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Abstract

Purpose—To assess the potential of a transfer learning strategy leveraging radiologist 

supervision to enhance Convolutional Neural Network-based (CNN) localization of pneumonia 

on radiographs. To further assess the prognostic value of CNN severity quantification on patients 

evaluated for COVID-19 pneumonia, for whom severity on presenting radiograph is a known 

predictor of mortality and intubation.

Materials and Methods—We obtained an initial CNN previously trained to localize pneumonia 

along with 25,684 radiographs used for its training. We additionally curated 1,466 radiographs 

from patients who had a CT performed on the same day. Regional likelihoods of pneumonia 

were then annotated by cardiothoracic radiologists, referencing these CTs. Combining data, a 

pre-existing CNN was fine-tuned using transfer learning. Whole-image and regional performance 

of the updated CNN was assessed using ROC AUC and Dice. Finally, the value of CNN 

measurements was assessed with survival analysis on 203 patients with COVID-19 and compared 

against mRALE score.

Results—Pneumonia detection AUC improved on both internal (0.756 to 0.841) and external 

(0.864 to 0.876) validation data. Dice overlap also improved, particularly in the lung bases (R: 

0.121 to 0.433, L: 0.111 to 0.486). There was strong correlation between radiologist mRALE 

score and CNN fractional area of involvement (ρ=0.85). Survival analysis showed similar, strong 

prognostic ability of the CNN and mRALE for mortality, likelihood of intubation, and duration of 

hospitalization among patients with COVID-19.
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Conclusions—Radiologist-supervised transfer learning can enhance the ability of CNNs to 

localize and quantify severity of disease. Closed loop systems incorporating radiologists may be 

beneficial for continued improvement of artificial intelligence algorithms.

Keywords

transfer learning; COVID-19; artificial intelligence; chest radiograph; chest computed 
tomography; patient outcomes; closed loop; radiograph

Introduction

Pneumonia and subsequent acute respiratory distress syndrome (ARDS) are the principal 

causes of death from COVID-19. Chest radiography and CT play an important role 

in evaluating pulmonary involvement. As the pandemic has evolved, quantification of 

pneumonia severity has increasingly been sought as a marker of disease severity1–9 and 

standardized guides for reporting severity have emerged10. While CT provides exquisite 

detail of the lung parenchyma, in the United States, it is primarily used as a problem-

solving modality or to assess complications associated with COVID-19. In contrast, chest 

radiographs are often obtained during numerous time points throughout the course of 

disease11. Chest radiograph based semi-quantitative scoring metrics like the Radiographic 

Assessment of Lung Edema (RALE) have been shown to correlate with survival in ARDS12, 

found to be predictive for the likelihood of intubation and mortality, and proposed to help 

guide clinical management13–15.

Several investigators have begun to explore convolutional neural networks (CNNs) to assist 

with interpretation of chest radiographs. Many of the earliest approaches applied whole-
image classification strategies based on findings extracted from radiologist reports16–19, and 

have recently applied these strategies to identify COVID-192,5–9. While these studies have 

begun to show the diagnostic potential of CNNs, it is often difficult to interpret the reasons 

that the CNN makes a particular classification, a concept in machine learning known as a 

network’s “explainability”20. A lack of explainability currently limits the clinical utility of 

many algorithms. Various methods have been proposed to highlight areas of the image that 

are used by the CNN21 post hoc, but these algorithms are often inconsistent or unreliable22.

More recently, pixel-wise segmentation CNNs have been proposed as an alternative strategy 

to whole-image classification. Pixel-wise segmentation CNNs provide natural explainability 

by directly localizing foci of pneumonia while achieving similar diagnostic performance 

to whole-image classification CNNs23. Furthermore, segmentation CNNs benefit from pixel-
wise labels that provide a more granular definition of ground truth. While labeling requires 

radiologists to participate in image annotation, it can allow radiologists to influence and 

directly teach CNNs to highlight areas of concern and enable CNNs to adapt to new data 

observed in the clinical environment. Transfer learning allows the CNN to incorporate 

knowledge from different but related source domains, and can produce highly accurate 

