medical communities

that can contribute to FAERS. This was facilitated by a time-evolution analysis of ADR reports, and

its correlation with contemporary news events. We illustrate how these biases can ramify with in-

depth analysis of FAERS content on two COX-2 inhibitors, rofecoxib and celecoxib, and with two

PPAR-g agonists, rosiglitazone and pioglitazone. As examples of how these analyses can link ADRs

to specific targets, we consider the differential ADR profiles of drugs used for the treatment of

attention deficit hyperactivity disorder (ADHD), and how their distinct ADRs may be explained partly

by molecular targets - a logic that is often used - combined with pharmacokinetic exposure - which

is often overlooked. Similarly, we investigate the differentiation of the hypertensive side effects of

VEGF-Receptor (VEGF-R2) inhibitors based on their potency and pharmacokinetic (PK) profiles. The

precautions and methods we describe, may enable investigators to use FAERS with increased confi-

dence and avoid confounding chemistry-based associations and reporting biases. This study also

illustrates how comparative analysis of ADRs can reveal underlying mechanisms and highlight the

reverse translation value in the drug discovery process.

Results

Analysis of content: unexpected trends in FAERS reporting
The FAERS database holds over 8.5 million reports and is steadily growing (over 1,320,000 reports

added in 2015; Figure 1A. We extracted 8,749,375 FAERS reports, mapped to 7,095,566 individual

cases. Often a patient’s condition is monitored over a span of multiple reports, which must be con-

sidered when investigating the incidence of a particular drug-ADR association (U.S. Food and Drug

Administration, 2016).

Inflation of reports by multiplication can increase the apparent significance of a drug – adverse

effect association, particularly when the total number of reports is low. To systematically identify the

most similar cases, we compared all pairs of reports using demographic and prescription data.

Almost 1% of the reports in FAERS (61,780 cases) represent multiple entry cases with identical

drugs, identical ADRs, event dates, patient age and gender (Supplementary file 1). Intriguingly,

only half of the reports in FAERS were submitted by healthcare professionals (Figure 1B). Over one-

third of them (3.2 million) were initiated by the patients themselves and 9% were labeled ‘non-speci-

fied’. Lawyers reported 3% of all FAERS cases (Figure 1B).

FAERS uses seven descriptors of report outcomes: ‘Death’, ‘Life-Threatening’, ‘Disability’, ‘Con-

genital Anomaly’, ‘Required Intervention to Prevent Permanent Impairment/Damage’, ‘Hospitaliza-

tion – Initial or Prolonged’, and ‘Other’. Among these, only ‘Other’ is used to report relatively

benign outcomes. Unexpectedly, only around 40% of the outcomes were identified as ‘benign’,

whereas almost 15% of reported cases result in death (Figure 1C). It is a feature of reporting in an

open submission database like FAERS that this ratio does not reflect the true balance between fatal

and relatively benign drug ADRs, but rather the ratio of the ADRs that are thought to merit

reporting.

Among the 945,526 reports where death is the outcome of the ADR, 42,526 were linked to car-

diac arrest and 50,155 to suicide. Top molecular ingredients of drugs that were primary suspects in

death reports were rosiglitazone: 17,165 (indication type II diabetes), rofecoxib: 11,386 (primary indi-

cations: arthritis, pain; withdrawn from the clinic), reteplase: 11,386 (indication of acute myocardial

infarction (MI)), and thalidomide: 17,104 (indication of myeloma multiplex; additionally, 26,429 cases

of death have been attributed to lenalidomide, a derivative of thalidomide also prescribed for mye-

loma). For drugs like rofecoxib or rosiglitazone, which are prescribed for manageable and non-life

threatening diseases, the inference that the ADR has led to death can be reasonably made. Similarly,

a comparison of celecoxib (reported number of deaths: 4,066; Standardized Mortality Ratio [SMR]
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[Everitt and Skrondal, 2010]: 1.3) and rofecoxib, which are prescribed for the same indication, high-

lights the significantly higher SMR of patients taking the latter drug (SMR: 5) (Rostom et al., 2007).

However, the attribution of death as an ADR of thalidomide when it is used to treat myeloma multi-

plex, a life-threatening, malignant disease (Singhal et al., 1999) may be hard to support; it seems

likely that the ‘ADR’ here reflects the cancer that the drug is meant to treat. Similarly, the acute myo-

cardial infarction that reteplase is used to treat (Wooster and Luzier, 1999) may well be the cause

Figure 1. General information of the FDA Adverse Event Reporting System (FAERS) content (1997–2015). (A) The cumulative number of reports in

FAERS is shown in the top panel; the bottom panel shows the number of new reports per quarter. (B) Distribution of reporter identities. Data are based

on reports submitted between Q2 2002 (identification of reporting individuals started at this time) and Q4 2015. (C) Distribution of reports by the 7 ADR

outcomes defined in FAERS.

DOI: 10.7554/eLife.25818.003
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of many of the death ADRs with which the drug is tarred, not the drug itself. When a drug is used to

treat a life-threatening disease, care is warranted in interpreting death as an ADR of that drug.

Mapping drugs to their molecular ingredients improves signal retrieval
In most FAERS studies, drugs are identified using RxNorm (Wang et al., 2013; Nelson et al., 2011),

a set of drug synonyms supplied by the National Library of Medicine. This mapping is sufficient for

the questions that may be asked of FAERS by a clinical professional, such as the safety signals for a

particular drug formulation. However, products that have different identities in resources such as

RxNorm share common molecular ingredients and are highly similar in their activities on molecular

targets. To investigate the ADRs associated with fluoxetine, for instance, one must aggregate its

378 different synonyms. Without such aggregation, well-known fluoxetine side effects such as sexual

dysfunction become statistically insignificant (four cases when only the fluoxetine drug synonym Pro-

zac is considered; Relative Reporting Ratio [RRR] = 1.75; q-value = 1), whereas once aggregated,

these ADRs stand out clearly (87 cases; RRR = 6.67; q-value = 2.56�10�96). Conversely, in its non-

aggregated form, Prozac appears to have statistical significant associations with sex chromosome

abnormality (one case; RRR = 2.96; q-value = 2�10�3). Aggregated, however, this association

becomes insignificant (one case; RRR = 2.78; q-value = 1). For those interested in the molecular basis

of drug actions and side effects, a simple way to interrogate the drugs as molecules is critical.

