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ABSTRACT OF THE DISSERTATION

Silicon Integrated Neuromorphic Neural Interfaces

by

Jun Wang

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2019

Professor Gert Cauwenberghs, Chair

Neuromorphic engineering pursues the design of electronic systems emulating func-

tion and structural organization of biological neural systems in silicon integrated circuits

that embody similar physical principles. The work in this dissertation extends neuromorphic

engineering to neural interfaces that directly couple biological neurons to their equivalents

in silicon integrated circuits, dynamically probing their function through silicon emulation

of biophysical chemical and electrical synapses. Our aim in this work is to enable study of

hybrid networks of biological and silicon neurons with highly configurable topology and

xviii



biophysically based properties, providing windows on the inner workings of biological neural

circuits from the cellular to the network levels, and hence promoting new synergies between

theory in computational neuroscience and experimentation in systems neuroscience.

In the first part, membrane dynamics and ion channel kinetics of biological neurons,

obtained from experimental electrophysiological data, were accurately mapped onto equiva-

lent continuous-time analog dynamics in NeuroDyn, a highly reconfigurable neuromorphic

silicon microchip. To this end, songbird individual neuron dynamics from intracellular

neural recordings were extracted, modeled, and then mapped onto silicon neurons in

NeuroDyn by data assimilation to estimate and configure biophysical parameters. Further,

the NeuroDyn framework was extended to serve as a versatile tool for biophysical dynamic

clamp electrophysiology, connecting biological and silicon neurons through synthetic virtual

chemical synapses. To this end, the response properties of five different types of chemical

synapses, including both excitatory (AMPA, NMDA) and inhibitory (GABAA, GABAC ,

Glycine) ionotropic receptors were reproduced with neuromorphic integrated circuits. In

addition, electrical synapses (gap junctions) were emulated in a network of four silicon

neurons.

The second part entails the design, implementation and functional validation of high-

density multi-channel neural interfaces, establishing bidirectional electrical communication

between silicon artificial neurons and biological neurons at very large scale. Our work

produced a neural interface system-on-chip (NISoC) with 1,024-channels of simultaneous

electrical recording and stimulation at record noise-energy efficiency, with sub-µW power

consumption per channel at 6 µVrms input referred voltage noise over 12.5 kHz signal

xix



bandwidth. Integrating an array of 32 × 32 electrodes on a 2mm × 2mm chip in 65nm

CMOS, the NISoC supports both voltage and current clamping through a programmable

interface, ranging 100 dB in voltage, and 120 dB in current, for high-resolution high-

throughput electrophysiology. Further, we demonstrated extended functionality for scalable

multichannel in vitro intracellular electrophysiology in a second 256-channel hybridized

NiSoC with sharp-tipped Pt nanowire electrodes deposited on the silicon top-metal surface,

recording action potentials from rat cortical neurons cultured directly on top of the chip.

These advances combine to enable bidirectional communication between artificial

neurons and biological neurons in vitro, with precise probing of neural function and flexible

control over synaptic interactions ranging from intracellular dynamics of individual cells to

network dynamics comprising potentially thousands of neurons. In addition to applications

in closed-loop electrophysiology, in vitro neuromorphic neural interface can be used as

testbed for prototyping the next generation of neuroprosthetics.
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Chapter 1

Outline

This dissertation focuses on the design, implementation and functional validation

of silicon integrated neuromorphic neural interfaces aiming to seamlessly interface silicon

artificial neurons and biological neurons in vitro. To succeed in this endeavor the research

presented here pursues a synergistic approach combining three key aspects: neuromorphic

engineering of silicon neurons, multi-channel neural interfaces, and hybrid integration of

live and synthetic neurons.

Chapter 2 presents a review of the emerging field of neuromorphic neural interfaces.

It highlights the current efforts to interface neuromorphic systems with neural systems at

multiple levels of biological organization, from the synaptic to the system level, and discuss

the prospects of future biohybrid systems with neuromorphic circuits of greater complexity.

Single silicon neurons have been interfaced successfully with invertebrate and vertebrate

neural networks. This approach allowed the investigation of neural properties that are

inaccessible with traditional techniques while providing a realistic biological context not
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achievable with traditional numerical modeling methods. At the network level, population

of neurons are envisioned to communicate bidirectionally with neuromorphic processors of

hundred or thousand silicon neurons. Recent work on BMIs suggest that this is feasible

with the current neuromorphic technology. Biohybrid interfaces between biological neurons

and VLSI neuromorphic systems of various complexity have started to emerge in the

literature. Primarily intended as a computational tool for investigating fundamental

questions related to neural dynamics, the sophistication of current neuromorphic systems

is now allowing direct interfaces with large neuronal networks and circuits, resulting in

potentially interesting clinical applications for neuroengineering systems, neuroprosthetics,

and neurorehabilitation.

Chapter 3 presents an a set of procedures assimilating and emulating neurobiolog-

ical data on a neuromorphic very large-scale integrated (VLSI) circuit. The analog VLSI

chip, Neurodyn, features 384 digitally programmable parameters specifying for 4 generalized

Hodgkin-Huxley neurons coupled through 12 conductance based chemical synapses, reversal

potentials, conductances, and spline regressed gating variables. In one set of experiments,

we assimilated membrane potential recorded from one of the neurons on the chip to the

model structure upon which NeuroDyn was designed and the known current input sequence,

arriving at the programmed parameters except for model errors due to analog imperfections

in the chip fabrication. In a related set of experiments, we replicated songbird individual

neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using

data assimilation (DA) from intracellular neural recordings. Faithful emulation of detailed

biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical
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and molecular properties of functional neural circuits. Neuroscience applications include

studying the relationship between molecular properties of neurons and the emergence of

different spike patterns or different brain behaviors. Clinical applications include studying

and predicting effects of neuromodulators or neurodegenerative diseases on ion channel

kinetics.

Chapter 4 discusses the procedures of emulating different types of synapses with

distinct properties. Although biological synapses express a large variety of receptors in

neuronal membranes, the current hardware implementation of neuromorphic synapses often

rely on simple models ignoring the heterogeneity of synaptic transmission. Our objective is

to emulate different types of synapses with distinct properties. Conductance-based chemical

and electrical synapses were implemented between silicon neurons on a fully programmable

and reconfigurable, biophysically realistic neuromorphic VLSI chip. Different synaptic

properties were achieved by configuring on-chip digital parameters for the conductances,

reversal potentials, and voltage dependence of the channel kinetics. The measured I-V

characteristics of the artificial synapses were compared with biological data. We reproduced

the response properties of five different types of chemical synapses, including both excitatory

(AMPA, NMDA) and inhibitory (GABAA, GABAC , glycine) ionotropic receptors. In

addition, electrical synapses were implemented in a small network of four silicon neurons.

Our work extends the repertoire of synapse types between silicon neurons, providing greater

flexibility for the design and implementation of biologically realistic neural networks on

neuromorphic chips. A higher synaptic heterogeneity in neuromorphic chips is relevant for

the hardware implementation of energy-efficient population codes as well as for dynamic
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clamp applications where neural models are implemented in neuromorphic VLSI hardware.

Chapter 5 presents a 1024-channel neural recording ADC chip with 4 mm2 area

and 5.9 µVrms of noise at 0.862 µW power consumption per channel over 12.5 kHz signal

bandwidth, owing to 1) new algorithm utilized to implement ADC to achieve high speed

conversion. 2) multiplexed ADC, one ADC shared by 32 analog pixels. 3) dynamic bias

strategy reducing the power consumption of analog buffer. 4) single front-end used for both

current and voltage measurement. The neural-interface-on-chip in 65nm CMOS integrates

32 x 32 electrodes vertically coupled to analog front-ends for current or voltage clamping

with simultaneous recording of voltage or current, ranging from 6 µV to 1V , and from

30fA to 100nA. The backend features an array of 32 incremental SAR ADCs for 25Msps

11-ENOB acquisition at 2fJ/level FOM.

Intracellular electrophysiology is a versatile technique fundamental to cellular neu-

roscience usually performed through the challenging and low-throughput patch-clamp tech-

nique. Chapter 6 presents the first integrated circuit (IC) for scalable, high-throughput in

vitro intracellular electrophysiology with simultaneous recording and stimulation implement-

ing all functions of signal amplification, acquisition, and control directly interfacing with

electrodes integrated on-chip. The 2.236 mm × 2.236 mm IC in 180nm CMOS contains

four 8 × 8 arrays of nanowire electrodes at 50 µm pitch deposited over top-metal on the

IC surface, for a total of 256 channels. Each channel consumes 0.47 µW power for current

stimulation and voltage recording across 80 dB range at 25 kHz sampling rate. Intracellular

recordings of action potentials from rat embryonic neural cells cultured directly on the

electrode array demonstrate the functionality and use of the chip for high-throughput in

4



vitro electrophysiology.

Chapter 7 summarizes the contributions of this thesis and presents an outlook on

ongoing and anticipated future further developments in hybrid neuromorphic and biologi-

cal neural networks and their implications for neuromorphic computing, computational

neuroscience, and systems neuroscience.
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Chapter 2

Neuromophic Neural Interfaces

2.1 Introduction

Biological and neural computation operate on fundamentally different principles from

those of modern general purpose digital computers. This was first recognized by computer

scientist pioneers [243] [244] and has motivated generations of researchers to seek inspiration

from neurophysiology [162] [36] [211] [51] to build more efficient computing systems. The

differences between these two types of computation is evidenced when their performance - in

terms of size, power consumption, robustness, learning and adaptation - is compared when

carrying out real-world tasks in complex dynamic environments [165]. Computation in

nervous systems operates using vastly differing primitives, and on different hardware, than

traditional digital computation and is thus subject to different constraints than its digital

counterpart such as time, space and energy [216]. In an effort to better understand neural

computation on a physical medium with similar spatiotemporal and energetic constraints,
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the field of neuromorphic engineering aims at designing and implementing electronic systems

that emulate the organization and functions of neural systems [166] [165]. By implementing

particular neurobiological features with various degrees of realism, at multiple levels of

biological organization (Fig. 2.1), neuromorphic engineers have produced, in VLSI hardware,

many computational primitives and neural circuits found in biological nervous systems,

such as synaptic dynamics [16], silicon neurons models of various level of complexity [151]

[70] [260] (for a recent review, see [102]), spike-based plasticity mechanisms [85] [170], and

several network architectures including central pattern generators [230], soft winner-take-all

(WTA) networks [42], liquid state machines [192], and working memory [76]. At the sensory

level, neuromorphic sensory systems [142] mimicking the vertebrate retina [153] [139] [145]

and cochlea [147] [88] [254] have been proposed. Circuits modeling the olfactory bulb [100]

and its insect equivalent, the antennal lobe, have also been described [192]. The two

leftmost columns show molecular and electrophysiological methods for investigating the

CNS from the molecular to the scalp level. The molecule shown is BAPTA (1,2-bis(o-

aminophenoxy)ethane-N,N,N’,N’ -tetraacetic acid), a calcium chelator. The rightmost

column shows neuromorphic equivalent from ionic channels (bottom) to large-scale neural

networks with a total of a million of silicon neurons (top). Boltzmann statistics of ionic and

electronic channel transport provide isomorphic physical foundations. Adapted from [46]

and [38].

Analog neuromorphic hardware systems are compact, consume low power, and

operate in real-time independently of the model size and complexity. These features make

them particularly suitable for the implementation of versatile large-scale spiking neural
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Figure 2.1: Multi-scale levels of investigation in analysis of the central nervous sys-
tem (CNS) and corresponding neuromorphic synthesis of highly efficient silicon cognitive
neuromorphic systems.

network simulation platforms [269] [207] [192] [11] [73] [18] [218], and for interacting with

complex dynamic environments, opening potentially transformative applications [197] in

the fields of autonomous robotics [248], brain-machine interfaces (BMIs) [63] [49], and

neuroprosthetics [65] [22]. Mixed analog/digital neuromorphic designs for bidirectional

communication with the nervous are also starting to appear in the literature [20] [24] [49],

but so far, only fully digital electronic circuits carrying out simple computations have been
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implanted in awake animals [105] [7].

With the prospect of new generations of neural prostheses and the growing interaction

between neuromophic engineers and the neuroscience community, this article focuses on

biohybrid systems in which silicon neurons are interacting with nervous tissues at different

levels of biological organization, from the synaptic to the system level (Fig. 2.1). For

each of these levels, we highlight the neurophysiological motivations and constraints of

these neuromorphic neural interfaces. This article is intended for both neuroengineers

and neurophysiologists in order to give a concise overview of the current neuromorphic

hardware used as a computational tool to study small neuronal circuits as well as presenting

the underway efforts for establishing a direct interface with larger neuronal populations.

We start with an overview of the computational primitives implemented by the device

physics in neurons and transistors in Section 2.2. In Section 2.3, we review hybrid circuits

in which one or two biological neurons establishes an artificial synapse with either an

equivalent computer model or a silicon neuron, with an emphasis on the latter. In Section

2.4, we discuss current efforts aiming at interfacing artificial and neuromorphic networks

with their biological counterparts, and present an in vitro setup for studying intra- and

inter-network interactions. We cover the progresses of neuromorphic prosthesis and BMIs

design in Section 2.5 before discussing future directions in neuromorphic neural interfaces

and concluding in Section 4.5 and 4.6, respectively.
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2.2 Physics of computation

Neuromorphic engineering seeks to emulate the organization and function of nervous

systems in very large-scale integration (VLSI) hardware [166] [165] [65] [91] in order to

investigate neural computation on a physical medium with similar properties and constraints

found in nervous systems, as well as to design new computational devices that can interact

with the real world in the same way as biological nervous systems do.

The analysis by synthesis approach adopted by neuromorphic engineers is mo-

tivated by the similar physics of charge carriers in neurons’ membrane and in metal-

oxide-semiconductor field-effect transistors (MOSFETs) operating in the sub-threshold

(or weak-inversion) domain [166] [165] where diffusion, rather than drift, is the primary

driving force for carrier transport (Fig. 2.2). (a) is schematic representation of the physical

structure of a channel in the neuronal membrane (top) and in a metaloxidesemiconductor

field-effect transistor (MOSFET) (bottom). Ion channels are formed of multimeric trans-

membrane proteins spanning across the phospholipid bilayer of the neuronal membrane.

In MOSFETs, a channel is formed between the source and the drain when a voltage is

applied to the gate. Without an applied voltage, the energy barrier (bottom) between the

source and the drain impedes the electron flow.The gate is separated from the polysilicon

body by an insulating layer of silicon dioxide. (b) Top shows conductance as a function of

the input voltage for sodium and potassium measured by patch clamp for a squid giant

axon [95]. Bottom, SPICE simulations of the transconductance as a function of the gate

voltage (Vgs) for p-channel MOS (PMOS) and n-channel MOS (NMOS). The sodium and
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Figure 2.2: Ionic and electronic channel transport in neurons and transistors. Both types
of channels are modulated by a gating voltage.

potassium conductances, as well as the pMOS and NMOS transconductances, exhibit

an exponential relationship in the subthreshold regime. (c) is equivalent circuit for the

neuronal membrane (top) and MOSFET (bottom). ENa, sodium reverse potential, EK ,

potassium reverse potential, gNa, sodium conductance, gK , potassium conductance, Cm,

membrane capacitance.

In the neuronal membrane, charges are transported in and out of the neuron by

populations of selective ion channels and ions carry the current. In MOSFETs, electrons

and holes carry the current between the n- or p-type channels (Fig. 2.2a). Although ionic

and electronic channels use different charge carriers, both types of channels share the
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following physical properties: i) diffusion is the main mechanism of carrier transport (in the

sub-threshold domain); ii) the current through an individual channel is stochastic; and iii)

both types of channels possess an energy barrier that can be modulated by a gating voltage

(figure 2.2b). In the neuronal membrane, the energy barrier arises from the difference in the

dielectric constant between the lipid bilayer and the aqueous surrounding. In MOSFETs,

the energy barrier comes from the difference in the bandgap between the silicon and

silicon dioxide layers. While ions are bosons and electrons are fermions, the energies of

these two charge carriers are both Boltzmann distributed at the population level [166].

