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A Study in Nucleated Polymerization Models of Protein 
Aggregation

Jason K. Davis, Suzanne S. Sindi*

University of California, Merced, School of Natural Sciences, 5200 N Lake Rd, Merced, CA 95343

Abstract

The nucleated polymerization model is a mathematical framework that has been applied to 

aggregation and fragmentation processes in both the discrete and continuous setting. In particular, 

this model has been the canonical framework for analyzing the dynamics of protein aggregates 

arising in prion and amyloid diseases such as as Alzheimer’s and Parkinson’s disease.

We present an explicit steady-state solution to the aggregate size distribution governed by the 

discrete nucleated polymerization equations. Steady-state solutions have been previously obtained 

under the assumption of continuous aggregate sizes; however, the discrete solution allows for 

direct computation and parameter inference, as well as facilitates estimates on the accuracy of the 

continuous approximation.
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1. Introduction

Prion proteins are the cause underlying a host of fatal, mammalian diseases – including 

bovine spongiform encephalopathy (mad cow disease), fatal familial insomnia, and 

Creutzfeldt-Jakob disease [1, 2, 17]. These diseases arise when a misfolded (prion) form of a 

protein appears and forms aggregates. Aggregates of the misfolded form act as templates to 

convert the normally folded protein to its misfolded state. Fragmentation of prion aggregates 

amplifies the number of templates facilitating the spread of the disease [8, 15]. Beyond 

prions, linear protein aggregates (amyloids) are associated with over 20 neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s disease [9].

Since the formation of an initial stable nucleus of misfolded proteins is viewed as the time-

limiting step in spontaneous or genetic prion diseases, most mathematical models have 

focused on the time-evolution of the aggregate size distribution [12, 13]. The nucleated 

polymerization model [11] has been extensively analyzed and results on the existence, 
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uniqueness, and stability of solutions are known [5, 7, 16]; with a continuous relaxation on 

aggregate size, the asymptotic density is also known [5, 14]. While the continuous-size 

approximation is valid for large average aggregate sizes [4], this condition need not apply to 

all prion systems [3].

Aggregates of protein monomers are discrete in nature and much can still be said regarding 

the original, discrete formulation. We provide an explicit, closed-form solution for the 

steady-state distribution of discrete aggregate sizes. By doing so, we consider the asymptotic 

aggregate dynamics without resorting to continuous approximations. The closed form 

solution allows for explicit computation of statistics that may be useful for parameter 

inference. Finally, we compare our discrete steady-state solution to the continuous 

approximation.

2. Mathematical Analysis of Prion Aggregation and Fragmentation

2.1. Discrete Nucleated Polymerization Model

The dynamics of prion aggregates are typically modeled by the nucleated polymerization 

model first introduced by Masel et al. [11]. In this model, normal protein is converted to the 

prion form through contact with existing aggregates. Existing aggregates may also fragment 

into two smaller aggregates. The equations for the nucleated polymerization model may be 

written as follows:

ds
dt = α − μs(t) − 2βs(t) ∑

i = n0

∞
ui(t) + γn0 n0 − 1 ∑

i = n0

∞
ui(t) (1)

dui
dt = − 2βs ui(t) − ui − 1(t) − μui(t) − γ(i − 1)ui(t) + 2γ ∑

j = i + 1

∞
u j(t) . (2)

Above, s(t) denotes the concentration of the healthy (non-prion) protein monomers, ui(t) the 

concentration of prion aggregates of size i, n0 the minimum stable aggregate size (we write 

ui(t) ≡ 0 for i < n0), α the rate of translation of monomers, μ the dilution or degradation rate, 

and β the rate of conversion of monomers by prion aggregates. The parameter γ describes 

the rate of aggregate fragmentation. In our formulation, we follow the conventional 

assumption that prion aggregates are linear polymers and thus fragmentation may occur 

between any two prion monomers [5, 7, 11, 16]. That is, if γ is the rate of fragmentation 

between any two prion monomers, then the rate of fragmentation of an aggregate of size i ≥ 

n0 is γ(i − 1). (Note that alternative models for aggregate conversion and fragmentation have 

also been considered [4, 6].)

The standard approach for analyzing the discrete nucleated polymerization model is to 

define auxiliary variables for the zeroth and first moments of the aggregate sizes [11, 17]. 