models from a smaller number of images than may be required to train a CNN from 

scratch24.
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During the first wave of the pandemic in 2020, we began evaluation of a pixel-wise 

segmentation CNN for pneumonia detection23 in our clinical environment25. We observed 

several flaws that were not captured in the summary statistics of performance. First, 

the CNN was not able to reliably detect pneumonias in the lung bases, especially the 

retrocardiac region behind the heart. Second, cardiothoracic radiologists easily identified 

smaller foci of pneumonia involving less than a whole lobe or entire lung from the clinical 

images, which the CNN could not identify. We thus considered the use of transfer learning 

to improve the performance of our CNN. We hypothesized that cardiothoracic radiologists 

could participate in the fine-tuning of CNNs by leveraging their ability to cross-reference 

findings between CT and radiographic images obtained on the same day. This might serve 

as a more reliable definition of ground truth for algorithm training. After performing transfer 

learning, we evaluated the performance of the updated CNN to detect viral pneumonia 

on patients with COVID-19 at our institution, testing its ability to prognosticate clinical 

outcomes as an additional benchmark of effectiveness.

Materials and Methods

The first aim of this retrospective HIPAA-compliant and IRB-approved study sought to 

improve the ability of a previously trained U-net CNN (initial CNN) to detect and localize 

pneumonia on frontal chest radiographs23. This was accomplished by integrating a new data 

set, locally annotated by subspecialty cardiothoracic radiologists, through a process called 

transfer learning. The second aim was to assess the ability of this updated CNN to quantify 

severity of pneumonia, relative to visual scoring by subspecialty chest radiologists. The 

final aim assessed the effectiveness of the automated pneumonia quantification algorithm to 

prognosticate outcomes in patients with COVID-19.

Data and Annotations for Transfer Learning

Two data sets were used for transfer learning. First, we retrospectively curated an “internal 

data set” consisting of a consecutive series of 1,466 frontal chest radiographs and paired 

chest CTs performed on the same day from patients 18 years or older from January 2020 to 

April 2020. No additional inclusion or exclusion criteria were used, to ensure inclusion of 

concurrent illnesses that occur in our local population. Foci of pneumonia were annotated on 

frontal radiographs based on findings on the corresponding CT. Exams were split amongst 

five board certified cardiothoracic radiologists with an average of 4.6 years (range 2–12 

years) post-fellowship experience using in-house developed annotation software, which 

enabled pixel-wise probability assignment to each pixel of the image. No additional clinical 

information was available to the radiologist.

Second, we obtained an “external data set” comprising 25,684 radiographs along with their 

bounding box annotations of pneumonia19,26. These same radiographs and annotations were 

also used in the training of a previous CNN23, which we refer to as the initial CNN.

Data were split by patient with approximately 80% used for training and 20% for evaluation. 

An overview of the data sources used for training and their data split for evaluation is 

provided in Table 1 and Figure 1.
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Neural Network Training

To improve the performance of the CNN with the additional internal data, we had to solve 

two problems, which are conceptualized in Figure 2. First, we had to identify the optimal 

balance of external and internal data that would maximize the performance of the CNN. 

Second, we had to select between multiple potential loss functions that could optimize 

performance. We thus conducted a hyperparameter search, simultaneously searching across 

these two groups of variables, which produced 102 candidate CNNs. The details of the 

hyperparameter search are provided in the supplemental materials, Supplemental Digital 

Content 1, http://links.lww.com/JTI/A205. Candidate CNNs were ranked based on area 

under the receiver operating curve (AUC) and Dice similarity of overlap for their ability to 

detect and localize pneumonia (detailed further below) from the internal evaluation cohort. 

A single CNN with the highest AUC and Dice was selected from these candidates as the 

updated CNN for subsequent analysis.

An additional CNN was trained from scratch using only the internal data to provide an 

additional benchmark for comparison. This de novo CNN was identical in structure as the 

initial CNN, trained from random initial weights with the same loss function used to train 

the updated CNN. CNN training was carried out by a radiology resident ([blinded]) using 

a NVIDIA cloud cluster of 32 GV100s leveraging Kubernetes (Linux Foundation, https://

www.kubernetes.io) running Ubuntu 18.04 (Linux Foundation, https://www.ubuntu.org) 

using the TensorFlow 2.0 library27 for the Python 3.8 programming language (Python 

Software Foundation, https://www.python.org).

