UC San Diego

UC San Diego Previously Published Works

Title
An Entropic Proof of Chang's Inequality

Permalink
https://escholarship.org/uc/item/4js2k9hp
Journal
SIAM Journal on Discrete Mathematics, 28(1)

ISSN
0895-4801

Authors
Impagliazzo, Russell
Moore, Cristopher
Russell, Alexander

Publication Date
2014

DOI
10.1137/120877982

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

An Entropic Proof of Chang's Inequality

Russell Impagliazzo* \quad Cristopher Moore ${ }^{\dagger} \quad$ Alexander Russell ${ }^{\ddagger}$

October 31, 2018

Abstract

Chang's lemma is a useful tool in additive combinatorics and the analysis of Boolean functions. Here we give an elementary proof using entropy. The constant we obtain is tight, and we give a slight improvement in the case where the variables are highly biased.

1 The lemma

For $S \in\{0,1\}^{n}$, let $\chi_{k}:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ denote the character

$$
\chi_{S}(x)=\prod_{i \in S} x_{i} .
$$

For any function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, we can then define its Fourier transform $\widehat{f}:\{0,1\}^{n} \rightarrow \mathbb{R}$ as

$$
\widehat{f}(S)=\underset{x}{\mathbb{E}} f(x) \chi_{S}(x)=\frac{1}{2^{n}} \sum_{x} f(x) \chi_{S}(x) .
$$

For characters of Hamming weight 1, we will abuse notation by writing $\widehat{f}(i)$ instead of $\widehat{f}(\{i\})$.
Chang's lemma [1, 2] places an upper bound on the total Fourier weight, i.e., the sum of \hat{f}^{2}, of the characteristic function of a small set on the characters with Hamming weight one.

Lemma 1. Let $A \subseteq\{ \pm 1\}^{n}$ such that $|A|=2^{n} \alpha$, and let $f=\mathbb{1}_{A}$ be its characteristic function. Then

$$
\sum_{i=1}^{n} \widehat{f}(i)^{2} \leq 2 \alpha^{2} \ln \frac{1}{\alpha} .
$$

Proof. Suppose that we sample x according to the uniform distribution on A. Since the mutual information is nonnegative, the entropy $H(x)$ is at most the sum of the entropies of the individual bits,

$$
H(x) \leq \sum_{i=1}^{n} H\left(x_{i}\right)
$$

[^0]This gives

$$
\begin{equation*}
n \ln 2+\ln \alpha \leq \sum_{i=1}^{n} h\left(p_{i}^{+}\right) \tag{1}
\end{equation*}
$$

where p_{i}^{+}denotes the probability that $x_{i}=+1$,

$$
p_{i}^{+}=\frac{1}{2}\left(1+\underset{x \in A}{\mathbb{E}} x_{i}\right)=\frac{1}{2}\left(1+\frac{\widehat{f}(i)}{\alpha}\right) .
$$

and where h denotes the entropy function

$$
h(p)=-p \ln p-(1-p) \ln (1-p) .
$$

The Taylor series around $p=1 / 2$ gives

$$
\begin{equation*}
h\left(\frac{1+x}{2}\right)=\ln 2-\sum_{t=2,4,6, \ldots} \frac{x^{t}}{t(t-1)} \leq \ln 2-\frac{x^{2}}{2} \tag{2}
\end{equation*}
$$

so (1) becomes

$$
\ln \alpha \leq-\frac{1}{2} \sum_{i=1}^{n} \frac{\widehat{f}(i)^{2}}{\alpha^{2}}
$$

Rearranging completes the proof.

2 Variations

The lemma (and our proof) apply equally well to the Fourier weight $\sum_{S \in B} \widehat{f}(S)^{2}$ of any basis B of \mathbb{F}_{2}^{n}, since the set of parities $\left\{\prod_{i \in S} x_{i} \mid S \in B\right\}$ determines x. This gives the following commonlyquoted form of Chang's lemma.

