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ABSTRACT
Data Challenge 1 (DC1) is the first synthetic dataset produced by the Large Synop-
tic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC). These are
designed to develop and validate data reduction and analysis and to study the impact
of systematic effects that will affect the LSST dataset. DC1 is comprised of r-band
observations of 40 deg2 to 10-year LSST depth. We present each stage of the simu-
lation and analysis process: a) generation, by synthesizing sources from cosmological
N-body simulations in individual sensor-visit images with different observing condi-
tions; b) reduction using a development version of the LSST Science Pipelines; and
c) matching to the input cosmological catalog for validation and testing. We study
our processed catalogs compared to the LSST requirements key performance metrics
(KPMs). We establish a set of pipeline flags that produce a sufficiently clean extra-
galactic sample and we discuss residual sample contamination, including contributions
from inefficiency in star-galaxy separation and imperfect deblending. We compute the
galaxy power spectrum on the simulated field. Our main conclusions are: i) realistic
and validated synthetic datasets will be required for successfully controlling systemat-
ics; ii) within the fidelity of DC1, the LSST Science Pipelines pass all testable KPMs;
iii) there is no unique noiseless method for matching the input and output catalogs;
iv) the presence of bright objects has a significant impact (2- to 6-σ) in the estimated
power spectra at small scales (` > 1200), highlighting the impact of blending in studies
at small angular scales in LSST;

1 INTRODUCTION

The increase in statistical power of recent cosmological ex-
periments makes the modeling and mitigation of systematic
uncertainties key to extracting the maximum amount of in-

formation from these surveys. End-to-end simulations (Brun
et al. 1978; Agostinelli et al. 2003; Sjöstrand et al. 2006) pro-
vide a unique framework to model systematics and stream-
line processing and analysis pipelines since they provide a
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complete understanding of the inputs and outputs. With
the increasing availability of computational resources, end-
to-end simulations have started to become more prevalent
in imaging surveys (Bruderer et al. 2016), and similar ef-
forts are being undertaken in spectroscopic surveys such as
the Dark Energy Spectroscopic Instrument (DESI) (DESI
Collaboration et al. 2016).

For surveys like the planned for the Large Synoptic Sur-
vey Telescope (LSST) (Ivezić et al. 2019), where the ex-
pected data volume is very large, and where highly strin-
gent control over systematic uncertainties is required, pro-
ducing end-to-end simulations enables validation and veri-
fication of the processing and analysis pipelines. For exam-
ple, image simulations can be used to evaluate the perfor-
mance of different shape-measurement algorithms, deblend-
ing algorithms, etc. They can also provide information about
the impact of effects like overlaps with undetected sources,
which will be non-negligible in LSST (Dawson et al. 2016),
on certain cosmological probes. In addition, the expected
data volume of LSST, ∼ 50 PB of raw data and ∼ 40 billion
objects (Ivezić et al. 2019) after 10 years, motivates the use
of simulated data sets for the development of data handling
and analysis pipelines.

The LSST Dark Energy Science Collaboration (DESC1)
has planned a series of Data Challenges (DCs) carried out
over a period of years, aimed at successively more stringent
and comprehensive tests of analysis pipelines, to ensure ad-
equate control of systematic uncertainties for analysis of the
LSST data. An additional goal of these DCs is development
of the infrastructure for analyzing, storing, and serving sub-
stantial data volumes; even while using the outputs of the
LSST Science Pipelines as inputs into analysis pipelines,
the analysis pipelines will need to handle quantities of data
greater than that of ongoing surveys, even after a single year
of the LSST survey. Moreover, it is anticipated that non-
negligible subsets of the data may need to be reprocessed to
generate systematic error budgets (e.g., assessing sensitivity
of the results to certain stages of the analysis process by
changing some parameters in the analysis). These goals will
be achieved in practice by a combination of reprocessing of
precursor datasets, which have the advantage of being fully
realistic, and completely synthetic datasets, that have both
a known ground truth and the ability enable and disable
various effects and thus study them in a more controlled
environment.

The goals of the DCs dictate a gradual increase in the
sophistication and volume of the simulated data. In this pa-
per, we present and analyze simulated images from DC1, the
first such data challenge planned within DESC. The nom-
inal goal is to produce synthetic data corresponding to 10
years of integration in the r-band over a contiguous patch of
the sky covering approximately 40 deg2. Only one of the six
LSST filters is represented, and the area is a small fraction
(∼ 0.2%) of the total LSST area. We describe how the simu-
lation was achieved and characterize the resulting products.
We validate the basic photometric and astrometric calibra-
tion of these products and check the performance of the
pipeline against the requirements set by LSST and DESC
in their respective Science Requirements Documents (Ivezić

1 http://lsstdesc.org/

et al. 2013; The LSST Dark Energy Science Collaboration
et al. 2018). To check suitability of this dataset for galaxy
clustering measurements, we perform a two-point cluster-
ing analysis in harmonic space, assess the impacts of ob-
serving conditions, foregrounds, and detector characteristics
as potential sources of systematic effects and how the ob-
serving strategy can mitigate their impact. The DC1 data
products encompass single-visit and coadded calibrated ex-
posures (i.e., flattened, background subtracted, etc.) and
source catalogs that, together, have a volume of ∼ 225 TB.

This paper is structured as follows: Section 2 summa-
rizes the factors that informed the design of this data chal-
lenge. In Section 2.1, we describe the inputs for our simu-
lated images, including the observing strategies used for this
study. In Section 2, we summarize the generation, and reduc-
tion of LSST-like artificial images. Section 4 describes the
design of DC1 and the inputs four our simulated images,
including observing strategies. In Section 5, we illustrate
the data products generated and perform several validation
tests. In Section 6 we summarize the procedure to obtain a
clean sample of galaxies suitable for clustering analyses. In
Section 7, we present the clustering analyses on the simu-
lated data products. Finally, in Section 8, we offer conclud-
ing remarks.

2 DATA CHALLENGE DESIGN

As mentioned in Section 1, the design of DC1 is driven by a
combination of several needs: developing infrastructure for
processing and serving data in a way that is useful to DESC;
building and testing analysis pipelines including different
strategies to mitigate systematic uncertainties affecting var-
ious dark energy probes. The philosophy behind the design
of the DESC data challenges is to increase the complexity
and level of realism of the datasets in each subsequent it-
eration. Thus, DC1 is limited in scope and focus, testing a
subset of the systematics affecting the different probes that
DESC will use.

DC1 covers a 40 deg2 footprint as a stepping stone to
eventually producing simulated surveys covering hundreds
to thousands of square degrees in DC2 and beyond. The area
of DC1 is sufficient to enable tests of two-point clustering
statistics up to ∼ 1 degree scales. To ensure the volume of
simulated images is tractable, DC1 only includes images in
a single band (r-band), but goes to full LSST 10-year depth.

The full simulation workflow is depicted in Figure 1.
Briefly, we use as inputs the positions, shapes and fluxes
from a galaxy mock catalog from CatSim (Connolly et al.
2010, 2014), which we describe in more detail in Section 2.1,
and the observing conditions and strategies described in
Section 2.2 using OpSim (Delgado et al. 2014). These are
passed to our image simulation packages described in Sec-
tion 3.1 that produce raw e-images (i.e., full sensor images
in electrons per pixel without any added instrumental ef-
fects such as cross-talk, bleeding, etc.). These e-images are
then processed by the LSST Science Pipelines (Jurić et al.
2015; Bosch et al. 2018). The processing is described in Sec-
tion 3.2. These produce the calibrated exposures, coadds and
catalogs that we use for our analysis.

MNRAS 000, 000–000 (0000)
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Figure 1. Workflow diagram for full data simulations. The im-

age simulation step produces synthetic raw observations from a
known truth catalog based on N-body simulations and simulated

observing conditions. These data are processed by the LSST Sci-

ence Pipelines to first generate calibrated single exposure images.
These are calibrated both astrometrically and photometrically

and are fed again into the LSST Science Pipelines that produce

the image co-adds and a catalog of detected static sources.

2.1 Image generation: input catalog

Image simulations allow us to assess the detection and de-
blending performance of a given image-processing pipeline.
For example, if we produce images using an object cata-
log with random positions uniformly distributed across the
sky, as well as uniformly random shapes and fluxes, we can
get information about detection efficiencies as a function of
flux. However, the effects of source blending would not be
realistic as we would not be able capture some correlations
present in real data. On the other hand, using N-body sim-
ulations as the input to generate artificial images allows us
to study all the aforementioned effects. We used the Cat-
Sim (Connolly et al. 2010, 2014) catalog as our input to in-
clude realistic correlations between galaxies and to be able
to test our analysis pipelines. CatSim is a set of catalog-
level simulations provided by the LSST Simulations Team
representing a realistic distribution of both Milky Way and
extragalactic sources. In particular, the extragalactic cata-
log contains galaxies spanning the redshift range 0 < z < 6
in a 4.5 deg×4.5 deg footprint. The magnitude and red-
shift distributions are shown in Figure 2. The galaxies are
generated by populating the dark matter haloes from the
Millennium simulation (Springel et al. 2005) using a semi-
analytic baryon model described in De Lucia et al. (2006)
including magnitudes BVRIK, LSST-ugrizy, and bulge-to-
disk ratios. For all sources, a spectral energy distribution
(SED) is fit to the galaxy colors using Bruzual & Charlot
(2003) spectral synthesis models. Fits are undertaken inde-
pendently for the bulge and disk and include inclination-
dependent reddening. Morphologies are modeled using two
Sérsic profiles (Sérsic 1963) and a single point source (for the
AGN). Half-light radii for the bulge components are derived
from the absolute-magnitude vs. half-light radius relation
given by Gonzalez et al. (2011). Stars are represented as
point sources and are drawn from the Galfast model (Jurić
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Figure 2. Redshift (top) and magnitude (bottom) distribution

for the galaxies used as inputs for the Data Challenge 1 simula-

tions. In the magnitude distribution we include, as references, the
typical 5-σ point source detection depth for a single exposure (red

dashed line) and the median 5-σ point source detection depth in

the deepest coadded DC1 simulation (black dashed-dotted line).

et al. 2008). More information about these catalogs can be
found at the LSST Simulations webpage2.