Post-Processing and Quantification of Regional Severity

In order to quantify the severity of pneumonia, we applied post-processing to the resulting 

probability map generated by the CNNs. We created a separate CNN to segment the right 

and left lung (described in supplemental materials, Supplemental Digital Content 1, http://

links.lww.com/JTI/A205), which we then used to divide the lungs into upper, middle, and 

lower lung zones. The probability map generated by the CNN was then multiplied by the 

lung zone masks to estimate regional involvement of pneumonia. We then constructed three 

metrics of severity: Maximum probability was defined as the maximum probability in each 

region, mean probability was defined as the mean within each region, and the fractional 

area was defined as the fraction of the region exceeding a probability of 50%. A detailed 

methodology is provided in the Supplemental materials, Supplemental Digital Content 1, 

http://links.lww.com/JTI/A205.

Evaluation of Pneumonia Detection and Localization

Whole-image pneumonia detection performance was evaluated on the initial, de novo, and 

updated CNNs using sequestered validation cohort, comprising 304 internal and 3,684 

external radiographs. For each CNN, we compared AUCs for both internal and external 

data. Dice similarity was compared only on internal data with its higher quality ground 

truth annotation. Pneumonia detection ROCs were constructed by varying the threshold 

on the inferred probability maps, while setting a binary threshold on the ground truth 

annotations. Sensitivities, specificities, positive and negative predictive values, and accuracy 
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were calculated at an operating point that equally maximized sensitivity and specificity 

(Youden’s J-index)28.

To assess regional performance, we additionally performed the same analyses as above, 

using only the 304 internal radiographs with high-quality ground truth annotations. We 

also evaluated the performance of our lung segmentation CNN with Dice similarity 

coefficient, comparing ground truth annotations to the inferred masks. Statistical analyses 

were performed using the scipy package in python with two-sided paired t-tests and a type I 

error rate of 0.05. To compare AUC, we applied bootstrap sampling with 80% of the data to 

evaluate statistical significance between CNNs.

Prognostication in Patients with COVID-19

To assess the ability of the updated CNN to prognosticate hospital outcomes, we 

retrospectively obtained an additional independent sample of 1,479 chest radiographs 

between March and July of 2020 from patients with RT-PCR confirmed COVID-19 (Figure 

1). Each of the chest radiographs from this cohort were independently scored by two 

readers, evenly split amongst five cardiothoracic radiologists. The density and extent of 

the radiographic opacities were scored using a modified Radiographic Assessment of Lung 

Edema (mRALE) scoring system as previously described in Li et al. 20211. The mRALE 

score is calculated based on visual assessment of the extent and density of airspace disease 

and range from 0 (normal chest radiograph) to a maximum of 24 (complete consolidation 

of both lungs). Inter-reader mRALE agreement between radiologists was assessed by linear 

Cohen’s κ.

Of these 1,479 radiographs, 203 were performed on unique patients within the first 3 

days of presentation or admission. None of these patients were included in algorithm 

training. Of these, 7% were obtained in the outpatient setting, 58% in the ER, 35% in the 

inpatient setting, 16% in the ICU, and 12% were intubated. Dates of admission, discharge, 

intubation, and death were collected from the medical record. Kaplan-Meier curves for three 

outcomes (intubation, mortality, duration of hospitalization) and correlation analyses were 

performed on 203 COVID-19+ patients, using the radiographs taken within the first three 

days of presentation. mRALE scores were averaged between the two readers for each of 

these radiographs. Correlation between mean mRALE score with severity score (maximum 

probability, mean probability, and fractional area) was measured using Pearson’s correlation 

coefficient. For survival analysis, mRALE scores were divided into four categories of 

severity (0–6, 7–12, 13–18, 19–24), and each CNN severity score was divided into quartiles. 

