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Riemann–Stieltjes Optimal Control Problems
for Uncertain Dynamic Systems

I. Michael Ross,∗ Ronald J. Proulx,† and Mark Karpenko‡

Naval Postgraduate School, Monterey, California 93943
and

Qi Gong§

University of California, Santa Cruz, California 95064

DOI: 10.2514/1.G000505

Motivated by uncertain parameters in nonlinear dynamic systems, we define a nonclassical optimal control
problemwhere the cost functional is given by aRiemann–Stieltjes “functional of a functional.”Using the properties of
Riemann–Stieltjes sums, aminimumprinciple is generated from the limit of a semidiscretization. The optimal control
minimizes aRiemann–Stieltjes integral of the PontryaginHamiltonian. The challenges associatedwith addressing the
noncommutative operations of integration and minimization are addressed via cubature techniques leading to the
concept of hyper-pseudospectral points. These ideas are then applied to address the practical uncertainties in control
moment gyroscopes that drive an agile spacecraft. Ground test results conducted at Honeywell demonstrate the new
principles. The Riemann–Stieltjes optimal control problem is a generalization of the unscented optimal control
problem. It can be connected to many independently developed ideas across several disciplines: search theory,
viability theory, quantum control and many other applications involving tychastic differential equations.

I. Introduction

W E CONSIDER uncertain dynamic systems parameterized
by

_x ! f"x;u; t;p# (1)

where x ∈ RNx is the state variable, u ∈ RNu is the control variable,
t ∈ R is the time variable, and p ∈ RNp is an uncertain parameter
such that the function f∶"x;u; t;p# ↦ RNx is deterministic if p is
known. Such dynamic systems are standard fare in aerospace and
marine engineering. Examples are unmanned aerial vehicles, trans-
atmospheric launch and reentry vehicles, space vehicles, missiles,
surface vehicles, and underwater vehicles. The uncertain parameters
in these examples arise from endogenous uncertainties such as lift,
drag, and moment coefficients, moments and cross products of
inertia, control alignment parameters, etc. Exogenous uncertainties
such as unknowns in the environment (e.g., air or water density) are
also naturally included in p.
Now, suppose we pick a specific value p$1 of the uncertain

parameter p and construct a feasible system trajectory, that transfers
the deterministic dynamic system

_x ! f"x;u; t;p$1# (2)

from a given initial point x0 to a specified final point xf, as illustrated
in Fig. 1. Denote this feasible system trajectory as "x1"·#;u1"·##. If we
now apply the open-loop control t↦ u1 to the uncertain dynamic
system [given by Eq. (1)], then the resulting state trajectory x1"·;p#
will, in general, not be the same asx1"·#, as illustrated in Fig. 1, unless
of course, p ! p$1 by chance. Now, suppose we repeat the preceding

exercise for p ! p$2 ; that is, we produce a feasible system trajectory,
"x2"·#;u2"·## for the deterministic system

_x ! f"x;u; t;p$2# (3)

and apply the open-loop control t↦ u2 to the uncertain dynamic
system _x ! f"x;u; t;p# and generate a state trajectory x2"·;p#, as
illustrated in Fig. 2. Qualitatively, the result of this exercise will be
same as before; however, it will, in general, differ quantitatively from
the previous one. Now, suppose that this quantitative difference is
such that x2"tf;p# is closer to xf than x1"tf;p# in some desired
metric “dist”; that is, suppose that

dist"x2"tf;p#;xf# < dist"x1"tf;p#;xf# (4)

Then, we can argue that x2"·;p# is a better trajectory than x1"·;p#
because it is closer to the goal point xf. This argument then generates
the question: What is the best trajectory? In framing this question
more precisely, we need to mathematically articulate the meaning of
the word “best” that properly accounts for the fact that p is an
uncertain parameter. That is, we need to define a cost functional
whose minimum can be described as best. To this end, we propose a
multidimensional Riemann–Stieltjes integral [1,2] as the objective
functional

Z
· · ·

Z
kx"tf;p# − xfk dα 0"p# (5)

where k · k is some appropriate norm that serves the role of a metric,
and

α 0: p ↦ R (6)

is a given joint cumulative distribution function (CDF) ofp. It is clear
that Eq. (5) is not a cost functional that is commonly encountered in
standard optimal control. In fact, even in the special case of Np ! 1,
when the multidimensional integral can be reduced to a definite one-
dimensional integral,

Z
p2

p1

kx"tf; p# − xfk dα 0"p# (7)

where %p1; p2& is the domain of p, the cost functional is not standard,
that is, Lagrange type [3], because the integral is not over time but
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over the space ofp. Note also that our concept is not limited to a finite
domain of integration; in fact, the infinite line (−∞, ∞) is an im-
portant domain formanyCDFs such as aGaussian distribution. Thus,
Eq. (5) is not a cost functional encountered in standard optimal
control. In this paper, we generalize the concept embedded in Eq. (5)
to a nonlinear functional of a functional and frame a new mathe-
matical problem formulation.
Before proceeding further, we note that we have implicitly used the

notation x"t;p# to describe a solution to the parameterized initial-
value problem

_x ! g"x; t;p# with x"t0;p# ! x0

where g"x; t;p# ≔ f"x;u"t#; t;p#. In the mathematics to follow, it
will also be useful to denote a particular trajectory for a givenvalue of
p by x"·;p#, and a slice of trajectories at t by x"t; ·# (see Fig. 3). More
formally, we define

x"·;p#: t↦ RNx x"t; ·#: p ↦ RNx x"·; ·#: "t;p# ↦ RNx (8)

Note, therefore, that x"·;p#, x"t; ·#, and x"·; ·# are all completely
different functions despite the fact that we have used a common
notation x as part of the symbols that define these different functions.
We use this commonality for the convenience of signifying that all
these different functions take (different) values in the common

“range” space, namely,X ! RNx . In the discussions to follow, it will
also be apparent that all these functions are elements of different
function spaces as well. In this context, wewill make all of the typical
assumptions of standard optimal control [4,5]; hence, we assume
x"·;p# ∈ W1;1 for each p and u"·# ∈ L∞, whereW1;1 is the space of
absolutely continuous functions and L∞ is the space of bounded
functionswithu"t# taking values in a compact setU ⊆ RNu for each t.
Strictly speaking, L∞ is the space of essentially bounded measurable
functions; however, except for mathematical clarity, we will not
employ such language or rigor in favor of sufficient engineering
mathematics that outline the basic abstractions. This is why we call
Eq. (5) a Riemann–Stieltjes integral and not a Lebesgue–Stieltjes
integral [1]. In this spirit, we also use Riemann sums in Sec. IV, and
assume that x"t; ·# ∈ L1 for each twhereL1 is the space of integrable
functions.