For DC1, we chose a nominal field centered at RA
≈ 93◦ and Dec ≈ −29◦. This field has a Galactic latitude of
b ≈ −20◦ and a dust extinction per magnitude of interstel-
lar reddening 0.05 ≤ E(B − V ) ≤ 0.35 and thus represents
a typical region in the LSST wide-fast-deep survey (Ivezić
et al. 2019). The CatSim catalog was tiled to generate a
∼ 40 deg2 footprint covering 4 LSST full focal plane point-
ings Figure 3. This approach introduces a periodicity that
induces extra correlations in our sample; however, this is not
a major issue as with the relatively small area of the DC1
simulation we are unable to measure correlations on relevant
scales (> 1 deg) with any useful precision.

After tiling, the input catalog contains approximately
63.1 million sources, of which 97% are galaxies whose red-
shift and magnitude distributions are depicted in Figure 2
and the remaining objects are stars. We simulate r-band
observation to the LSST full depth (10 years, 30-second ex-
posures). The final footprint can be seen in Figure 3. We
simulate observations within this footprint using an observ-
ing cadence generated with the LSST Operations Simula-
tor (Delgado et al. 2014, OpSim). Specifically, we use the

2 https://www.lsst.org/scientists/simulations/catsim
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Figure 3. Footprint of the DC1 dataset. We simulate 4 LSST
full focal plane pointings which roughly corresponds to a 40 deg2

area.

minion 10163 database, which contains simulated pointing
position, observations date and filter. It also contains infor-
mation about simulated observing conditions, such as seeing,
sky-brightness, moon position, etc. For DC1 we use 4 point-
ings with ≈ 184 visits per pointing over 10 years from this
database.

2.2 Dither strategy

OpSim’s output contains a realization of the LSST observ-
ing cadence and the survey footprint. Since OpSim divides
the sky into hexagonal tiles, the nominal telescope point-
ings lead to overlapping regions across adjacent tiles that
are observed more often than the non-overlapping part of
the field of view (FOV), resulting in depth non-uniformity
on the scale of ∼1 degree. This non-uniformity can intro-
duce systematic uncertainties in the two-point statistics of
galaxies(Awan et al. 2016). In an effort to mitigate these
effects, and following the same approach that will be taken
with LSST data, we implement dithers – offsets in the nom-
inal telescope pointings. Specifically, here we use large, i.e.,
as large as half the FOV, random translational dithers, im-
plemented for every visit, and random rotational dithers im-
plemented for every visit. Note that these dithers differ from
those recently discussed at Lochner et al. (2018). This trans-
lational dither strategy is chosen based on a more extensive
study of the various (translational) dither strategies in Awan
et al. (2016), where random dithers for every visit are found
to be among the most effective.

We consider both an undithered and a dithered observ-
ing strategy. For the dithered strategy, some visits contain
sensors that fall outside of the DC1 region; these sensors
were not simulated in order to save computational resources.
However, the sensors that partially overlapped our nominal
field of view were simulated. In total, we simulate ≈ 184, 600
sensor-visits for the dithered simulation and ≈ 151, 000 for
the undithered simulation.

3 https://www.lsst.org/scientists/simulations/opsim/

opsim-v335-benchmark-surveys

3 IMAGE GENERATION AND PROCESSING

The artificial generation of astronomical images is a complex
and computationally demanding process. In recent years,
there have been major efforts in the community to create
software that enables the generation of astronomical images,
with various choices made in terms of level of complexity,
fidelity, and computational efficiency, such as PhoSim (Pe-
terson et al. 2015), and UFIG (Bruderer et al. 2016). For
DC1, we model the input sources using two independent
approaches.

Firstly, we use PhoSim, a fast photon Monte Carlo code
that enables the generation of images with a high level of
realism and can use LSST-specific information (e.g., the ge-
ometry of the CCDs and the focal plane, the system through-
puts in the different bands, etc.) to generate LSST-like im-
ages. We use PhoSim version 3.6 with a custom configura-
tion that enables some approximations (photon bundling)
to be made when generating the sky background in order
to reduce the overall computing time needed to produce the
images.

We also employ imSim4 (Walter et al., in prep.), which
internally uses GalSim (Rowe et al. 2015) as a library for
image rendering, and also uses LSST-specific information to
generate synthetic images. For this simulation campaign we
use an early pre-release version of imSim, version v.0.1.0,
which performs a series of approximations that allow us to
complete the image simulations significantly faster (∼ 60×)
than PhoSim v3.6, at the expense of a loss in realism.
These approximations include simplifications in the point-
spread function (PSF) model (PhoSim performs ray-tracing
through the atmosphere, while this version of imSim uses
simple parametric models for the PSF) and omission of all
sensor effects, which were deemed acceptable given the goals
of DC1.

Due to the computational resources needed to run
PhoSim we could only generate one campaign of the dithered
DC1-PhoSim data, whereas we could produce the dithered
and undithered campaigns for imSim. Furthermore, com-
parison of the results for the PhoSim and imSim images has
proven less informative than intended due to some unusual
features of unknown origin in the sky backgrounds in the
PhoSim images5. For these reasons, we focus on the anal-
ysis and comparison of dithered versus undithered imSim
images for the rest of this work.

3.1 DC1 imSim configuration

For DC1, we use imSim simulate each CCD of the focal
plane individually, and generate a single image with a 30-
second exposure time. We omit sensor effects and variability
in the optical model across the focal plane. We set the gain
to be 1. Our sky brightness model is based on the Krisciunas
& Schaefer (1991) model provided by OpSim, refined with
the detailed wavelength dependence of the phenomenolog-
ical model from Yoachim et al. (2016). The PSF model is

4 https://github.com/LSSTDESC/imSim
5 Several aspects of the implementation of the sky background
rendering – including the photon-bundling approximations – are

updated in subsequent versions of PhoSim, so this finding may

not carry over to later PhoSim versions.
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a Gaussian for the system (telescope, CCD and other ele-
ments that may be in the optical path other than the atmo-
sphere) with a dependence on airmass, X, of the full-width
half-maximum, FWHMsys = (0.4′′)X0.6, to approximate the
degradation in the image quality due to, e.g., gravity load-
ing6. An airmass-dependent Kolmogorov profile7 is used to
model the atmosphere. In order to be consistent with the sky
brightness model we use an airmass, X, model that depends
on the angular distance to the zenith, Z, from Krisciunas &
Schaefer (1991):

X = (1− 0.96 sin2 Z)−0.5. (1)

For DC1, imSim is used to generate three different
types of objects: stars, which are modeled as PSF-like ob-
jects; galaxies, which are modeled as composite (bulge plus
disk) Sérsic profiles (Sérsic 1963) using the parameters given
by CatSim; and AGNs which are also modeled as point
sources and, for simplicity, without any variability. Newer
versions of imSim have the ability to generate more complex
galaxy morphologies (e.g., they can include random Gaus-
sian knots). The brightness for these sources is computed
using the magnitudes from CatSim, which are converted to
counts using the latest version of the LSST throughputs8.
In DC1, we clip the objects at magnitude 10 in order to im-
prove the computational efficiency. Saturation is emulated
by clipping the maximum number electrons per pixel in the
CCDs at 100,000.

The final products of the image generation process are
FITS (4k × 4k pixels) images with information about the
observing conditions contained in the headers. We gener-
ated more than 300,000 sensor-visit images in total (includ-
ing both the dithered, and undithered fields). The average
time to simulate each CCD is ∼ 4000 seconds and the total
production time is ∼ 300, 000 CPU-hours.

3.2 Image processing

The outputs of these simulations are processed using the
LSST Science Pipelines (Ivezić et al. 2019; LSST Science
Collaboration 2009; LSST Dark Energy Science Collabora-
tion 2012; Jurić et al. 2015; Bosch et al. 2018) version 13.09,
which we will refer to as the Data Management (DM) stack.
The DM stack is an open-source, high-performance data pro-
cessing and analysis system intended for use in optical and
infrared survey data10. A brief schematic of some of the steps
in the image processing pipeline can be seen in Figure 1 as
green squares. The raw, uncalibrated single exposures are
used as inputs. The software performs the reduction, de-
tection, deblending and measurement on individual visits.
It then combines the single-visit images to produce the so-
called coadds. This is done by computing a weighted aver-
age of resampled overlapping sensor images. For more infor-
mation about this process, see Section 3.3 in Bosch et al.
(2018). After assembling the coadded images, the DM stack

6 See LSE-30 http://ls.st/lse-30 p. 80
7 http://galsim-developers.github.io/GalSim/_build/html/

_modules/galsim/kolmogorov.html
8 https://github.com/lsst/throughputs
9 https://pipelines.lsst.io/releases/v13_0.html
10 The code can be found at dm.lsst.org and pipelines.lsst.

io

performs measurements on them to produce a catalog. The
DM stack provides calibrated images and source catalogs
for the individual visits and coadds stored in FITS files. In
total, we detect and measure ∼ 10.6 million (9.7 million for
the undithered simulation) objects with position, flux and
shape information. We activated optional extensions for the
pipeline to include CMODEL fluxes (see Bosch et al. 2018 for
more details) and HSM shapes (Hirata & Seljak 2003; Man-
delbaum et al. 2005). An example coadd cutout is shown in
Figure 4.