Survival analyses were performed using the survival and survminer29 packages in R. To 

assess the statistical significance of stratification between scores or quartiles, we conducted 

post-hoc pairwise comparisons of each quartile using the log-rank statistic with Benjamini-

Hochberg multiple test correction.
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Results

Selection of the Optimal CNN Algorithm

The top ten candidate CNNs are listed in Supplemental Table 1, Supplemental Digital 

Content 2, http://links.lww.com/JTI/A206. We selected the top performing candidate (“30x 

Pixel-Weighted MSE”) CNN and refer to this as our updated CNN for all subsequent 

analyses. The CNN with greatest performance was optimized using a mean squared error 

loss function with a 30-fold weighting of pixels exceeding 20% on the ground truth 

pneumonia probability map. This CNN used an external training data mix of 1,200 negative 

cases and 600 positive cases for each epoch of training.

Whole-Image Pneumonia Detection and Localization Performance

The updated CNN significantly outperformed the initial CNN for detection of pneumonia on 

both the internal and external validation data sets (Figure 3, Table 2). AUC improved on the 

internal validation data set from 0.756 to 0.841 (p<1e-4). Similarly, AUC on the external 

validation data set improved from 0.864 to 0.876 (p=2.6e-3). In addition, pneumonia 

localization improved on the internal validation data set with a mean Dice improvement 

of 0.147 to 0.332 (p<1e-3). The updated CNN also outperformed the de novo CNN, which 

had AUC of 0.771 for internal data and 0.812 for external data. Comparisons on both data 

sets were statistically significant (p<1e-7). Dice overlap for the de novo CNN was similar to 

the updated CNN on internal data, 0.295, without a statistically significant difference.

Regional Pneumonia Detection and Localization Performance

The lung segmentation CNN achieved a Dice mean and standard deviation of 0.869 ± 

0.084, despite training on only 237 chest radiographs. On the portion of the internal data 

set reserved for validation (n=304), AUC for detection of pneumonia improved from 0.739 

to 0.812 for the right lung (p=1.0e-3) and from 0.776 to 0.848 on the left lung (p=1.5e-2). 

We observed the largest AUC improvement in the lower lung regions, from 0.747 to 0.808 

(p=2.1e-2) on the right and from 0.824 to 0.878 (p=3.7e-2) on the left (see Table 3 for 

complete regional detection performance). Similarly, mean Dice scores for areas marked as 

involved with pneumonia improved from 0.154 to 0.333 (p=6.0e-6) for the right lung and 

from 0.161 to 0.395 (p=1.6e-2) in the left lung. We observed the biggest improvement in the 

lower lung regions, increasing from 0.121 to 0.433 (p=2.4e-11) for the right lung and from 

0.188 to 0.443 (p<3.9e-15) for the left lung (see Table 4 for complete regional localization 

performance).

Exemplar cases are highlighted in Figures 4–7. Figure 4 illustrates the relationship between 

the radiologist’s CT-aided annotation and updated CNN’s inferred severity of pneumonia. 

Figure 5 illustrates the updated CNN’s improved sensitivity for foci of COVID-19 

pneumonia in a patient who had a CT performed hours after the radiograph. Figure 6 

illustrates the improvement in sensitivity of the updated CNN for more subtle opacities of 

COVID-19 pneumonia, as it blooms over several days. Figure 7 illustrates the regions of 

lung involvement inferred by the updated CNN in three additional subjects with COVID-19.
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Severity Score and Survival Analysis

The inter-rater correlation for mRALE scores for 1,479 radiographs scored by five 

cardiothoracic radiologists was substantial (linear Cohen’s κ, mean 0.72). For the 203 

radiographs that were obtained within 3 days of initial presentation, there was strong 

agreement between mRALE score and each of the metrics from the updated CNN: 

mean probability (ρ=0.86, p<2.2e-16), fractional area (ρ=0.85, p<2.2e-16), and maximum 

probability (ρ=0.64, p<2.2e-16).

As anticipated, survival analysis showed that patients with lowest mRALE score had the 

best median survival, lowest probability of intubation, and shortest duration of hospital stay 

(Figure 8). Patients with highest mRALE score had the opposite result. CNN estimates of 

severity showed similar stratification. Notably, mean probability and fractional area both 

strongly stratified patients for all three clinical endpoints, though mRALE scores averaged 

between two radiologists was superior for prognosticating mortality. A low “maximum 

probability” estimated by the CNN was a strong predictor of immediate discharge without 

need for hospitalization. A complete list of log-rank pairwise comparisons with Benjamini-

Hochberg correction are provided in Supplemental Table 1, Supplemental Digital Content 2, 

http://links.lww.com/JTI/A206.