Boltzmann statistics of ionic and electronic channel transport provide isomorphic physical

foundations at the atomic level between neuronal ionic channels and electronic channels in

MOSFETs operating in the sub-threshold domain [166] [165]. The Boltzmann distribution,

together with voltage-modulated energy barriers, generates a current that is an exponential

function of the applied voltage (figure 2.2b). In neurons, the membrane conductance is an

exponential function of the membrane voltage, whereas in sub-threshold MOSFETs the

current is an exponential function of the voltage gate. The exponential function allows the

creation of active devices able to amplify and modulate the gain of signal levels in both

neurons and sub-threshold MOSFETs.

Neuromorphic engineering aims at designing and developing circuits that exploit the

physics of the silicon medium to directly reproduce the biophysics of neurons (Fig. 2.2c).

This has resulted in silicon neurons of various complexity, from the detailed and realistic

conductance-based Hodgkin-Huxley (HH) models to the more simple but versatile integrate-

and-fire (I&F) models (for a review, see [102]). As time represents itself in analog –and
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mixed analog/digital– neuromorphic architectures, these circuits must have time constants

that match the sensory and neuronal signals they process in order to interact with their

environment in real-time. However, standard analog VLSI circuits design solutions to

implement these slow time constants necessitate large silicon areas. One way to overcome

this problem has been to use current-mode design techniques and log-domain analog

subthreshold circuits [260].

2.3 Silicon neurons

A dynamic clamp procedure is used to establish an artificial synaptic connection

between the biological and the silicon neuron (Fig. 2.3). The membrane voltage (Vm)

of the biological neuron recorded with an intracellular electrode serves as input to the

synaptic conductance model in silicon that compute the synaptic current (Isyn) to be

injected in the living neuron. (a) shows schematic design of the biohybrid pyloric circuit.

An artificial synaptic connection is established between a neuron of the pyloric network

and a software or hardware neuron model through dynamic clamp. The neuron model

receives the voltage membrane Vm as input and output the synaptic current Isyn. Different

configurations (i-iii) of the biohybrid pyloric circuit can be created with a hardware analog

neuron model of the pyloric neuron (PY) or lateral pyloric (LP) motoneuron. It is also

possible to use a hardware analog neuron model as a passive follower (iii, LP shown) for

dynamic validation of the model. In that configuration, the real neuron acts as a control

to compare firing dynamics. (b) is biohybrid thalamic circuit. A thalamocortical (TC)
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neuron, from a lateral geniculate nucleus (LGN) slice, is connected to a neural model of

the nucleus reticularis/perigeniculate (nRt/PGN). In addition, a hardware analog retinal

cell model provides an artificial synaptic input to the TC that are missing after slicing.

The effect of noradrenaline (NA), mimicking the transition from sleep to waking, can be

further studied by local injection of NA in the TC neuron. (c) presents biohybrid neural

interface between biological and artificial neural networks. In that setup, the biological

neuronal network is grown on a multielectrode array (MEA). Multichannel neuronal signals

are sent to the neural interface through an analog/digital converter (ADC). The neural

interface communicate with the artificial neural network (ANN) and allows the stimulation

of the BNN through a stimulator. Current efforts are carried out to integrate the software

components on hardware (grey box). See text for details. PD, pyloric dilator; LP, lateral

pyloric; PY, pyloric; nRt/PGN, nucleus reticularis/perigeniculate; TC, thalamocortical

cell; +, excitatory; −, inhibitory; ANN, artificial neural network; BNN, biological neuronal

network. Panel A adapted from [133]. Panel B adapted from [134]. Panel C adapted

from [45].

The dynamic interfacing of a model neuron with a biological one - also called hybrid

network method - imposes the model to run in real time. This can be achieved with

two different approaches (Fig. 2.3a). The first one is dynamic clamp [221] [208]. It is a

numerical modeling approach where a conductance-based neuron model is implemented

on software and computes the current to be injected in the biological neuron based on

the membrane potential recorded by an intracellular electrode (for a review, see [198]).

The second approach uses silicon neurons implemented in analog VLSI hardware [133].
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Both of these approaches rely on the creation of an artificial synapse between the model

neuron and the biological one via an intracellular electrode, but these two approaches use

different computational substrates for the model implementation –software and hardware

respectively.

The hybrid network method allows the investigation of neural properties that

are inaccessible with traditional pharmacological and electrophysiological techniques and

provides at the same time a realistic biological context not achievable with traditional

numerical modeling methods. One unique feature of this method is to provide an elegant

way for dissecting and revealing the role of individual cellular or synaptic conductance in

the activity of a single neuron or neuronal network. Several studies have used the hybrid

network method to study how individual neuron properties shape rhythmic activity in

various invertebrate and vertebrate neuronal networks. In invertebrate, two central pattern

generators (CPGs) have been studied with this method: the heartbeat timing network of

the medicinal leech and the crustacean somatogastric ganglion (STG).

2.3.1 Biohybrid circuit with invertebrate neurons

The oscillatory activity of the leech heartbeat is generated by two coupled oscillators

located in the third and fourth ganglia. Each oscillator (also called a half-center oscillator)

is composed of two interneurons connected by reciprocal inhibitory synapses. These two

interneurons produce rhythmic antiphasic bursts with each other. The bursting activity

of one of the interneurons inhibits the activity of the other one. This bursting activity is

inhibited in turn when the inhibited interneuron start bursting. By connecting a leech heart
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Figure 2.3: The hybrid network method.

interneuron with an equivalent silicon neuron, it was possible to reveal the contribution

of the cellular mechanisms regulating these oscillations [226]. In particular, the silicon

interneuron [223] was modeled using the Hodgkin-Huxley formalism and had the following

ionic currents: passive leak current, fast sodium current, inactivating potassium current,

slow non-inactivating potassium current, persistent sodium current, slowly inactivating

low-threshold calcium current, and hyperpolarization-activated inward current (Ih). The

authors focused on the latter which plays an important role to the pacemaker activity

of various invertebrate and vertebrate systems [146]. The hybrid system allowed them

to investigate the role of Ih independently in each interneuron of the hybrid oscillator

by varying three parameters: the maximal conductance gh of the biological and silicon
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interneuron and the time constant τh of the silicon interneuron. Increasing gh in either

the biological interneuron of the silicon one resulted in a decrease of the cycle period

of the hybrid system that was accounted by a change of the inhibitory phase of the

modified interneuron (the one that has Ih increased). The inhibitory phase of the modified

interneuron, corresponding to the bursting phase of the unmodified one, decreased as Ih

increased, whereas its bursting phase remained unchanged. This effect was observed both

when the endogenous Ih of the biological interneuron was present or blocked with cesium.

Decreasing τh to intermediate values had the effect of accelerate the activation of Ih and

thus allowed a faster depolarizing current during the inhibited phase of the burst. This

shorten the inhibited phase and therefore reduced the oscillatory period of the hybrid

system. However, decreasing further τh increased the cycle period of the hybrid system.

This happened because the activation period of Ih begin to approximate its steady-state

value for low values of τh. In that case, the depolarizing effects of Ih on the membrane

potential deactivates Ih before the interneuron reaches its firing threshold. Consequently,

the resulting depolarization will be inefficient to drive the interneuron out of inhibition

and the duration of its inhibited phase will increase, resulting in a longer cycle period of

the hybrid system. These results were verified with a equivalent computational model of

the leech half-center oscillator.

The pyloric GPG of two different crustacean STGs have been reconstructed using the

hybrid network method to reveal the role of an individual conductance and the contribution

of a specific neuron to the CPG global oscillatory pattern of activity. In the first study, the

role of the calcium conductance in the pyloric dilator (PD) neuron in the STG of the lobster
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Jasus lalandii was investigated using an equivalent silicon PD neuron connected to an in

vitro spontaneously bursting neuron [135]. In this work, the PD model was described by the

Hodgkin-Huxley formalism [95] and implemented on analog hardware with both bipolar and

CMOS transistors, in order to compute mathematical functions (multiplicative, logarithmic,

exponential) and minimize the number of transistors, respectively. The silicon PD neuron

and the spontaneously bursting neuron were coupled with reciprocal inhibitory synapses.

Without calcium current, the hybrid system exhibited a stable biphasic pattern of activity

with the PD model firing tonically between the bursts of the biological neurons. Increasing

the calcium conductance changed the firing pattern of the PD model without affecting

the overall biphasic pattern of activity. Intermediate values of the calcium conductance

caused the PD model to fire a single burst followed by tonic firing, whereas higher values

turned the firing pattern to a full bursting activity –with three bursts fired by the silicon

PD neuron between each burst of the biological neuron. In the second study, the hybrid

network method was used to dissect the contribution of PD neurons to the overall pyloric

rhythmic pattern. This was investigated in a different STG, that of the spiny lobster

Panulirus interruptus. In this system, the pyloric rhythmic pattern depends on a triplet

of pacemaker neurons composed of one anterior burster (AB) neuron and two electrically

coupled PD neurons. In the intact system, the oscillatory rhythm is composed on bursts

fired in phase. Killing the AB neuron by photoinactivation completely disrupt this pattern

of activity, resulting in the PD neuron to fire tonically. The original oscillatory pattern

of activity could be restored by electrically coupling, bidirectionally, the PD neuron with

a silicon neuron model The authors used a simplified bursting neuron model based on
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the Hindmarch and Rose model [93] and used an additional electronic circuit simulating

electrotonic synapses [234].

In a second series of experiments, the silicon neuron was configured to generate

chaotic firing patterns. This was done to mimick the behavior of isolated CPG neurons

that have been shown to exhibit chaotic firing patterns when their synaptic inputs are

blocked [67]. Both PD and the silicon neuron had irregular spiking activity when uncoupled.

The electrotonic coupling altered the firing pattern of both neurons, resulting in synchronized

bursting. In a different setting, the PD and silicon neurons were coupled with negative

conductance to approximate an inhibitory chemical synapse. The resulting hybrid system

was similar to mutual inhibitory synapses, but without delay, threshold and non-linear

properties. This form of coupling also resulted in a global bursting pattern, but with the

PD and silicon neurons firing in anti-phase. This work revealed the importance of neuron

coupling in establishing a robust and regular oscillatory pattern of activity with individual

isolated neurons displaying an irregular firing pattern.

2.3.2 Biohybrid circuit with vertebrate neurons

In vertebrates, the hybrid network method has been used to investigate the spike

transfer mechanisms of the visual thalamus in rodents (or dorsal lateral geniculate nucleus;

dLGN) [135] [134]. In this system, neurons in the dLGN, named thalamocortical (TC)

neurons, receive sensory inputs from the retina and project to the visual areas. Within the

dLGN, the TC neurons are also reciprocally connected with inhibitory neurons of another

thalamic nucleus (nucleus Reticularis, nRT), with excitatory connections from TC to nRT
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neurons and inhibitory connections from nRT to TC neurons. The state of this TC-nRT

loop is modified by the state of arousal, effectively gating sensory information processing by

transmitting visual information accurately during wake state and filtering it during sleep

due to the presence of oscillations (spindle waves, 12-14 Hz). Studying the TC-nRT loop

in vitro is complicated because the synaptic connections between TC and nRT neurons

are well preserved after slicing only in one species, the ferret. However, it is possible to

reconstruct a functional TC-nRT loop in other rodent species (rat, guinea pig) with the

hybrid network method by establishing an artificial synaptic connection between a TC

neuron and a nRT model implemented in software [134] or in hardware [135].

In a preliminary study validating this approach, an analog silicon nRT neuron was

connected to a TC neuron from a dLGN slice and the reconstructed loop generated spindle

waves [135] following a short negative current mimicking retinal input in the biological

TC neuron. This negative current injection triggered a calcium-mediated rebound burst

firing in the TC neuron that excited the analog nRT neuron. Following this excitation, the

nRT neuron inhibited the TC neuron, resulting in more rebound calcium potentials. A

slow calcium-dependent current (low-threshold, T-type) terminated the oscillation until

the next cycle [10].

Using the same silicon nRT neuron in a more elaborate setup (Fig. 2.3b), the

same group investigated the role of the nRT feedback inhibition on spike transfer in the

dLGN [134] (reviewed and detailed in [58]). In that work, the equivalence of the hybrid nRT-

TC loop, with a silicon nRT neuron and a guinea pig dLGN slice, was first demonstrated

by comparing it with that of the intact nRT-TC loop in the ferret dLGN. Then, a more
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complete hybrid circuit was constructed with a second analog silicon neuron configured as

a retinal ganglion cell providing realistic input to the biological TC neuron. The reliability

and efficiency of the spike transfer was quantified by computing a contribution index

(CI) and a correlation index (CC) respectively. CI was computed as the peak of the

cross-correlation between the TC spikes and retinal spikes, normalized by the number of

output TC spikes, thus quantifying the percentage of spikes triggered by the retinal input

rather than being spontaneous. CC was computed similarly to CI, but normalized by

the number of input retinal spikes, giving an indicator of the percentage of input spike

being transmitted as output spike. The strength of the feedback inhibition was modified

by varying the inhibitory conductance of the silicon nRT neuron. Increasing the synaptic

conductance elicited TC bursting and decreased CI, with the TC oscillations effectively

decorrelating the output activity from the sensory input. Strong inhibition did not change

significantly CC, as was expected by previous modeling studies. As the visual thalamus

exhibits different patterns of activity during sleep and arousal and is innervated by various

cortical, hypothalamic, and brainstem neuromodulators, the authors then mimicked a

transition from sleep to waking by local application of noradrenaline (NA) to the dLGN

slice, a known modulator of TC neuron membrane properties. Starting with a hybrid circuit

under high gain feedback inhibition typical of sleep states, the addition of NA increased

both CI and CC. Reducing the inhibition under this condition increased further CI and

CC. Interestingly, CI was reduced when the synaptic inhibition was absent, suggesting

that the presence of feedback inhibition in the TC-nRT loop increased the reliability of

spike transfer by filtering out the TC spikes uncorrelated with the retinal input. These
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results suggested that the spike transfer abilities of the dLGN is regulated both by the

gain of the inhibitory feedback and the firing pattern of the TC neurons (for a review,

see [58]). Importantly, this study highlights one of the main strength of the hybrid network

method, that is the level of control achievable in both the silicon neuron and the in vitro

neural preparation allowing to study concurrently the cellular and network properties that

contribute to specific circuit functions.

Besides the high level of control of the silicon neuron(s) and neural preparation,

the hybrid network method offers the following advantages. First, many silicon neuron

designs provide a great level of flexibility for the configuration of several neuron types. This

programmability of the the silicon neurons easily allows the same analog circuit to emulate

a bursting neuron of an invertebrate STG, and vertebrate neurons from the thalamus

and retina [135] [134] [58]. Alternatively, the same silicon neuron can be tuned to exhibit

different states with characteristic firing patterns [234] [134] [264]. Second, the analog

design ensures that the silicon model neuron runs in real-time independently of the model

complexity, enabling the design of biologically realistic detailed neuron models which could

be problematic for a software platform running dynamic clamp. Third, it allows three

different levels of validation [133] [58]: i) a static validation procedure where the activity of

an uncoupled biological neuron and its silicon equivalent can be compared; ii) a dynamic

validation procedure where the silicon neuron is coupled to its biological equivalent with

no synaptic influence, acting as a passive follower of the functional biological equivalent

carrying computation (figure 2.3a); and iii) an equivalent hybrid network reconstruction

procedure, where a small canonical network can be reconstructed differently depending on
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which neuron is replaced by its silicon equivalent (Fig. 2.3a). This is especially true for

network composed by a small number of neurons whose connectivity and properties are

well characterized, like the CPGs of the crustacean STG or the leech heart timing network

discussed above. Fourth, the hybrid network method provides a biological realism and

relevance for various invertebrate and vertebrate (Fig. 2.3b) neuronal preparations that

would be prohibitively difficult to achieve through modeling alone, thus proving to be a

valuable tool for understanding the physiology and computational properties of neuronal

circuit and networks. It also allows to replace lost long range connections, or damaged

connections, of neuronal slice preparations [134] [58]. Finally, technological progresses

in connecting biological neurons with analog electronics, from the proofs of concept of

traditional analog simulators [256] and the widely used dynamic clamp and detailed silicon

neurons, have reached now a sufficient level of sophistication for the coupling of neural

systems at larger scale with neuromorphic circuits containing hundred or thousands of

silicon neurons (Fig. 2.3c). In that case, analog design allows to minimize the size and

power consumption of these neuromorphic chips relative to their digital counterparts [216].