The reduction pipeline is essentially the same as for
Hyper Suprime-Cam (HSC). This allows us to use the HSC
selection criteria (Mandelbaum et al. 2018, Sec. 5.1) as the
basis for our analysis, and can potentially enable direct com-
parisons between datasets for further validation.

The total processing time for the DC1 simulated images
is ≈ 29, 000 CPU-hours.

4 MATCHING INPUTS AND OUTPUTS

Using end-to-end simulations, one can potentially trace each
measured photon from its corresponding source and fully
characterize the image generation and measurement pro-
cesses. In practice, this is very difficult due to the large data
volume and the fact that the data reduction pipeline is built
around pixelated images rather than tagged photon counts.

Nevertheless, the output catalog is a noisy representa-
tion of the underlying input (truth) catalog and we need
to find a way to connect the two. The simplest way to as-
sociate members of two catalogs is by using the positions
of the objects in the sky. This approach has been exten-
sively used in the literature (e.g., de Ruiter et al. 1977; Benn
1983; Wolstencroft et al. 1986) and performs reasonably well
when blending is low (i.e, when there are few overlapping
sources in the image). However, when the blending fraction
is high, this approach might be insufficient. In this case,
matching other quantities like flux, color and/or shape can
become useful (Budavári & Szalay 2008; Budavri & Loredo
2015). However, when adding other quantities, the matching
process can become slower and result in a lower matching
completeness. For more details about challenges relating two
different catalogs, we refer the reader to Budavri & Loredo
(2015).

We compare two different matching strategies: posi-
tional matching, where for each detected object we find the
closest object in the truth catalog, which we will refer to as
pure spatial matching and will denote as S; and positional
matching with magnitude matching, which we will refer to
as spatial+magnitude matching and denote as S+M, where
for each detected object we find objects from the truth cata-
log that lie within a three pixel radius (0.6′′). After this, we
select the object that is closest in magnitude as long as the
difference in r-band magnitude, ∆r, is less than a certain
threshold. In our case, we conservatively choose |∆r| < 1.0.
Using this approach, if none of the neighbors fulfill these
conditions, the detected source is considered unmatched.

For both approaches, we build a KDTree (Pedregosa
et al. 2011) using the positions of detected objects flagged
with detect isPrimary=True which ensures that the source
cannot be further deblended by the pipeline and was de-
tected in the inner part of a coadd region, which we call

MNRAS 000, 000–000 (0000)
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Figure 4. Example of a 1000 × 1000 pixel cutout from a calibrated exposure (left), i.e. background subtracted, reduced single-epoch

image; and a full depth coadd (right). We can see the stark difference in the number of objects that are detectable by eye. The red grid

corresponds to lines of constant Right Ascension (vertical lines) and constant declination (horizontal lines).

patch (see Bosch et al. (2018) and Mandelbaum et al. (2018)
for more details). The inner part of a patch is the part of
the sky exclusive to the said patch. In order to speed up
the processing and to reduce the usage of computational re-
sources we build the KDTree using sources from 30 randomly
selected patches (∼ 10% of the total number of patches) in
the dithered simulation containing 975,605 detected sources
fulfilling the aforementioned condition (we will refer to these
as primary outputs or primary detected sources). Using this
sample, we find that 95.2% of the sample is matched using
the S+M matching. The undithered simulation yields similar
results and conclusions.

One interesting metric is the fraction of primary de-
tected sources that have been matched to the same object
in the input catalog, which we will denote as fmulti. This
is an unusual occurrence, but can occur when a noise fluc-
tuation is marked as a source; this fluctuation is a primary
detected source but does not appear in the truth catalog.
Another example is bright objects that have been shredded,
i.e. incorrectly subdivided into multiple sources, and are de-
tected as several fainter sources. We find that these kind of
matches are ∼ 100 times more likely to happen using the
S matching (fmulti = 3 × 10−3) than in the S+M matching
(fmulti = 2 × 10−5). This is expected because, in the cases
where the primary detected source is a random fluctuation
or a shredded source, it is unlikely that the measured flux
is close to the flux of a neighboring source thus producing
an unmatched source in the case of using S+M matching.
We also find that the two approaches select the same match-
ing source in the truth catalog for only 68% of the primary
detected sources for which we found a match. These dif-
ferences have several potential explanations: For example,
objects with a poorly determined centroid position that are
close to other objects in the truth catalog (remember that
the truth catalog contains objects up to r = 28), objects
with poorly determined fluxes (low SNR), etc.

We compare the photometric residuals, ∆r = CMODEL

- rtrue (i.e. measured minus input magnitudes), using both

approaches in Figure 5. The resulting median photometric
residual seems strongly biased in the case of using S match-
ing. However, in the case of S+M matching, the median
residuals and their uncertainties are smaller, as expected
given the limit in the magnitude difference. We can see that
in this case the biases are still significant, partially because of
the fact that faint sources just below the detection thresh-
old are detected only if they have positive noise fluctua-
tions, and we lose some faint sources above the detection
threshold that have noise fluctuations that make them ap-
pear dimmer, biasing the overall residual distribution. On
top of that, spurious matches also contributes to this effect.
This can be mitigated using a smaller tolerance in magni-
tude difference (for example using 0.5 mag instead of 1 mag)
but that would result in an overall reduction of the number
of matched primary detected sources. Finally, observing the
magnitude difference between inputs and outputs of indi-
vidual matched sources using the S+M technique, we can
see that this distribution is centered around zero, except for
very bright sources (r < 17), where saturation prevents us
from accurately determining the fluxes.

Different matching techniques have different potential
applications and strengths (Budavri & Loredo 2015). In
our case, we want to use these matching techniques to
provide a clean (flux-limited) sample to perform two-point
clustering analyses. Given that magnitude precision and
accuracy will be important for our sample selection, the
spatial+magnitude matching technique will be sufficient
to clean the sample from spurious and poorly measured
sources. However, more complicated matching techniques
may be necessary for other use cases.

5 OUTPUT CATALOGS AND VALIDATION

As mentioned earlier, the output catalogs contain 10.6 mil-
lion objects (9.7 million in the undithered case) covering an
area of ∼40 deg2. The catalogs include information about
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Figure 5. Median per-bin photometric residual as a function

of measured magnitude for pure spatial matching (pink), and
spatial+magnitude matching (orange) using 30 magnitude bins

between r-band magnitude 10 and 30. We also show the 2D his-

togram of the residuals for the matched objects using S+M match-
ing as a function of magnitude.

position, size, shape and magnitude for every object. They
also include several flags that give information about the
presence of interpolated/saturated pixels in an object and
whether or not an object it close to the edge of a CCD.

5.1 Key Performance Metrics

In order to check the level of realism and the accuracy of
the processed catalogs we perform several validation tests.
These tests check two different aspects: the level of realism
and consistency of the simulated products with the inputs,
and the performance of the processing pipeline. The results
in this section are presented for the dithered simulation;
however, unless stated, the procedures and results of the
validation checks are similar for the undithered simulation.

Firstly, we perform some basic sanity checks and, af-
ter this, we process the output individual-visit catalogs
through the LSST Project package validate drp11. The
validate drp package calculates the Key Performance Met-
rics (KPMs) from the LSST Science Requirements Docu-
ment12 (Ivezić et al. 2013), which we will refer to as the
LSST-SRD. This document describes science-driven require-
ments for LSST data products and we use it as a guide
to check the status of our end-to-end pipeline, with a spe-
cial focus on the performance of the processing pipeline.
In particular, we will use the LSST-SRD version 11. For
quick reference, a brief description of the requirements from
the LSST-SRD studied in this section can be found in Ap-
pendix A. In addition, we also validate our dataset using
some of the requirements in the DESC Science Requirement
Document (The LSST Dark Energy Science Collaboration
et al. 2018), which we will refer to as the DESC-SRD.

By design, our simulations do not satisfy some of the
requirements in the LSST-SRD, such as the number of fil-
ters in the surveyed fields (Filter complement in Table 1)
or the number of filters used in a given night because we
only simulate images in r-band. Some requirements in both

11 dmtn-0008.lsst.io, https://github.com/lsst/validate_

drp
12 https://ls.st/LPM-17
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Figure 6. Astrometric residuals of detected objects (stars and
galaxies) of 500 randomly selected visits in the dithered simula-

tion. We find a bias of 38 milliarcseconds in the measured right

ascension due to uncorrected proper motion. We obtain similar
results using the undithered simulation.

the LSST-SRD and the DESC-SRD cannot be tested with
these single-band images (for example, KPMs involving col-
ors) and we will ignore such tests in this work. On the other
hand, our images automatically meet some criteria due to
the design choices, e.g., requirements about the pixel size
since it is fixed. The results of these checks are summarized
in Table 1.