II. Development of a Preliminary Mathematical
Problem Formulation

Consider the dynamic system given by Eq. (1). In addition to
uncertainties in p, we allow the system to have uncertainties in its
initial values of the state vector x0, as well as the clock time t0. This
implies that we will consider the triple t0, x0, and p to be uncertain
variables. For theoretical expedience, we transform the system to the
following “extended” dynamic system

( _x ! f"x;u; s;p#
_p ! 0
_s ! 1

(9)

so that all the uncertainties can be mapped to those in the initial
conditions only. Hence, it suffices to consider the autonomous
dynamic system

_x ! f"x;u# (10)

with uncertainties in the initial condition x0 only. Consequently, we
replace p in Eq. (8) by x0 and use the symbol x"t; x0#without loss of
generality.
Now suppose that, for a fixed value of x0, we are given a standard

deterministic cost functional Jstd,

Jstd%x"·#;u"·#& (11)

Thus, Jstd is some standard cost functional [4,6]
Jstd: W

1;1 × L∞ → R. Given such a cost functional for every x0,
we can conceive of an abstract map

x0 ↦ Jstd

that produces a formula for any given value of x0. In this spirit, we
define Junc as a functional which allows the uncertain parameter x0 as
part of its input

Junc%x"·; x0#;u"·#; x0& (12)

Thus, for any given value of x0, Junc is possibly the same formula as
Jstd with x"·# replaced by x"·; x0# (for a fixed x0). In this sense, we
have somewhat abused the notation x"·; x0# in Eq. (12) to imply the
map x0 ↦ x"·; x0#. Additionally, Junc allows new terms in its
formulation through its explicit dependence on x0 facilitated through
its last argument. An important difference between these two cost
functionals is that, in Jstd, all of its arguments are decision variables,
whereas in Junc, x0 is an uncertain argument [of Junc and x"·; ·#] but is
not a decision variable. Thus, Junc generates the real-valued function

x0 ↦ Junc%x"·; x0#;u"·#; x0& ∈ R (13)

via a functional. Motivated by Eq. (5), we use the function given by
Eq. (13) to define a Riemann–Stieltjes J functional as a functional of
a functional, given by

Fig. 1 Illustration of one possible effect of the feasible control trajectory
t ↦ u1 on the uncertain dynamic system _x ! f"x;u1"t#;t; p# for p ≠ p$1 .

x0

xf
x2(.)

x2(.,p)

Fig. 2 Illustration of the effect of a feasible control trajectory t ↦ u2

that is of superior performance to Fig. 1 when the performance index is
given by Eq. (4).

t

x(t, p)

p

(u
nc

er
tai

n)

(deterministic)

x(t, .)

x(., p)

Fig. 3 Schematic of a sample of some key functions used in defining a
Riemann–Stieltjes optimal control problem.
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J%x"·; ·#;u"·#& ≔
Z

supp"x0#
Junc%x"·; x0#;u"·#; x0& dα 0 0"x0# (14)

where α 0 0 is the joint CDF of x0, supp"x0# denotes the support of x0,
and

Z

supp"x0#

is a shorthand notation for the multiple integral

Z
· · ·

Z

supp"x0#
(15)

In subsequent sections, it will be useful to interpret the first argument
of J as a state trajectory tube [7] ft↦ x"t; x0#: x0 ∈ supp"x0#g,
whereas its second argument is a single control trajectory u"·#. Thus,
we can now define a preliminary Riemann–Stieltjes optimal control
problem as the problem to determine the conditionally deterministic
decision pair "x"·; ·#;u"·##, which minimizes the J functional subject
to the dynamic constraint given by Eq. (10).
To further this initial problem formulation, it is necessary to

stipulate generic boundary conditions. Given that x0 is an uncertain
parameter, the simplest formulation is to set μx0 to some fixed value,
where μx0 is themean of x0. Such a formulation is used in [8,9] in one
instantiation of a Riemann–Stieltjes formulation called unscented
optimal control. Generalizing along this direction, we may set μx0 to
be a decision variable that must be selected from some given set
X0

μ ⊆ RNx . By analogy, the same arguments hold for the final time
conditions as well, that is, to allow μxf to be a decision variable
selectable from some given set Xfμ ⊆ RNx . Generalizing this notion
further, we let r be the uncertain parameter defined by

r ≔
!
x0

xf

"
(16)

and stipulate that supp"r# be equal to some given set that may be
chosen as a subset of an endpoint set E ⊆ X × X. Practical examples
of such requirements are discussed in [8,9]. In accounting for
the entire collection of uncertain parameters, we generalize the
Riemann–Stieltjes J functional to

J%x"·; ·#;u"·#& ≔
Z

supp"r#
Junc%x"·; r#;u"·#; r& dα"r# (17)

where α: r ↦ R is the joint CDF of r. Note that, by virtue of Eq. (9),
our problem formulation includes uncertainties in the final time
as well.