2.3.3 NeuroDyn: a neuromorphic chip for interfacing multiple

silicon neurons

Neural computation at the network level depends on the interplay between the

cellular and network properties/dynamics. In many applications, including the effect of

neuromodulators and neurotoxins, biophysical detail in modeling neural and synaptic
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dynamics at the level of channel kinetics is critical. The hybrid network method is

ideally suited to study small circuits at the cellular level, and more complex hybrid

network reconstructions would benefit from a real-time closed-loop interface of biological

networks with more than one silicon neuron. In that setup, two or more artificial synaptic

connections are established between biological and silicon neurons with the dynamic clamp

protocol, allowing to investigate simultaneously the cellular properties of different individual

conductances and cell types as well as the global network dynamics. So far, the application

of the hybrid network method to two or more neurons has not yet been implemented

although advances in electrophysiology and neuromorphic hardware have produced the

necessary basic building blocks. Thus, while experimentally challenging, the dynamic

clamp protocol can be used to control more than two neurons of the same neuronal

preparation [195]. On the other hand, neuromorphic chips with multiple silicon neurons are

also available. Recently, an analog VLSI chip fully modeling the general voltage dependence

of rate kinetics in the opening and closing of membrane ion channels has been proposed.

The NeuroDyn system [260] [264] is a fully programmable and reconfigurable analog

VLSI neuromorphic chip with four silicon neurons and 12 conductance-based synapses (Fig.

2.4a-b). (a) is schematic representation of the connectivity among the four neurons. (b)

shows the micrograph of neuroDyn chip. (c) is the voltage trace of the membrane voltage Vm

and the three corresponding Hodgking-Huxley gating variables m, n, and h for regular (top)

and fast (bottom) spiking neuron dynamics. (d) shows the voltage traces for two neurons

receiving constant external current and coupled with GABAA inhibitory synapses. Initially

the neurons were disconnected by zeroing the synaptic conductances (top). Increasing the
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synaptic conductance from zero to 200 nS resulted in progressive phase-locking (bottom).

Iext1 = 212.34 pA, Iext2 = 995.35 pA. Panel A adapted from [260].All parameters, stored

digitally on-chip, are individually addressable and programmable and are biophysically-

based, governing the conductances, reversal potentials, and voltage-dependence of the

channel kinetics.

Each neuron implements extended HH and Morris-Lecar type membrane dynamics

including sodium, potassium, calcium, and leak conductances. This enables NeuroDyn

neurons to reproduce a variety of neuronal dynamics such as phasic and tonic spiking,

bursting, and spike frequency adaptation [264]. Regular and fast spiking dynamics are

shown in Fig. 2.4c. Synapses can be excitatory, inhibitory, or zeroed, thus allowing

programmable connectivity and the specification of any network topology among the four

silicon neurons. An example of a silicon half-centered oscillator composed of two neurons

coupled with reciprocal inhibition is shown in Fig. 2.4d. This kind of simple circuit could be

coupled with small CPGs such as the somatogastric pyloric network or leech heart, thanks

to analog and digital probes in the NeuroDyn circuit board allowing for a real-time interface

to the internal membrane potential and channel dynamics of biological neurons [260].

The NeuroDyn system has been designed as a computational tool for studying small

silicon neural circuits either in isolation or when coupled with biological neurons. The four

silicon neurons can be interfaced with biological ones in many different ways thus providing

great experimental flexibility to study small neuronal circuit functions by allowing the

establishment of simultaneous levels of validation with the same neuromorphic hardware.

Our work, presented here, extends the functionality and versatility of NeuroDyn with
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Figure 2.4: NeuroDyn: an analog neuromorphic VLSI chip with 4 spiking silicon neurons
and 12 conductance-based synapses ( [260,264]; Chapters 3 and 4).
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automated parameter estimation through data assimilation (Chapter 3) and with dynamic-

clamp interfaces of NeuroDyn biophysical synapses to biological neurons (Chapter 4).

2.4 Neuromorphic circuits

Building biohybrid systems with population of neurons remains a great challenge

both from the neurophysiological and the neuromorphic perspectives due to the large

number of neurons involved. Information encoding in neural population is distributed over

a large number of neurons and the dynamic clamp technique used in the hybrid network

method is unfeasible for more than a few neurons at a time. As an alternative to dynamic

clamp, extracellular multielectrode arrays (MEAs) are used to record from, and stimulate,

populations of neurons instead, providing an effective bidirectional interface at the network

level between neural populations and electronic circuits.

In comparison with the hybrid network method (Section 2.3), the requirements for

the real-time operations of a biohybrid interface with multiple input and output channels

place severe design constraints in terms of the necessary bandwidth and the complexity of

the signal processing carried out by the electronic circuits. The required bandwidth for

signal acquisition, transmission, and processing, increases with the number of recording

electrodes. Similarly, the real-time operation of the biohybrid interface imposes design trade-

offs for the electronic circuit regarding the neuron model complexity and the population

size emulated. These issues are closely related to power consumption and considerations

on large-scale neuromorphic circuit design are further discussed in the following sections
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(see Section 2.4.2 and Section 2.5). Because of the inherent technical difficulties associated

with the scaling of the hybrid network methods for large neural populations—thousand

to million of neurons— scientists and engineers have started designing and developing

neuromorphic interfaces for biological networks of intermediate size, i.e. tens to hundreds

of neurons, such as CPGs.

2.4.1 Unidirectional and bidirectional neuromorphic interfaces

with vertebrate CPGs

Neural populations in CPGs produce rhythmic outputs even in the absence of

sensorimotor feedback or external drive. In vertebrates, CPGs controlling locomotion are

located in the spinal cord. Whereas most neural prostheses are targeting cortical areas

for electrical stimulation (see Section 2.5), so far only two studies have investigated the

possibility of interfacing directly at the spinal cord level [110] [109]. In both of these studies,

CPG computational models emulated on neuromorphic hardware were coupled with CPGs

from isolated spinal cord kept alive ex-vivo.

In the first study, CPGs from the isolated lamprey spinal cord were coupled with a

CPG model implemented in analog VLSI neuromorphic hardware [110]. The lamprey is a

small vertebrate that is used as model system for studying the fundamental principles of

motor control in vertebrates [81]. One main advantage of this system is that the lamprey

has a relatively simple nervous system that can be kept alive ex-vivo in physiological

saline solution and produce fictive locomotion patterns, while providing a direct access
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to pharmacological and electrophysiological manipulations. In this preparation, it is also

possible to separate the environment of the brain from that of the spinal cord in order to

study the role of neuromodulation. Out of the 100 segments of the isolated spinal cord,

only four produce fictive locomotor patterns and they have been traditionally modeled as a

chain of coupled unit pattern generators (uPG) segments. Jung et al., used a computational

model of the uPG [112] with realistic connectivity and three populations of conductance-

based neurons [110]: excitatory interneurons (E), crossed inhibitory interneurons (C), and

lateral inhibitory interneurons (L). Overall, the uPG model had six neurons connected

symmetrically, with each single neuron representing a different class of neurons. The

interface between the isolated spinal cord and the analog VLSI uPG was realized with

glass suction electrodes, recording neuronal activity from the spinal cord from the ventral

roots around segments 45-60, and stimulating the caudal end of the spinal cord. The

neural activity from the ventral roots was bandpass filtered, amplified, full-wave rectified,

and moving averaged in order to scale the integrated response of the entire population

of motoneurons recorded. The resulting voltage level was converted to current injected

to the E, C, and L neurons of the VLSI circuits. In turn, analog neurons in the VLSI

circuit crossing a preset voltage threshold, triggered a stimulator. Thus, the interface

between the VLSI neuromorphic circuit (ckt) and the spinal cord (sc) could function in

two unidirectional open-loop modes (sc→ckt or ckt→sc) or one bidirectional closed-loop

mode (sc↔ckt). In the first unidirectional mode (ckt→sc) a constant periodic stimulus was

delivered to the sc. By assessing the degree of entrainment between ckt and sc with the

phase relationship between the oscillatory activity of a circuit neuron and the oscillatory
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activity of the ventral root, the authors reported only a transient 1:1 entrainment of the

fictive locomotor rhythm that was lost after a few seconds. In the other unidirectional

mode (sc→ckt), a current proportional to the ventral root output was injected into the

ipsilateral E, C, or L circuit neurons. In that case, a 1:1 entrainment of the circuit could

only be observed in some rare instances. This was mostly due to the low output voltage

of the ventral root, resulting in a small current injected in the circuit neurons leaving its

intrinsic frequency unaffected. Other factors, such as the type of circuit neuron receiving

the current and the intrinsic relative frequency of the driving (sc) and driven system (vlsi)

could also influence the entrainment of the neuromorphic circuit, although this has not

been systematically tested in that study. For the bidirectional mode (sc↔ckt), the current

was injected in the C circuit neuron, and the coupled system exhibited a more robust 1:1

entrainment that was observed during the whole duration of the coupling (minutes), but

without maintaining a constant frequency. Overall, these encouraging preliminary results

demonstrated the feasibility of the hybrid network method at the circuit level.

More recently, a second study connected neonatal rat spinal cords isolated ex-vivo

with a CPG model implemented on a Field Programmable Gate Array (FPGA) [109].

FPGAs are versatile hardware platforms with programmable logic blocks that can be

configured to emulate many artificial neural network models, including CPGs [8]. The CPG

model was composed of two sub-networks representing the left and right half-oscillators, each

with four Izhikevich spiking neurons, interconnected with reciprocal inhibitory GABAA

synapses. Two additional neurons acting as the CPG output neurons (left and right)

integrated each sub-network bursting activity and produced a single spike per burst. In
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turn, each output spike triggered intraspinal microstimulation of the spinal cord. Before

connecting the CPG hardware model with the spinal cord, different stimulation sites were

tested at the L1 level in order to find a location that elicited locomotion-like patterns of

activity typically observed in CPGs and half-centered oscillators. Two sites on either side of

the midline at the L1 level were identified to reliably produce a locomotion-like pattern of

activity—synchronous bursts on the ipsilateral L2 and contralateral L5 ventral root—when

either side was stimulated. Entrainment was measured by the phase relationship between

the ventral root bursting activity. After the identification of the two stimulation sites, the

artificial CPG and a whole spinal cord were connected unilaterally to form an open-loop

system. In these experiments, the hardware CPG model stimulated the spinal cord at a

fixed cycle frequency of 6.7 seconds between successive left and right stimulation. The

activation of the artificial CPG induced a 1:1 entrainment of the bilateral L2 and L5 activity

after the first or second stimulation that remained stable as long as the CPG was active.

In a second series of experiments, the hardware CPG model was again connected in an

open-loop mode but with a transected spinal cord at the T7 level in order to mimic a lesion.

Despite the absence of descending inputs from upstream ganglia, a 1:1 entrainment was

also observed for the transected spinal cord when the artificial CPG was active. Moreover,

the 1:1 entrainment was stable and observed for different cycle frequencies ranging from

2.6 to 6.7 seconds. This study did not explore a closed-loop coupling, mostly because

the FPGA model did not support real-time parameter modifications, and hence neither

plasticity mechanisms. Nonetheless, these results are encouraging because contrary to

previous intraspinal microstimulation (ISMS) studies, they show that ISMS stimulation
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alone, in the absence of drugs, is sufficient to elicit locomotor-like activity and can be

controlled in real-time by a hardware network model.

In summary, the results from these two studies demonstrated the feasibility of a

neuromorphic interface with in vitro vertebrate spinal cord preparations, taking advantage

of the relative simplicity of the CPG networks. By interfacing tens of neurons extracellularly,

these interfaces represent a modest, albeit significant, extension of the hybrid network

method (Section 2.3) using individual dynamic clamps.

2.4.2 Design considerations for large-scale adaptive neuromor-

phic biohybrid interfaces

There are several advantages to implementing neuromorphic hardware over the

more conventional approaches. Neuromorphic hardware attempts to overcome the von

Neumann bottleneck by tightly coupling the synapse (electronic memory elements) and

the neuron (electronic processing elements). This is further combined with targeted

communication protocols like Address Event Representation (AER) resulting in efficient

systems producing state-of-the-art performance at a fraction of the power of conventional

systems [26] [107] [168]. Today, most large-scale neuromorphic platforms are endowed

with a large number of silicon neurons of various levels of biophysical complexity, massive

interconnections among these neurons, and on-/off-line plastic and learning mechanisms

at different time scales. The main available large-scale neuromorphic hardware platforms

have been recently reviewed in a previous issue of this journal [72]. As we have seen in the
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previous sections, silicon neurons can be configured to have time constants compatible with

the biological neurons with which they interact. Large-scale networks of silicon neurons are

therefore most desirable when complex computation is required in real-time under severe

power and space/weight constraints for real-world applications in neuroprosthetic [20] [23],

BMIs [49], and embedded machine intelligence such as autonomous robotics [248]. Other

neuromorphic circuits have also been designed as hardware accelerators for large-scale

biorealistic neural simulations [269] [207] [192] [11] [73] [18] [218].

However, engineering robust large-scale neuromorphic systems that interface with

in vitro and in vivo populations of neurons still faces important and challenging issues

such as: i) the abstraction level of implementing silicon neurons (from HH formalism

to integrate-and-fire models); ii) storage and representation of electronic synapses (from

commercially available DRAM to emerging memristor-based synapse elements); and iii)

efficient communication between large populations of artificial neurons (from Address

Event Routing to conventional Network-on-Chip protocols). These are in addition to

the challenges faced with more conventional approaches, such as configuration of many

parameters of the chip and cost-effective design and implementation of compact low power

circuits. In the following subsections, we briefly discuss these issues and their potential

software and hardware fixes as a complete description and solution to these problems is

beyond the scope of this article. We also present a new hierarchical design for the routing

of events in large-scale multi-chips neuromorphic systems.
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Neurons (electronic processing)

Silicon neurons can implement many of the fundamental properties observed in their

biological counterparts, including spatiotemporal integration, refractory period, and spike-

frequency or spiking threshold adaptation [102]. While neuron implementations span the

range of analog and digital, with intermediate solutions, neuromorphic designs have tended

to be analog neurons due to their power and area efficient implementations. However, highly

efficient digital neuron designs are currently dominant mostly because digital neurons have

the advantage of robustness, ease of programmability and greater tolerance to noise [102].