Accordingly, we mapped the active drug ingredients in over 98% of the reports using a combina-

tion of natural language processing and multiple databases of synonyms (see

Materials and methods). Not only does this value compare favorably to the 81% recognition

achieved using only the synonyms alone in RxNorm, but it allowed us to look for associations draw-

ing on standard cheminformatics-based searches. Surprisingly, of the 2729 unique ingredients identi-

fied, only 1892 were annotated as a primary suspect in at least one report; said a different way, 837

active drug ingredients had no reported ADRs whatsoever. A plot of the ingredients that were asso-

ciated with ADRs shows that an exponentially decaying distribution, with 90% of the ADRs attributed

to 40% of the drug ingredients (Figure 2). After correction of distribution for ADRs with q-values

better than 0.05, 90% may be attributed to 46% of the investigated drugs. This ingredient mapping

was used throughout subsequent analyses (see Materials and methods and Supplementary Material).

As expected, mapping drugs to their active ingredients, and not simply relying on synonym

aggregation, reinforced the strength of the drug-ADR signals. For example, the non-steroidal anti-

inflammatory drug (NSAID) indomethacin is used to treat chronic pain and fever (MedicinesCom-

plete, 2014). When we assessed indomethacin as an ingredient, a strong signal linked it with gastric

ulcer (RRR = 10.40; q-value = 3.65�10�72), and gastric ulcer hemorrhage (RRR = 7.99;

q-value = 6.78�10�18). These adverse events are known from the labels of indomethacin-containing

drugs, also confirmed in World Drug Index (WDI) (Thomson Scientific, 2016). However, when we

Figure 2. Histograms showing the distribution of the number of ADRs that were attributed to unique ingredients. (A) All observed ingredient – ADR

pairs. (B) Pairs observed below the q-value cutoff of 0.05.

DOI: 10.7554/eLife.25818.004
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searched the trade names of the drugs in which indomethacin is used (RxNorm synonym matching),

these signals were dissipated in the noise: the strongest signal for gastric ulcer decreased to

RRR = 1.79, q-value = 1.00; the strongest signal for gastric ulcer hemorrhage dropped to

RRR = 2.42, q-value = 1.00.

Bias in ADR reporting by indication, changes in regulatory, clinical,
social and legal environment
Sometimes, ADRs are conflated with indications, and vice versa. An example is a report of rosiglita-

zone being prescribed for type two diabetes mellitus, with the ADR in the report being also diabetes

mellitus (Table 1). In another report, rosiglitazone was identified as the primary suspect for conges-

tive heart failure, as well as a therapeutic agent that was prescribed for the very same condition

(Table 1). We quantified this indication bias both globally and over time. Approximately 5% of all

reports for any drug describe the drug’s indication as an adverse event. The number of reports in

which the same ADR and indication was reported increased linearly with the increasing number of

yearly reports until 2011, followed by a sudden drop (Figure 3). We could trace an FDA advisory

‘refresher’ presentation on guidelines of ADR reporting for clinical trials to an effective date of

March 28, 2011 (Devine, 2016). This document provides clear instructions for submitters to distin-

guish between pre-existing conditions and ADRs and indeed may have had a significant effect on

reporting quality.

We took a closer look at the reports of rosiglitazone, where occurrence of diabetes as a side

effect was attributed to the usage of this drug relatively frequently until 2004 (this obviously errone-

ous association is significant if considered in the reporting window of rosiglitazone (until 2011), with

an RRR = 1.57 and a q-value <10�5). After 2004, this association decreased, as did the overall pre-

scriptions and reporting of this drug, owing to its widely-reported cardiovascular side effects

(Mannucci et al., 2010; Nissen and Wolski, 2007). In general, a simple comparison of indications

and reported ADRs reduces the bias of verbatim repetition.

We applied these methods to investigate how reports for individual drugs change over time. In

particular, we monitored the total number of reports filed and the incidence of adverse events pref-

erentially reported at different time points. When reports are sorted by event dates in FAERS,

‘spikes’ occur on the first day of each month, and even larger spikes on the first day of each year.

Importantly, drug-serious ADR signals show a time-dependent increase (see

Figures 4A, 5A, 6A, and Figure 7A). The changes in drug-ADR associations over time can, of

course, reflect new populations to which the drug is exposed.

We assessed the time evolution of reports of rofecoxib, a nonsteroidal anti-inflammatory drug

(NSAID) that relieves pain through COX-2 inhibition (Figure 4). Several important events occurred

over the clinical life of rofecoxib since its approval by the FDA in 1999: (1) A clinical study by Bom-

bardier et al. published in November 2000 concluded that rofecoxib increased the risk of cardiovas-

cular events (Bombardier et al., 2000). (2) Introduction of warnings for cardiovascular events on the

labels of Vioxx (a brand name of rofecoxib) in April 2002. (3) Withdrawal of rofecoxib from the mar-

ket on September 30th 2004.

Table 1. Confusion of ADRs with indications. Report and case numbers identify two FAERS reports

where the ADR is confused with the indication.

For the first case, rosiglitazone prescribed for diabetes (Indication) is identified as the primary suspect

(PS) for causing diabetes mellitus as an ADR as well. In the second case, ‘cardiac failure congestive’ is

given as the indication for rosiglitazone with the reported ADR of ‘cardiac failure congestive’. The

third case exemplifies correct reporting, where both the ADR and the indication of rosiglitazone are

reported correctly.

Report Case ADR Drug / Role / Indication

6545021 179039 Diabetes mellitus Rosiglitazone/PS/Diabetes mellitus

5521616 162007 Cardiac failure congestive Rosiglitazone/PS/Cardiac failure congestive

6380841 7085373 Cardiac failure congestive Rosiglitazone/PS/Diabetes mellitus

DOI: 10.7554/eLife.25818.006
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Myocardial infarction (RRR = 17.85; q-value <10�5) and cerebrovascular accident (RRR = 17.69;

q-value <10�5) accounted for a large proportion of the ADRs reported for rofecoxib from its intro-

duction in 1999 (Figure 4B and D). Before the study by Bombardier et al. (2000), most reports

were filed by physicians. Between the Bombardier publication and the introduction of the label

warning, these physician reports remained constant, while the number of reports by lawyers grew

substantially. After the introduction of the label warning, the number of reports from physicians

slightly decreased, but the trend to attribute myocardial infarction and cerebrovascular accident to

administration of rofecoxib was further cemented by submitters who identified themselves as law-

yers (see Figure 4C).