III. Fundamental Riemann–Stieltjes Optimal Control
Problem Formulation

Suppose that a standard cost functional is given in the form of an
integral (i.e., a “Lagrange form”)

Jstd%x"·#;u"·#& ≔
Z
tf

t0

F"x"t#;u"t## dt

where F: RNx × RNu → R is some given data function. Then,
replacing x"t# by x"t; r#, we can generate the map r ↦ Junc from

Junc%x"·; r#;u"·#& ≔
Z
tf

t0

F"x"t; r#;u"t## dt (18)

Using Eq. (17) as the framework, we can formulate a Riemann–
Stieltjes J functional as

J%x"·; ·#;u"·#& ≔
Z

supp"r#
Junc%x"·; r#;u"·#& dα"r#

!
Z

supp"r#

#Z
tf

t0

F"x"t; r#;u"t## dt
$
dα"r# (19)

This equation reaffirms the notion that the J functional is a nonlinear
functional of a functional. Now, let z: "t; r# ↦ R be a function, such
that

_z"t; r# ≔ F"x"t; r#;u"t## (20)

Then, it follows that
Z
tf

t0

F"x"t; r#;u"t## dt ! z"tf; r# − z"t0; r#

Hence Eq. (19) can be transformed to

J%x"·; ·#;u"·#& !
Z

supp"r#
"z"tf; r# − z"t0; r## dα"r# (21)

with the understanding that Eq. (20) is now part of the extended
dynamics given by Eq. (9). Noting that the integrand in Eq. (21) is a
function of the endpoints only, we can generalize the representation
of the J functional to

J%x"·; ·#;u"·#& !
Z

supp"r#
E"r# dα"r# (22)

where E: r ↦ R. Thus, if a standard cost functional were given in an
endpoint form (i.e., a “Mayer” form) [3,6],

Jstd%x"·#;u"·#& ≔ E"x0;xf# (23)

where E: RNx × RNx → R, it is apparent that we can generate a
Riemann–Stieltjes cost functional by quite simply integrating the
endpoint function E using the CDF α as the integrator. Thus, we can
now define a fundamental Riemann–Stieltjes (RS) optimal control
problem as follows:

x"t; r# ∈ X ! RNx ; u"t# ∈ U ⊂ RNu

r ≔ "x0;xf# ∈ supp"r# ⊂ X × X

"RS#

8
>>>>><
>>>>>:

Minimize J%x"·; ·#;u"·#& !
Z

supp"r#
E"r# dα"r#

Subject to _x"t; r# ! f"x"t; r#;u"t##Z

supp"r#
e"r# dα"r# ≤ 0

(24)

where e: r ↦ RNe is some given data function that constrains the
endpoints via an inequality of a vector integral.

IV. Development of the Necessary Conditions
We define an adjoint covector function t↦ λ"t; r# ∈ RNx for each

r, as the solution to the adjoint differential equation

−_λ ! ∂xH"λ;x"t; r#;u"t## (25)

where H is the Pontryagin Hamiltonian function

H"λ;x;u# ≔ λTf"x;u#

It will be apparent shortly that the integral of the Hamiltonian

I%λ"t; ·#;x"t; ·#;u& ≔
Z

supp"r#
H"λ"t; r#;x"t; r#;u# dα"r# (26)
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plays a key role in the development of the necessary conditions for
problem RS. Note that this integral is a functional; hence, we call it
the Riemann–Stieltjes I functional as a means to distinguish it from
the cost or J functional.
In the same spirit, let ν ∈ RNe' be the nonnegative endpoint

multiplier (covector) that satisfies the complementary slackness
condition

νT
#Z

supp"r#
e"r# dα"r#

$
!
Z

supp"r#
νTe"r# dα"r# ! 0

Then, the endpoint Lagrangian [6] is defined as

~E"ν; r# ≔ E"r# ' νTe"r# (27)

To derive the necessary conditions, we begin by considering a
sequence of Riemann–Stieltjes sum approximations to the cost func-
tional and pass to the limit. For greater mathematical rigor, we should
consider a Lebesgue–Stieltjes formulation; however, as noted in
Sec. I, to limit the scope of this paper to engineeringmathematics, we
consider the simpler Riemann sums.

A. Riemann–Stieltjes Sum Approximation

Let δri, i ! 1 : : : n be a collection of n nonoverlapping partitions
of supp"r# such that

∪
n

i!1
δri ! supp"r#

Let the sequence fngn∈N be such that

max
i
m"δri# → 0 as n → ∞

where m"δr# is the Nr-dimensional volume

ΠNrj!1δrj

of δr. Let r$i , i ! 1; : : : ; n be a corresponding collection of random
variables having constant PDFs, over each δri, and let Δα denote the
discretization of the integrator α given by

Δα"r$; δr# ≔ ρc"r$#m"δr#

where ρc"r$# is a constant over δr. Then, under appropriate technical
conditions [1,2,10], a Riemann–Stieltjes integral can bewritten as the
limit of Riemann–Stieltjes sums

Z

supp"r#
E"r# dα"r# ! lim

n→∞

Xn

i!1
E"r$i #Δα"r$i ; δri# (28)

Similarly, the endpoint integral constraint equation can be
“discretized” as

Z

supp"r#
e"r# dα"r# ! lim

n→∞

Xn

i!1
e"r$i #Δα"r$i ; δri# (29)

Hence, from Eqs. (27–29), we can write

Z

supp"r#
~E"ν; r# dα"r# ≔

Z

supp"r#
"E"r# ' νTe"r## dα"r#

! lim
n→∞

Xn

i!1
"E"r$i # ' ~νTne"r$i ##Δαi (30)

where we have used the shorthand notation Δαi ≔ Δα"r$i ; δri# and
assumed a sequence f ~νng → ν as n → ∞.
Motivated by these formulas, we define a semidiscretization of

Eq. (10) over supp"r# as

_x1 ! f"x1;u#
_x2 ! f"x2;u#

..

.

_xn ! f"xn;u# (31)

where _xi is a shorthand notation for the time derivative of x"t; r$i #.
The collection of systems represented by Eq. (31) is a system of n
dynamic systems where the ith system is valid over a vanishingly
small region δri over supp"r#. By analogy, it follows that a semi-
discretization of Eq. (25) generates the collection of n adjoint
dynamic systems

−_λ1 ! ∂xH"λ1;x1;u#
−_λ2 ! ∂xH"λ2;x2;u#

..

.

−_λn ! ∂xH"λ3;xn;u# (32)

Hence, we can write Eq. (26) as

I%λ"t; ·#;x"t; ·#;u& ! lim
n→∞

Xn

i!1
λTi "t#f"xi"t#;u#Δαi (33)

Thus, for any fixed value of n, we can now construct a standard
optimal control problem given by

xi ∈ X ! RNx ∀ i ! 1; 2; : : : ; n; u ∈ U ⊂ RNu

"RSn#

8
>>>>>>>>><
>>>>>>>>>:

Minimize Jn%x1"·#; : : : ;xn"·#;u"·#& ≔
P

n
i!1 E"r$i #Δαi

Subject to _x1 ! f"x1;u#
..
.