Discussion

In this study, we demonstrate the flexibility and plasticity of CNNs to learn from expert 

supervision by subspecialist cardiothoracic radiologists and show an improved ability to 

detect and localize pneumonia. We observed that the performance of the CNN trained 

initially only on external image data did not perform well on radiographs performed at our 

institution, as is often expected18. Similarly, the performance of the de novo CNN trained 

solely on a relatively small number of cases from our institution showed relatively weak 

performance. The optimal CNN was ultimately found leveraging a combination of both data 

sources. Interestingly, the de novo CNN showed greater performance on external data than 

internal data. We speculate that this was because the internal data included more patients 

with subtle, smaller foci of pneumonia, which made the “internal” task more challenging. 

Other explanations for difference in performance may include differences in equipment, 

image pre-processing, down-sampling strategies, and quality of image annotation. There 

may have been differences in patient factors as well, including differences in demographics, 

body habitus, frequency of concurrent disease like cancer or heart failure, and types and 

severity of pneumonia.

Using a transfer learning approach, we were able to specifically improve the localization of 

lower lobe pneumonias, which were not well addressed by the initial CNN. Additionally, 

training a de novo CNN, showed inferior results compared to our updated CNN, suggesting 

that transfer learning may be a better approach for extending generalizability of CNN 

algorithms across institutions. Specifically, we highlighted how this transfer learning 

strategy can maximize performance of a CNN by combining and balancing the benefit 

of two distinct data sets: (a) a smaller number of chest radiographs with more precisely 

defined ground truth, and (b) a larger volume of radiographs with less precisely defined 

ground truth. This strategy is made feasible because of our choice to use a segmentation 
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CNN called a U-Net, which provides natural explainability through its production of image 

maps that can be readily interpreted by a supervising radiologist and engage this as a natural 

human-machine interface.30

Much of the existing literature has emphasized classification algorithms16–19,31 and have 

shown impressive performance without explicit radiologist annotations, with AUCs for 

pneumonia detection ranging from 0.633 to 0.91116–19,31. Classification CNNs are an 

attractive approach because they do not require manual radiologist labeling and localization 

of the findings on chest radiograph, but generally require very large data sets on the order 

of hundreds of thousands of chest radiographs to achieve a high level of performance. 

However, they often lack clear explainability to their results, requiring post-hoc methods 

to reveal their rationale for classification32. Furthermore, it is unclear how classification 

approaches might benefit from radiologist supervision. In contrast, we show that by 

leveraging an alternative segmentation approach, it is possible to markedly improve 

performance of a pre-trained CNN to perform better in our clinical environment after 

incorporating training with a modest number (1,172) of additional radiographs, while 

substantially increasing AUC on radiographs in our clinical environment from 0.756 to 

0.841. This result highlights an opportunity for radiologists to participate in the tuning 

of CNN algorithms for clinical use. While the development of AI algorithms has been 

considered by many to be the domain of industry or research laboratories, these results 

suggest that radiologists may play an essential role in the training and tuning of CNNs for 

their local environments.

Using a segmentation strategy also yields other benefits, including the simultaneous 

quantification of disease. We show that with it is feasible to accomplish both detection 

and segmentation of pneumonia with a single segmentation CNN, which can be further 

leveraged to quantify disease severity. The performance of this strategy is comparable to 

recently described dedicated algorithms for grading severity of pneumonia25. Additionally, 

we find that measurements made through our CNN provide strong prognostic value, 

particularly among patients with COVID-19 at our institution; they were able to stratify 

patients that required longer durations of hospitalization, required intubation, or ultimately 

succumbed to COVID-19. Furthermore, it is important to note that severity scoring of 

pneumonia is not routinely performed at most institutions as part of routine clinical 

practice. CNNs may fill new roles in diagnostic radiology as they are able to automatically 

track disease severity and prognosticate patient outcomes to assist in patient triage or 

management, as deployed into the clinical environment25,33.