Let η = ∑i = n0
∞ ui and z = ∑i = n0

∞ iui. Then, the system will close over the moments of the 

density:
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ds
dt = α − μs(t) − 2βs(t)η(t) + γn0 n0 − 1 η(t) (3)

dη
dt = − μ + γ 2n0 − 1 η(t) + γz(t) (4)

dz
dt = 2βs(t)η(t) − μz(t) − γn0 n0 − 1 η(t) . (5)

This 3-dimensional system has two steady-state solutions, one corresponding to a disease-

free state where all prion aggregates are eliminated and one corresponding to persistence of 

the prion disease [16], i.e. an endemic equilibrium. Furthermore, Prüss et al. [16] observed 

that the system can be transformed to a standard epidemiological model and found the basic 

reproductive number, ℛ0, that determines the stability of the disease. However, these results 

say little about the density profile of aggregate sizes. Since this system has solutions that 

exist for all time, we treat s(t), η(t), and z(t) as known functions and rewrite (2) as follows:

dui
dt = − 2βs(t) ui(t) − ui − 1(t) − μui(t) − γ(i + 1)ui(t) + 2γ η(t) − ∑

j = n0

i − 1
u j(t) . (6)

Henceforth we consider only the system at equilibrium, i.e. when 
dui
dt = 0 for each i and 

ds
dt = 0. We write s(t), η(t), z(t), ui(t) → s, η, z, ui as t → ∞, where s = α/μ, η = z = 0 in the 

case of the disease-free state or

2βs
γ = n0 + μ

γ n0 + μ
γ − 1 , z

η = 2n0 − 1 + μ
γ , s + z = α

μ , (7)

in the case of the endemic state.

2.2. Asymptotic Distribution of Aggregate Sizes

Let ζ = n0 + μ
γ  and define vi = (un0−1+i)/η and v0 = 0, w0 = 1. Though we divided by η, we 

treat this formally – our result will still be valid in the disease-free case when η = 0. As 

observed by Masel et al. [11], the density will satisfy the following recurrence relation:

vi =
ζ2 − ζ vi − 1 + 2wi − 1

ζ2 + i
, (8)

wi = wi − 1 − vi . (9)

We instead consider the equivalent 2nd order recurrence relation:
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0 = ζ2 + i + 2 vi + 2 − 2ζ2 − ζ + i − 1 vi + 1 + ζ2 − ζ vi, (10)

where v0 = 0 and v1 = 2
1 + ζ2 . The solution to (10) is plotted in Figure 1.

Our first contribution is an analysis of this 2nd order recurrence relation by finding its 

generating function. Other authors have considered related recurrence relations but resort to 

its approximation by an ODE in order to obtain an approximate solution [14]. We instead 

treat it exactly by defining f (x) = ∑i = 0
∞ vix

i; from (10), we obtain

f ′(x) + ζ2

x + 2
1 − x − ζ(ζ − 1) f (x) = 2

1 − x , (11)

which has solution

f (x) = 2(1 − x)2

xζ2 eζ(ζ − 1)x∫
0

x sζ2

(1 − s)3e−ζ(ζ − 1)sds . (12)

We refer the reader to the supplemental materials for the details, but after some 

manipulation, we find the power series for f(x) and determine

vm =

0 m = 0
2/ 1 + ζ2 m = 1

[2(ζ − 1)(2ζ + 1)]/ ζ2 + 1 ζ2 + 2 m = 2

m(2ζ + m − 1)
Γ ζ2

Γ ζ2 + m + 1
ζm(ζ − 1)m − 1 m ≥ 3.

(13)

This yields um, the steady-state concentration of aggregates of size m, since 

um = ηvm − n0 + 1.

3. Comparison to the Continuous Approximation

As mentioned earlier, an alternative approach to studying aggregate size dynamics is to 

approximate aggregate sizes as continuous. This is a common approach to studying a broad 

class of “coagulation-fragmentation”-like equations, and generally speaking, the discrete 

system will converge to continuous system in the macroscopic limit; that is, as the average 

aggregate cluster size gets larger. This results remain true under very general assumptions on 

the coagulation and fragmentation terms of the model [10, 19]. This analysis was done 

specifically for the nucleated polymerization equations by Doumic et al. [4]. The scaling 

arguments in [4] yield weak convergence under more general modeling assumptions as well 

as over time; we will show a stronger convergence, but only at steady-state and under the 

assumptions used to derive our solutions.
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Since ζ = n0 + μ/γ is the average size in our scaled, translated system of {vi}, we will study 

the limit ζ → ∞ in relation to the continuous system solution, which we now describe. (We 

refer the reader to [5, 7, 16] for a full analysis of this continuous model.)