_xn ! f"xn;u#
P

n
i!1 e"r$i #Δαi ≤ 0

(34)

B. Riemann–Stieltjes Generalization of Pontryagin’s Principle

ProblemRSn is a standard optimal control problem; hence, we can
apply Pontryagin’s principle and construct the Hamiltonian function
as

Hn" ~λ1; : : : ; ~λn;x1; : : : ;xn;u# ≔ ~λT1 f"x1;u#' · · · '~λTnf"xn;u#

!
Xn

i!1

~λTi f"xi;u# (35)

where ~λi, i ! 1; : : : ; n are the adjoint covectors for problemRSn that
satisfy the adjoint differential equations

−_~λ1 ! ∂x1Hn" ~λ1; : : : ; ~λn;x1; : : : ;xn;u#

..

.

−_~λn ! ∂xnHn" ~λ1; : : : ; ~λn;x1; : : : ;xn;u# (36)

Comparing Eq. (33) with Eq. (35), we can write

lim
n→∞

Hn"λ1"t#Δα1; : : : ; λn"t#Δαn;x1"t#; : : : ;xn"t#;u#

! lim
n→∞

Xn

i!1
λ"t#f"xi"t#;u#Δαi

! I%λ"t; ·#;x"t; ·#;u& (37)
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This suggests that the adjoints of problem RSn transform to the
semidiscrete adjoints of problem RS according to

~λi"t#
Δαi
! λi"t# i ! 1; : : : ; n (38)

It can be verified by direct substitution that this transformation is
consistent with Eq. (32) and Eq. (36) as well.
Applying the Hamiltonian minimization condition [6] to Problem

RS2, we get

u$n"t# ! arg min
u"t#∈U

Xn

i!1

~λTi f"xi;u"t##

! arg min
u"t#∈U

Xn

i!1
λTi f"xi;u"t##Δαi (39)

where the last equality in Eq. (39) follows from Eq. (38). Passing to
the limit n → ∞, we arrive at

u$"t# ! arg min
u"t#∈U

I%λ"t; ·#;x"t; ·#;u"t#&

! arg min
u"t#∈U

Z

supp"r#
H"λ"t; r#;x"t; r#;u"t## dα"r# (40)

The transversality condition can be derived similarly. The endpoint
Lagrangian for problem RSn is given by

Xn

i!1
E"r$i #Δαi ' νTn

Xn

i!1
e"r$i #Δαi

Hence, an application of the transversality conditions generates

"− ~λ"t0; r$j #; ~λ"tf; r$j ## !
∂
∂r$j

#Xn

i!1
"E"r$i # ' νTne"r$i ##Δαi

$

!
Xn

i!1

∂
∂r$j
""E"r$i # ' νTne"r$i ##Δαi#

!
#∂E"r$j #

∂r$j
'
!∂e"r$j #

∂r$j

"
T

νn

$
Δαj j ! 1; : : : ; n

(41)

Passing to the limit n → ∞ and using Eq. (38), we get

"−λ"t0; r#; λ"tf; r## !
∂ ~E"ν; r#

∂r
∀ r ∈ supp"r# (42)

Thus, we have derived a Riemann–Stieltjes-generalized Pontryagin
principle via a new application of the covector mapping principle
[11–14] summarized in Fig. 4. Our results are similar to those
obtained in [15,16] with key points of departure being in our models
for the cost function and endpoint conditions.

C. Riemann–Stieltjes Versus Standard Optimal Control Problems

A consequential conclusion of Eq. (40) is that the Riemann–
Stieltjes optimal control t↦ u$RS"t# ∈ U is obtained by “optimizing
the average” Pontryagin Hamiltonian and not by “averaging the
optimized” controls. This follows from the fact that the arg min
operation cannot be taken inside the integral; that is,

arg min
u"t#∈U

Z

supp"r#
H"λ"t; r#;x"t; r#;u"t## dα"r#

≠
Z

supp"r#
arg min

u"t#∈U
H"λ"t; r#;x"t; r#;u"t## dα"r# (43)

Because the operations arg min and ∫ are not commutative,
generating an analytical solution to even a simple Riemann–Stieltjes
optimal control problem is exceedingly difficult [11]. In fact, from
Eq. (40) the optimal Riemann–Stieltjes control is determined for each
t by a functional map

uRS: L
1 × L1 → RNu

which is in sharp contrast to standard optimal control that is given
by an algebraic map ustd: RNx × RNx → RNu . In other words, while
generating an expression for a Pontryagin optimal control requires a
solution to a mathematical programming problem [6], the com-
parable problem for a Riemann–Stieltjes optimal control is a solution
to the integrated Hamiltonian minimization (IHM) problem
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Fig. 4 Schematic of the derivation of a Riemann–Stieltjes-generalized
Pontryaginprinciple facilitated throughanewapplicationof the covector
mapping principle.

t

x(t)

t

ustd(t)

t

x(t,r)

t

uRS(t)

Fig. 5 Illustrating a key difference between a standard optimal control solution and a Riemann–Stieltjes optimal solution.
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"IHM#

×

8
<
:
Minimize

u
I%λ"t;·#;x"t;·#;u&≔

Z

supp"r#
H"λ"t;r#;x"t;r#;u#dα"r#

Subject to u∈U

which is a constrained functional optimization problem. Deferring
for the moment a discussion of a computationally efficient method
for solving such problems, note that a standard optimal control
trajectory t↦ u$std"t# controls a single trajectory t↦ x$"t#whereas a
Riemann–Stieltjes optimal control t↦ u$RS"t# controls an entire
trajectory tube ft↦ x$"t; r#: r ∈ supp"r#g. These points are illus-
trated in Fig. 5 where the Riemann–Stieltjes controlled tra-
jectory tube starts out as a Gaussian distribution and is controlled by a
single controller to a uniformly distributed collection over a compact
support.