In contrast, analog neurons can be more power efficient, but have typically not scaled well

with technological advances. Furthermore, since low power analog neurons rely heavily on

leakage characteristics of transistors that operate in the sub-threshold regime of operation,

they suffer a lot more from process variation due to the manufacturing process [189] and

temperature variations [9]. Although this intrinsic VLSI process variability is less severe for

silicon neurons operating in the above-threshold regime [102], these circuits require higher

currents and power consumption making them less amenable for embedded neuromorphic

systems. On one hand, process variability is often desirable as it mimics the inherently

imprecise and noisy biological neurons [43]. On the other hand, process variability greatly

limits the scalability of large networks of sub-threshold silicon neurons as it makes the

configuration and fine-tuning of such neurons impracticable. Fortunately, automated

methods for the configuration of sub-threshold analog silicon neurons have recently been

developed [212] [180]. Russell et al. used a genetic algorithm to tune the control parameters
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and connections weights of silicon neurons forming a CPG [212]. In principle, this method

could be applied to other neuromorphic circuits as it is similar to a black box model and

does not require any knowledge of the underlying circuit architecture. Alternatively, reverse

mapping methods can be used when one needs to translate parameters from a theoretical

neural model directly into neuromorphic hardware [222] [180]. A neuromorphic compiler for

mapping neural architectures to hardware has also been proposed [169]. All these methods

allow the tuning of network parameters in VLSI neuromorphic hardware while conserving

the inherent variability and heterogeneity observed in neuronal populations. Regardless of

the choice between analog or digital neuron, the level of biophysical realism of the individual

silicon neurons present in a given network will ultimately depend on the desired application

and related design trade-offs. Typically, simple integrate-and-fire models are preferred for

large networks as they require less silicon area than the more detailed HH model while still

retaining the underlying neural dynamics [102]. For applications where the contribution

of individual ionic current matters and involve few silicon neurons, more detailed and

complex neural models are used [133] [226] [264]. Nonetheless, the level of biophysical

realism necessary to emulate in VLSI neuromorphic hardware the multiscale spatiotemporal

dynamics observed in nervous systems is still an open question [197]. For a comprehensive

description of the different spiking silicon neurons and their circuit implementation, the

reader is directed to the following review [102].
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Synapses (electronic memory)

Electronic implementations of synapses are the focus of a major effort in contem-

porary neuromorphic computing research. This is mainly due to three reasons. First,

the number of synapses are far larger than the number of neurons in a network, with

synapses being a factor of ∼ 104 more than the number of neurons in biological nervous

systems. Second, the emergence of newer memory devices along with the impending end to

device scaling [247] have led to a focus by semiconductor researchers on electronic synapse

implementations [214] [158] [252]. Finally, short and long-term synaptic plasticity underlie

many forms of learning and memory mechanisms in biological and artificial neural sys-

tems [6] [98]. In turn, learning and memory abilities are highly desirable for the emulation

of adaptive neuromorphic circuits. Similarly to silicon neurons, several VLSI circuits have

been proposed demonstrating different forms of synaptic plasticity and dynamics (for a

review, see [16]). Because there are generally more synapses than neurons, one of the main

requirements for synaptic circuits in large VLSI neuromorphic networks is an economy of

silicon area in order to integrate more synapses on a given chip. Complex electronic synapse

circuits emulating complex mechanisms including NMDA receptors, both long-term and

short-term plasticity and ion channel behavior using many transistors have been abandoned

in favor of more scalable approaches including time-multiplexing synapses [262], analog

bistable synapses [202] and binary synapses [168] [202], in part due to techniques enabling

learning in the digital domain [241]. Indeed, modern research at the interface between

machine learning and neuromorphic computation have demonstrated simple low-precision
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synpases providing computational benefits to machine learning tasks.

Asynchronous address-event-representation and routing schemes (electronic

communication)

If implemented in hardware directly the large number of neurons and high fan-out

in biologically realistic networks will result in a massive number of interconnections. While

it is possible to hardwire tens to hundreds of silicon neurons between them for specific

networks [43], this solution quickly becomes prohibitive for neuromorphic systems with a

larger number of neurons. Moreover, silicon implementations of neural and synaptic arrays

operate at speeds much lower than is typical for silicon circuits while also exhibiting a

higher degree of parallelism in computation and communication for such circuits. This

leads to difficulties in implementing large-scale connectivity, generally addressed by digital

communication in the form of AER, a communication protocol which takes advantage of

the speed of digital electronics and multiplexing [26] [150] [59] [173] [60]. Due to the lack of

synchronization across multiple chips, AER asynchronously routes spike packets between

spatially dispersed neural arrays for greater energy efficiency. Communication happens

through AER [26], where a digital bus carries the address of the spiking neuron within one

neural array and other relevant information to other neural array nodes using asynchronous

handshaking protocols. The AER communication protocol has been optimized for carrying

a large number of small packets (spikes) in real-time and is now widely used by the

neuromorphic community as it eliminates the need for hardwired connections and allows

reconfigurable synaptic connectivity.
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As neuromorphic systems increase in size, complexity, and functionality, several

variations of the original AER protocol have been developed (see [267] and references

therein) to route spike events between several nodes, such as tree routing [107] [18], mesh

routing [267], and N-dimensional Taurus [117]. In general, meshes have high bandwidth

and high latency, whereas trees have low bandwidth and low latency [18]. Both meshes and

trees support deadlock-free multicasting [37]. Since there is a higher multicasting overhead

on meshes [18], tree based networks are favored. We center our discussion around the

hierarchical AER (HiAER) a protocol and implementation for scalable multi-chip systems

based on previous work from our laboratory [107] [188] (Fig. 2.5). (a) is the schematic

representation of the synaptic transmission. (b) shows synaptic routing table implemented

in RAM allows for dynamic virtual reconfigurable synaptic connectivity among silicon

neurons of the IFAT array. (c) is HiAER communication architecture of the multi-level

neural event routers for spike communication between neurons on the same quadrant of

IFAT chip (L0 routers), between neurons on different quadrants (L1 routers), or between

neurons on different IFAT chips (L2 routers) as shown on the diagram. Each square at

the L0 level represents a different quadrant of the IFAT chip shown on the inset of panel

(e). Gray circles indicate L1 and L2 routers implemented on FPGAs. (d) is block diagram

of two-compartment leaky integrate-and-fire neuron models with four conductance-based

synapses. Address events are multiplexed between the AER in and out modules. (e) is a

PCB board with four IFAT chips showing the L1 and L2 hierarchical levels. Inset, chip

micrograph (f) shows an oscilloscope trace showing the membrane potential of a silicon

neuron (V0) crossing the threshold and generating an event (spike), indicated by the arrow,
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when driven by sufficient synaptic input current. V0, membrane voltage of the neuron, Vu,

synapse voltage obtained by log-domain encoding of the synaptic current, sync, software

signal for enabling oscilloscope measurements, Inack, Inreq, Input acknowledge/request

digital signals from the router, Outack,Outreq, Output acknowledge/request digital signals

from the silicon neuron. Calibration bars, x = 2 ms, y= 20 mV. Same color code in panels

(a), (b) and (d). See text for details.

In this system, silicon neurons are implemented on an integrate-and-fire array

transceiver (IFAT) array [263] comprising four quadrants for a total of 65,536 neurons.

Individual neurons on each IFAT array have an address stored in a synaptic routing table

implemented in RAM (Fig. 2.5a-b). In addition, the synaptic routing table contains the

addresses of all the neurons (receivers) connected with that neuron (sender), as well as

several parameters defining the type of connection between these neurons including the

weight magnitude, the synapse type, and the synapse index (Fig. 2.5b). Neurons in one

IFAT chip can send and receive events (spikes), to and from, other neurons in the same

IFAT quadrant, other neurons on a different IFAT quadrant, or other neurons on a different

IFAT. The HiAER architecture extends the single-bus AER protocol to a hierarchy of

multiple nested buses, routing spikes across these increasing spatial scales (figure 2.5c).

Routers among the different hierarchies are implemented in FPGAs. All IFAT neurons

have been emulated as two-compartments leaky integrate-and-fire neuron model with four

synapses (Fig. 2.5d). A PCB board able to accommodate up to four IFAT chips is presented

in Fig. 2.5e and the voltage trace of a firing silicon neuron, along with the digital signals

from the corresponding neuron and router, is show in Fig. 2.5f.
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Figure 2.5: Hierarchical Address-Event Representation (HiAER) communication protocol
for neuromorphic systems.

Thus, in the HiAER protocol both the strength and axonal delay for each synapse

are individually programmable, allowing the emulation of biologically plausible neural

network architecture, and scales across a ranges of hierarchies suitable for multi-chip and

multi-board systems in reconfigurable large-scale neuromorphic systems.
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Configuration of large scale neuromorphic circuits

The development of different neuromorphic hardware platforms of larger size has

been paralleled by the proliferation of an equal number of hardware-specific software

ecosystems for the configuration, monitoring, and characterization of these platforms.

While this approach can lead to rapid prototyping and use of a given hardware system, it

also greatly reduces the speed with which these hardware systems can be used, modified,

and improved by a larger number of researchers. Ultimately, this lack of flexibility and

modularity impedes the adoption and evolution of these integrated hardware/software

systems. Up to now, efforts for the definition of a common standard for configuring

heterogenous neuromorphic hardware with different specifications have produced two

Python-based open-source softwares, PyNN 1 [55] and PyNCS 2 [229]. PyNN was initially

developed as a common programming interface for porting and running neural models on

different neural network simulators by writing a single script. PyNN also supports one

neuromorphic hardware platform from the University of Heidelberg (Germany) [192]. Using

PyNN, Pfeil et al. emulated six common network models on that platform [192] including

a synfire chain, a balanced random network, a soft Winner-Take-All (sWTA) network,

a cortical layer 2/3 attractor model, an insect antennal lobe model, and a liquid state

machine. PyNCS was developed specifically for neuromorphic hardware, with the goal

of providing a common configuration standard for different chips, similar to the common

communication standard AER. Furthermore, PyNCS also provide some tools for data

1http://neuralensemble.org/PyNN/
2https://github.com/inincs/pyNCS
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analysis and visualization. PyNCS has been used to emulate both rate-based [222] and

spike-based [43] [229] [202] neural models on neuromorphic hardware from the Institute

of Neuroinformatics in Zürich (Switzerland). It is also being used for the configuration of

the IFAT chip from our group [263] at the Institute for Neural Computation in La Jolla

(USA). Since their development, the neuromorphic community has been using some of the

tools provided by PyNN and PyNCS to help configure other neuromorphic chips in Europe

and the USA. However, contrary to the AER protocol, the PyNN and PyNCS are recent

software tools and have not yet become, de facto standards used by neuromorphic engineers.

Nonetheless, efforts for the creation of a common open-source standard for the configuration

of a wide variety of neuromorphic hardware are worth pursuing further. The right kind

of standards are indeed powerful drivers of technological innovation by making different

technologies interoperable [246]. Although standards impose a certain homogeneity of the

different software and hardware designs, this can be leveraged by the modularity, ease of

modification, and expandability of the components through combinatorial possibilities. In

the context of neuromorphic engineering, this would translate into the ability of designing

and developing larger neuromorphic systems with different functions based on different

combinations of standardized, and widely available, software and hardware components.
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2.5 Neuromorphic prostheses and Brain-machine In-

terfaces

In many neurorehabilitation applications using a long-term bidirectional interface

between an electronic system and nervous tissues, including retinal and auditory pros-

theses [75] [268], Brain-machine Interfaces (BMIs) [131] [32], feedback neurostimulation

for movement disorders [196], epilepsy [128], and depression [160], neuroscientists and

engineers face several challenges to satisfy severe design trade-offs and constraints related

to the real-time operations, the size and power consumption of the devices necessary for the

acquisition and transmission of neural signals, the risk of infection, and, to a lesser extent,

the cosmetic appearance and comfort of chronic implants. In the case of intracortical

neural prostheses, these trade-offs and constraints are generally dictated by the location

of the implant. Whereas the recording, or stimulating, electrodes are in direct contact

with the cortex, three main design solutions have been proposed for the position of the

electronics involved in the signal processing (amplification, filtering, digitization) and data

transmission [63]. In the first design, the electronics are externally mounted and fixed

against the cranium, outside of the scalp, putting less constraints on the size of the implant.

However, the risk of infection is high due to the skin wound and the protruding electronics

can cause severe discomfort for chronic implants. In the second design, the electronics is

fully implanted under the scalp, allowing for wound closure, but limiting its size and heat

dissipation. In the third design, the electronics are in close proximity to the electrodes

and the full implant is under the skull. This greatly limits the risk of infection as the
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dura is hermetically sealed, but this design imposes stringent power limitations due to the

proximity of the implant to brain tissue. From a safety perspective, the heat dissipated by

the neural implants must be minimized and not cause a temperature increase of more than

1◦C in order to preserve the long-term health of brain tissues [127] [119]. As such, much

research has been dedicated for the design of low-power amplifiers and efficient wireless data

links [184]. However, the energy and bandwidth required for the telemetric transmission of

the neural data off-chip for further processing become prohibitive for the development of

chronic implants with large number of electrodes.

Recently, alternative designs taking advantage of the low-power, real-time features,

and compactness of neuromorphic systems have proposed to bypass the power-demanding

wireless transmission of neural data and integrate the processing stage on-chip in analog

VLSI hardware [22] [49], thus moving toward the future implementation of efficient low-

power neural implants. In the following sections, we describe such neuromorphic approaches

for next generations of BMIs and neuroprosthetics.

2.5.1 Neuromorphic processors for BMIs

In a BMI system, the neural activity of a population of neurons is recorded invasively

or non-invasively, sent off-chip to a computer to be decoded by an algorithm, and then

translated into commands for an external actuator such as a robotic arm [255], a computer

cursor [120], or a wheelchair [92]. Various algorithms have been proposed for decoding

the multichannel neural activity, including artificial neural networks and Kalman filters.

Although a fully functional implantable neuromorphic BMI system has not yet been tested
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in animals or humans, two different BMI systems using spiking neural network decoders

have recently been proposed and are of particularly interest as they have been specifically

designed for hardware implementation in order to carry out significant computation on a

low power budget.

The first system demonstrated the feasibility of implementing a Kalman-filter based

decoder using a spiking neural network [62] [63]. The long-term goal of this work is the

implementation of this filter on Neurogrid, a neurmorphic chip that can simulate up to a

million of spiking neurons in real-time [18]. In a first study, the authors trained a standard

Kalman filter to predict the hand velocity of a single monkey during a center-out-and-back

reaching task [62]. In that task, targets alternated between a central location and eight

peripheral locations. Hands movements were decoded and translated into a computer cursor

velocity. The standard Kalman filter was fitted by correlating the hand kinematics with

the neural activity recorded with two 96-electrode arrays implanted in the pre-motor and

motor cortex. The standard filter was then mapped onto a spiking neural network of 2,000

neurons implemented in software. Trial blocks using either the standard Kalman filter or

the spiking neural network one were randomized in order to remove any behavioral bias.

Both filters ran in closed-loop and in real-time and achieved a similar level of performance

(> 99%). In a follow-up study, the same group extended these results for two monkeys and

for multiple tasks [63]. Both filters led to similar performances for the center-out-and-back

task even though one of the monkey had only one 96-electrode array implanted (the other

monkey was the same that participated in [62]). The stability of the spiking neural network

implementation of the Kalman filter was then tested during a pinball task. In that task, run
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continuously, targets appeared at random locations in a square space and the monkeys were

trained to reach for a target, hold its position for 500 ms before reaching for the successive

ones, receiving a food reward for each correct hit. Both monkeys were able to sustain an

impressive performance of 40 targets per minute for over an hour before loosing interest,

likely because they were satiated. These results suggested that the spiking Kalman filter

was robust over long period of time and capable of some level of generalization, two qualities

highly desirable for a successive implementation of decoders for long-term applications.

Overall, the results of this mapping approach are promising as Kalman filters, and its

variations, represent the state-of-the-art decoders both for monkeys [137] and human [120]

BMIs.

The second BMI system is a neural recording system with a fully integrated neu-

romorphic processor able to process neural activity data in-situ on the same chip [49].