5.1.1 Astrometric performance

We start by checking the absolute astrometry by comparing
the input and output catalogs in Figure 6. This test helps us
determine whether the galaxies are generated in the correct
positions in the sky, and if our pipeline is able to accurately
and precisely reconstruct the position of the simulated ob-
jects. A precise astrometric solution is necessary in order to
compute unbiased clustering statistics, given that they pri-
marily depend on the separation between objects. We find
a mean (and median) deviation of 38 mas between the in-
put and measured positions. This is because the corrections
for proper motion were not present in the version 13.0 of
the DM stack. However, this bias is still below the mini-
mum specification for the absolute astrometric performance
of LSST as defined by the LSST-SRD, which is 100 mil-
liarcseconds, and is driven mainly by orbital computations
of solar system objects (Ivezić et al. 2013).

We now focus on checking the astrometric repeatability
(see Figure 7). We check that the positions and distances
between objects are consistent among different visits. Con-
sistency would ensure accurate clustering results. We com-
pute the root mean square (RMS) of the separation between
pairs of stars separated byD = 5, 20 and 200 arcmin, obtain-
ing AM1=8 mas, AM2=4 mas and AM3=7 mas. We check
that no more than AF1=AF2=20% (AF3=30% in case of
D = 200 arcmin) of these pairs deviate more than 40 mas (50
mas for D = 200 arcmin) from the median. Where AM1/2/3
and AF1/2/3 are KPMs.

We find that our dataset passes all of these astrometric
requirements, guaranteeing that the positions for LSST will
be useful for clustering analyses. Note that for future ver-
sions of the LSST science pipeline, the overall astrometric
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KPM/Requirement Pass/Fail Criterion DC1 test result Passed Section Figure

AA1 (milliarcsec) 100 20 Y 5.1.1 6
AM1 (milliarcsec) 20 8 Y 7

AF1 (%) 20 13 Y 7

AM2 (milliarcsec) 20 4 Y 7
AF2 (%) 20 9 Y 7

AM3 (milliarcsec) 30 7 Y 7

AF3 (%) 20 2 Y 7

PA1 (millimag) 8 6 Y 5.1.2 8

PF1 (%) 20 17 Y 8

PA3 (millimag) 15 0.06 Y 5.1.3 9

PF2 (%) 20 0 Y 9
PA6 (millimag) 20 17 Y 9

D1 (mag) 24.3 24.3 Y 5.1.4 10
Z1 (mag) 24.0 24.1 Y 10

DB1 (mag/r-band) 24.3 24.3 Y 10

Z2 (mag) 0.4 0.1 Y

SE1 0.04 0.001 Y 5.1.5 11

SE2 0.1 0.002 Y 11
SR1 (arcsec) 0.80 0.64 Y

SR2 (arcsec) 1.31 1.01 Y
SR3 (arcsec) 1.81 1.79 Y

TE1 3 × 10−5 3 × 10−6 Y 12

TE2 3 × 10−7 9 × 10−8 Y 12

WL4-Y10 (%) 0.1 0.05 Y 13

Table 1. Summary of Key Performance Metrics (KPMs) and DESC-SRD requirements that we check to test the quality of our end-to-end

simulation pipeline. Pass/Fail criterion contains the threshold pass/fail values for each KPM/Requirement and DC1 test result shows

the measured value for a given KPM/requirement. We are only able to test one criterion of the DESC-SRD, WL4-Y10

repeatability will improve with the refinements of the PSF
modeling under development.

5.1.2 Photometric performance

Accurate and consistent photometry is important in order to
have a robust flux-limited sample and well-behaved photo-
metric redshifts. This is why we also validate the photomet-
ric repeatability given by our processing pipeline by compar-
ing the measured magnitudes of bright (SNR > 100) point-
like objects across different visits. This test validates that
the pipeline is reconstructing fluxes of objects consistently
across epochs, and also that different epochs are produced
consistently in our image simulations. The photometric re-
peatability (PA1) is 6.0 mmag as measured by the scaled
interquartile range13, and 15.8 mmag as measured with the
RMS; these distributions are shown in Figure 8. The min-
imum specification in the LSST-SRD is 8.0 mmag so our
dataset and pipeline behave as required. The significantly
greater RMS is dominated by the outliers. This, in princi-
ple, is not worrisome for weak lensing nor galaxy clustering
analyses.

We also check the fraction of photometric, bright point-
like sources that deviate by more than 15 mmag, finding
only PF1=17% over this threshold, in compliance with the
requirements (PF1=20%).

13 IQR≡ 75th percentile minus 25th percentile, and then divided

by the interquartile range of a Gaussian distribution with σ = 1

5.1.3 Zeropoint uniformity

In order to obtain accurate photometric redshifts we need
stable zeropoints across the sky, i.e., the error in the zero-
points, σzp, must fulfill the uniformity requirements speci-
fied in the LSST-SRD. More concretely, they should show
an RMS lower than PA3=15 mmag and no more than
PF2=20% of the images should have a deviation larger than
20 mmag. We randomly select 1000 sensor-visits and check
the distribution of σzp, depicted in Figure 9. We find that
the RMS of the distribution is 0.06 mmag, fulfilling the re-
quirement found in the LSST-SRD by a very wide margin.
This is mainly a consequence of the lack of clouds and other
fluctuations that may affect the zeropoint calibration (e.g.,
temperature/gain fluctuations in the sensors, etc.). We also
find that PF2=0% of the sensors have an error in the zero-
point that deviates from the median more than 20 mmag.
Finally, we compare input and output magnitudes, for both
stars and galaxies using CMODEL magnitudes (Bosch et al.
2018). We compute the median of the difference between
them and obtain PA6=17 mmag, smaller than the maxi-
mum allowed in the LSST-SRD (PA6=20 mmag).

These tests show that the processing pipeline performs
as needed, and that our images are generated with consistent
zeropoints.

5.1.4 Depth requirements

In order to observe the object number density required to
fulfill the science goals of LSST, the LSST-SRD defines the
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Figure 7. Astrometric repeatability KPMs: variation in dis-
tances measured between pairs of bright stars (17.0 < r < 21.5)

with a separation distance between: (top) 4-6′, (middle) 19-21′,
(bottom) 199-201′. AM(1,2,3) are the distance measurements,

while AF(1,2,3) are the fraction of pairs lying outside a specified

limit AD(1,2,3). The performance is excellent, with characteristic
values all below the LSST-SRD levels.

minimum acceptable per-visit image depth with fiducial sky
brightness of 21 mag/arcsec2, exposure time of 30 s, air-
mass=1 and fiducial seeing (FWHM) of 0.7 arcseconds. In
order to mimic this we select the visits that fulfill the criteria
in the LSST-SRD:

• Altitude > 80 degrees.
• 0.68′′ < seeing (FWHM) < 0.71′′.
• Sky-brightness (in r-band) ≥ 21 mag.

We obtain a total of 520 sensor-visits fulfilling these cri-
teria. We then compute the median 5-σ depth using the
magnitude errors (as described in Section 6.3) and compare
with the predicted depth by OpSim. After this, we check
that the median of the depth distribution is deeper than
the minimum depth (D1=DB1=24.3 mag) as defined in the
LSST-SRD. In order to have a uniform, well characterized
sample, depth uniformity is also required. This is why we
also check that no more than 20% (DF1) of the visits have a

Figure 8. (left) The magnitude differences of pairs of measure-

ments of stars across visits for stars with a typical SNR > 100

as.a function of their measured psf magnitude, i.e., the magni-
tude measured in a PSF-like aperture. (right) The histogram

of these differences. The Gaussian root mean square (RMS) is

shown in red while the interquartile range is shown in green. Note
that the distribution is more peaked than a Gaussian. The in-

terquartile range (6.2 mmag) is smaller than the Gaussian RMS

(15.8 mmag). This means that the distribution has extended tails
but most objects have very accurate magnitude measurements.
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Figure 9. Normalized distribution of the error in the zeropoint

value, σzp for 1000 randomly selected sensor-visits. The distribu-

tion is quite asymmetrical. The RMS (PA3) is 0.06 mmag, fulfill-
ing the requirement in the LSST-SRD (15 mmag). We also find

that none (PF2) of the visits deviate from the median by more

than 20 mmag, in compliance with the LSST-SRD requirement.

depth lower than Z1=24.0 by computing the lower 20th per-
centile in the depth distribution. The results of these checks
are depicted in Figure 10. We find that the median of the
depth distribution in the selected visits, 24.297±0.009 mag,
is compatible with the minimum depth set in the LSST-
SRD. We find as well that the 20th percentile, Z1=24.1, is
larger than the minimum value set in the LSST-SRD. We
also check that in a given visit, the variation in the field of
view is within the requirements. The LSST-SRD establishes
that, in a representative visit with depth D1 no more than
20% of the field of view will be (Z2) 0.4 magnitudes brighter
than the nominal (24.3). We select visit 2218486 since its
median depth is 24.3. We find that the 20th percentile is
24.29, fulfilling the criteria. This test demonstrates that we
generate images with the required depth and in concordance
with our inputs.
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Figure 10. Measured depth in visits with Altitude > 80 deg,

0.68′′ < seeing < 0.71′′ and Sky-brightness (in r-band) ≥ 21 (blue
histogram) compared to the predicted depth by OpSim (solid or-

ange histogram). The median of this distribution (dashed line) is

very close to the LSST-SRD minimum depth D1=24.3 (red verti-
cal line), the 20th percentile is also shown and we can appreciate

that it is larger than Z1=24.0 as established by the LSST-SRD.