The strategy outlined in this study is one of several possible approaches to improve a 

pneumonia detection/localization CNN. Other ways to improve the CNN’s performance may 

include pre-processing radiographs to exclude rib shadows34, altering the CNN architecture 

to additionally predict whole-image pneumonia likelihood or severity, and other transfer 

learning techniques such as differential CNN weight freezing during training. Whatever the 

technique, understanding how the data and the loss functions affect the training is pivotal to 

CNN improvement.
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There are several limitations to this study and its proof of technical feasibility. First, 

the proposed algorithm does not incorporate clinical factors such as symptomatology, 

body temperature, or supporting laboratory findings, which are necessary for diagnosis 

of pneumonia. Future algorithm improvements may benefit from integrating non-imaging 

clinical data. Second, our lung segmentation’s performance does not approach that of 

similar CNN-based techniques35. In the future, our algorithm may be improved through 

using more training examples, using other CNN architectures, or non-CNN computer vision 

techniques that have proven effective in lung segmentation36. Additional improvements 

could include converting regional lung zone segmentations to the lobar anatomic correlates 

using lateral radiographs. Third, our algorithm was generated from patients at one academic 

institution in the United States and may benefit from additional data sources to ensure broad 

generalizability. Nevertheless, as emphasized earlier, we anticipate that continuous learning 

may become an important facet of this technology. It remains unclear how algorithms 

may improve through incorporation of multi-institutional data sets, fine-tuning that may be 

required to extend across regional populations, and control for technical differences; The 

strategy that we have highlighted here may be primarily beneficial for the latter caveat. 

Finally, we only explored survival analyses from a cross-section of COVID-19 patients at 

the single time point of their initial presentation. Longitudinal analyses incorporating chest 

radiographs and their temporal evolution may further improve prognostic value.

We successfully show that a transfer learning strategy incorporating radiologist-defined 

ground truth is feasible and can serve as an important strategy to improve CNN 

performance. This may be necessary for CNNs to perform effectively across new and 

constantly changing clinical environments. As we have observed from the COVID-19 

pandemic, the practice of diagnostic radiology is dynamic and constantly evolving. To 

maximize their clinical value, artificial intelligence systems may benefit if designed to 

continuously learn from radiologist expertise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Data sources and performance benchmarks for CNN training, validation, and testing.
We retrospectively obtained data from two cohorts of patients to first fine-tune a prior 

Convolutional Neural Network (CNN), and then evaluate the CNN on patients with 

COVID-19 pneumonia. Algorithm technical performance was technically evaluated with 

receiver operator characteristic area under the curve (ROC AUC) and Dice overlap 

of segmentations. Algorithm clinical performance was evaluated in the second patient 

population by assessing co-linearity with radiologist modified radiographic assessment of 

lung edema (mRALE) scores and survival analyses.
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Figure 2. Transfer learning training strategy for CNN fine-tuning with enhanced ground truth.
An initial convolutional neural network (CNN) trained on external image data was refined 

on images and annotations of pneumonia from patients with chest x-ray and computed 

tomography that was obtained on the same day. Hyperparameters of loss function and 

training data that balanced multiple data sources were used to optimize the CNN’s detection 

of pneumonia.
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Figure 3. Improved performance of CNN pneumonia detection with transfer deep learning.
The updated CNN (yellow) significantly outperformed the initial CNN (green) on both 

external (left) and internal (right) validation data sets. The AUC of pneumonia detection 

on the internal data set improved from 0.756 to 0.841 (right panel green to yellow; 

p=2.0e-4), and from 0.864 to 0.876 on external image data (left panel green to yellow; 

p=3.8e-3). Finally, the de novo CNN (gray), trained with only internal data, significantly 

underperformed the updated CNN. Operating points (circles) for initial and updated CNNs 

were defined by equally maximizing sensitivity and specificity (Youden’s J-Index) applied 

to the external and internal data sets, respectively.
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Figure 4. Quantification of the regional severity of pneumonia.
Results are shown from a patient in the validation set. Manual annotations by a 

cardiothoracic radiologist (top row) closely matched the regions of pneumonia detected 

by the updated convolutional neural network (CNN) (bottom row). Regional quantitative 

measurements from manual radiologist annotation and the CNN were similar.