V. Computational Methods
Given that constructing a closed-form solution to a deterministic

optimal control problem involves the extremely difficult problem of
solving nonlinear differential-algebraic equations, it is not surprising
that finding analytical solutions to a Riemann–Stieltjes optimal
control problem is almost next to impossible. Even a computational
method can be quite daunting because it involves devising an efficient
numerical method to evaluate the multidimensional Riemann–
Stieltjes integral. The simplest numerical method is a Monte Carlo
technique; however, the value of n required for this approximation is
typically extremely large (>104). Drawing the connections between
the fact that quadrature schemes are efficient numerical techniques
for integral evaluation and that pseudospectral (PS) techniques
[12,17–19] are based on quadrature points, we construct hyper-
pseudospectral (HS) methods that extend standard PS methods to
solving the Riemann–Stieltjes optimal control problem. To facilitate
this development, we first summarize a standard PSmethod and then
extend it to higher-dimensional spaces.

A. Standard Pseudospectral Optimal Control Theory

As surveyed in Ross and Karpenko [12], standard PS optimal
control theory is founded on expressing the state trajectory x"·# as an
infinite series expansion

x"t# !
X∞

m!0
amPm"t# (44)

wherePm"t# is a polynomial in t of degreem. IfPm"t# is chosen to be
a Legendre polynomial of degreem, the infinite series gives rise to a
Legendre PSmethod. Similarly, ifPm"t# are chosen to be Chebyshev
polynomials, we generate a Chebyshev PS method. Typical choices
in PS optimal control theory are these “big two” methods [12]
because other polynomial basis functions do not have desirable pro-
perties for optimal control applications [19,20].
The coefficients am in Eq. (44) are called the spectral coefficients

[17,18,21]. A key principle in a PS approach is that the spectral co-
efficients are computed indirectly by transforming Eq. (44) to the
space of Lagrange interpolating polynomials. Thus, Eq. (44) may be
written equivalently as [12,22,23]

x"t# !
X∞

j!0
bj
W"t#
W"tj#

ϕj"t# (45)

where tj, j ! 0; 1; 2; : : : are discrete points in time called nodes,
W"t# is a weight function, and ϕj"t# is a Lagrange interpolating
polynomial that satisfies the Kronecker relationship

ϕj"tk# ! δjk (46)

Satisfaction of the Kronecker relationship implies that

x"tk# !
X∞

j!0
bj
W"tk#
W"tj#

ϕj"tk# ! bk (47)

That is, the coefficient bj in Eq. (45) is the value of x"t# at t ! tj. It is
this “sampling” property, which is absent in Eq. (44), that makes a PS
approach distinct from the direct use of Eq. (44).
In practice, Eq. (45) cannot be implemented due to infinite

summation [the same is true of Eq. (44)]. The best one can expect to
achieve is a solution up to machine precision ϵm > 0. In a series of
theorems developed by Gong, Kang, Fahroo, and Ross (summarized
in [12,14,24–27]), it was proved that if x$"·# is the optimal solution,
then, given any ϵ > 0, there exists an N ! Nϵ such that kxNϵ"·
# − x$"·#k ≤ ϵ with xNϵ"t# given by

xNϵ"t# !
XNϵ

j!0

W"t#
W"tj#

ϕj"t#xj (48)

where we have replaced the notation bj by xj, a more evocative
notation that recognizes the sampling property given by Eq. (47).
Although the practice of PS techniques requires that ϵ ≥ ϵm, the
theory allows ϵ to go to zero in the limit

lim
Nϵ→∞

xNϵ"t# ! x$"t# for almost all t ∈ %t0; tf & (49)

This is why PS optimal control theory is called a joint theoretical-
computational approach to solving (standard) optimal control
problems.
It can be shown that the best PS points tj, j ! 0; 1; 2; : : : are

indeed quadrature points [17,18]. Hence, we now aim to seek the best
cubature points to discretize the Riemann–Stieltjes J functional.

B. Hyper-Pseudospectral Concepts

Hyper-pseudospectral theory extends pseudospectral theory from
the one-dimensional t domain to the multidimensional t × r domain.
If Nr ! 1, we can approximate the Riemann–Stieltjes J functional
using standard quadrature points.WhenNr ≥ 2, Kronecker products
of one-dimensional quadrature points are not the minimal set of
points for generating efficient cubature formulas [28,29]. This
implies that we can generate fewer than "NPS#Nr points for cubature
when Nr ≥ 2 where NPS are the number of PS points in one
dimension. Based on this existence result, we seek to produce an
efficient cubature formula for

J %E& ≔
Z

supp"r#
E"r# dα"r# (50)

so that problem RSn can be posed with the smallest possible number
n.Whenα is differentiable, we canwrite Eq. (50) in its Riemann form

J %E& ≔
Z

supp"r#
E"r#ρ"r# dr (51)

which indicates that the PDF serves as the weight function for
generating cubature formulas. Hence, we can get cubature points that
are optimized for a given PDF. A cubature formula for Eq. (50) is of
the form

J %E& ≔
Xn

j!1
wjE"rj# ' Res%E& (52)

where Res%E& is the error; wj are called weights and rj are called
nodes. From Eq. (50), we have J %1& ! 1; hence, we choose weights
that satisfy the condition

Xn

j!1
wj ! 1; Res%1& ! 0 (53)
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We generate the summation in Eq. (52) through multidimensional
polynomials as follows: Let m ≔ "m1; m2; : : : ; mNr # ∈ NNr be an
Nr-dimensional vector of integers; then

rm ≔ rm1

1 r
m2

2 · · · r
mNr
Nr

is called a monomial of degree

jmj ≔
XNr

i!1
mi

(of Nr variables). A polynomial Pm"r# ! Pm"r1; r2; : : : ; rNr# of
degree jmj can be represented as

Pm"r# !
Xm

s!0

X

jkj!s
akrk

where
X

jkj!s

implies summation over all multi-indices of length s. If the moments

J %rm& !
Z

supp"r#
rm dα"r# m ∈ NNr

exist, then the monomial basis can be orthogonalized by the Gram–
Schmidt process [28]. LetJ n%E& denote the cubature ofJ %E&; that is,
let

J n%E& ≔
Xn

j!1
wjE"rj# (54)

then the monomial basis can be set up, in principle, by moment
cubatures

J %rm& ! J n%rm& ⇒
Z

supp"r#
rm dα"r# !