The neural recording system consists of a standard low-noise amplifier (LNA) designed

to amplify signals in the µV range, two band-pass filters with pulse analog to digital

converter (ADC), an AER analog/digital delta modulator, two analog “peak” and “through”

filter circuits, and a basic threshold-crossing spike detector for spike sorting. The overall

system has an area < 0.2mm2. The pre-processed neural data are then converted into

asynchronous digital event trains which are then encoded using the AER (see Section 2.4.2),

converting the spikes into address events. The routing of the address events (AEs) was

controlled by a FPGA (spartan-VI ) and the AEs were then processed by a spiking neural

network implemented on an adaptive neuromorphic processor with learning abilities. The

neuromorphic processor was composed of 256 silicon neurons and 128k plastic synapses,
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half of them implementing short-term plasticity (STP) dynamics and the other half im-

plementing long-term plasticity (LTP) dynamics. The neurons were modeled as adaptive

exponential I&F neurons implemented with mixed signal analog/digital circuits [202]. Only

LTP synapses were able of learning, implemented as a spike-based Hebbian-type rule where

the weight update depends on the timing of the pre-synaptic spike, as well as the state and

firing history of the post-synaptic neuron [174]. An additional drift mechanism ensured

that weights reached one of two stable binary states, high and low. The STP synapses

could be configured as excitatory or inhibitory and programmed with two possible weight

values. The 256 neurons were connected to implement a liquid state machine [148] with a

first layer of 128 neurons used a random recurrent network (reservoir) with STP synapses

and a second layer of 128 read-out neurons, with all-to-all connections and plastic LTP

synapses between the two layers. Time varying inputs (AE trains) are transformed into

a spatio-temporal pattern of activation in the reservoir that are then classified by the

linear discriminant output layer. The recording system with the integrated neuromorphic

processor was tested and validated by recording the neural activity of zebra finches, a

songbird, with tetrode electrodes and classifying between two types of auditory stimuli.

In particular, the neural activity from the auditory-forebrain neurons of the songbird was

recorded with four electrodes while natural sounds were used as auditory stimuli. The

classification task was set to distinguish between two auditory stimuli, the bird’s own song

and its reversed version, thus ensuring that both signals had similar average energies but

distinct temporal structures. After pooling the responses of neurons for the same class

of stimuli (original song or reversed), the full data set consisted of 229 neurons from 16
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different birds. The authors used a subset of these data from six birds, that consisted

of blocks of 32 recordings, each with fifty stimulus repetitions of either the original or

reversed song. This was done in order to simulate the data stream from a 32-channel system

(32 x 2 as every channel is converted in UP and DN signals by the asynchronous ADC delta

modulator). The binary neuromorphic classifier was trained in a supervised way. That is,

each stimulus block was presented with a teacher signal in the form of a Poisson spike train

with either a low (25 Hz) or high (150 Hz) frequency corresponding to the teacher-false

and teacher-true signals, respectively. This ensured that the read-out neurons fired at a

high firing rate (100 Hz) when the true-class stimulus was present and at a low rate (5

Hz) when the false-class stimulus was present. In this way, the LTP synapses tended to

potentiate and transition to the high binary state when driven by the true-class teaching

signal, due to the implemented drift mechanism. Conversely, the synapses transitioned to

the low binary state when driven by the false-class teaching signal. Before training, the

network was initialized with all the LTP synapses in the low binary state. After all the

training examples were presented to the classifier, the optimal discrimination threshold

was determined by re-presenting all the training data set and maximizing the classifier

performance while turning off the learning rule. The overall performance of this classifier

peaked at 96%.

Recently, the same neuromorphic chip –the ROLLS neuromorphic processor [202]–

was then used as a decoder in an embedded BMI system in anesthetized rats [27]. In this

work, the BMI task consisted in controling the 2D movement of a small mobile device.

Multi-unit neural activity from the motor cortex (M1) representing the whiskers was
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transformed into a force field vector driving the external device. The resulting device

position served as feedback signal delivered to a multielectrode array implanted in the

somatosensory cortex (S1) of the whiskers. The workspace was divided in four regions

which were encoded as four different patterns of intracortical microstimulatinon (ICMS) in

S1 differing in the combination of electrode used. The decoding of the patterns of motor

activity was performed by a feed-forward spiking neural network with plastic synapses

and trained with supervised learning with a teacher signal as in [202] [49]. This BMI

system was successfully employed to drive the mobile device from different predefined

positions toward a target values. As the components of the driving force were weighted by

the spike count of the output neurons, one unique feature of this BMI system was that

the spiking output of the neurmorphic decoder was directly used as a control signal, in

addition to the traditional decoding one. Another key feature of this BMI system is its

modularity, intended to facilitate the integration of collaborative work distributed across

different laboratories. The authors have proposed a central core, or managing unit, around

which several satellites modules can be connected including acquisition and stimulation

units, decoder, encoder, and a dynamical system module defining external devices driven

by the BMI system. The acquisition and stimulation units are intended to accommodate a

variety of MEAs. Other modules can be software running on dedicated hardware, FPGA,

or neuromorphic chips. The full standalone system is comprised of custom hardware and

software elements effectively integrating the different modules. In order to encourage

development and use of their modular architecture, the authors have made most of the
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material available publicly. 3

Results from these three studies suggest that spike-based computation with a

relatively small number of neurons can be used for decoding neural activity in real-time, and

generate in turn efficient control signals. Implementing these algorithms in neuromorphic

hardware allows the computation to be carried out on-chip, potentially eliminating the

need for off-chip wireless telemetric data communication. This is particularly attractive

for closed-loop neural implants with tight energy budgets as the high-data-rate wireless

communication needed for high spatiotemporal resolution of neural activity consumes a

significant amount of power unavailable for the computational resources. This trade-off

between the communication and computation in closed-loop neural implants [215] could thus

be minimized with low power neuromorphic hardware that can now emulate complex neural

network models. Recent results from energy-efficient neuromorphic classifiers indicate

that standard classification with support vector machine [157] and deep learning [69]

are performed at the same level as classical digital machine but with a lesser energy

consumption, in some cases by two order of magnitude [157].

2.5.2 Neuromorphic prostheses for neuroprosthetics and neu-

rorehabilitation

Neuroprosthetics aims to restore the bidirectional communication and interactions

between the brain and its environment at the sensory, motor, and cognitive levels. Similarly

to neuromorphic BMI systems, these prostheses work by recording neural activity from brain

3http://www.sicode.eu/results/software
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regions, process the information in-situ using a neural model implemented in hardware and

communicate back to parts of the functioning brain. Neural models are biologically realistic

and designed to replace a damaged brain region and its associated neuronal computation.

The prostheses are typically programmable, thus allowing a tailored optimization for each

individual patient. Ethical considerations related to patients’ informed consent and the

therapeutic efficiency and potential harmful side effects of neuroprostheses are beyond the

scope of this article and have been recently reviewed in another issue of this journal [78].

Security issues of neuroprostheses have been considered elsewhere [200] [99].

Sensory prostheses

At the sensory level, the working mechanism of most of the prostheses is to replace

the physical energy from the environment with electrical stimulation of sensory fibers with

bionic implants. Although these implants can theoretically be located at different stages of

the sensory processing pathway, most of the research for visual and auditory prostheses

is focused on replacing the sensory interface, the retina and the cochlea respectively, in

order to benefit from the natural downstream information processing along their respective

sensory paths. However, a significant amount of sensory information processing is carried

out directly by the retina and the cochlea before being transmitted to subsequent visual

and auditory pathways, respectively, rendering implants that only transmit the energy

of the sensory signals rather inefficient. In recent years, neuromorphic engineers have

designed sensors that reproduce the sensory processing of the retina and cochlea in great

details [152] [153] [145] [147] [88] (for a review, see [142]). These neuromorphic sensors carry
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out event-based computation using AER representations, allowing them to process complex

biological stimuli in real-time with the same power and size requirements as other neural

implants. Moreover, the output signals of the neuromorphic sensors are similar to the neural

activity observed in the biological retina and cochlea, thus taking full advantage of the intact

downstream sensory information processing pathways. Currently, event-based neuromorphic

sensory prostheses are still under development and only one neuromorphic retina acting as

an epi-retinal implant has reached clinical trials4 (R. Benosman, personnal communication).

This artificial retina does not use silicon neurons, but relies on an asynchronous dynamic

vision sensor [139] [145] and we will describe it briefly as it highlights important properties

of event-based computation for sensory prostheses. Similarly to other neuromorphic retinas,

each individual pixel adjusts its own sampling in response to changes in the amount

of incident light it receives, such as it only transmit events when it detect changes of

light intensity defined by a prescribed threshold [145]. In this way, the artificial retina

outputs asynchronous data for each individual pixel representing changes of light intensity,

rather than a stream of static redundant frames typical of traditional light sensors [142].

Neuromorphic sensors typically have a wide dynamic range matching that of the human

retina. Using such an asynchronous event-based light sensor, the artificial retina currently

under clinical trials can reduce redundancy, and reproduce the parallel filtering and temporal

coding occurring in the biological retina, with spiking statistics similar to physiological

measurements [145]. Importantly, the encoding of exact times of light change results in a

very precise temporal resolution and allows event-based computation to take advantage of

4Pixium Vision SA, http://www.pixium-vision.com/en/clinical-trial/overview
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the spike timing information for applications such as learning and encoding spatiotemporal

visual features [126] and object recognition [185]. Thus, although currently still under

development, neuromorphic sensors offer an exciting alternative to traditional synchronous

sensors and open exciting new research perspectives for the design of next generation

sensory prostheses.

Motor prostheses

At the motor level, neuroprostheses attempt to restore movement and the ability

to interact with the environment for patients with motor impairments. Several artificial

devices, including robotic arms, computer cursors and wheelchairs [255] [120] [92] can now

be operated by patients with severe motor disabilities such as occurring in tetraplegia

and locked-in syndrome. In general, motor prostheses use arrays of microelectrodes to

record neural activity in motor areas, decode motor intention, and translate it into control

commands for the artificial actuator. In the case of spinal cord injuries, an alternative

approach consists in establishing artificial connections between the spinal cord and the

motor cortex, thus bypassing the damaged cord and using the neural motor activity to

stimulate it further downstream. Here, we will discuss progresses made toward that goal

for a fully implanted chip in monkeys. Similarly to the current sensory prostheses, this

chip does not use silicon neurons. However, its basic mode of operation illustrates several

principles that will be discussed in details further below in the context of neuromorphic

prosthetic devices intended to restore cognitive functions. The Neurochip [159] is a battery-

powered electronic circuit composed of 12 tungsten microwire electrodes (diameter 50 µm,
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inter-electrode spacing 500 µm) that has been implanted in the primary motor cortex (M1)

of freely moving monkeys for several months [106]. It also connect two pairs of stainless-

steels wire allowing the simultaneous recording of electromyogram (EMG) signals from the

forearm muscles along with the cortical neural activity. Two programmable system-on-chips

operating in parallel handle separately the signals from the cortical microelectrodes and

the two pairs of EMG wires. By storing the average spiking and EMG activity in 100 ms

bins, the Neurochip could record and store over 27 hours of continuous data from the motor

cortex. Recorded data were typically downloaded daily via IR before replacing the battery

in order to allow continuous operation for several months. A separate series of preliminary

experiments in three sedated monkeys demonstrated the ability of the Neurochip to trigger

movements of the hand and arm by ISMS following a laminectomy over four vertebrae [106].

Although the stimulation of the spinal cord was not triggered by cortical activity, these

results showed that the Neurochip could, on one hand, record activity from the motor

cortex, and, on the other hand, stimulate the spinal cord to elicit movement, thus holding

clinical promise to re-establish a functional connection between the motor cortex and the

spinal cord.

The Neurochip was also used to create an artificial connection between two distant

cortical sites in the wrist area of M1 in monkeys [105]. In that work, the in vivo spike

activity at one cortical location (Nrec) was recorded with a single microelectrode and

used to stimulate a second cortical location (Nstim) with another microelectrode. A third

electrode in a neighboring site was used as control (Ctrl). During pre-conditioning, the

three sites were stimulated separately with trains of 13 biphasic pulses at 300 Hz delivered
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every 2 seconds. During conditioning, the Neurochip was programmed to stimulate Nstim

with a single pulse 5 ms after an action potential was detected at Nrec. The effect of the

artificial connection were quantified by comparing the change of direction of the mean

wrist torque angle relative to the pre-conditioning direction of Nstim. After two days of

continuous conditioning, the direction of the mean wrist torque angle at Nrec moved toward

the direction of Nstim, indicating that the artificial connection was able to induce a plastic

reorganization of the wrist area of M1. This effect was observed for 17 different pairs of

electrodes Nrec and Nstim in two monkeys over separate conditioning sessions, and remained

stable for a week without further conditioning. In another series of experiments, the authors

tested the effects of longer delays between 20 ms and 2 s in one monkey. In that case,

significant shifts of direction were only observed for delays up to 50 ms, suggesting that a

plasticity mechanism similar to spike-time dependent plasticity was involved. This study

was the first one to demonstrate that a neural implant connecting two distant locations of

the motor cortex, in unrestrained animals, can induce plastic changes in one location using

the in vivo spiking activity of another location.

Besides connecting remote regions of the motor cortex, activity-dependent neural

stimulation was also successfully employed to create an artificial link between distant

locations of the motor and somatosensory areas [12] [82]. Activity-dependent stimulation

of the somatosensory cortex is envisioned to provide somatosensory feedback in closed-loop

BMIs [240] as well as promote recovery following traumatic brain injuries [12] [82]. In

the latter case, neuronal activity recorded in the motor areas is typically used to trigger

intracortical microstimulation (ICMS) to the sensory cortices. Azin et al., chronically
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implanted microelectrodes in the rostral forelimb area (RFA)–the rodent equivalent of

the primate’s premotor area–and second somatosensory area (SII) of ambulatory rats

for recording and stimulation, respectively [12]. Individual recorded spikes in RFA were

discriminated by an adjustable threshold and each triggered a single-pulse (monophasic

current) stimulation of SII after a delays of 5 or 7.5 ms. ICMS, lasting 500 ms, was shown

to decrease the neuronal firing rate in SII when it was on. This process was reversible

at that time scale and the neuronal firing rate returned to prestimulus levels once the

ICMS was stopped. In a subsequent study, Guggenmos et al., used a rodent model of

focal brain injury to the caudal forelimb area (CFA)–the rodent equivalent of the primate’s

primary cortex (M1)– in order to investigate activity-dependent ICMS restoration of brain

function [82]. Focal injury in CFA disrupted normal communication between S1 and RFA

and the authors bypassed the lesion by establishing an artificial connection between the

RFA and the primary somatosensory cortex (S1). Following a similar approach as in [12],

individual spikes detected in RFA triggered a contingent pseudobiphasic current pulse

in S1 after a delay of 7.5 ms, 24 h a day, up to 28 days post-lesion. Rats were trained

to a reaching task to retrieve a food pellet before the focal lesion. After the lesion, rats

were divided in three groups: activity-dependent stimulation (ADS), open-loop stimulation

(OLS), and control rats receiving no stimulation. In the OLS group, the S1 stimulation was

uncorrelated with the RFA neural activity. Behavioral improvement due to S1 stimulation

started to be observed within a week, and reached near pre-lesion performance within

two weeks for the ADS group. Behavioral improvement was also observed in the OLS

group, but to a lesser extent, suggesting that functional recovery in the ADS and OLS
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groups is mediated by different mechanisms. Overall, the results from this study provided

a proof-of-concept showing that activity-dependent neural stimulation could be used to

promote functional recovery by linking distant regions of the sensory and motor cortex.

The modulation of neural activity over greater distance, and different modalities, than the

Neurochip suggested that neurpprosthetics could be envisioned to restore sensorimotor

functions following traumatic brain injuries.

However, many challenges remain to be overcome before the practical applications of

such implants. First, it is absolutely necessary to have low-power implants in order to reduce

heat dissipation and prolong the battery life. The battery of the Neurochip (2/3 AA 3.6V,

Tadiran Batteries Ltd.) needed to be replaced daily, making it unpractical for long-term use.