We also inspected the time evolution of another COX-2 inhibiting NSAID, celecoxib, approved by

the FDA in December 1998, just shortly before Vioxx (Figure 5). Inspection of the timeline of cele-

coxib reports shows a slight increase in the number of reports around September 2004, reflecting

the increase in use associated with the withdrawal of rofecoxib (Figure 5A). Until December 2004,

the pattern of ADR in celecoxib reports is dominated by cerebrovascular accident (per-month RRR

up to ~35) and myocardial infarction (per-month RRR up to ~45) in a similar fashion as in rofecoxib

reports (Figure 5B and Figure 5D). The increase of the overall number of reports around September

2004 coincided with concerns about the safety of celecoxib, likely reflecting a report of increased

risk of cardiovascular events in patients who used celecoxib systematically over prolonged periods

of time (Solomon et al., 2005). We checked whether the trends in reporting of side effects of cele-

coxib was affected by co-administration of rofecoxib, but the distribution of ADRs was almost identi-

cal after excluding the 8% of reports in which rofecoxib was present as a concomitant drug

(Figure 5C). Closer examination of this pattern revealed that the reports during this period of time

were largely submitted by lawyers and ‘unidentified’ individuals, while the contribution of health pro-

fessionals remained steady much below the level of reports for rofecoxib (Figure 5E). These trends

were confirmed by logistic regression modeling (see Materials and methods and Supplementary file

2), which showed that reports of myocardial infarction were significantly correlated with reports of

celecoxib filed by lawyers before 2005 (Model four in Supplementary file 2). We also considered

the Pfizer moratorium on direct-to-consumer advertising in 2004 as a significant event on sales and

consequently ADR reporting (Consumers Union and Consumer Reports Best Buy Drugs, 2005).

After the Vioxx case, the FDA issued new labeling for not just COX-2 selective but for all NSAIDs

which set new safety standards for the anti-inflammatory arena (U.S. Food and Drug
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Figure 3. Reports with wrongly identified indications or ADRs. (A) Total number of reports in a given year where

the same indication and ADR were reported. (B) Number of reports in a given year where diabetes was stated as

the adverse reaction caused by rosiglitazone.
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Administration, 2016). While Vioxx was removed from the clinic, Celebrex enjoyed a revival after

2004, in particular as the only COX-2 selective NSAID in the clinic and because of the updated labels

for other NSAIDs. Pfizer resumed careful advertising with clear reference to side effects that helped

the recovery of clinical celecoxib use. While we examined these stimulating effects, we also recog-

nized that the sales volume was likely to grow but we were not able to determine the volume

because of coincidental price increase interference (Schondelmeyer and Purvis, 2014). This case

clearly demonstrates the complexity of the performance of drugs in the post-marketing environment

where ADR reporting could be significantly modified by multiple factors, including regulatory and

social aspects.

Drugs with similar chemical structure and modes of action may display
distinct clinical ADR phenotypes
It is generally expected that compounds with similar structures and modes of action will have similar

ADR profiles; for instance, several selective serotonin reuptake inhibitors (SSRIs) are associated with

suicidal behavior in young adults (U.S. Food and Drug Administration, 2016; Muller et al., 2015).

However, this is not always the case. The post-marketing ADR reports of the structural analogs rosi-

glitazone (Greene, 1999) and pioglitazone, which act on the same primary target peroxisome

Figure 4. Submission pattern and time evolution of rofecoxib FAERS reports. (A) Number of reports (per day) where rofecoxib was reported as primary

suspect. Red dots represent events with a major impact on the FAERS reporting pattern of rofecoxib. (B) Relative percent participation of all ‘preferred

term’ (PT)-level ADRs observed for rofecoxib. Each ADR is represented by a separate color. Characteristic time periods on the timeline of this drug are

demarked by lines (associated with definitive events), and numbered. Monthly ADR fractions shown here are also reported in Supplementary file 1. (C)

Identities of those reporting rofecoxib ADRs at the various reporting periods, marked to correspond with the Roman numeral annotations in panel B.

(D) Enrichment-based clusters of ADRs (cerebrovascular accident and myocardial infarction) observed in rofecoxib reports between 1997 and 2006.

DOI: 10.7554/eLife.25818.007
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Figure 5. History of FAERS reports on celecoxib. (A) Number of FAERS reports (per day) where celecoxib was reported as primary suspect. (B) Relative

percent participation of all PT-level ADRs observed for celecoxib. Each ADR is represented by a separate color. Characteristic time periods on the

timeline of this drug are marked by lines, and numbered. Monthly ADR fractions shown here are also reported in Supplementary file 1. (C) Per-month

number of reports where celecoxib was primary suspect; each line corresponds to a separate PT-level ADR. The top plot describes all reports with

celecoxib as primary suspect. In the plot on the bottom the reports in which rofecoxib was also present were omitted. Colors are matched with those

used in panel B. (D) Enrichment-based clusters of most frequently reported ADRs (cerebrovascular accident and myocardial infarction) observed in

ccoxib reports. Colors match those in B and C. Note, that this plot will not exactly correspond to panel B, because enrichments presented here show

the ratio of the number of observed events in a given year compared to what one would expect at random, while the traces in B show a proportion of a

given ADR compared to other ADRs during a given period of time. (E) Identities of those reporting celecoxib ADRs at various reporting periods,

marked to correspond with the Roman numeral annotations in panel B.

DOI: 10.7554/eLife.25818.008
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proliferator activated receptor g (PPAR-g) and are structurally related, are notably different (compare

Figures 6B and 7B).