Xn

j!1
wjrmj

The moments J %rm& can be computed using moment-generating
functions for any givenα: supp"r# ↦ R. For the determination of HS
points, we allow the cubature conditions to be satisfied approx-
imately and stipulate that the moments be inside of some region

Lm ≤ J %rm& −
Xn

j!1
wjrmj ≤ Um (55)

where Lm and Um are the lower and upper bounds of the region that
define an ε > 0 box. In addition, the HS points are required to lie
inside of supp"r# while minimizing some appropriate measure of
error Res%E&, leading to the mixed integer nonlinear multi-objective
programming problem

n ∈ N; "w1; : : : ; wn# ∈ Rn'; "r1; : : : ; rn# ∈ supp"r# × Rn

"HSm#

8
>>>>>>>>><
>>>>>>>>>:

Minimize "Res%rm&; n#
Subject to L1 ≤ J %r1& −Pn

j!1wjr
1
j ≤ U1

..

.

Lm ≤ J %rm& −Pn
j!1wjr

m
j ≤ Um

P
n
j!1 wj ! 1

(56)

For a fixed n, problem HSm is a nonlinear programming problem.
Thus, this problem is quite tractable and the HS points can be

generated for various values of the degree jmj. Because the value of n
generated by this approach is far less than the number of random
points needed to produce comparable accuracy [30], we distinguish
our technique from the standard Monte Carlo as the Monte Rey
simulation. Under appropriate conditions on problem HSm, the HS
points reduce to the Hermite–Gauss nodes and the sigma points
introduced by Julier et al. [31,32] to design nonlinear filters. Hence,
an unscented optimal control problem [8,9] is simply a particular
semidiscretization of theRiemann–Stieltjes optimal control problem.

VI. Ground Test Results on the Honeywell Testbed
Many space applications involve solving a multipoint optimal

control problem [33]. The sequence of optimal control problems is
dictated by mission requirements and many other practical con-
straints. In a typical attitude slew problem [34–37], a spacecraft is
required to point and repoint to various orientations that can be
framed in terms of arbitrary boundary conditions on the quaternion
q ∈ R4 and angular velocity ω ∈ R3. The attitude dynamics of a
spacecraft driven by a collection of single-gimbal control moment
gyroscopes (CMGs) is given by [38]

2
4

_q

_ω

_δ

3
5 ≔ _x ! f"x;u#

≔

2
4

1
2Q"ω#q

I−1"−ω × I · ω − ω × h"δ# −A"δ#u#
u

3
5 (57)

where δ ∈ RNcmgs is the vector of gimbal angles, Ncmgs is the number
of CMGs, and h"δ# is the angular momentum of the CMG
configuration. ACMG configuration is said to be in a singular state if
the 3 × Ncmgs matrixA"δ# is singular. In addition to time optimality, a
key requirement for CMG maneuverability is singularity avoidance;
that is, it is highly desirable to design trajectories that are far away
from the regions where A"δ# is singular. A practical measure of the
singularity condition is given by [39]

S"δ# ≔
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
det%A"δ#AT"δ#&

q

WhenS"δ# is zero, the spacecraft is essentially uncontrollable; hence,
we can frame an optimality criterion for maneuverability as the
maximization of the Chebyshev cost functional

min
t∈%t0;tf &

S"δ"t##

Thus, a spacecraft maneuvering problem may be posed as a multi-
objective optimal control problem [6], with a two-dimensional vector
cost functional J given by

J%x"·#;u"·#; tf & ≔
! tf
− min
t∈%t0;tf &

S"δ"t##
"

(58)

The constraints on this cost functional are the dynamics of Eq. (57)
and arbitrary but given boundary conditions [36,37].

A. Ground Test Setup and Initial Results

The U.S. Air Force Research Laboratory’s miniature momentum
control system (MMCS) is a set of Ncmgs ! 4 CMGs arranged in a
box configuration to provide three-axis control of a spacecraft. TheA
matrix for this configuration is given by

A"δ# !

2
4

0 sin"δ2# 0 − sin"δ4#
cos"δ1# cos"δ2# cos"δ3# cos"δ4#
sin"δ1# 0 − sin"δ3# 0

3
5 (59)
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During the summer of 2013, theMMCSwas set up for ground testing
at Honeywell as part of a guest investigator program. The Honeywell
momentum control system (MCS) testbed outfitted with the MMCS
is shown in Fig. 6. This system is about 3000 lb and floats on an air
bearing at Honeywell’s test facility near Phoenix, Arizona. Because
the MMCS is mounted off center, the system is balanced to align the
testbed center of gravity with the center of rotation. After coarse
manual balancing, automatic balancing is performed via a set of three
prismatic actuators with fine position control to locate a series of
masses to drive the center of mass to the air bearing pivot.
The Pareto front of J for this setup is shown in Fig. 7. Each point on

the Pareto front was computed using DIDO, a MATLAB application
package¶ for solving optimal control problems [40]. Using the
decision-maker (DM) concept, we chose the Pareto-optimal point

JDM%x1"·#;u1"·#; t1f& ≔
!

29.6
−0.45

"
(60)

for ground test implementation. The Pareto-optimal control for this
decision and a representative motion of the MCS in a projected
quaternion space is shown in Fig. 8. An experimental implementation
of the result, shown in Fig. 9, reveals that the MCS failed this test.
Upon postexperimental analysis, we concluded that the reason for
this failure is due to the singularity index going to zero in the actual
experiment. That is, despite the fact that we chose

max min
t∈%t0 ;tf &

S"δ"t## ! 0.45

the actual value of this cost in the experiment was zero. This dis-
covery is shown in Fig. 10, which shows a plot of t↦ S"δ# from
which it is apparent that theMCSgoes into a singular state at t ≈ 20 s.
Additional experiments were performed to validate this analysis.