All the visits fulfilling the criteria above have the same predicted
depth by OpSim.

5.1.5 PSF requirements

The LSST-SRD sets criteria regarding the maximum modu-
lus of the PSF ellipticity, |e|, for visits with the same cri-
teria used for the depth requirements, mostly driven by
weak lensing analyses. We use the distortion definition for
|e| (Miralda-Escude 1991):

|e| = a2 − b2

a2 + b2
, (2)

where a, b are the semi-major and semi-minor axes of the
PSF. We test exposures with PSF-FWHM ≈ 0.69′′ and no
more than 10 degrees away from zenith and check that the
median ellipticity is no larger than 0.05 (SE1) and that no
more than 10% of the images exceed 0.1 (SE2). Our ana-
lytic (and circularly-symmetric) PSF models should, by de-
sign, fulfill these criteria. However, we must test whether
the reconstructed PSF also fulfills them. The PSF was re-
constructed using the PSFEx (Bertin 2011) implementation
in the LSST software stack. We tested this in the processed
data by using the same 520 sensor-visits used to check the
depth requirements described above. We checked the modu-
lus of the PSF ellipticity at the position of detected stars, us-
ing their measured ellipticity in these visits, and accumulat-
ing them in the histogram shown in Figure 11. We obtained
SE1=0.001 and SE2=0.002, below the maximum values al-
lowed by the LSST-SRD (SE1=0.05, SE2=0.1). The second
data challenge (DC2) will use more realistic PSF models and
we expect these margins to be different.

We also check that, in these images, 85% of the flux of
point-like sources is contained within 0.80′′ or less (SR1),
95% within 1.31′′ or less (SR2) and 99% within 1.81′′ (SR3)
or less. In our case we obtain SR1= 0.64′′, SR2= 1.01′′ and
SR3= 1.79′′. This was evaluated by calculating the radii at
which the PSF was at its 85th, 95th and 99th percentiles.

For weak lensing analyses, correct modeling of the PSF
is crucial (Hirata et al. 2004) and both the LSST-SRD
and the DESC-SRD specify explicit requirements about
PSF residuals. In particular, the LSST-SRD states that us-
ing the full survey data the auto- and cross-correlations

0.000 0.001 0.002 0.003 0.004 0.005 0.006
|e| = (1 q2)/(1 + q2)
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Figure 11. PSF ellipticity distribution accumulated for 520

sensor-visits measured at the positions of detected objects. The
median (SE1=0.001) and 90th (SE2=0.002) percentiles are shown

as the dashed lines. Note that these values are an order of mag-

nitude lower than the upper limits specified in by the LSST-SRD
(SE1=0.05 and SE2=0.1, respectively).

(E1, E2, EX) of the PSF residuals over an arbitrary field
of view should be below TE1 (3 ×10−5) for θ ≤ 1 arcmin,
below TE2 (3× 10−7) for θ ≥ 5 arcmin.

To check these criteria we calculate E1, E2, EX using
the definitions of the LSST-SRD:

e1 =
σ2

1 − σ2
2

σ2
1 + σ2

2

, (3)

e2 =
2σ2

12

σ2
1 + σ2

2

, (4)

E1(θ) = 〈δe(i)
1 δe

(j)
1 〉, (5)

E2(θ) = 〈δe(i)
2 δe

(j)
2 〉, (6)

EX(θ) = 〈δe(i)
1 δe

(j)
2 〉. (7)

The quantities σ2
1 , σ

2
2 are the second-order moments of a

source along some set of perpendicular axes and σ2
12 is the

covariance, δe1, δe2 are the residuals, and the angle brack-
ets indicate averaging over all pairs of stars i, j at a given
angular separation θ.

In practice, we compute the PSF-corrected moments
of high signal-to-noise (SNR > 100) stars across the field
of view using TreeCorr (Jarvis et al. 2004). Our findings
are shown in Figure 12. We can see that for E1, E2, and
EX the TE1 criterion is fulfilled as well as TE2. We can
compare the results in Figure 12 to the measurements in
Fig.8 of Mandelbaum et al. (2018) for ρ1 (Rowe 2010):

ρ1 = 〈(δe1 + iδe2)(δe1 − iδe2)〉, (8)

where i denotes the imaginary unit. So ρ1 ≈ E1 + E2. We
see that both E1 and E2 are smaller than the measured ρ1

for the range of scales shown in Mandelbaum et al. (2018)
(θ ≥ 3 arcmin). However, even in the more complex case of
the HSC PSF, the TE2 requirement is fulfilled (we do not
check for TE1 since it refers to scales smaller or equal than 1
arcmin). Finally, the DESC-SRD requires (WL4-Y10) that
the systematic uncertainty in the PSF model defined using
the trace of the second moment matrix should not exceed
0.1% for full-depth (Y10) DESC weak lensing analysis. We
randomly select 3,000 visits, obtain the input and measured
PSF, and measure the trace of the second order moments,
T with GalSim. We then compute the relative difference,

MNRAS 000, 000–000 (0000)



LSST DESC DC1 11

10 1 100 101

 [arcmin]

1.5

1.0

0.5

0.0

0.5

E i
(

)

×10 5

TE1×105 = (0.3, 0.0, 0.0) 
TE2×107= (0.9, 0.6, 0.0)

E1 E2 EX

Figure 12. Auto and cross-correlation functions, E1 (blue), E2

(orange), EX (green) of the PSF residuals as a function of the
aperture angle θ. We see that our data fulfill the LSST-SRD re-

quirements.
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Figure 13. Normalized distribution of the relative difference in

the trace of the second-order moments, ∆T/T between input and
output PSF. We see that the standard deviation of the distri-

bution (WL4-Y10) is 0.05%, in compliance with the requirement
(0.1%).

∆T/T , obtaining the results depicted in Figure 13. We find
that our dataset shows that the standard deviation of the
distribution is 0.05%, lower than the requirement.

As seen in Table 1, our images and catalogs satisfy each
requirement shown by a good margin, demonstrating our
ability to both generate and process high-quality data.

6 DATA SELECTION AND MASKING

In this section, we describe how we take advantage of the
fact that we have full knowledge about the simulated sources
in order to get a “clean” data sample for clustering tests. We
also describe the catalog mask and how we generate maps
of different observational effects (seeing, sky-brightness, etc.)
present in the simulation. Unless explicitly stated, the pro-
cedures and selections made in this section are performed in
both the dithered and undithered simulations.

6.1 Sample selection

In this subsection we are going to use the S+M technique
to identify processing flags or thresholds in variables that

may allow us to get a clean sample for clustering. In prin-
ciple, given that the LSST DM software stack is essentially
the same as the HSC reduction pipeline used in Mandelbaum
et al. (2018), we could potentially perform similar cuts. How-
ever, note that we are working in r-band only, so some of
the required cuts cannot be performed. In addition, some
variables, such as the so-called blendedness parameter, used
in Mandelbaum et al. (2018), are not available in the version
of the LSST DM software stack that we ran to process the
data. As a consequence, we propose our own selection cuts,
although we follow the criteria in Mandelbaum et al. (2018)
as guidance.

The methodology to perform the selections is simple:
we check the primary detected sources that have no match
using the S+M technique and we compute the fraction of
objects that are flagged, fu,i = Nflagi,u/Ntotal,u, where the
subscript u stands for unmatched, and compare it to the
corresponding fraction of flagged matched primary detected
sources, fm,i = Nflagi,m/Ntotal,m, where the subscript m
stands for matched, for each of the flags, flagi, in the cata-
log. If the ratio fu,i/fm,i is larger than 50 for a particular
flag and fm,i < 0.01, i.e., less than 1% of the matched pri-
mary sources have that flag, it means that the presence of
that flag is a good indicator of problematic sources. Thus we
eliminate the sources with those flags. We also repeat the
same procedure looking for the absence of a certain flag or
whether a quantity is frequently measured as not-a-number,
NaN.

We notice that some of the flags very effi-
ciently distinguish unmatched from matched objects.
For example, base ClassificationExtendedness flag =

True, which means that there was a failure at the time
of deciding whether a source was extended or point-like,
eliminates more than 30% of the objects with no match,
while barely affecting the matched objects. Three other
flags would be fairly efficient at filtering out unmatched ob-
jects but, if we were to use them, we would lose ≈ 50% of
our sample. These include modelfit CModel flags small-

Shape==False which means that the initial parameter guess
did not result in a negative radius (if True the initial guess
for the radius would be negative). Intuitively, we expect
this flag to be False for well-behaved objects and thus, we
should not use this for our selection. Another case where
the fraction of flagged unmatched (and matched) objects
is very large is modelfit CModel flags region usedFoot-

printArea==True, which means that the pixel region for the
initial fit was defined by the area of the footprint. This flag is
not necessarily indicative of problems with the measured ob-
ject. Finally, we see that modelfit CModel flags region -

usedPsfArea==False also affects a very large fraction of un-
matched and matched objects. These objects are such that
the pixel region for the initial fit was not set to a fixed fac-
tor of the PSF area, which is not indicative of any problems
with the source.

As a result, we eliminate from our sample all the sources
that fulfill at least one of the following conditions:

• detect isPrimary = False. As discussed earlier, this
means that the source has not been fully deblended or is
outside of the inner region in a coadd.