For rosiglitazone, many heart-related reports have been filed since its FDA approval in May 1999

(Figure 6A, Figure 6B). Whereas the absolute number of reports have varied over time, and has

been affected by the clinical trial and scientific reports in much the same way as rofecoxib, the pre-

dominance of heart effects, such as congestive cardiac failure (RRR = 31.99; q-value <10�5), coronary

artery disease (RRR = 26.32; q-value <10�5), cerebrovascular accident (RRR = 11.72; q-value <10�5),

and myocardial infarction (RRR = 20.73; q-value <10�5), relative to other events, has been unper-

turbed throughout the lifetime of this drug (Figure 6B and D).

The other hypoglycemic drug, pioglitazone, has triggered fewer reports of heart effects relative

to the clinical ADR profile of rosiglitazone since its approval in July 1999 (Figure 7A). Although anal-

ysis of FAERS reports does support a statistically significant signal between pioglitazone and cardiac

failure (RRR = 5.09; q-value <10�5), the time evolution of this signal reveals that the major contribu-

tion to its statistical strength comes from a single peak that subsides by the year 2002, and coincides

with the increased scrutiny of rosiglitazone (Figure 7C). Unlike rosiglitazone, the ADR landscape of

pioglitazone is dominated by bladder cancer (RRR = 305.69; q-value <10�5), with a substantial

increase in reports from 2009 onward (Figure 7B). Conversely, this signal is significantly

Figure 6. Rosiglitazone reports. (A) Number of FAERS reports (per day) where rosiglitazone was reported as primary suspect. (B) Per-month percent

participation of all PT-level ADRs observed for rosiglitazone. Each ADR is represented by a separate color. Characteristic time periods on the timeline

of this drug are demarked by lines, and numbered. Monthly ADR fractions shown here are also reported in Supplementary file 1. (C) Identities of those

reporting rosiglitazone ADRs at various reporting periods, marked to correspond with the Roman numeral annotations in panel B. (D) Enrichment-based

clusters of ADRs observed in rosiglitazone reports.

DOI: 10.7554/eLife.25818.009
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Figure 7. The landscape of pioglitazone reports. (A) Number of FAERS reports (per day) where pioglitazone was reported as primary suspect. (B) Per-

month percent participation of all PT-level ADRs was observed for pioglitazone. Each ADR is represented by a separate color. Characteristic time

periods on the timeline of this drug are marked by lines and numbered. The monthly ADR fractions shown here are also reported in

Supplementary file 1. (C) Per-month number of reports where pioglitazone was primary suspect; each line corresponds to a separate PT-level ADR.

The plot on the top of the panel shows number of times individual ADRs have been reported, and the bottom the corresponding per-month

enrichments. The traces for cardiac failure have been distinguished by the blue color. (D) Enrichment-based clusters of cancer-related ADRs observed in

pioglitazone reports. (E) Identities of those reporting pioglitazone ADRs at various reporting periods, marked to correspond with the Roman numeral

annotations in panel B. (F) Structure of rosiglitazone and pioglitazone.

DOI: 10.7554/eLife.25818.010
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underrepresented in the rosiglitazone reports (RRR = 0.12; q-value <10�5). There is evidence that

non-selective PPAR agonists (a + g) such as pioglitazone could contribute to carcinogenesis

(Oleksiewicz et al., 2008; Piccinni et al., 2011), and a recent study linked bladder cancer to the

development of chronic kidney disease as an effect of long-term use of pioglitazone (Lee et al.,

2014). This observation was not confirmed with short-term use of pioglitazone (Lewis et al., 2011),

and it is important to note that the increase in incidence of bladder cancer is linked to pioglitazone

treatment that is ongoing for more than 2 years. Aside from the scientific evidence, it is clear from

the submitter population (mostly lawyers and consumers; see Figure 7) that bladder cancer report-

ing has a significant stimulated component in FAERS. As there is no clear etiology for the high inci-

dence of this ADR, further investigation is needed to explore the effect of concomitant therapies

such as glucocorticoids which might influence the side effect profile of pioglitazone. Still, the mecha-

nisms linking the less selective pioglitazone but not the selective PPAR-g agonist rosiglitazone to

bladder cancer are unclear, and this association must remain tentative.

Using monthly report counts to de-bias stimulated reporting
The trends and biases in ADR reporting can hamper the division and reliability of drug-ADR associa-

tions. The statistically significant association that we found between pioglitazone and cardiac failure

stems mostly from the reports from before 2004, which may reflect the popular view that hypoglyce-

mic thiazolidinediones cause cardiovascular side effects (Nissen and Wolski, 2007). Whereas we

cannot discount that this reflects genuine events, a time-resolved statistical analysis tilts against this.

In a month-resolved statistical analysis of the significance of the pioglitazone – cardiac failure associ-

ation, most dates indicated that there was no statistically significant association between this drug-

ADR pair (top panel in Figure 8). Conversely, the association of rosiglitazone and myocardial infarc-

tion was statistically significant in nearly every time period (bottom panel in Figure 8). The periods

where the pioglitazone - cardiac failure association is statistically significant are restricted to a couple

of sparse spikes (Figure 8), and so we suggest this association to be stimulated, and most likely arte-

factual. Such month-resolved statistical analysis for drug-ADR associations may be broadly helpful in

detecting biased reporting trends. Continuing observation of changes in reporting patterns and cor-

relative studies can reveal further aspects of the potential discrepancies between the clinical profiles

of structurally similar drugs. Published data on the favorable effects of pioglitazone on lipids, primar-

ily on triglycerides, over rosiglitazone also supports our observations (Nissen and Wolski, 2007;

Goldberg et al., 2005; Lincoff et al., 2007).

Combining pharmacokinetics and FAERS to investigate mechanism and
for reverse translation
There is a great interest in using pharmacovigilance for target identification and to illuminate thera-

peutic and ADR mechanism of action (Muller et al., 2015; Nguyen and Lewis, 2014;

Rothman et al., 2000; Shively et al., 1999; Urban et al., 2014). By matching to in vitro activity, one

may hope to associate an ADR that emerges in FAERS with the targets responsible for the physiol-

ogy, making the linkage: drug fi known target fi ADR. Whereas we ourselves have championed the

role of in vitro pharmacology for anticipating possible toxicology (Lounkine et al., 2012;

Bowes et al., 2012; Bender et al., 2007), doing this reliably depends on knowing the exposure of

the drug to the implicated target. Without considering drug pharmacokinetics, FAERS-based infer-

ence of drug fi target fi ADR associations can mislead (Muller and Milton, 2012).