Hurt et al. Page 15

J Thorac Imaging. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Improved pneumonia localization in a patient with COVID-19.
Chest radiograph and coronal CT PE images in a 66-year-old male with a history of a 

cardiac transplant and PCR+ COVID-19 who presented with acute hypoxemic respiratory 

failure. The updated CNN (top right) better localizes areas of ground glass than the initial 

CNN (top middle), which are confirmed by CT performed several hours later (bottom 

row), which shows peripheral and basal predominant ground glass opacities consistent with 

COVID-19 pneumonia.
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Figure 6. Longitudinal change in pneumonia in a patient with COVID-19.
This 42-year-old man initially presented with nasal congestion, minimal cough, intermittent 

sweats, and no shortness of breath. COVID-19 RT-PCR was positive on day 0 and he was 

discharged to home self-isolation. The patient returned on day 4 with acute worsening of 

shortness of breath, fever, chills, myalgias, arthralgias, anosmia, cough, pleuritic chest pain 

and was admitted with sepsis. Patient was discharged to home on day 10. Subtle ill-defined 

opacities are present on the initial chest x-ray, which bloom considerably 4 days later, and 

are highlighted with greater certainty by the updated CNN algorithm.
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Figure 7. Updated CNN pneumonia localization on radiographs from three patients with 
COVID-19 pneumonia.
Panel A shows subtle bilateral perihilar and lower lung opacities detected with intermediate 

confidence by the updated CNN. Panel B shows diffuse bilateral opacities in an intubated 

patient detected with high confidence by the updated CNN. Panel C shows a chest 

radiograph with peripherally predominant bilateral basal opacities, confirmed by CT 2 hours 

later.
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Figure 8. CNN pneumonia severity score and radiologist visual score of x-rays of patients with 
COVID-19.
Panel A- Correlation to radiologists’ visual scoring: Convolutional neural network (CNN) 

severity metrics (maximum probability, mean probability, and fractional area involvement) 

correlated well with visual scores. Modified radiographic assessment of lung edema 

(mRALE) scores are divided into colored quartiles. The mean probability and fractional 

area are linearly correlated with mRALE scores. Maximum probability shows a non-linear 

relationship with mRALE. Panel B- Survival analysis of patients with COVID-19 based on 
x-ray at initial presentation: Stratifying patients based on x-ray obtained within the first 3 

days of presentation or hospital admission strongly prognosticated mortality, likelihood of 

intubation, and duration of hospitalization. Visual mRALE score strongly separated patients 

for all three survival analyses. CNN severity measurements of disease severity also strongly 

separated patients.
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Table 1.

Data sources used for transfer learning.

External Internal

RSNA / NIH Matched Cohort COVID-19 Cohort

Radiographs 25,684 1,466 203

Patients 11,171 1,163 203

% AP 45% 73% 89%

% Men 56% 52% 56%

Mean Age (range) 47 (1–92) 57 (18–98) 55 (19–100)

% PNA 22% 48% 86%

Application Pneumonia localization Pneumonia localization Clinical evaluation

The updated convolutional neural network (CNN) was trained using a combination of radiographs and annotations, including an internal “matched” 
cohort of patients who underwent chest radiography and computed tomography (CT) on the same day, and an external data set.
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Table 2.

Performance of the CNN for whole-image detection of pneumonia.

External
(RSNA/NIH)

23% Pneumonia Prevalence

Internal
(Matched Cohort)

40% Pneumonia Prevalence

Initial CNN* Updated CNN Initial CNN Updated CNN **

AUC 0.864 0.876 0.756 0.841

p<2.6e-3 p<1.0e-4

Model Probability Threshold 0.64 0.71 0.64 0.71

Sensitivity 0.75 0.95 0.40 0.82

Specificity 0.81 0.52 0.92 0.75

Accuracy 0.80 0.62 0.71 0.78

NPV 0.91 0.97 0.70 0.86

PPV 0.55 0.38 0.77 0.69

After employing transfer learning, the convolutional neural network (CNN) showed significant improvement in AUC on internal and external 
validation data. CNN operating points were defined by Youden’s index for initial CNN when applied to the external data set(*), and on the updated 
CNN using the internal data set (**). The updated CNN markedly improved in sensitivity with a modest loss in specificity when evaluating internal 
chest radiographs with the operating point defined by Youden’s index. These CNN fine-tuning methods improved the overall negative predictive 
value (NPV) and the overall accuracy in our clinical images.
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Table 3.