• base NaiveCentroid flag = True. This means that
there is a general failure during the source measurement.
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• base SdssShape flag psf = True. This means that
there is a failure in measuring the PSF model shape in that
position.
• ext shapeHSM HsmSourceMoments flag not contained

= True. This means that the center of the source is not
contained in its footprint bounding box.
• modelfit DoubleShapeletPsfApprox flag = True.

This means that there is a general failure while performing
the double-shapelet approximation to the PSF model at
the position of this source (see Appendix 2 in Bosch et al.
(2018) for more details).
• base PixelFlags flag interpolated = True. This

means that there are interpolated pixels in the source’s
footprint.
• base PixelFlags flag interpolatedCenter = True.

This means that the center of a source is interpolated.
• base PixelFlags flag saturatedCenter = True.

This means that the center of a source is saturated.
• base ClassificationExtendedness flag = True.

This means that there is a general failure when using the
extendedness classifier.
• modelfit CModel flags region usedInitialEl-

lipseMin = True. This means that the pixel region for the
final model fit is set to the minimum bound used in the
initial fit.
• base SdssShape x/y = NaN. This means that the cen-

troid position (either in the x or y axes) is measured as NaN.
• base SdssCentroid x/yErr = NaN. This means that

the error in the centroid position (either in the x or y axis)
is measured as NaN.

After these cuts we keep 8.25 million objects in the
dithered catalog and 7.51 million objects in the undithered
catalog. We will refer to this sample as the clean sample.
After the cuts, the ratio of unmatched objects decreases by
≈ 60% from ∼ 5% (of the catalog before cuts) to ∼ 3%
(of the clean sample), while we retain 99.7% of the matched
objects. In DC1 we are limited by only having r-band infor-
mation. The addition of other imaging bands will provide
independent information that will decrease the fraction of
noise fluctuations that make it into the catalog and will al-
low selection of an even cleaner sample (e.g., by performing
selection cuts in color-color diagrams).

We now focus on how many of these objects are matched
as a function of magnitude and signal-to-noise ratio. In Fig-
ure 14, we can see that the fraction of unmatched objects
grows very quickly for r > 26, and for SNR< 6. Therefore,
r < 26 and/or SNR> 6 appear to be sensible selection crite-
ria to ensure good quality data. The peak at r ∼ 15 is likely
a consequence of bright objects that have been clipped to
emulate saturation; these objects have measured magnitudes
of r ∼ 15, however, their true magnitudes are brighter by
one or more magnitudes and thus, appear as unmatched by
the S+M matching strategy.

We select our final sample using the following criteria:

• Full set of cuts of the clean sample.
• base ClassificationExtendedness value=1.
• 20 ≤ r mag CModel ≤ 25.5.

Note that we do not use the SNR> 6 criterion, this is be-
cause the magnitude cuts nearly guarantees it. These selec-
tion cuts ensure a low fraction of unmatched objects and
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Figure 14. Top: Ratio of unmatched to matched sources in the

clean sample as a function of magnitude. The dashed vertical lines

show the median depths for the dithered (orange) and undithered
(green) fields. Bottom: Ratio of unmatched to matched sources

in the clean sample as a function of SNR.

also, as we will justify in following sections, high purity of
our galaxy sample (low stellar contamination).

6.2 Star/galaxy classification

For weak lensing and clustering analyses, it is important
to have a pure galaxy sample and good control over the
fraction of stars that are classified as galaxies. Our pipeline
includes the variable base ClassificationExtendedness -

value (see Bosch et al. (2018) for more details), which we
will refer to as extendedness, and can be used as a proxy to
separate stars from galaxies as shown in Mandelbaum et al.
(2018) and Bosch et al. (2018). In this work we say that an
object has been classified as a galaxy if extendedness=1,
and that the object has been classified as a star if extend-

edness=0. To evaluate the performance of extendedness as
star/galaxy classifier in DC1, we use a sample that is very
similar to the final sample, except without the extendedness
cut, in the dithered field, although we find similar results us-
ing the undithered field, and match it to our input catalog
using the S+M method. After that, we follow Sevilla-Noarbe
et al. (2018) and compute the true positive rate (TPR), usu-
ally referred to as completeness, and positive predictive value
(PPV), usually called purity, defined as:

TPR =
TruePositive

TruePositive + FalseNegative
, (9)

PPV =
TruePositive

TruePositive + FalsePositive
. (10)
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Figure 15. Performance of the base -

ClassificationExtendedness value as star-galaxy classifier

as a function of magnitude. This classifier achieves a high galaxy

purity and completeness. We show the true positive rate (TPR)
for stars (blue crosses) and galaxies (orange crosses) and the

positive predictive value (PPV) for stars (blue open circles)
and galaxies (orange open circles). Both the TPR and PPV

for galaxies are high in the range of magnitudes that we are

studying.

For galaxies, true positives are objects classified as galaxies
and matched to galaxies; false negatives are objects clas-
sified as stars but matched to galaxies; and false positives
are objects classified as galaxies but matched to stars. This
way, we know the total stellar (or galaxy) contamination as
a function of measured magnitude. The results are depicted
in Figure 15. We see that at the fainter end (r ≈ 25), the
PPV (purity) of the stellar sample using the extendedness

classifier starts to decrease, getting as low as 50% for the
last bin in our analysis, while the PPV for the galaxy sam-
ple remains stable across the selected range of magnitudes.
We obtain a total fstar = 1.4%. For a more restricted magni-
tude threshold of r < 25 we can get fstar = 0.7%. Note that
these fractions are larger than those presented in Bosch et al.
(2018). This is primarily because of our broader PSF, mak-
ing the extendedness classifier perform a little bit worse,
and that we do not include any cuts on resolution. However,
this level of stellar contamination is acceptable for the pur-
poses of this work. Note that this selection focuses on galaxy
purity and completeness and should be modified for stellar
studies.

6.3 Depth maps and footprint masking

In order to estimate the depth in the coadd catalogs we gen-
erate a map of our footprint in flat-sky approximation (i.e.,
using the plate carrée projection), with resolution of 1.74
arcminutes, containing the sources in the clean sample. This
resolution allows us to accurately estimate the power spec-
tra up to ` ∼ 6000, where the power spectra will be mostly
dominated by shot-noise. Then, for each cell in the map, we
bin the objects in magnitude and compute the median SNR
in each bin, after this we find the magnitude bin closest to
SNR=5, using CMODEL fluxes and their quoted uncertainties.

These maps are shown in Figure 16. We can see that
the dithered simulation is indeed very uniform (> 50% of
its footprint lies in the same depth bin) showing the suc-
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Figure 16. 5-σ depth maps for the dithered (top) and undithered

(middle) fields. There is an increased depth in the overlapping
parts of the LSST field of view in the undithered field but the

median depth is lower. We see some holes in the undithered foot-

print due to missing data. The maps have a resolution of 1.74
arcmin. We also show the 1D distributions of depth (bottom) for

both fields for easier comparison.

cess of the dither strategy. Additionally, we can see that the
undithered simulation has a smaller median depth.

We also check the depth by computing the detection ef-
ficiency (completeness14) of stars and galaxies as a function
of magnitude. To do so, we use the objects in the input cat-
alog and select those that lie within the simulated footprint.
After this, we compute the number of detected objects in
the final sample classified as stars and classified as galax-
ies as a function of their CMODEL magnitude, and divide by
the number of stars and galaxies in the input catalog as a
function of the true magnitude. The results can be seen in

14 Note that completeness is defined differently in the star/galaxy

classification section 6.2.
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Figure 17. Ratio of number of objects in the final sample classi-
fied as stars and number of input stars as a function of magnitude.

We also compute this same ratio for galaxies. This is basically a

measurement of the detection efficiency (completeness) of stars
and galaxies in the final sample. Note that the ratio can go above

one since there will be stars classified as galaxies (and galaxies
classified as stars) and artifacts that will pass our cleaning cuts.

Figure 17. We see that there is a high detection efficiency
for galaxies > 80% up to r ≈ 25.5.

Given the results in the two previous subsections and
this subsection, we decide to use only the galaxies that lie
in cells with limiting magnitude r ≥ 25.5 and that have
been visited at least 92 times, which corresponds to 50% of
the nominal full-depth number of visits for the full 10-year
LSST survey (Ivezić et al. 2019). On top of that, we select
those objects with magnitudes in the range 20 ≤ r ≤ 25.5.
This cut ensures high detection efficiency (> 80%) and it
allows us to eliminate most of the spurious detections in
the sample (2.8%). In addition it results in a low stellar
contamination (fstar ≈ 1.4%). After these cuts and with
selection of objects with extendedness=1, we obtain 4.5 and
4.0 million objects for the dithered and undithered fields
respectively. This selection cut, however does not change
the fraction of unmatched objects explored in the previous
subsection.

6.4 Bright star masking

Bright objects produce significant effects in an image that af-
fect the detection and measurement of neighboring objects.
Some examples of these effects include saturation, large
diffraction spikes (not included in our simulations), scattered
light (also not included in our simulations), obscuration
of neighboring sources, etc. Masking regions around these
sources creates a more complicated footprint but greatly
simplifies the analysis of systematic effects. In order to avoid
possible biases by masking bright galaxies we will only an-
alyze the impact of bright stars on the nearby detected ob-
jects. In the following, when we refer to bright object mask-
ing we are specifically referring to bright star masking.