An illustrative example is the hypertension associated with inhibition of the vascular endothelial

growth factor or its receptor (VEGF, VEGF-R2; see Materials and methods). The relevance of such

inhibition to hypertension is supported by the high-incidence of this ADR with the VEGF-R2-specific

humanized antibody, bevacizumab (Figure 9B) (Zhu et al., 2007). Correspondingly, several small

molecule kinase inhibitors that inhibit VEGF-R2 with relevant in vivo pharmacokinetics (Figure 9B)

also share the hypertension side effect. However, other kinase inhibitors with VEGF-R2 inhibition do

not appear to increase reports of hypertension (Figure 9). High incidence is reported only with those

drugs in this class that have exposure margins (EM) less than 13 for this target (biochemical IC50/

Cmax; Figure 9). We considered several caveats in this analysis: (1) human exposures could range 5–

10 fold, (2) many of the clinically approved kinase inhibitors are promiscuous with a few targets

which might affect blood pressure, and (3) in some instances, the clinical sample size is relatively
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small. While all these factors could influence the incidence of hypertension associated with VEGF-R

inhibition, it is possible to recommend an exposure margin around 10 for clinical candidates in pre-

clinical development to avoid this side effect in the clinic (Figure 9A). Thus, using such an EM cutoff

in the FAERS analysis, the signal for this ADR over random will separate drugs with true adverse

event from those that lack it (Figure 9).

A more complex case emerges through the investigation of methylphenidate and the atypical

antipsychotics, risperidone/paliperidone (Corena-McLeod, 2015) and aripiprazole, drugs prescribed

for the treatment of attention deficit hyperactivity disorder (ADHD) (Correia Filho et al., 2005;

Ercan et al., 2012; Fernández-Mayoralas et al., 2012). FAERS analysis indicates that treatment

with risperidone/paliperidone, the latter of which is the main active metabolite of risperidone,

increases the frequency of gynecomastia and galactorrhea, while methylphenidate has a low inci-

dence of these ADRs, as do other atypical antipsychotics, such as aripiprazole (Figure 10)

(RELX Intellectual Properties SA, 2016). For example, between 2007 and 2013, there were 5073

and 123 cases in FAERS, respectively, where risperidone and paliperidone are the primary suspect

of gynecomastia (Figure 10, RRR = 113.82, q-value <10�5; RRR = 7.53, q-value <10�5). For
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Figure 8. Statistical significance of association between pioglitazone and cardiac failure (top panel), and

rosiglitazone and myocardial infarction (lower panel) over time. The horizontal line demarks the critical q-value

cutoff of 0.05, below which the association becomes statistically significant. On dates when the association crosses

this threshold, its q-value is indicated by a filled circle; otherwise, it is indicated by an empty circle. The extreme

q-values below 1�10�300 are not shown.
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Figure 9. Hypertension associated with VEGF-R2 inhibition depends on the exposure margin of small molecule

anti-VEGF-R2 drugs (VEGF-R2 IC50/Cmax). (A) Suggested exposure margin for marketed VEGF-R inhibitors based

on post-marketing incidence of hypertension in correlation with plasma exposure (VEGF-R IC50/free Cmax). The

proposed 10 times margin represents clear separation of VEGF-R inhibitors with and without significant increase in

hypertension with the only exception of nintedanib. (B) FAERS reports of small molecule kinase inhibitors with

VEGF-R2 inhibition show an increased incidence of hypertension reports only in case their exposure margin is less

than 13. The label of drugs with high incidence of hypertension in FAERS lists this side effect, while none of those

drugs that have low incidence carry the label. *p-value of association between drug and hypertension <0.001.

Counts (N), expected counts (E), and an often-used disproportionality measure (EB05) based on the FDA’s FAERS

database of spontaneous reports of suspected drug adverse drug reactions are provided. The values of E are the

expected number of patients reporting vascular hypertensive disorder after taking each drug if the drug reports

and the reports of the event were independent within the database, conditional on the patients age and gender.

The ratio N/E is a measure of disproportionality of report counts of each particular drug-event combination. The

value EB05 (empirical Bayes 5% lower bound of a 90% credible interval) is a conservative estimate of the true

reporting disproportionality that uses estimated overall prevalence of drug-ADR associations throughout the

Figure 9 continued on next page
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aripiprazole (RRR = 0.85) and methylphenidate (RRR = 1.39), however, the q-values were close to 1,

indicating no significant associations with this ADR (Figure 10B). Thus, the FAERS data clearly sepa-

rates the profile of risperidone/paliperidone from both methylphenidate, with which it overlaps for

treatment of ADHD, and from other atypical antipsychotics, like aripiprazole. The inference would

be that the target responsible for the gynecomastia and galactorrhea for risperidone/paliperidone is

not modulated by either methylphenidate or any other atypical antipsychotics. Although this is cor-

rect for methylphenidate, it is incorrect for the atypical antipsychotics. The clinical profile of atypical

antipsychotic drugs depends on their pattern of engagement with central nervous system targets

largely receptors and transporters (Richelson, 1996).

Figure 9 continued

database. The value of EB05 is less than N/E and has the effect of correcting the simple ratio for sampling

variance and multiple comparisons bias. See literature (DuMouchel, 1999; DuMouchel and Pregibon,

2001; Szarfman et al., 2002; Almenoff et al., 2007) for details and discussion of the FAERS database and the

use of disproportionality analyses within spontaneous report databases. The values of EB05 for the first three

drugs indicate 95% confidence that reports of those three drug-event combinations are reported about three or

four times as often as would be expected if they were independent, while the values of EB05 <1 in the final three

drugs in the table indicate no evidence for higher than expected reporting rates. More detailed results from

Bayesian analysis are available in Supplementary file 3. †Significant increase.