The evolution of the continuous aggregate size distribution is governed by the following 

system of ordinary and partial differential equations:

ds
dt = α − μs(t) − 2βs(t)η(t) + γx0

2η(t) (14)

dη
dt = − μ + 2γx0 η(t) + γz(t) (15)

dz
dt = 2βs(t)η(t) − μz(t) − γx0

2η(t) (16)

∂u
∂t = − 2βs(t)∂u

∂x − μu(t, x) − γxu(t, x) + 2γ∫
x

∞
u(t, y)dy . (17)

At steady-state, we have s = α/μ, η = z = 0 in the case of the disease-free state, or

2βs
γ = x0 + μ

γ
2
, z

η = 2x0 + μ
γ , s + z = α

μ , (18)

and

0 = − 2βs∂u
∂x − μu(x) − γxu(x) + 2γ∫

x

∞
u(y)dy . (19)

in the case of the endemic equilibrium.

The analysis of and solution to Equation (19) is specifically studied in Engler et al. [5]; we 

list the solution below (writing v(x) = u(x + x0)/η), alongside our discrete solution:

vm = 1
ζ2(ζ − 1)

m(2ζ + m − 1)
Γ ζ2 + 1

Γ ζ2 + m + 1
(ζ(ζ − 1))m,

v(x) = 1
ζ3 x(2ζ + x)e

− 1
2ζ2 x(2ζ + x)

. (21)

Note that in (21) we set x0 = n0 so that ζ is the same in both the continuous and discrete 

cases. Assume m ≪ ζ2 and consider the following:
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log
vm

v(m) = − log 1 − 1
ζ + log 1 − 1

2ζ + m + m(2ζ + m)
2ζ2

+ mlog 1 − 1
ζ − ∑

i = 1

m
log 1 + i

ζ2

= 1
ζ − 1

2ζ + m + m(2ζ + m)
2ζ2 − m

ζ − 1
ζ2 ∑

i = 1

m
i + O m

ζ2

= 1
ζ − 1

2ζ + m + O m
ζ2 .

(22)

Clearly then, as ζ → ∞, vm → v(m). Treating m as fixed, we have 
vm − v(m)

v(m) = O(1/ζ), as 

demonstrated in Figure 2a. Finally, to compare the actual aggregate density we need the 

asymptotic relationship between the continuous and discrete values of η (denoted ηc and ηd, 

respectively). Let us also define κ = 2αβ
γμ . Then,

ηd
ηc

=
x0 + ζ

n0 − 1 + ζ
κ − ζ(ζ − 1)

κ − ζ2 = 1 + O(1/ζ) . (23)

This yields

um − u(m)
u(m) =

ηd
ηc

vm − n0 + 1 − v m − n0 + 1

v m − n0 + 1 = O(1/ζ) . (24)

Therefore, the continuous aggregate size distribution converges to the discrete distribution at 

a relative rate proportional to O(ζ−1). This is without requiring a continuity correction, e.g. 

u(m) = ∫ m − 1/2
m + 1/2u(x)dx.

4. Discussion and Conclusions

Although continuous approximations of aggregate sizes are clearly useful, we anticipate that 

with increasing ability to resolve aggregate sizes from atomic force microscopy [20], the 

discrete nature of protein aggregates are likely to become an experimental reality. As such, 

the ability to consider discrete size distributions, will be important.

Using generating functions, we determined a closed form for the aggregate size distribution 

at steady-state under the nucleated polymerization model. With this solution, we were able 

to directly compare to the continuous relaxation and establish stronger convergence than was 

previously known for the limit of large, average aggregate sizes (ζ = n0 + μ/γ → ∞). We 

provide additional calculations for novel statistics of the discrete density (mode and 
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variance) in the supplemental materials that were also hitherto unknown; statistics that may 

facilitate parameter estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Density solution of the discrete nucleated polymerization equations, with parameter values 

from Tanaka et al. [18]. (ζ = 101.25).
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Figure 2: 
Numerical verification of asymptotic error estimates.

(a) m versus â, where â is the least-squares estimate from the linear model 

log2
vm − v(m)

v(m) = alog2ζ + b; here, log2 ζ is sampled uniformly in [10, 25). This is roughly in 

agreement with our asymptotic estimate – the slow increase in large m is due to violations of 

the assumption that m/ζ2 ≪ 1.

(b) log2 ζ versus log2
vm − v(m)

v(m) , for m = 10 and m = 400. Notice that for large m (dashed 

line), the scaling is not linear for small ζ. This effect is what decreases the least-squares 

estimate in Figure 2a and is remedied by considering only ζ where m/ζ2 ≪ 1.
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