In order to evaluate the effect of bright star mask-
ing, we follow the procedure described in Coupon et al.
(2018). Using the positions of bright objects classified as
stars (base ClassificationExtendedness value==0) that
lie within the considered footprint, and with input mag-
nitudes in the range m1 < r < m2, we count all objects
from the final sample within a given radius θ and com-

Figure 18. Ratio of the median number of primary detected
objects neighboring a star in a certain magnitude range in the

input catalog to the median number of objects detected near any

star in the input catalog, as a function of the distance to the star
θ. Different colors represent different magnitude ranges for the

stars in the input catalog considered.

pute the average number of neighbors, Nneighbors. We re-
peat this for different radii and magnitude ranges (r <
17; 17 ≤ r < 18; 18 ≤ r < 20; 20 ≤ r < 22). Finally, we
repeat this process for all stars in the input catalog in the
footprint and compute Nneighbors,tot and compute the ratio
Nneighbors/Nneighbors,tot. Following Coupon et al. (2018) we
use the region radius where the density reaches 95% as the
masking radius to find rmask,fit. After this, we compare to
equation (1) in Mandelbaum et al. (2018):

rmask,HSC [arcsec] = 200×100.25(7−mB∗)+12×100.05(16−mB∗),

(11)

where mB∗ is the measured magnitude of the bright star
to mask. Note that this prescription is specific for HSC.
The LSST instrument and observing conditions are different.
This is why we decided to rescale rmask,HSC by the ratio of
mean seeing in LSST and HSC.

rmask,LSST = rmask,HSC
1.04′′

0.58′′
. (12)

Here 1.04′′ is the mean seeing in DC1, and 0.58′′ is the
mean seeing reported in Mandelbaum et al. (2018). The
mask radius for HSC was defined to work for all bands
thus, this approach provides a conservative estimation for
our data. We obtain the results depicted in Figure 18. We
find that the masking radius, rmask,LSST , using the rescaled
prescription set by Mandelbaum et al. (2018) is a good ap-
proximation for our data. In particular, we find the ratio
rmask,fit/rmask,LSST ≈ 1.14. This 14% disagreement can be
because we chose a very simple rescaling based on the mean
seeing and our choice of an idealized simplistic PSF model.
As a result, we decide to use rmask,DC1 = 1.14rmask,LSST

around stars with r < 22. We generate a high-resolution
mask using flat-sky maps of ≈ 6.4′′ resolution, then we
down-sample this map to a resolution of ≈ 2 arcmin and
eliminate objects that lie within pixels that have more than
75% of their area masked. This results in an area loss of
≈ 13%. The resulting map can be seen in Figure 19.
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Figure 19. Map showing the unmasked fraction in each pixel. We

use a high-resolution (≈ 6.4′′) map to mask around bright stars
(r < 22) and then we down-sample the map to a lower resolution

(≈ 1.7′) and remove the pixels where the masked area near bright
stars is higher than 75% of the pixel. We weight the galaxy counts

in each pixel of the map by the inverse of this mask fraction to

compensate for the area loss.

6.5 Blending

As previously mentioned, our output catalogs do not in-
clude any estimates of overlap between sources, or blended-
ness (Bosch et al. 2018). Highly-blended objects are more
likely to have biased estimations of the centroid positions,
shapes, and fluxes. This can lead to overall biases in the es-
timated photometric redshifts and cosmological parameters.
Given that the mean seeing in DC1 is larger than in HSC, the
impact of blended objects will be larger. In the case of Man-
delbaum et al. (2018), the cut in the blendedness parameter
affects only 1% of the objects; we expect this number to be
larger for the DC1 simulations. Using dedicated image sim-
ulations from (Sánchez et al., in prep.) with a seeing similar
to the seeing in DC1 (1.04′′), in r-band, we find that if we
select objects with r < 25.5 and SNR ≥ 1, the fraction of
objects with blendedness > 10−0.375 is ≈ 6.3%. If we raise
the minimum SNR threshold to 6, this fraction is lowered
to ≈ 2.6%. This means that our sample will have a fraction
of these objects anywhere in the range (2.6% – 6.3%) but
closer to 2.6% since the fraction of objects with SNR ≤ 6
is ≈ 0.3%. In any case, we do not expect that the inclu-
sion of these objects in our two-point measurements affect
the range of scales that we consider in this work. We expect
that blending affects to photometric redshifts, potentially
biasing them. For DC1 photometric redshifts are not avail-
able (since we only have one band). A more rigorous study
of the impact of blending on small-scale clustering measure-
ments, and photometric redshifts is beyond the scope of the
current work.

7 TWO-POINT CLUSTERING RESULTS

In this section, we analyze the two-point clustering statistics
for the DC1 dithered and undithered catalogs. This analysis
validates for our simulated data and our clustering analysis
pipeline, and it also allows us to study the impact of the
dither strategy in the mitigation of systematics.

In particular, we are going to consider maps of the fol-
lowing observational effects:

• Extinction: The CatSim catalog provides the value for
the magnitudes corrected for extinction using the map from
Schlegel et al. (1998), which we refer to as the SFD map.
• Stellar contamination: In this case, we build a flat-sky

map with all stars in the input catalog.
• Sky-background/Sky-brightness: We use the observed

background level in each exposure and assign that value to
the pixels in the flat-sky map that lie within that exposure.
After this we calculate the mean value in each pixel to build
the map with the same resolution as the mask (≈ 2 arcmin)
which we deproject (Alonso et al. 2019).
• Sky-noise: We use the observed noise background level

in each exposure and proceed as in the previous case to build
a map.
• Seeing: We proceed as before and use the observed see-

ing in each exposure and build a map.
• Number of visits: We count the number of exposures

overlapping with each pixel of our flat-sky maps.

These maps are shown in Figure 20 and Figure 21. We see
that the spatial distributions of the different observing con-
ditions are very different between the two simulations, even
though the ranges in each of the observing conditions are
very similar.

The power spectra computation and correction for the
effect of systematics is performed using NaMaster (Alonso
et al. 2019). The systematics correction is also performed
with NaMaster via mode deprojection (Elsner et al. 2016;
Alonso et al. 2019), which assumes that there is a linear
dependence between the observed number density of galaxies
and the contaminants. For our study, we choose ∆` = 352
and compute the power spectra in the range 0 ≤ ` ≤ 6000.
This choice for ∆` is not optimal for cosmological analyses,
but it gives us a reasonably large number of bandpowers to
visually check the estimated power spectra. The results for
the power spectra are shown in Figure 22, where we can see
that both the dithered and undithered catalogs yield similar
results. The error bars shown and corresponding covariances
are estimated using two complementary methods: On one
hand by computing the Gaussian covariance with NaMaster,
and on the other hand by considering 155 jackknife equal-
area regions in our footprint. We find that both approaches
give similar results and we choose to use the results from
the jackknife computation.

In Figure 22 we also compare with the theoretical pre-
diction for the power spectra computed with CCL (Chisari
et al. 2019) as follows:

CTH
` =

2

π

∫
dz

(
dn(z)

dz

)2

b2(z)

∫
dkk2P (k, z)j2

` (kr(z)),

(13)

where P (k, z) is the theoretical power spectrum, b(z) is the
galaxy bias and dn

dz
is the number density as a function of

redshift. In particular, we use the Halofit (Takahashi et al.
2012) power-spectrum with the Millenium cosmological pa-
rameters (Springel et al. 2005) (Ωm = 0.25, Ωb = 0.045,
ΩΛ = 0.75, n = 1, σ8 = 0.9, h = 0.73), and the dn/dz
obtained using the true redshifts of galaxies matched in the
input catalog. We use a bias, b(z) = b0/D+(z), inversely pro-
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Figure 20. Maps showing the different foregrounds considered in our analysis of the dithered field. From top left to bottom right: Mean

PSF FWHM, mean sky-brightness, mean sky-noise, mean extinction, stellar density and number of visits in each pixel in the flat-sky
maps with the same resolution as the depth maps in Figure 16. We only show their values in the regions where the 5-σ r-band depth is

larger than 25.5.

Figure 21. Same as Figure 20 for the undithered dataset. From top left to bottom right: Mean PSF FWHM, mean sky-brightness, mean

sky-noise and number of visits. The maps are only shown in regions where the 5-σ r-band depth is larger than 25.5. Note that we use
the same extinction and stellar density maps changing the geometry of the mask since these are not affected by dithering.

portional to the linear growth factor(Peebles 1980), D+(z),
and see that, qualitatively speaking, there is a good agree-
ment between the measurements and the prediction, as
shown in Figure 22. However, we do not expect to be able to
fully describe the measured power spectra, given the highly
nonlinear nature of the scales considered in our analysis.