Second, the implants need to be miniaturized so to maximize the patients’ comfort during

daily use and minimize unwanted stress on the neighboring tissues. The size of the Neurochip

was as big as its battery, which makes its implantation in subcortical structures very unlikely

or impossible. Finally, the replacement of damaged neural circuits, or population of neurons,

rather than a direct pathway, will require more elaborate neural implants with multiple

electrodes and able to carry out complex computations (see Section 2.5.1).

The neural activity recorded by implanted MEA can also be used to drive the

functional electrical stimulation of different muscle groups. Recently, this strategy was

successfully employed to restore hand and wrist movements in a patient with tetraplegia [29].

In this study, a 96-channel Utah MEA implanted in the left primary motor area (M1) could

record cortical motor activity of six types of imaginary movements for up to 15 months.

Six different neural decoders based on support vector machine were trained for each type
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of movement on a separate computer. The decoded neural activity then controlled the

functional neuromuscular electrical stimulation that was then delivered on the right forearm

through a custom-made flexible sleeve with 130 electrodes. By externally powering the

MEAs used for recording and stimulation, and carrying out the computation off-chip, this

design was not subjected to the trade-off between communication and computation typical

of neural implants.

Cognitive prostheses

Next generation of cognitive prostheses aims at replacing damaged neural circuits

and networks in central regions of the brain with equivalent biomimetic circuits implemented

in hardware [22] [20] in order to restore higher cognitive functions such as memory, language,

and decision-making. These circuits are envisioned to carry out similar computation as the

damaged circuits or networks and communicate with the same regions originally interacting

with the damaged brain region(s). Although the successful implantation of a robust,

durable, and functional cognitive neuroprosthetic device lays years ahead, we describe here

two interdisciplinary efforts for replacing parts of the rat hippocampus [22] [21] [23] and

cerebellum [97] with a biologically realistic model implemented in VLSI hardware. In the

first series of work, the focus on the hippocampus is motivated by two main reasons. First,

the hippocampus has been studied extensively in animals and humans and its structural

and functional connectivities have been well characterized. The hippocampus is composed

of several subfields –dentate gyrus (DG), CA3, CA1– and basically forms a closed-loop

with the neocortex. Inputs from the entorhinal cortex innervate the DG via the perforant
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path. The granule cells of the DG projects to the CA3 subfield that in turn project to

the CA1 subfield. The CA1 outputs then project to the subiculum that is connected to

the entorhinal cortex in the intact brain. Thus, the hippocampus essentially consists of

a parallel trisynaptic pathway, connected with excitatory glutamatergic synapses, from

DG to CA3 to CA1. Second, damage to the hippocampus resulting from traumatic brain

injury, stroke or epilepsy can result in the permanent impairment to form new long-term

memories, a debilitating condition for which there is currently no treatment.

In order to model the nonlinear dynamics of the different subfields of the trisynaptic

pathway, the authors used system identification and principles of nonlinear systems theory,

rather than spiking neural networks. Consequently, the resulting VLSI hardware imple-

mentation was designed for the computation of a transfer function and did not involve

silicon neurons. In this approach, the neuronal circuit is represented by a parametric

“black box” model. In particular, the neural dynamics was estimated experimentally by

applying a series of random electrical impulses, i.e. δ-functions, to the perforant path,

while recording the evoked output in the various hippocampal subfields. This stimulation

procedure was initially done in vitro with acute rat hippocampal slices [22] [21] that keep

the trisynaptic pathway intact and allow the use of planar conformal multielectrode array

(cMEA) where the electrodes are located over the three main rat hippocampal subfields

in slice preparation. Then, the input/output (I/O) transfer function for CA3 and the

complete trisynaptic pathway was modeled with third-order Volterra series. A Laguerre

expansion of the Volterra kernels was used to reduce the number of coefficients to be

estimated. As the resulting Voltera-Poisson model is equivalent to a generalized linear
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model [225] the coefficients can be estimated with standard methods such as minimizing

the negative log-likelihood using the iterative reweighted least-mean square method.

This CA3 model was then implemented on a mixed analog/digital system-on-a-chip.

The main motivation for a hardware implementation was the need for the parallel processing

and stimulation of multiple neurons in real-time. In addition, similarly to other sensory

and motor prostheses, hardware implementations also facilitate the fulfillment of size,

weight, and power constraints of the overall design. For that particular implementation,

the input of the system-on-a-chip consisted of the analog signals from the DG. The analog

hippocampal signal was buffered and amplified before being digitized by an ADC. The

resulting digital signal was sent to an FPGA to determine the amplitude of the population

spike before being processed by the CA3 model. Each model output was then converted

to an appropriate biphasic representation for stimulation of neural tissue. Following a

DAC conversion, the final signal was transmitted to the hippocampal preparation through

stimulation with a custom 60-channel cMEA [21]. This system-on-a-chip was tested with

a hippocampal slice with severed CA3 afferents, impeding the propagation of activity of

DG to CA3 and from CA3 to CA1. By using random impulse trains to the perforant path,

Berger et al. compared the CA1 output in the intact slice with that of the slice with severed

CA3 afferents when connected to the system-on-a-chip with the CA3 model [21]. Thus, the

I/O transfer function for the full trisynaptic pathway was used as a control to compare the

intact hippocampal dynamics with the one with the CA3 model. Each random impulse

train consisted of 2,400 impulses (1,200 delivered before CA3 transection; 1,200 delivered

after transection). Unfortunately, the authors did not quantify the results in details and
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only reported the amplitude of the CA1 population for 50 impulses chosen among the 2,400.

Overall, the amplitude of the CA1 output from the transected slice match very well the ones

from the intact slice and the intervals causing the largest changes of amplitude in the intact

slice are the same causing the largest changes in the transected slice. These preliminary

results were nonetheless encouraging and provided an initial demonstration that a part of a

large functional circuit (CA3 from the hippocampus) could theoretically be replaced by an

equivalent computational model in vitro implemented in hardware and provide a similar

output signal as the intact circuit. Thus, this computational model basically computes an

effective transfer function for a hippocampal subfield.

Ultimately, the validity of this approach for restoring a cognitive function in a freely

moving animal during a behaviorally relevant task has been evaluated in behaving rats

performing a delayed non-match-to-sample (DNMS) memory task in a series of follow

up studies [24] [23] [89]. By carrying out in vivo bilateral extracellular recording of

hippocampal neural populations in CA3 and CA1 with two 16-channel electrode arrays

for a large number of animals (n=62) during this memory task, Berger et al. developed a

multi-input/multi-output (MIMO) model of the CA3 to CA1 pathway, again using modeling

methods from nonlinear system theory, i.e. Volterra kernels and Laguerre expansion. In

particular, the MIMO model was built by combining a series of independently estimated

multi-input, single-output (MISO) models – one for each CA1 output neuron recorded –

determined by the forward step-wise model selection methods [24]. A given MIMO model –

one for each animal – could estimate in real-time the CA1 output firing from the input

CA3 firing pattern of a given animal. More importantly, this modeling approach has
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been successfully employed in a closed-loop paradigm of the DNMS task in which the

hippocampal glutamatergic transmission was altered with MK-801, a blocker of the NMDA

receptors [24] [23]. In that series of experiments, rats were infused chronically with MK-801

in the CA3 region for a two-week period. During that period, the performance of the

DNMS task decreased for all delay intervals. However, this detrimental effect could almost

be completely reversed by delivering the MIMO stimulation patterns computed before the

drug infusion, resulting in a performance level close to that observed in control conditions.

Both software (16-input, 16-output) [23] and VLSI hardware (16-input, 8-output) [24]

implementations of the MIMO model led to a similar improvement of the performance level

for the DNMS task following alteration of the hippocampal glutamatergic transmission

by stimulating CA1 with patterns computed from the recorded CA3 inputs. Overall, this

neuroprosthese for hippocampal function enhanced DNMS performance for long delays,

restored performance level in intact animal after chemical inactivation of CA1 by MK-801,

a blocker of the NMDA receptors, and enhanced performance for longer delays in control

animals [89].

The success of this cortical neural prosthetics for restoring a cognitive function is the

result of more than a decade of interdisciplinary work. Many of the constraints and trade-offs

discussed for other neural implants were identified by Berger and coworkers in their initial

proposal [22], including optimized hardware implementation of computational models to

fulfill the size and weight constraints. Interestingly, a neuromorphic approach was initially

considered and modeling of the transfer function evolved from artificial neural networks with

dynamic synapses [22] to the alternative black box identification of MIMO transfer function
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described above. However, it is not yet clear how hardware implementations of MIMO

and neuromorphic models will compare for a given number of recording and stimulating

electrodes as no efforts were made to deal with power consumption for this generation

of MIMO models. Thus, further work is necessary for assessing the relative merits and

advantages of neural function approximation with silicon neural networks, transfer functions,

or a combination of both, especially in relation with plasticity and adaptive mechanisms

over multiple time scales. As research in cognitive neuroprosthetics is progressing slowly, a

lot of open questions remain. Meanwhile, the neuromorphic engineering community has

recognized the need for emulating hardware systems with cognitive qualities rather than

ones strictly reactive and based on a stimulus-response paradigm [43] [101].

In contrast to the “black box” approach, a group of researchers took advantage

of the well-characterized functional connectivity of the rat cerebellum during classical

conditioning [235] to develop a neuro-inspired VLSI hardware model of a cerebellar learning

function [97] [15]. The behavioral paradigm consisted of the eyeblink conditioning in which

an auditory stimulus (conditioned stimulus, CS) is paired with an periorbital air puff

(unconditioned stimulus, US). After repeated CS-US pairings, an eyeblink (conditioned

response, CR) occurs before the US onset. Crucially, the authors did not perform lesions of

the cerebellar circuits involved in CRs in order to rule out any compensatory mechanisms of

the motor responses. Rather, rats were anesthetized as conditioned motor responses are not

expressed under general anesthesia. Thus, the observed motor responses were only triggered

by the neuroprosthesis. Modeling of the cerebellar learning was based on a previously

published model [15]. In essence, the pontine nucleus (PN) and the inferior olive (IO) relay
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the auditory CS and the somatosensory US to the cerebellum, respectively, where both CS

and US converge on specific Purkinje cells. The modulation of the Purkinje cells activity by

both the CS and US is the central player for the eye blink learning. The CS and US signals

contact the Purkinje cells via the parallel fibers (pf) and climbing fibers (cf), respectively.

The pf-Purkinje cell synapses will experience LTP if only the CS is present. Conversely,

the convergence of the CS and US signals promote LTD of the pf-Purkinje cell excitatory

synapses. The reduced excitation of the Purkinje cell ultimately triggers the CR via the

simultaneous activation of the motor facial nucleus (FN) and inhibition of the IO. The

model implemented on the VLSI neuromorphic chip consisted of a single plastic pf-Purkinje

cell synapse. Inputs to the neuromorphic chip were provided by multi-unit recordings from

the PN and IO with 3 twisted platinum wires and a single tungsten electrode, respectively.

On-chip processing allowed the real-time extraction of the CS and US events. Increase

and decrease of the weight of the pf-Purkinje cell synapse was used to represent LTP and

LTD, respectively. Ultimately, the Purkinje cell activity controled the CRs by triggering

a stimulating electrode implanted in the right facial motor nucleus. Using this neural

prosthesis, the authors were able to reproduce both the acquisition and extinction of the

CRs in three anesthetized rats. Notwithstanding the simplicity of its model, this result is

remarkable as it provides a proof of concept that a specific element of a neural circuit can

effectively be replaced and implemented in a fully integrated neuromorphic chip operating

into the real-time dynamic of its neural environment.

64



2.6 Discussions

2.6.1 Hybrid Neural Network Implementation

The formation of biohybrid circuits between biological and artificial neurons in all

of the neuromorphic neural interfaces described above is composed of three interacting

components: the wetware, the software, and the hardware. The specifics of each component

are generally dictated by a determined application. Initially conceived as a tool for compu-

tational neuroscience for investigating the relationship between individual conductances

and network activity, biohybrid circuits have grown in complexity and have recently shown

promising results for applications in BMIs and neuroprosthetics as well. A comparison of

the various approaches developed for biohybrid circuits is summarized in Table 2.1 in terms

of the main wetware, software, and hardware components. The references are presented in

chronological order to illustrate the trends and limitations of future biohybrid circuits and

next generation neuroprosthetics.

2.6.2 Wetware: Biological preparations, interface, and applica-

tions

Biohybrid circuits have been successfully established with nervous tissues from both

invertebrates and vertebrates. All the available options for the neuronal preparations

have been investigated, from in vivo [63] [24] [242] to in vitro [226] [135] [110] [109] and

acute slices [134] [45] or dissociated cultures [28]. Notice that other classes of excitable
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Table 2.1: Comparison of the different biohybrid neuromorphic interfaces from the single
neuron to the network level. References are in chronological order.

Ref. Cells Neuron Rec. Stim. Interface Model Hardware Application

[135]
lobster
STG

1 intra intra dynamic
clamp PD neuron,

HH
BiCMOS
1.2 µm

role of Ca conductance on
bursting activity

[135]
guinea
pig,
LGNd

1 intra intra dynamic
clamp nRT neuron,

HH
BiCMOS
1.2 µm

firing patterns in thalamus

[110]
lamprey,
spinal
cord

< 100 extra intra extra/intra uPG (6),
conduc-
tance

VLSI
20 µm proof of concept for interfacing

small populations

[134]
guinea
pig,
LGNd

1 intra intra dynamic
clamp nRT neuron,

conductance
BiCMOS
1.2 µm

feedback inhibition in thalamic
circuits

[226]
leech,
heart
interneu-
ron

1 intra intra dynamic
clamp

heart
inter-
neuron,
HH

VLSI
1.2 µm functional role of the Ih current

during bursts

[242]
cat muscle force muscular custom CPG (4),

I&F

VLSI
0.5µm proof of concept for restoring

locomotor-like activity

[23]
rat,
CA1,
CA3.

15-32 extra extra extra/extra MIMO
32-/16-
channels

MEA +
custom cortical neural prosthesis for

hippocampus

[28]
cell
culture

< 300 extra extra extra/extra spike
pattern
detection

MEA +
custom plasticity in neural network (rat),

electrical activity of pancreatic
beta cells

[24]
rat, in
vivo
CA1,
CA3

< 100 extra extra extra/extra MIMO
16-/8-
channels

VLSI
180 nm recover memory function after

pharmacological blockade of the
hippocampus

[45]
rat,
retinal
slice

< 300 extra extra extra/extra random
(50), I&F

MEA +
custom synchronization of biological and

artificial neural networks

[49]
bird,
auditory

229 extra N/A extra/
N/A

LSM
(256),
adaptive
I&F

VLSI
180 nm pattern classification for BMIs

[63]
monkey
in vivo,
motor

<
1000

extra extra extra/extra Kalman
filter
(2000),
I&F

MEA +
custom decoder using spiking neurons for

BMIs

[97]
rat, in
vivo
cerebel-
lum

1 extra extra extra/extra Purkinje
cell
synapse
(1)

VLSI
350 nm substitution of a cerebellar

eyeblink conditioning in
anesthetized rats

[109]
rat
spinal
cord

< 100 extra extra extra/extra CPG (8),
Izhikevich

FPGA investigating intraspinal
microstimulation for the
generation of locomotor-like
activity

[27]
rat, in
vivo,
motor

< 100 extra extra extra/extra feed-
forward
(252), I&F

VLSI
180 nm decoder for bidirectional BMI

system
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cells including beta pancreatic cells [28] and muscles [242] have also been considered.

Applications of biohybrid circuits have increased in complexity, from the study of the role of

individual conductances on network activity [226] [135] to in vivo closed-loop systems with

VLSI neuromorphic hardware for neuroprosthetics [24]. Thus, the recent sophistication of

VLSI neuromorphic hardware provides an opportunity for establishing biohybrid circuits

with in vitro neuronal preparations and in vivo animal models for rapid prototyping of

sensory, motor, and cognitive prostheses. More generally, closed-loop biohybrid circuits

provides an experimental testbed for future neural implants by offering a high level of

control, rapid prototyping, accessibility, and flexibility.