DOI: 10.7554/eLife.25818.012

Figure 10. Integration of pharmacodynamic and pharmacokinetic data is necessary to interpret FAERS information. (A) FAERS analysis of the reporting

pattern of gynecomastia in patients treated with risperidone between 2002–2015. (B) Summary table of the in vitro pharmacological profile, FAERS

entries (total number of reports, and reports of gynecomastia, hyperprolactinemia and cardiac valve disease where the listed drugs were the primary

suspects) and calculation of exposure margin of aripiprazole, risperidone/paliperidone and methylphenidate. The prominent effects of risperidone/

paliperidone at the D2 dopamine receptor in conjunction of the narrow TI differentiates these compound(s) from the rest. Assays were performed at the

Novartis Institutes for BioMedical Research, Cambridge. *Asterisks denote functional assays. ant: antagonism.

DOI: 10.7554/eLife.25818.013
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Both aripiprazole and risperidone/paliperidone are atypical antipsychotics with high affinity to

dopaminergic, serotonergic, adrenergic, and histaminergic receptors (Figure 10B [Lounkine et al.,

2012; Roth et al., 2000]). It is well established that inhibition of the D2 dopamine but not 5-HT2C
receptors are linked to hyperprolactinemia, which is the underlying mechanism of gynecomastia and

galactorrhea (Calarge et al., 2009; Alladi et al., 2017). Regardless of their similar potency at the D2

dopamine receptor the difference between the ADR profile of aripiprazole and risperidone/paliperi-

done is explained by their mechanism of action (risperidone is a full antagonist and aripiprazole is a

partial agonist) and particularly by their PK profile, which reveals that the exposure margin (EM

[Muller and Milton, 2012]) for D2 is large for aripiprazole and so this ADR did not manifest. For ris-

peridone, the EM is less than one which explains the high incidence of gynecomastia (Figure 10).

Methylphenidate does not affect the D2 receptor at all, and accordingly this ADR was not observed.

While paliperidone is known to cause hyperprolactinemia (Bostwick et al., 2009) which is con-

firmed by the FAERS data, it remains to be explained why it has a significantly lower reporting rate

than its parent, risperidone, with similar activity at the D2 receptor (Arakawa et al., 2008).

Discussion
Four key observations emerge from this study. First, much of the potential signal in FAERS and

related databases is obscured by chemical name redundancy. This introduces false associations that

would fall to insignificance on synonym aggregation, and this hides associations that would be signif-

icant on aggregation. This may be addressed by representing active ingredients by their unique

chemical structures in a readily searchable form as we do here (Supplementary file 1). Second,

FAERS reports tilt toward serious outcomes, partly owing to a confusion of ADRs and outcomes.

Third, FAERS suffers from several forms of conflation: multiple entries, indications with ADRs, news-

worthiness, and scientific and legal influences. These may be detected by statistical analyses, includ-

ing comparing reports over time. Fourth, and perhaps more generatively, once these biases and

conflations are corrected, the molecular mechanism of previously hidden ADRs can be revealed; an

example explored here is the association of urinary bladder cancer with mixed PPAR-a and PPAR-g

agonists.

A major reason for FAERS’s bias toward serious outcomes is the conflation of ADRs and out-

comes. This may stem from an issue as simple as confusion on whether ‘death’ is listed as an ADR –

associated with the drug only – or an outcome – associated with the disease itself. This is the case

with the attribution of the side effect ‘death’ to thalidomide’s use in complex myeloma multiplex,

when this reflects the high mortality rate of the disease itself (Greene, 1999). Naturally, there are

some cases where use of a drug can increase death rate, even in treating life-threatening diseases,

such as the case of milrinone for acute heart failure syndromes (AHFS) (Bayram et al., 2005) or

severe chronic heart failure (Packer et al., 1991). Matters can be improved when a drug is used in

different indications with distinct symptoms and outcomes, enabling differentiation between dis-

ease- and drug-related outcomes. FAERS could be further developed to automatically alert the

investigator to common indication biases, such as high death rate in malignancies, or baseline meta-

bolic anomalies in diabetes. Careful statistical analysis is needed in these cases to differentiate

between the outcomes associated with the disease or with the suspect drug. For now the category

‘outcome’ should be used cautiously for ADR analysis, especially in large-scale studies that aggre-

gate data from several drugs.

In principle, submission of FAERS reports requires medical knowledge, as they include specific

indications for which drugs were prescribed, identification of the primary suspect of ADRs, and struc-

tured description of ADRs by MedDRA terms. Nevertheless, a third of the reports are contributed

by customers, and a half by submitters who do not identify themselves as medical professionals,

including lawyers. This contributes to the high redundancy and error in FAERS, and to the ‘stimu-

lated reporting’ from which it suffers (Hoffman et al., 2014). This appears to have been the case

with celecoxib, whose association with cerebro- and cardiovascular events in FAERS reports was

driven primarily by reports from legal professionals (Figure 5E). After rofecoxib was withdrawn, the

proportion of these events for celecoxib returned to background. For cases like these, a temporal

analysis of ADR-drug associations is essential as it can pinpoint spurious associations. Interrogation

of FAERS and related databases to illuminate the molecular mechanisms of ADRs, and indeed the

shared target profiles of drugs, has been an area of much recent interest (Center for Drug
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Evaluation and Research, 2015). Here, too, we find that the disambiguation of ADRs, indications,

reporting and indication biases can reveal previously obscured associations. An example is the asso-

ciation of bladder cancer with the mixed PPAR-a and PPAR-g agonist pioglitazone. FAERS analysis is

instrumental here, providing information on a large patient population and enabling the comparison

with the selective PPAR-g agonist rosiglitazone, which is not associated with bladder cancer

(Figure 6) (Smith, 2001).

Improvement of statistical methods for signal detection is an area of active research

(Wysowski and Swartz, 2005; Lasser et al., 2002; Friedman et al., 1999; Moore et al.,

1998; Harpaz et al., 2013a) and much attention is paid to advanced statistical methods such as

(Bayesian) information components (Harpaz et al., 2013a), Empirical Bayes statistics (Harpaz et al.,

2013b), and hierarchical methods (Harpaz et al., 2013b). As with all machine learning and statistical

approaches, these methods assume clean input data – the biases and noise they address is of statis-

tical nature. We have used a well-known disproportionality approach, relative reporting ratio (RRR)

with c
2 test statistic for disproportionality. The RRR has its limitations and may underperform com-

pared to more advanced methods (Harpaz et al., 2013a). The focus of our study was how proper

preparation of the input data – cleaning drug ingredient mapping, and estimating multiple reporting

– boosts signal detection performance, even with a simple method such as the RRR. We believe that

applying the procedures and precautions we described here together with more advanced statistical

methods will boost their performance even further.