Lemma 2. Let $A \subseteq\{ \pm 1\}^{n}$ such that $|A|=2^{n} \alpha$, and let $f=\mathbb{1}_{A}$ be its characteristic function. Fix $\rho>0$ and let $R \subset \mathbb{F}_{2}^{n}$ be the set $\{S:|\widehat{f}(S)|>\rho \alpha\}$. Then R spans a space of dimension less than $d=2 \rho^{-2} \ln (1 / \alpha)$.

Proof. If R spans a space of dimension d or greater, there is a set of d linearly independent vectors in R. Completing to form a basis B gives $\sum_{S \in B} \widehat{f}(S)^{2}>2 \alpha^{2} \ln (1 / \alpha)$, violating Lemma 1 .

For any integer $k \geq 1$, there are bases consisting entirely of vectors of Hamming weight k. Fixing k and averaging over all such bases gives

$$
\left.\sum_{S:|S|=k} \widehat{f}(S)^{2} \leq \frac{2}{n}\binom{n}{k} \alpha^{2} \ln \frac{1}{\alpha} \leq \frac{2 n^{k-1}}{k!} \alpha^{2} \log (1 / \alpha)\right) .
$$

This also follows immediately from Shearer's lemma. However, this is noticeably weaker than the "weight k bound"

$$
\sum_{S:|S|=k} \widehat{f}(S)^{2}=O\left(\alpha^{2} \log ^{k}(1 / \alpha)\right) .
$$

Figure 1: The entropy function $h(p)$ where $p=(1+x) / 2$ and $x \leq 0 \leq 1$, with the upper bounds (2) (which is tight when $|x|$ is small) and (3) (which is tight when $|x|$ is close to 1).

Finally, we note that if some bits are highly biased, i.e., if $|\widehat{f}(i)| / \alpha$ is close to 1 , we can replace (2) with the bound

$$
\begin{equation*}
h(p) \leq p(1-\ln p), \tag{3}
\end{equation*}
$$

which is tight when p is small. Combining this with the corresponding bound for p close to 1 gives

$$
h\left(\frac{1+x}{2}\right) \leq \frac{1-|x|}{2}\left(1-\ln \frac{1-|x|}{2}\right) .
$$

We compare this bound with (2) in Figure 1. This gives another version of Lemma 1:
Lemma 3. Let $A \subseteq\{ \pm 1\}^{n}$, let $f=\mathbb{1}_{A}$ be its characteristic function, and let

$$
\delta_{i}=\frac{1}{2}\left(1-\frac{|\widehat{f}(i)|}{\alpha}\right)=\min \left(p_{i}^{+}, 1-p_{i}^{+}\right) .
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{n} \delta_{i}\left(1-\ln \delta_{i}\right) \geq \ln |A| \tag{4}
\end{equation*}
$$

This is nearly tight, for instance, if A is the set of vectors with Hamming weight 1 . Then $|A|=n$, $\delta_{i}=1 / n$, and (4) reads $1+\ln n \geq \ln n$.

Acknowledgments

We thank Ryan O'Donnell for a wonderful set of lectures on the analysis of Boolean functions at the Bellairs Research Institute, and Ran Raz for helpful communications. C.M. and A.R. are supported by NSF grant CCF-1117426 and ARO contract W911NF-04-R-0009.

References

[1] Michel Talagrand, "How much are increasing sets positively correlated?" Combinatorica 16 (2) 243-258, 1996.
[2] Mei-Chu Chang, "A polynomial bound in Freiman's theorem." Duke Math. J. 113(3) 399-419, 2002.

[^0]: *russell@cs.ucsd.edu, Department of Computer Science and Engineering, University of California San Diego
 ${ }^{\dagger}$ moore@santafe.edu, Department of Computer Science, University of New Mexico and Santa Fe Institute
 \ddagger acr@cse.uconn.edu, Department of Computer Science and Engineering, University of Connecticut