From an electrophysiology viewpoint, the main two options for recording and

stimulating neuronal preparations is by using intracellular or extracellular electrodes. Both

methods have been used for recording and stimulation, and the number of biological

neurons interfaced generally dictates which method is required. Among the four possible

combinations of intracellular/extracellular recording/stimulation, Table 2.1 shows that all

combinations have been investigated except for intracellular recording and extracellular

stimulation (intra/extra interface). We also note that the study by Vogelstein et al.

acquiring signals from sensors and stimulating intramuscularly represents an interesting

alternative for neuromorphic interfaces targeting motor neurorehabilitation [242]. When

the biohybrid circuit is composed of a single neuron coupled with one silicon neuron,

the method of choice is intracellular recording using the dynamic clamp methods for

establishing an artificial synaptic connection [226] [135] [134]. At the population level,

extracellular recording and stimulation of ensemble of neurons with suction electrodes or
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multielectrode arrays dominates these applications [63] [24] [109] [23] [28] [45]. Suction

electrodes provide a cheap and convenient way to record population activity from ganglia

roots for applications involving spinal cord preparations [110] [109]. Although extracellular

recording and stimulation lack spatial specificity at the single-cell level, these purely

extracellular interfaces have demonstrated that useful control signals can nonetheless be

extracted and applied in real-time [63] [49] [109] [45].

Using extracellular signals has the advantage of being scalable as the number of

electrodes increases. Indeed, although online spike sorting algorithms could be used to

extract and identify the action potentials of individual neurons recorded by the electrodes,

doing so for a large number of electrodes becomes quickly prohibitive for real-time op-

erations. Furthermore, implementing online spike sorting algorithms directly on-chip is

not straightforward as it will have to be balanced with other trade-offs related to power

consumption and silicon area inherent in neuromorphic hardware design. However, it

would be interesting to compare the performance and design trade-offs of a neuromorphic

neural interface using either extracellular signal or spike trains from individual (sorted)

neurons. Alternatively, nanowire electrode arrays could also be used as they offer single-cell

resolution of population of neurons [209]. However, due to the poor commercial availability,

no biohybrid circuits have yet been built with nanowire electrode arrays. This could change

in the next decade.

As current neuromorphic hardware has reached sufficient levels of sophistication for

the emulation of populations of neurons, further work is needed in the design and fabrication

of microelectrode arrays in order to improve the spatiotemporal resolution of neuromorphic

68



neural interfaces at the single-cell level. Further progress also remains to be made for the

long-term recording and stimulation of multielectrode arrays in order to improve their

resistance and robustness to biochemical and mechanical stress on the electrodes. This is

especially critical for chronic in vivo applications targeting neurorehabilitation.

Finally, the stimulation of neurons at single-cell resolution can be achieved with

optogenetics. Although technically feasible, a neuromorphic neural interface using optoge-

netics will result in a very complex setup, currently restricted to a subset of applications

in vitro and in vivo in some animal models. Thus, until progress in multielectrode array

technologies are made allowing the recording and stimulation of individual neurons at the

single-cell level, the interface of choice for biohybrid circuits at the population level will

keep relying on extracellular recording and stimulation.

2.6.3 Software and Hardware

From an electronic viewpoint, the two main options for the design of a neuromorphic

neural interface are software or hardware. Hardware can be further subdivided into digital

or analog processing, and discrete components or integrated circuits. Before discussing the

software and hardware components, it is important to realize that a large body of work has

been carried out using the dynamic clamp protocol for building biohybrid circuits between

individual biological neurons and a neural model implemented in software [221] [198].

However, this method becomes impractical for coupling more than a few simultaneous

neurons and generally requires custom digital signal processing (DSP) hardware (see for

example [195]).
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Software models of spiking neural networks are typically limited in the number of

neurons that can be simulated in real-time and so hardware solutions are often required

for networks with thousands or more neurons (but see [63]). Another merit of hardware

implementations is that they eliminate the requirement of data transmission off-chip and

therefore offer a compact solution for embedded systems. Note that this is also true for

non-spiking neuromorphic hardware systems like the MIMO implementation of CA1 and

CA3 by Berger et al. for their hippocampal neural prosthesis [23]. Except this latter

work and a few software exceptions, most of the interfaces described in this article used

mixed digital/analog neuromorphic spiking hardware. Biophysically detailed conductance-

based HH models have been implemented on neuromorphic chip emulating a single silicon

neuron [226] [135] [134] [110] whereas more simple I&F models were preferred for interfaces

at the neural population level [49] [109] [27] [242] [45]. Because of their simplicity, I&F

models require less transistors and silicon area in hardware [102] and have become the de

facto standard for large-scale neuromorphic platforms [168] [263].

In population-level neuromorphic neural interfaces, the software and hardware

spiking models were relatively simple with less than a few thousands neurons while still

allowing the implementation of efficient decoders for BMIs [63] [49] [27] and next generation

neuroprosthetics [109]. Moreover, recent works have shown energy-efficient implementation

of classifiers on large-scale neuromorphic hardware [157] [69]. However, all these models

need yet to be integrated in hardware with recording and stimulation systemsm in awake

animals in order to fully validate and demonstrate the capabilities and merits of this

neuromorphic approach for applications of biohybrid circuits at the population level.
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One of the main limitation for the adoption of neuromorphic hardware is that

it is not widely available and is limited to few specialized research groups worldwide.

There is recent effort toward cloud neuromorphic computing with remote online access of

neuromorphic chips [72] to collaborating scientists. FPGAs represent a cheaper and readily

available alternative for the implementation of real-time spiking neural networks than VLSI

neuromorphic hardware and other multi-core architectures [122]. Although the number of

neurons that can be implemented in real-time on FPGAs is limited to thousands, FPGAs

provide a rapid prototyping platform for the hardware implementation of neural network

models. Thus, FPGAs represent a good alternative to VLSI neuromorphic hardware for

rapid prototyping and in vitro applications with models of neural population with tens

to thousands of neurons [109], whereas VLSI neuromorphic hardware will be preferred for

in vivo applications requiring embedding, low power consumption, and large number of

silicon neurons.

Ideally hardware network models should be endowed with plasticity mechanisms

allowing them to dynamically adapt to changes in spatiotemporal pattern of neuronal

activity. Without adaptive mechanisms, neuromorphic interfaces will be either limited to

open-loop configurations or serve as a passive follower, or an active driving system, of the

biological neuronal network. Whereas open-loop system have been used successfully in

first generation of neural prosthesis, recent experimental [210], computational [79], and

clinical [232] work suggest that closed-loop neurostimulation systems for neurorehabilitation

may provide more effective and efficient therapy for various neurological disorders.

Ultimately, the main limitation for large-scale neuromorphic systems will be the
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minimum feature size of the VLSI manufacturing process. The current top-of-the-line

CMOS process has a minimum feature size of around 10 nm and is approaching physical

limits. It is anticipated that sizes below 5 nm will see increased developmental costs due

to adverse quantum effects and end the exponential scaling of Moore’s law. Recently, the

worldwide semiconductor industry announced for the first time a new road map not centered

around Moore’s law [247]. The smallest VLSI technology used for neuromorphic neural

interface with 256 spiking neurons [49] is still more than ten time bigger (180 nm) that the

current process size, but the recent IBM’s TrueNorth chip with a million of spiking neurons

was fabricated with 28 nm CMOS technology [168]. Thus, next generation of large-scale

neuromorphic hardware will likely benefit from alternative technologies such as, for example,

recent advances in 3D integrated circuits [154] and the emerging resistive computing

with nano-sized memristors [252]. Contemporary research efforts aimed at implementing

neuromorphic computation using emerging non-volatile memories (memristors) have been

reviewed in [68]. These devices are two-terminal elements with resistivity modulated by

various factors including, the phase of the material (PCM), conductive ion formation

(CBRAM), as well as other more exotic properties like Tunnel magnetoresistance (MRAM).

These memories can provide very high-density integration with CMOS technology, while

not consuming valuable silicon real-estate. Their density, scalability and multi-state

nature, make them the natural choice for implementing synapses and other processing

elements in large scale neuromorphic chips. Recent studies implementing learning in

memristors via STDP further demonstrate their viability for use as synapses in VLSI

neural networks [219] [224]. Current applications of memristive devices also include on-line
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energy-efficient spike identification of multi-unit neural recordings from MEAs [83].

Chapter 2 is largely a reprint of material in the following work: Frederic Broccard,

Siddharth Joshi, Jun Wang and Gert Cauwenberghs, “Neuromorphic neural interfaces:

from neurophysiological inspiration to biohybrid coupling with nervous systems,” Journal

of Neural Engineering, vol. 14, no. 4, pp. 041002, Jun. 2017. The author is one of the

primary authors and investigators of this work.
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Chapter 3

Assimilation of Biophysical Neuronal

Dynamics in Neuromorphic VLSI

3.1 Introduction

Neuromorphic engineering [164] pursues the design of integrated electronic systems

that physically emulate the function and structure of biological neural systems driven

by two complementary, synergistic objectives: the engineering of naturally intelligent

systems for perception and computation that approach the robustness, noise resilience and

energy efficiency of their counterparts in biology; and the science of progressing towards a

more fundamental understanding of the cognitive function of the brain [39]. These two

objectives are jointly pursued through analysis-by-synthesis as the combination of top-down

deconstruction and bottom-up construction of physical models of brain function.

Formidable advances in the engineering of neuromorphic silicon models of perception
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Figure 3.1: Motivation: using the physical medium of silicon neurons to assimilate
single-unit biological neuronal dynamics from in vivo recordings of intracellular voltage
activity.

and cognition, the “morphing” of form and structure from neurobiology to silicon integrated

circuits have been achieved. This has mostly been a qualitative analysis-by-synthesis

endeavor, with systematic quantitative methods for their precise alignment pursued only in

a few instances, e.g., [213], [80]. This paper pursues the application of a proven systematic

quantitative method, data assimilation (DA) [2], to analysis-by-synthesis in neuromorphic

engineering by aligning the dynamics of biological and model neuronal state variables

in mapping the biophysics onto finely tuned equivalent physics in the silicon emulation

medium, illustrated in Fig. 3.1.

Formulating a proper model to emulate multiple types of neurons is a critical step

in the synthesis. However, realizing the complex functional form of membrane currents and

channel variables is difficult, especially in analog circuits. This has motivated alternative

realizations by simplifications in the model. The prevailing approach has been to abstract
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the neuron membrane action potential to discrete-time spike events in simplified models

that capture the essence of integrate-and-fire dynamics and synaptic coupling between

large numbers of neurons in an address-event representation. These approaches may lead to

highly efficient and densely integrated implementations in analog very-large scale integrated

(VLSI) silicon, e.g., [187]. However, to examine effects of neuromodulators, neurotoxins,

and neurodegenerative diseases on ion channel kinetics, and to accurately imitate behavior

of different types of neurons, a more sophisticated and flexible model is necessary. This

has motivated the custom design of specialized and yet highly flexible neuromimetic analog

integrated circuits capable of following the detailed and parameterized continuous-time

dynamics of neuronal and synaptic state variables, e.g., [213].

NeuroDyn [261, 265] is such an analog very large-scale integrated (VLSI) circuit

instantiation of a general continuous-time model of biophysical neuronal dynamics on a

small-scale, 4-neuron 12-synapse network. NeuroDyn features 384 digitally programmable

parameters, specifying for each neuron and synapse the reversal potentials, conductances,

and spline-regressed voltage dependence profile of opening and closing rates of the gating

variables. These parameterized characteristics in NeuroDyn provide the capacity to represent

a large variety of neuron and synapse behaviors, which in turn requires the complex task

of adjusting a large number of parameters. A relatively simple calibration and parameter

fitting procedure proved adequate to set parameters in the biophysical model approximately

to desired values [261] and even to generate phasic and tonic bursting in an extended

Hodgkin-Huxley model formalism [265]. This was only possible by tuning each of the

internal variables in the dynamics in isolation based on detailed model knowledge. This
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luxury cannot be afforded in the more complex settings typical in experimental neuroscience

that require inferring neural form and structure from very limited data recorded from very

sparse locations in the brain. Thus it is highly desirable to come up with a more systematic

and powerful method for arriving at values for parameters in such complex models and

porting them to highly parameterized neuromorphic emulation platforms, accounting for

substantial uncertainties in the modeling and noise in the observations as well as sources of

imprecision and transistor mismatch in the physical emulation platform.

Data assimilation (DA) methods have been applied to model estimation and time

series prediction in biological neural systems [167,182]. Extending the model estimation

to silicon neural systems [249], DA accomplishes the alignment of biological and silicon

physics, inspiring confidence in the implementation of functional neural circuits in the

silicon medium. In this paper we map biophysical neural function onto NeuroDyn, enabling

the task of programming its parameters; then use NeuroDyn to predict the behavior of

a biological neuron. The scheme is illustrated in Fig. 3.2. Previous notable work in

fitting neural data onto a mathematical model [3] and characterization of neuromorphic

hardware [181] are provided in context.

The inference problem of DA is formulated as nonlinear optimization over a high-

dimensional path integral and has been explored both in its exact and approximate form

on various chaotic and neural models [3, 30,113,121,124,167,181,236]. We find that DA

is capable of estimating parameters in a model of biophysical neural dynamics in data

recorded from a songbird HVC neuron, mapped itself onto a model describing the dynamics

of physical state variables in the chip. When these parameters are programmed onto the
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Figure 3.2: Scheme of this work. Harnessing DA to map a biological system to a
neuromorphic silicon chip, through independent characterization of each system [249] and
model integration to complete the mapping.

chip, it successfully follows the voltage time series recorded from the songbird HVC neuron.

Usefully, the deviation of the performance of the model represented in the chip

indicates that improvement in the model is required, and the improvements in the form

of additional ion channels involved in the biological processes may be included in the

dynamical behavior of the chip.

Application of the chip to neurobiological data may help to understand the effects

of neuromodulators or neurodegenerative diseases on ion channel kinetics, and may further

provide insights into the relationship between molecular properties of neurons and the

emergence of different spike patterns or different brain behaviors. Besides, combination of

neuromorphic chips and DA has the potential to bypass the dysfunctional neuronal circuits

in human body, which is critical to build brain-machine-interfaces and to the success of
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neuroprostheses.

The analog VLSI design of the NeuroDyn system was presented in [261]. The

NeuroDyn chip measures 3 mm × 3 mm in 0.5 µm CMOS and consumes 1.29 mW static

power.

Initial results of applying DA of songbird HVC neural data to the model of NeuroDyn

were presented in [249]. This paper extends previous work and contributes a systematic

method to correct for analog mismatch in the NeuroDyn chip leading to demonstration

of precise mapping from recorded HVC dynamics to equivalent neuronal state variable

dynamics recorded on the chip. The paper is organized as follows: an overview of path

integral methods for DA is presented in Section 3.2; the NeuroDyn chip model and a

new method for correcting analog mismatch based on DA are presented in Section 3.3;

results of applying the proposed DA methods on synthetic benchmark data, measured

NeuroDyn data, and recorded HVC neuron data in mapping the HVC neuron dynamics on

the NeuroDyn chip are presented in Section 3.4. Fnally, extensions of the DA methods and

application to dynamically interactive neural prostheses are discussed in Section 3.5.

3.2 Data Assimilation Methods

Data assimilation refers to analytical and numerical procedures in which information

in measurements is transferred to model dynamical equations selected to describe the

processes thought to produce the data [2].