A key caution is that simple associations such as drug-ADR or drug-target do not yield clinical rel-

evance without pharmacokinetic information, which ensures that the implicated target is exposed to

the drug at effective concentrations. This is illustrated by the comparison of the ADHD drugs risperi-

done and aripiprazole and gynecomastia. Both drugs affect the D2 dopamine receptor that underlies

the ADR, but only risperidone reaches a sufficient exposure to trigger it. The VEGF-R2 inhibitor

example suggests that this type of evaluation is the only way one can objectively detect ADR-target

pairs and explain the underlying mechanisms of their manifestation. Relying only on a ADR fi drug

fi in vitro target schema can be insufficient to understand shared targets or molecular mechanisms;

as Goodman long ago suggested, pharmacokinetic exposure remains crucial (Goodman and Gil-

man, 1985).

FAERS, an already valuable asset for clinicians and pharmaceutical scientists, could be improved

in several ways to improve post-marketing pharmacovigilance. First, we recommend introducing

automatic mapping of drugs and synonyms to ingredients, as discussed in this paper. Alerts could

be issued for indications where serious outcomes are common and hard to distinguish from ADRs.

Definitive drug-ADR associations would require information on exposure. Here, the availability of

applied dose and associated PK data are essential. At present, no dose is provided and PK data can

be obtained only from different sources. One of such sources is PharmaPendium (RELX Intellectual

Properties SA, 2016), which contains both FAERS data and PK information, but even here the data

are not linked directly, and this resource is only commercially and not publicly available. Public data-

bases to which FAERS could link include DailyMed or drugs.com, which would potentially provide

information on pharmacokinetics, drug labels, formulations, and approved indications.

There are several weaknesses of the present approach, which seems to be more or less general

for mining efforts of FAERS. We encountered difficulties in differentiating drug-ADR associations

when several drugs were co-administered, particularly when combinations contain drugs with possi-

ble synergistic or antagonistic effects. Also, different formulations of the same active drug ingredient

could contribute to differences of the drug’s profile, which is difficult to capture with the present

approach.

Finally, the introduction of reporting automation into FAERS would serve the dual purpose of

reducing errors, such misclassifying ADRs and indications, and making the tool more interactive and

rewarding for health professionals. One can imagine submitters receiving feedback on similar

entries, including cases on the same suspect drug, indication, patient population and most common

or problematic treatment regimens. The tool could also help to define the ‘suspect drug’ in treat-

ment scenarios, independent from the submitters’ intention, among other advantages. While this

development would need investment, one could imagine undertaking it as part of a public-private

partnership from which all would benefit.
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Conclusions
The challenges and opportunities in FAERS and indeed from related databases flow from its ambi-

tions. It publishes multiple reports - physicians, patients, other medical professionals, attorneys - on

multiple drugs, named in multiple ways and taken in multiple contexts. FAERS does not represent a

strictly reviewed and carefully channeled source of observations about drugs, as a clinical trial does -

there is no placebo arm in FAERS, nor are there reports of cases when a given drug was prescribed

and caused no side effects. It contains uncontrolled, volunteered information on a large scale. This

may be seen as a feature of FAERS - a database designed with hypothesis generation rather than

hypothesis testing in mind. Still, the hypotheses that FAERS suggests depend critically on the ability

to disentangle its data. Tools like those described here are crucial to control for the often conflated

and contradictory observations in FAERS reports, where serious outcomes are over-reported,

reported death is often linked to submission by the patients themselves, a single event is reported

multiple times, true associations between drugs and adverse events are missed because a single

agent is named in multiple ways, or a mechanistically related disease occurs in different system

organ categories. Once its data are disentangled, FAERS represents unprecedented opportunities

to track drug outcomes in large patient populations, revealing new associations. The power of such

analysis is that it may be applied systematically and comprehensively across a massive number of

observations.

We recognize that a fully automated method, such as that described here, cannot replace expert

knowledge. What such a method can do is identify, prioritize and sometimes deprioritize drug-

adverse event associations, and sometimes even mechanistic inference, for detailed expert identifi-

cation. This approach should be useful to the growing community of regulators, payers, physicians,

and patients that work with and depend upon trends emerging in FAERS to improve drug use and

health outcomes. By making several of these tools available to the community, we hope to enable

future interrogation of FAERS by other investigators.

Materials and methods

FAERS data source
FAERS reports were downloaded on May 24th 2016 from the FEARS database (U.S. Food and Drug

Administration, 2016) for the years between fourth quarter of 1997 and fourth quarter of 2015,

inclusive. ADR, indication, drug role (primary suspect, secondary suspect, concomitant), and out-

come data was mapped using ISR report identifiers to the individual reports. Drugs were identified

by the reported drug name in FAERS.

Mapping drugs to ingredients
We assembled a list of synonyms of drugs, using public and licensed databases including Thompson

Reuters Integrity (Thomson Reuters, 2016), GVK (GVK Biosciences, 2014), Drugbank (Law et al.,

2014), ChEMBL (Gaulton et al., 2012), and RxNorm (Nelson et al., 2011). These synonyms were

matched with drug products, and constituent molecular ingredient structures, encoded using as

InChIKeys (International Union of Pure and Applied Chemistry, 2016). We read in all the drug

names from all the FAERS reports, and all the synonyms that had been assembled. Non-alphabetical

characters (except numbers), capitalization, and terms that carried little information regarding the

identity of the drugs (such as articles, or often occurring words like ‘acid’) were removed from the

FAERS drug names and synonym names, and the remaining parts of the names were tokenized.