B. Riemann–Stieltjes Solution and Its Implementation

Although Fig. 10 explains the reason for the failure, it does not
explain its cause. Upon further analysis of the results, we concluded
that the cause of the failure was due to “gimbal drift” and accu-
mulation of angularmomentum caused by various disturbances in the
setup. Not only are these disturbances practical, they are also
representative of flight conditions. The effect of these disturbances
manifests itself in the form of imprecise knowledge in δ"t0#. This
analysis suggests that we can formulate a Riemann–Stieltjes cost
functional as

JRS%x"·; ·#;u"·#; tf & ≔
Z

supp"δ0#
Junc%x"·; δ0#;u"·#& dα"δ0# (61)

where the map δ0 ↦ Junc is given by

Junc%x"·; δ0#;u"·#& ≔ − min
t∈%t0;tf &

S"δ"t#; δ0# (62)

We assumed the CDF α: R4 ∋ δ0 ↦ R to be uncorrelated Gaussian
with σ ! 10 deg standard deviation in each gimbal angle. The
Riemann–Stieltjes optimal control for these set of assumptions is
shown in Fig. 11. The optimal control was computed by using DIDO
and incorporating many of the results presented in this paper. Also
shown in Fig. 11 is the state trajectory tube (cf. Fig. 5) in the projected
quaternion space. That the Riemann–Stieltjes control does indeed
control a state trajectory tube is more apparent in the inset of Fig. 11,
which shows a collection of trajectories being controlled to the
desired target point. Comparing this figure with Fig. 8, it is clear that
the Riemann–Stieltjes optimal control is quite different from the
standard optimal control. An experimental implementation of the
result, shown in Fig. 12, indicates a complete success of this test. As a
means to ratify our previous analysis on the cause of the failure of the
standard optimal control, we show in Fig. 13 a plot of the singularity
index function t↦ S"δ# for the test run of Fig. 12. Clearly, in contrast
to Fig. 10, this time we have

min
t∈%t0;tf &

S"δ"t## ≠ 0

In fact, the experimental value of the Chebyshev cost can be read off
the graph; this value is 0.86.
Although a single experiment is sufficient to show failure, mul-

tiple, repeatable, successful experiments are necessary to demon-
strate operational viability. Inviewof this requirement for operational
transition, we conducted several additional tests at Honeywell. These
additional tests are, by nature, random in the sense that we do not
know in advance the value of the initial gimbal angle δ"t0#. The
results of these trials are shown in Fig. 14. The inset in Fig. 14 clearly
shows successful completion of the maneuvers achieved via the
same, unmodified Riemann–Stieltjes control, under the absence of
knowledge of the initial gimbal angles. The gimbal angle trajectory
tubes for each of these trials is shown in Fig. 15.

VII. Further Applications and Open Problems in
Riemann–Stieltjes Optimal Control Theory

Starting with Eq. (1), it has been evident that our model of an
uncertain dynamic system is different from the Itô differential
equation [41,42]

dx ! f"x;u; t# dt' σ"x;u; t# dW (63)

where W is the standard Wiener process and σ is a given matrix-
valued diffusion function. Because of the fundamental difference
between Eqs. (1) and (63), Riemann–Stieltjes optimal control

MMCS

flight
computer

batteries

air
bearing

IMU

Fig. 6 Honeywell’s 3000 lb MCS ground testbed outfitted with the U.S.
Air Force Research Laboratory’s MMCS. (IMU, inertial measurement
unit.)

0 0.5 1 1.5
28

30

32

34

min S(δ(t))

t f (
se

c)

Fig. 7 Pareto front and decision point for the multi-objective cost
functional given by Eq. (58).

¶Data available online at http://www.mathworks.com/products/
connections/product_detail/product_61633.html [retrieved 7 July 2014].

8 AIAA Early Edition / ROSS ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

CA
LI

FO
RN

IA
 - 

SA
N

TA
 C

RU
Z 

on
 Ju

ne
 4

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
05

05
 

http://www.mathworks.com/products/connections/product_detail/product_61633.html
http://www.mathworks.com/products/connections/product_detail/product_61633.html
http://www.mathworks.com/products/connections/product_detail/product_61633.html
http://www.mathworks.com/products/connections/product_detail/product_61633.html
http://www.mathworks.com/products/connections/product_detail/product_61633.html


0 4 8 12 16 20 24 28 32
-1

-0.5

0

0.5

1

time (sec)

u 
(r

ad
/s

ec
)

u
1

u
2

u
3

u
4

0.7 0.72 0.74 0.76
-0.04

-0.02

0

0.02

0.04

0.06

0.08

q
3

q 1

B

A

Fig. 8 Pareto-optimal control trajectory and representative simulated motion of the MCS in a projected quaternion space.
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Fig. 9 Experimental result of the motion of the MCS in the same
projected quaternion space as Fig. 8.
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Fig. 10 Experimental results for the “running cost” of the Chebyshev
cost functional.
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Fig. 11 Riemann–Stieltjes optimal control trajectory and a simulated state trajectory tube of theMCS in the same projected quaternion space as Fig. 8.
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Fig. 13 Experimental result of the singularity index function for the
maneuver shown in Fig. 12.
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Fig. 12 Ground test result of an implementation of the Riemann–
Stieltjes control illustrating the motion of the MCS in the same projected
quaternion space as Fig. 8.
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problems are entirely different from previous stochastic optimal
control problems [43]. As a means to distinguish the difference be-
tween these two choices of modeling uncertain dynamic systems, we
follow Aubin et al. [44] and call Eq. (1) a controlled tychastic dif-
ferential equation, wherep is a “tychastic” parameter.Wewould have
called p a “random” parameter if, according to Aubin et al. [44,45],
the “terminology [was not] already confiscated by probability
theory.”Tychesmeans “chance” in classicalGreek, from theGoddess
Tyche [44]. By borrowing the connection between a controlled
differential equation and a differential inclusion [46], we can
transform Eq. (1) to a controlled differential inclusion

_x ∈ F "x;u; t# ≔ ff"x;u; t;p#: p ∈ supp"p#g (64)

Thus, the evolution t↦ x is set valued but not random. In other
words, we can regard _x ! f"x;u; t;p# as simply a parameterized
model of a controlled evolutionary system that is subject to tychastic
uncertainties [44]. In this context, the maxmin (“minimax”)
Riemann–Stieltjes optimal control [see Eqs. (61) and (62)] that was
implemented at Honeywell was a form of tychastic control (or
“robust” control). Standard minimax optimal control problems are
connected to the computation of viability kernels and capture basins
[7,47,48], which form the central concepts in viability theory.