Performance of the CNN for regional classification of pneumonia on the internal data set.

 Updated CNN (95% CI) Initial CNN (95% CI) Mean Difference (95% CI), p-value

Lungs 0.841 (0.796–0.883) 0.756 (0.699–0.814) 0.085 (0.041– 0.130), < 1.0e-04

Right 0.812 (0.757–0.861) 0.739 (0.680–0.798) 0.072 (0.032– 0.114), 1.0e- 03

Upper 0.791 (0.709–0.870) 0.771 (0.686–0.852) 0.019 (−0.053– 0.093), 6.1e-01

Middle 0.825 (0.770 –0.874) 0.777 (0.717–0.836) 0.048 (0.008– 0.089), 1. 5e-02

Lower 0.808 (0.753–0.859) 0.747 (0.680–0.810) 0.061 (0.010– 0.114), 2.1e-02

Left 0.848 (0.793–0.900) 0.776 (0.713–0.838) 0.072 (0.015– 0.131), 1. 5e-02

Upper 0.826 (0.750–0.892) 0.846 (0.768–0.912) −0.020 (−0.077– 0.037), 1.5e+ 00

Middle 0.871 (0.815–0.925) 0.824 (0.756–0.886) 0.047 (0.001– 0.096), 4. 4e-02

Lower 0.878 (0.833–0.917) 0.824 (0.768–0.881) 0.054 (0.003– 0.106), 3. 7e-02

The updated CNN significantly outperformed the initial CNN across nearly all lung regions, with the largest improvements occurring at the lung 
bases. For each region, the AUC and Dice confidence intervals were calculated for each model using a bootstrap method (10,000 iterations). 
From these distributions, pairwise mean AUC differences, confidence intervals, and p-values (two-sided t-test) were calculated. The regional CNN 
advantage was determined by the mean difference and the associated p-value.
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Table 4.

Performance of the CNN for regional localization of pneumonia on the internal data set.

 Updated CNN [IQR] Initial CNN [IQR] Mean Difference [IQR], p-value

Lungs 0.332 [0.075– 0.503] 0.147 [0.000– 0.285] 0.185 [0.000– 0.339], 5.3e-08

Right 0.333 [0.026– 0.552] 0.154 [0.000– 0.244] 0.180 [0.000– 0.332], 6.0e-06

Upper 0.395 [0.133– 0.640] 0.161 [0.000– 0.272] 0.234 [0.000– 0.404], 9.6e-08

Middle 0.322 [0.000– 0.685] 0.232 [0.000– 0.524] 0.090 [0.000– 0.229], 2.1e-01

Lower 0.343 [0.030– 0.544] 0.197 [0.000– 0.315] 0.147 [0.000– 0.251], 2.6e-03

Left 0.433 [0.078– 0.683] 0.121 [0.000– 0.228] 0.312 [0.005– 0.589], 2.4e-11

Upper 0.293 [0.000– 0.649] 0.147 [0.000– 0.245] 0.146 [0.000– 0.441], 2.8e-02

Middle 0.381 [0.062– 0.720] 0.242 [0.000– 0.499] 0.139 [0.000– 0.237], 1.6e-02

Lower 0.486 [0.267– 0.723] 0.111 [0.000– 0.077] 0.375 [0.075– 0.636], 3.9e-15

The updated CNN significantly outperformed the initial CNN across nearly all lung regions with the largest improvements occurring at the lung 
bases, most notably a greater than 4-fold increase at the left lung base. For each region and CNN, the mean Dice interquartile range (IQR) 
were calculated. Pairwise Dice differences, interquartile range, and p-values (two-sided t-test)-were calculated. The regional CNN advantage was 
determined by the mean Dice difference and the associated p-value.
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