Each tokenized FAERS drug was then compared to each tokenized synonym, and the overlap of

tokens was recorded for each pair using the Tanimoto similarity coefficient tc. The synonym with the

highest tc value was picked for a given drug, as long as the tc was �0.2; for any drug, if a synonym

with tc of 0.99 or higher was found, it was considered to be an exact match, and used to identify the

drug in question without comparison to further synonyms. For the most frequent (among the top

500) drug names in FAERS, we manually mapped those drug names to InChIKeys that could not be

mapped. Since InChIKeys are not typically calculated for large macromolecules, we used the non-

proprietary name in lieu of the InChIKey in these cases.
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Adverse drug reaction terms
The majority of ADRs in FAERS are reported using the Medical Dictionary for Regulatory Activities

(MedDRA) (Brown et al., 1999). Some older reports contained terms that are not part of the newer

MedDRA that is used currently. To normalize and annotate the ADR terms extracted from reports

we used a Levenshtein algorithm that compared the FAERS ADR terms to the MedDRA terminology.

We set the minimal Levenshtein score at which a given MedDRA term was considered a perfect

match to 0.95, and the minimal acceptable score to 0.90 at above which the highest scoring term

was picked to standardize a given ADR. Additional 32 ADR terms were standardized manually, leav-

ing less than 0.5% ADR terms unmatched.

Establishing ingredient - ADR and ingredient - indication associations
We used the well-established Relative reporting ratio (RRR) together with a c

2 statistic for dispropor-

tionality signal detection (Harpaz et al., 2013a). We constructed ingredient-ADR contingency tables

and calculated the expected number of occurrences, the RRR, and Yates-corrected c
2

p-values (Yates, 1934) for these contingency tables, as implemented in SciPy (Jones et al., 2001).

False discovery rate (FDR) was controlled (Jones et al., 2001) using the Holm

procedure (Holm, 1979), yielding q-values. Associations were selected if they: (a) were reported at

least five times in FAERS; (b) had a q-value <0.05; and (c) had an RRR >1. These ingredient - ADR

pairs are shown in Supplementary file 1.

Calculating ingredient – ADR associations on monthly basis
With FAERS data annotated with dates of ADRs, for every ingredient – ADR pair we calculated co-

occurrence frequencies, RRR-values, and c
2-based p-values for every month between January 1997

and December 2015. In these calculations, we used the numbers of drugs, ADRs, and total reports

from the relevant month only. False discovery rate (FDR) was controlled using the Holm procedure

(for each month separately), yielding q-values. In Supplementary file 1 for every statistically signifi-

cant (in aggregate) ingredient – ADR association, we reported the numbers of months where q-val-

ues were lower than 0.05 and where q-values were higher than or equal to 0.05.

General aspects of statistics used for post-marketing
pharmacovigilance
Since spontaneous reports are not rigorously sampled from a population of patients with known

exposure to the drugs of interest, incidence rates or relative risks cannot be computed. Instead,

ratios of drug-event counts to intuitively plausible exposure measures, called disproportionality

ratios, are commonly computed. Databases of prescription counts seem natural to use, as discussed

in literature (Strom et al., 2013); however, these lead to difficulties in integrating two separate data-

bases as well as ambiguities in the meaning of prescriptions, such as measuring number of months’

supply, geographic region of manufacture and dispensing, patient consumption, and so forth. Both

FDA (Duggirala et al., 2016) and EMA (Eudravigilance Expert Working Group, 2006) guidance

documents for analysis of spontaneous report databases by two of the world’s most prominent phar-

maceutical regulatory bodies, focus on the use of disproportionality measures that can be computed

from within a single database of spontaneous reports. PRR (Duggirala et al., 2016) and the closely

related RRR defined above are straightforward measures computable from the simple 2 � 2 table of

report counts classified by drug mentioned and event mentioned, while a slightly more

complex (Mantel and Haenszel, 1959) computation can first stratify by possibly confounding varia-

bles such as patient gender and age, and calendar year of report, and then sum across strata to get

an expected count to be compared to the observed count. The FDA report (Duggirala et al., 2016)

also discusses the concept of Bayesian ‘shrinkage’ estimates (DuMouchel, 1999), which attempt to

reduce the effects of variance in small samples by fitting the entire array of drug-event dispropor-

tionalities to a prior distribution and then using that to compute a posterior distribution for each

individual disproportionality, resulting in a central estimate denoted EBGM (empirical Bayes geomet-

ric mean) as well as a 90% posterior range (EB05, EB95). In this paper, we use the simple measure

RRR for several global computations across the FAERS database, and in some places present the

presumably more reliable Bayesian measures when focusing on particular drug-events of interest.
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Clustering of ADR by time evolution
We considered the numbers of reports in each month (time evolutions) for individual ADRs observed

across FAERS for four drugs: rofecoxib, celecoxib, rosiglitazone, and pioglitazone. With knowledge

of numbers of each of the considered drugs, ADRs, and the number of total reports in FAERS in

each month, we calculated month-resolved RRR-values for the drug-ADR pairs. The time evolutions

of the RRR-values were clustered for each drug using the partitioning method for maximum dissimi-

larity, as implemented in R (R Core Team, 2013) scored by the similarity (Pearson correlation coeffi-

cient) of time evolutions of RRR.

Logistic regression models of myocardial infarction dependence on the
use of celecoxib
For every FAERS report, we noted whether a) celecoxib was reported as the primary suspect drug,

b) whether myocardial infarction was reported, c) the occupation of the person filing the report, and

d) whether the reported event took place before 2005 (when rofecoxib was still on the market).

Using this data and R’s implementation of binomial logistic regression (via the glm() function), we

prepared four models (with the logit link function) (R Core Team, 2013) to investigate if myocardial

infarction is associated with the use of celecoxib, the occupation of the person filing the report, and

the report being filed before 2005. In each model, reporting myocardial infarction served as the out-

put variable, and combinations of the remaining variables were used as input variables. Resulting

models are summarized and described in more detail in Supplementary file 2.

Analysis of association between VEGF-R2 inhibition and hypertension
Apart from analysis described in this work, additional Bayesian data mining and statistical analysis of

VEGF-R2 inhibition-related hypertension was based on the methods described in detail by

DuMouchel (DuMouchel, 1999), DuMouchel and Pregibon (DuMouchel and Pregibon, 2001), Szarf-

man et al. (Szarfman et al., 2002), and Almenoff et al. (Almenoff et al., 2007).
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