In addition, we also see in Figure 22 that the overall
impact of the systematics, evaluated as the difference be-
tween the estimated power spectra using mode deprojection
and without mode deprojection, is smaller than statistical
uncertainty, σ`, (about 50% the size of σ`) and that they
similarly affect both dithered and undithered simulations.
We do not find any statistically significant difference be-

tween the correction due to systematics for the dithered
and undithered simulations. This is a consequence of sev-
eral factors, including the conservative cuts that we impose
on our data to ensure well-behaved clustering statistics; that
we only deproject using the mean value for the different ob-
serving conditions; and the lack of effects, such as vignetting,
present in real images. For example, vignetting would affect
the number of detected objects close to the edges of the focal
plane in the undithered simulation, reducing the uniformity
of the survey. However, this effect would be uniform across
the footprint in the dithered case. In addition to this, if we
decided to include results for fainter magnitudes by going
deeper, the lack of uniformity of the undithered field would
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Figure 22. Top panel: Measured power spectra for undithered

(orange ×) and dithered (open blue circles) datasets. These power

spectra include the correction due to systematics using mode de-
projection with NaMaster. The error bars are computed using

jackknife. A theoretical prediction calculated with CCL is shown as

the solid black line to demonstrate the overall agreement between
the measurements and the data. The vertical black dashed line

corresponds to ` = 1/fsky = 1192 (k ∼ 0.9 Mpc−1 at the mean

redshift of the final sample z̄ ≈ 1.51) which is the minimum `
that we are sensitive to given our footprint size. Bottom panel:

Size of the correction in the power spectra, ∆C`, relative to their
uncertainty, σ`, due to deprojection (blue) of different observing

conditions, and the correction due to weighting by the bright ob-

ject mask (orange) for the dithered (solid lines) and undithered
(broken lines) simulations. We see that the largest impact comes

from the presence of bright objects, and that it is important to

account for the area lost by masking via weighting. The horizontal
dashed lines correspond to a correction of 50% of the statistical

uncertainty, to provide visual guidance.

enhance the impact of the observing conditions over the clus-
tering signal. We can also see that, in the ` range considered
in our analysis, the presence of bright objects – in particular
bright stars – is the dominant systematic effect. In the close
neighborhood to bright objects our ability to detect faint
sources diminishes. These faint sources are blended in the
core or the tails of the brighter objects, resulting in a lower
mean number of detected sources, as shown in Figure 18.
The correction by weighting by the fraction of area covered
in each pixel has a considerable impact at small-scales, being
larger than the statistical uncertainty in this regime. This
showcases again the importance of considering the impact of
blending in the small-scale regime for LSST and this issue
should be carefully studied in future Data Challenges. The
correction due to the presence of bright objects is compara-
ble in both simulations. We expect that for future versions

of the LSST Science Pipelines this effect will be smaller due
to improvements in the deblending and measurement algo-
rithms.

8 CONCLUSIONS

End-to-end simulations are powerful tools for testing the
overall performance of current and future cosmological ex-
periments like LSST. They allow us to validate and improve
various aspects of the data processing and analysis, as well
as to model and improve our control of systematic uncer-
tainties. The access to ground truth allows us to test certain
aspects of the processing and analysis pipelines that would
be otherwise very challenging to test with real data (e.g.,
impact of undetected sources in the fluxes of detected over-
lapping sources). Realistic and validated synthetic datasets
will be required for successful control of systematics.

In this paper, we present an end-to-end simulated imag-
ing dataset that resembles single-band, full-depth (10-year)
LSST data (for the wide-fast-deep survey), for the first data
challenge, DC1, in the LSST DESC. This dataset was gen-
erated by synthesizing sources from cosmological N-body
simulations in individual sensor-visit images with different
observing conditions. Two separate runs of this dataset were
generated with different dither strategies, the dithered run
and the undithered run. The images from both runs were
processed with the LSST Science Pipelines (DM stack).
We perform several quality assurance tests on the result-
ing data products, including all of the LSST Science Re-
quirements (Ivezić et al. 2013) Key Performance Metrics
and the DESC Science Requirements (The LSST Dark En-
ergy Science Collaboration et al. 2018) testable with DC1.
We find ∼ 10% more objects in the dithered simulations
due to their ∼ 0.1 magnitude deeper median depth. Both
datasets successfully meet these requirements, in some cases
this is partly because of the simplicity of the simulation in-
puts (e.g., PSF-ellipticity tests) and more stringent tests will
need to be devised for more realistic data.

We study different ways to relate the output catalogs to
the inputs: The first method uses information about posi-
tions only, and the second involves both positions and mag-
nitudes. For clustering analyses, adding information about
magnitudes results in a lower incidence of spurious matches
and is sufficient for DC1. However, neither of these methods
provides a noiseless match between inputs and outputs. We
also realize that these matching techniques are likely insuf-
ficient for studies of blending or scales smaller than those
considered in this work, since they do not include informa-
tion about undetected sources present in blends. Therefore,
an important research topic for these kinds of end-to-end
simulations is to find efficient strategies to relate inputs and
outputs.

The usage of matching strategies helps us define a final
sample suitable for clustering analyses. After cleaning the
catalog, we find a small fraction (≈ 3.6%) of artifacts, i.e.,
objects with no counterpart in the input. We demonstrated
that our selection criteria are robust given the DC1 area.
However, careful data-selection criteria will be needed to
enable accurate clustering analyses for the larger LSST full
10-year footprint. We anticipate that additional information
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from multi-band coverage and photometric redshifts, will
help us to further refine the selection.

We use our final sample to perform clustering analy-
sis. The results of this analysis indicate that the simulated
foregrounds have a low impact, smaller than the statistical
uncertainty, in both datasets. This is probably due to the
simplicity of our foregrounds, and more complexity will be
added in future Data Challenges. We do not find statistically
significant differences in the impact of systematics between
the dithered and undithered datasets given the area of DC1.
We also see that for ` > 1150 the presence of bright objects
has a larger impact on the power spectra, ≈ 200− 600% of
the statistical uncertainty, highlighting the impact of mask-
ing and blending with bright stars in LSST for small-scale
analyses.

Finally, we have been able to perform an end-to-end test
of our processing and analysis pipelines. The methodology
presented in this work will serve as the basis for future DESC
Data Challenges, where we will aim to perform multi-band
studies in a larger area, use complementary image genera-
tion strategies (PhoSim), and increase the complexity of the
foregrounds included.

APPENDIX A: LSST SRD REQUIREMENTS

In this section we are going to summarize the different re-
quirements that we test for from the LSST Science Require-
ments Document version 11 that can be found at https:

//docushare.lsst.org/docushare/dsweb/Get/LPM-17.

A1 Astrometric requirements

• AA1: Astrometric accuracy check. Minimum absolute
astrometric accuracy. We compute it as the median of the
difference between input and measured centroid positions.
The maximum median value is 100 milliarcseconds.
• AMx: Astrometric repeatability check. Maximum RMS

of the separation between pairs of stars separated by 5 ar-
cmin (AM1: 20 milliarcseconds), 20 arcmin (AM2: 20 mil-
liarcseconds), and 200 arcmin (AM3: 30 milliarcseconds).
• AFx: Astrometric repeatability check. Maximum out-

lier fraction that deviate more than 40 mas (50 mas for AF3)
for the separation between pairs of stars separated by 5 ar-
cmin (AF1: 20 %), 20 arcmin (AF2: 20%), and 200 arcmin
(AF3: 20%).

A2 Photometric requirements

• PA1: Photometric repeatability check. Maximum
RMS/IQR of the magnitude distribution of objects between
different visits. The maximum value allowed is 8 millimags.
• PF1: Photometric repeatability check. Maximum out-

lier fraction that deviate more than 15 millimag (PA2) from
the mean measured magnitude. The maximum outlier frac-
tion allowed is 20%.
• PA6: Photometric accuracy check. Minimum absolute

photometric accuracy. We compute this as the median dif-
ference between the input and measured fluxes for stars. The
maximum allowed is 20 millimag.

A3 Zeropoint uniformity requirements

• PA3: Zeropoint error uniformity. Maximum allowed for
the RMS of the photometric zeropoint error. The maximum
allowed is 15 millimags.
• PF2: Zeropoint error uniformity. Maximum outlier frac-

tion that deviate more than 15 millimag (PA4) in the zero-
point error distribution. The maximum allowed is 10%

A4 Depth requirements

• D1: Minimum depth check. Minimum value for the me-
dian of the 5σ r-band depth for single visits with seeing 0.7
arcseconds, airmass 1.0 and 30 seconds exposure time. The
minimum allowed is 24.3.
• Z1: Minimum depth check. Minimum value for the 20-

th percentile (DF1) of the 5-σ r-band depth distribution
for single-visits with seeing 0.7 arcseconds, airmass 1.0, sky-
brightness fainter than 21 in r-band, and 30 seconds expo-
sure time.
• DB1: Minimum depth check. DB1 is effectively the same

requirement as D1, generalized to other bands (in the case
of DC1 it is exactly the same as D1).
• Z2: Minimum depth check. Maximum variation within

the field of view for the brightest 20-th percentile (DF2)
of the depth in a representative single visit. The maximum
variation allowed is 0.4.

A5 Image quality requirements

• SE1: Maximum PSF ellipticity check. Maximum me-
dian value of the PSF ellipticity modulus. The maximum
allowed is 0.05.
• SE2: Maximum PSF ellipticity check. Maximum value

for the 90th percentile (EF1) of the PSF ellipticity modulus.
The maximum allowed is 0.1.
• SRx: Image quality test. Minimum radii to encircle at

least 80% (SR1), 95% (SR2), and 99% (SR3) of the energy
for a fiducial delivered seeing of 0.69 arcseconds. The values
are 0.80, 1.31, and 1.81 arcseconds for SR1, SR2, and SR3
respectively.
• TE1: PSF ellipticity residual correlation check. Max-

imum value for the median PSF ellipticity correlations
E1, E2, E3 defined in equations (8-10) for θ ≤ 1 arcmin.
The maximum allowed is 3× 10−5.
• TE2: PSF ellipticity residual correlation check. Same as

TE1 but for θ ≥ 5 arcmin. The maximum allowed is 2×10−7.
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