Viability theory was initiated in the late 1970s [7,49] to mathe-
matically address the dynamics of socioeconomic, biological and
other organizational systems that evolve in a Darwinian manner. The
evolutionary engine is modeled as a differential inclusion _x ∈ F "x#.
Given the large scope of viability theory, it is apparent that there are
now an even larger number of open problems and opportunities to
connect viability theory, particularly tychastic viability [50], with
Riemann–Stieltjes optimal control theory. Thus, although our devel-
opment of the Riemann–Stieltjes optimal control problem was
motivated by a need to manage uncertainties in engineering systems,
it is clear from the preceding discussion that problem RS can be used
to connect concepts from viability theory. It turns out that manymore
independently developed ideas across disparate disciplines [8,51–58]
can also be connected to a Riemann–Stieltjes optimal control
problem. We briefly summarize these additional connections to
illustrate some unification concepts and open problems while noting
that the following discussions are no way meant to be exhaustive.
In search theory [51], the problem is to find a moving target

(missing boat, lost hiker, fugitive, etc.) whose location xT ∈ XT ⊂
RNxT is unknown. We assume the motion of the target t↦ xT is
conditionally deterministic: That is, the trajectory of the target
conditioned on an uncertain vector p is given by xT"·;p#. A searcher
(satellite, unmanned aerial vehicle, etc.) at xS is equipped with a
sensor suite whose effectiveness is modeled [59] by an instantaneous
probability density function called the search density function
ψ : "xT;xS# ↦ R'. The probability that the searcher will find the
target by searching along a given trajectory xS"·# over a time interval
"0; t& is given by [51,59]

P"t;xT"t#;p# ! 1 − exp

#
−
Z
t

0
ψ"xS"τ#;xT"τ;p## dτ

$

Then, the probability that the searcher will detect the target over the
time period "0; t& is given by

Z

supp"p#
P"t;xT"t;p## dα"p#

! 1 −
Z

supp"p#
exp

#
−
Z
t

0
ψ"xS"τ#;xT"τ;p## dτ

$
dα"p#
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Fig. 14 Repeatable ground test results of the motion of the MCS for
random trials.
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Fig. 15 Gimbal angle trajectory tubes for the ground test results corresponding to the random trials of Fig. 14.
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where α is the CDF of p. Thus, the quantity

Z

supp"p#
exp

#
−
Z
t

0
ψ"xS"τ#;xT"τ;p## dτ

$
dα"p#

represents the probability of nondetection. Let the searcher’s
dynamics be given by the deterministic dynamics _xS ! f"xS;u#.
Then, we can define the optimal search problem as the problem of
minimizing the Riemann–Stieltjes J functional

J%x"·; ·#;u"·#; tf&

≔
Z

supp"p#
exp

#
−
Z
tf

0
ψ"xS"t#;xT"t;p## dt

$
dα"p#

where x ≔ "xT;xS#. Quadrature-based computational methods and
the consistency of their approximations to solve this problem are
analyzed in [60,61].
In quantum control, the objective is to design an electromagnetic

input t↦ u to manipulate systems at the quantum level [62]. The
applications of this concept are quite broad: from an ability to control
molecules to produce new materials to medical imaging using
nuclear magnetic resonance spectroscopy. Because the dynamics of
the quantum “particles” are on the scale of Avogadro’s number, it is
far simpler to model the system as a continuum [63]; hence, in a
quantum dynamic model _x ! f"x;u; t;p#, the parameter p is a
representation of this continuum. Li et al. [64] have pioneered a
multidimensional PS method to optimally control this ensemble, by
discretizingp over a Legendre–Gauss–Lobatto (LGL) grid. Thus, the
LGL quantum particles pi are controlled by electromagnetic pulses
through a minimization of a discretized Riemann integral

Z

Ω
E"x"tf;p#; tf# dp ≈

XN

i!0
E"x"tf;pi#; tf#wi

wherepi ∈ Ω ⊂ R are the LGL points andwi are the LGLweights. It
is clear that the Riemann–Stieltjes optimal control problem gen-
eralizes the quantum optimal control problem.
Following similar reasoning, it is not too difficult to show that

many other independently developed ideas [54–57] to solve specific
problems in different applications can either be framed under, or tied
in some manner to, the constructs of problem RS. There is no doubt
that a vast body of research needs to be done in furthering these
connections and advancing the applications and computational
techniques. Great care must be exercised in formulating an
application-specific Riemann–Stieltjes optimal control problem be-
cause of the increased severity of the issues related to the existence of
a solution [8,9]. This is because, unlike a standard optimal control
problem where the theoretical issue of existence of a solution can be
practically supplanted by engineering judgment, a Riemann–Stieltjes
control defies intuition in that closed-loop-like performance can be
obtained using open-loop controls. Furthermore, it is very easy to
formulate a specific problem RS with no solution [8]. Thus, a
Riemann–Stieltjes optimal control problem inherits all the theoretical
difficulties of a standard optimal control problem while making its
practical computation evenmore challenging. Thus, a vast number of
open problems and opportunities remain to be explored.

VIII. Conclusions
The Riemann–Stieltjes optimal control problem offers a

mathematical framework to address a new kind of practical opti-
mality based on uncertainties in the various parameters of the system
under consideration. It is extremely challenging to even write a
closed-form expression for the Riemann–Stieltjes extremal control
because it requires an analytical solution to the Hamiltonian integral
before aminimization can be performed. The computational problem
is also daunting but is more tractable through the use of hyper-
pseudospectral methods. Ground test results at Honeywell showed

that an offline computed Riemann–Stieltjes optimal control is
immediately implementable online. This implies that nearly all of the
computational burden for flight implementation can be transferred to
the ground. Because the scope of aRiemann–Stieltjes optimal control
problem is fairly large, and its flight applications quite immediate,
rapid advances in both theory and computation are expected to follow
in the coming years.
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