The quantitative measurement and modeling of complex nonlinear dynamical systems
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inevitably involves inaccuracies. Systems in the real world almost always contain processes

that one does not know or cannot represent. Another difficulty comes from the fact that

measurements are noisy, which limits the ability to infer properties of systems even in the

presence of perfect models. Measurement noise and model error suggest a probabilistic

approach to reasoning about the system under study. Here we address this through the

use of probabilities of the model state variables x(t) conditioned on a set of observations

y(τ) within an observation or estimation window [t0, tf ] [2]. Computing these probability

distributions is usually intractable because the dimension of the state space is extremely

large. The strategy here is to instead seek selected expected values of the path x(t); t0 ≤

t ≤ tf of the model in the conditional probability distribution through a variational

approximation [193].

3.2.1 Path Integral Methods of Data Assimilation

We have the following setting: we have a model with D state variables xd(tn); d =

1, 2, ..., D over some times t0 ≤ tn ≤ tf . The model is expressed by a nonlinear rule taking

us from time tn to time tn+1 : xd(tn+1) = fd(x(tn)). The model has parameters independent

of time, and the model has errors which we represent as Gaussian noise with zero mean

and variance 1/Rf . Within the observation window we have L-dimensional measurements

y(τk) at times τk: t0 ≤ τ1, τ2, ..., τF ≤ tf ; L ≤ D. Using the assumption that the model

dynamics is properly represented in the D-dimensional state space, so x(tn+1) is determined

by x(tn) we may write the conditional probability distribution P (X|Y) as a function of

the path X = {x(0),x(1),x(2), ...,x(tf)} and the collection Y of measurements in the
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estimation window. Introducing the ‘action’ A(X) = − log[P (X|Y)], the expected value of

any function along the path X is written as

E[G(X)|Y] =

∫
dXG(X) exp[−A(X)]/

∫
dX exp[−A(X)]. (3.1)

If we want to know the expected path of the model as it works its way through the estimation

window, we choose G(X) = X. Variations about this expected value or distributions of

any element of the path are evaluated by choosing different G(X).

In moving along the path in [t0, tf ] the action receives two classes of contribution:

one comes from the dynamics moving the model between times tn, and the other comes from

the modulation of P (X|Y) when measurements are made. If the model and measurement

errors are Gaussian with mean 0 and variance 1/Rf and 1/Rm, respectively, the action

takes the ‘standard’ form

A(X) =
F∑
k=0

L∑
l=1

Rm(l)

2
(xl(τk) − yl(τk))

2 +
D∑
d=1

N−1∑
n=0

Rf (d)

2
(xd(tn+1) − fd(x(tn)))2 (3.2)

in which tf = tN .

The goal of DA is to estimate expected value integrals. The main contribution

to these integrals comes from maxima in the conditional probability distribution or,

equivalently, the minima of the action. To find these minima we look for extrema of the

action, and this balances the model error term versus the measurement error term. In

doing so the values of the unobserved state variables (D−L of them) and the values of any

unknown parameters in the model f(x) drive the model output x(τk) at each measurement

time τk to the observation there y(τk).
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Finding the minima of the action is a classical variational principle that leads to a

two point boundary value problem for a set of Euler-Lagrange equations that are familiar

from statistical physics [33,34,114,259].

In the present paper, we approximate the integral (3.1) utilizing Laplace’s method.

Finding the extrema of the action is known in classical mechanics as the variational principle,

where the extrema paths are solutions to the Euler-Lagrange equations [74,125,138]. The

use of the extrema of A(X) appears to have first been introduced by Laplace [193].

The use of Laplace’s approximation to evaluate the integral shifts the numerical

difficulty of the problem to one of optimization. This involves finding the lowest minimum

of A(X), here a non-convex problem. The non-convexity arises from nonlinearities inherent

in conductance based models of neurons, such as that of NeuroDyn. Because of the non-

convexity, we expect to find multiple extrema Xq of A(X), giving varying contributions to

the integral depending on the values of A(Xq) where A(Xq) ≤ A(Xq+1) for q = 0, 1, ....

3.2.2 Variational Annealing

The implementation of DA algorithms is challenging when the dynamics f(x) is

nonlinear and of high dimension, and when the measurements are sparse and noisy. In

neuronal systems, typically the time course of the membrane V (t) at the soma can be

measured, but not the activation of the gating variables or most ionic concentrations.

The complex, highly nonlinear model on NeuroDyn makes the optimization problem of

estimating unobserved parameters particularly difficult. Indeed, the problem of finding

the global minimum for a nonlinear objective functions such as A(X) is known, in general,
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to be NP-complete [175]. The variational annealing (VA) method that we discuss now is

meant to meet this challenge.

The key to VA is that the ingredients of A(X) are additive, allowing us to find the

global minimum when Rf → 0, and then by following this minimum as we slowly increase

Rf leads us to identification of the path giving the dominant contribution of the expected

value integrals. When Rf ≈ 0 the model plays no role in the action, and the importance of

the model arises as we slowly increase Rf . It is this special feature of the action for DA

that gives us the opportunity to expose the global minimum in an otherwise NP-complete

situation.

The innovation of the VA method developed in previous work [258] is then to start

with Rm � Rf = Rf0 initially. Then Rf = Rf0α
β is increased in magnitude by a factor

α > 1, and β = 0, 1, .... At each increment in β the action is minimized again, starting

the search for minima at the previous solution. The process is repeated until Rf � Rm.

In this manner, the nonlinearities are introduced gradually, so that the gradient descent

optimization has fewer opportunities to getting trapped in local minima and has greater

propensity of converging towards a “good” minimum.

The implementation of the optimization of the nonlinear function A(X) over all

variables on the path and all unknown parameters was accomplished through the use of

the open source software package IPOPT (Interior Point OPTimizer) with the linear solver

ma57 [245].

In our application to NeuroDyn the state space x(t) at each temporal location on

the path is a Hodgkin-Huxley model chosen by the user to represent the complexity of the
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data source. Typically L = 1, namely only the neuron membrane voltage is available. In

using DA to calibrate the NeuroDyn chip itself, we have all state variables for our use, so

L = D, and the unknown model parameters on the chip are to be estimated.

3.3 NeuroDyn Model

3.3.1 Generalized Model of Biophysical Neural Dynamics

The Hodgkin-Huxley (H-H) model has been a de facto standard in biophysical mod-

eling of single-unit neural dynamics, described by a system of differential equations in the

membrane potential V (t) and, in its original form, three gating variables m(t) (fast sodium

activation), n(t) (slow potassium activation), and h(t) (slow sodium inactivation) [96].

These four state variables interact to give the neuron its excitable dynamics, generating

action potentials in response to external or synaptic current stimuli IInj(t). The H-H model

specifies precise equations governing the kinetics of voltage-gated channel opening and

closing in the membrane conductances, which Hodgkin and Huxley derived by curve-fitting

detailed measurements on the giant squid axon with astounding accuracy [96]. However,

these kinetics depend on properties of membrane ion channels that are highly variable

across neuronal types and species, calling for greater flexibility in their functional form

than the specific equations normally ascribed to them.

NeuroDyn is capable of representing more complicated dynamics than just those

of the original H-H model. NeuroDyn [261, 265] implements an extended form of H-H

dynamics and rate-based kinetics with general parameterized voltage dependence of the
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opening and closing rates in the ion channel gating variables. It also provides for general

parameterized rate-based synaptic coupling between neurons [261], which is investigated

in Chapter 4. Each of the four neurons (only one of which is considered here) in the

generalized NaKL model undergoes membrane dynamics of the form:

Cmem
dV (t)

dt
= −INa(t)− IK(t)− IL(t) + IInj(t) (3.3)

with membrane capacitance Cmem, injected current IInj(t), and sodium (Na), potassium

(K), and leak conductance-based currents of the approximate form:

INa(t) = GNa m(t)3h(t) (V (t)− ENa), (3.4)

IK(t) = GK n(t)4 (V (t)− EK), (3.5)

IL(t) = GL (V (t)− EL). (3.6)

In turn, the dynamics of the gating variables x(t) = {h(t),m(t), n(t)} are described by

rate-based kinetics of the form:

dx(t)

dt
= αx(V (t)) (1− x(t))− βx(V (t)) x(t) (3.7)

Unlike the specific voltage dependence of the rate kinetics often used in the standard H-H

formulation, the opening rates αx(V ) and closing rates βx(V ) in the NeuroDyn generalized

NaKL model depend on membrane voltage V in general parameterized form represented as

7-point additive spline sigmoidal functions:

αx(V ) =
7∑

k=1

αx,k σk(V ) (3.8)

βx(V ) =
7∑

k=1

βx,k σk(V ) (3.9)
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with fixed sigmoids1:

σk(V ) =
1

1 + e±µ(Vb,k−V )
(3.10)

at uniformly spaced centers spanning the voltage range:

Vb,k = Vb,min +
k − 1

6
(Vb,max − Vb,min). (3.11)

While this may seem a complex formulation to represent current contributing to

the neuron activity, it provides substantial flexibility in the diversity of neurons NeuroDyn

can emulate.

3.3.2 Mixed-Signal VLSI Circuit Implementation

NeuroDyn implements the continuous-time dynamics in the membrane variables using

transconductance-capacitance (gm-C) analog CMOS circuits operated in the subthreshold

region. Each membrane conductance is realized by an operational transconductance

amplifier (OTA) with a pMOS source-degenerated differential pair at the input, yielding

large-signal membrane currents that approximate the small-signal membrane currents (3.4),

(3.5) and (3.6) of the form

INa = IGNa
m3h γ(V − ENa) (3.12)

IK = IGK
n4 γ(V − EK) (3.13)

IL = IGL
γ(V − EL) (3.14)

1The polarity (±) in the exponent is programmed as either +1 or −1 through an additional binary
parameter for each αx and βx. This supports either a monotonically increasing or a monotonically
decreasing voltage profile for each of the opening and closing rates.
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where γ(V ) ≈ 2 tanh(µp
2
V ) ≈ µpV . Here µp = κp/VT where κp represents overall gate

efficiency (accounting for pMOS gate-to-channel coupling and the effect of source degenera-

tion) and VT = kT/q is the thermal voltage. To generate the tail currents IGNa
m3h and

IGK
n4 feeding the differential pairs for the Na and K conductances in (3.12) and (3.13), the

products and integer exponents in the gating variables x(t) are implemented by translinear

current-mode multipliers [261]. The current-mode implementation represents the normal-

ized gating variables x(t) = {m(t), n(t), h(t)} (0 ≤ x(t) ≤ 1) as currents Ix(t) relative to

nominally identical reference currents: x(t) = Ix(t) / Iref . In turn, rate-based kinetics in

the gating variables (4.3) are implemented using log-domain first-order filter circuits in the

current-mode variables Ix [261]. The current-mode opening rates αx = Iαx /CgateVT and

closing rates βx = Iβx /CgateVT depend on membrane potential according to (4.4) and (4.5)

by means of voltage-controlled currents:

Iαx(V ) =
7∑

k=1

Iαx,k
σk(V ) (3.15)

Iβx(V ) =
7∑

k=1

Iβx,k σk(V ) (3.16)

The logistic sigmoidal voltage dependence σk(V ) in (4.6) is naturally implemented with

arrays of nMOS differential pairs operating in subthreshold [261], yielding µn = κn/VT

where κn is the nMOS gate efficiency factor. Finally, the uniformly linear distribution of

reference voltages Vb,k in (4.7) is implemented by voltage division using a string of resistors

integrated on-chip.
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3.3.3 Digital Configuration and Analog Tuning

All 384 NeuroDyn parameters for reversal potentials, conductances, and opening

and closing rate spline coefficients, are digitally written, stored, and converted to analog

form on-chip using write-multiplexed and strobed banks of 10-bit registers and digital-to-

analog converters (DACs). Current-mode multiplying 10-bit DACs are used throughout,

implemented using nMOS R-2R ladder structures [261]. Reversal potentials ENa, EK and

EL are set by injecting DAC currents across on-chip resistors Rrev with common reference

terminal connected to Vref . In addition to the offset Vref , the scale for the reversal potentials

is set by externally supplied DAC reference current Irev:

EX = Irev (eX/1024)Rrev + Vref (3.17)

where X = {Na, K, L} stands for the ion-type of the reversal potential EX , and eX is

an integer between 0 and 1023 representing its 10-bit configuration code. Similarly, the

membrane conductances of each ion-type are digitally configured through DACs setting the

OTA tail currents IGX
(3.12)-(3.14) with 10-bit code gX , scaled by master supply current

Imaster:

IGX
= Imaster (gX/1024) (3.18)

Likewise, the voltage splines in the current-mode opening (3.19) and closing (3.20) rates

are digitally configured with 10-bit codes ax,k and bx,k:

Iαx,k
= Imaster (ax,k/1024) (3.19)

Iβx,k = Imaster (bx,k/1024) (3.20)
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The use of the same master supply Imaster as DAC current reference for all channel

conductances (3.18) and opening/closing rates (3.19)-(3.20) offers global scaling control for

uniform frequency tuning (time warping) in the membrane dynamics and rate kinetics, so

that the time scale of the physical emulation can be sped up or slowed down by the same

uniform factor as desired.

Excluding the rate-based, conductance-based synaptic connections provided by

NeuroDyn not considered here, each neuron is thus specified by 48 digitally configurable

parameters which include 3 reversal potentials eX (3.17), 3 conductances gX (3.18), and

3×2×7 = 42 voltage-spline opening and closing rates ax,k (3.19) and bx,k (3.20). In addition,

analog tunable parameters and references supplied to NeuroDyn include Imaster scaling the

time base (3.18)-(3.20), Irev and Vref (3.17) scaling and centering the reversal potential

voltage range, as well as Vb,max and Vb,min (4.7) scaling and centering the 7-spline voltage

range (expressed equivalently in terms of Vb1 and Vstep = 1
6
(Vb,max − Vb,min)). Other

independent physical parameters governing the dynamics/kinetics include thermal voltage

gain µ = κ / VT in (3.12)-(3.16), and current injection scaling factor kinj in (3.3).

While the overall 4 neuron NeuroDyn chip has 384 parameters at its disposal, for the

analysis of one of the isolated neurons on the chip, as in this paper, we need not describe

the connections among the neurons, so only 48 parameters are available to represent the

architecture of an individual neuron.
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3.3.4 Model Error, Mismatch, and Calibration

The high dimensionality of the NeuroDyn parameter space provides opportunities

to counteract effects of model errors in the continuous-time analog dynamics, including

effects of mismatch induced by imperfections in the circuit fabrication, through calibration.

Detailed modeling of the various sources of error would amount to unmanageable

complexity in the estimation process. Here we consider a simplified modeling procedure

which ignores nonlinearities induced by nested effects of compounding sources of error.

Instead we model primarily the greatest common source of error in subthreshold MOS analog

circuits: linear multiplicative error due to mismatch in current mirror ratios. Henceforth

we specify multiplicative linear correction factors in each of the current-domain parameters

(3.17)-(3.20) and other variables of interest:

IX,real = IX,ideal (1 + εX) (3.21)

where IX,ideal = Itune (iX/1024) is the nominal current in the ideal model, IX,real is its

observed realization in the analog hardware, and εX represents the relative error in the

analog instantiation of the hardware. In turn, the ideal model specifies both values for

the global tuning of analog scaling parameters Itune and the local configuration of digital

parameters iX = 0, . . . , 1023.

Even though the implied DA problem of estimating two sets of parameters IX,ideal

and εX may seem degenerate, in that different instantiations amounting to the same

product explain the same observed data IX,real, these two sets represent essentially different

physical quantities that warrant orthogonality in disjoint estimation strategies (Fig. 3.2).
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Fundamentally, the first set εX is specific to the chip and its analog mismatch, whereas the

second set IX,ideal (Itune and iX) is specific to the neural data and the model.

In principle, the two DA estimations can be completely decoupled: the estimation of

the first set εX is to be done separately for each chip independent of the particular neural

data that it is tasked to emulate; whereas the estimation of the second set IX,ideal is to

be done for each new data set independent of the chip that targets its implementation.

During the estimation of the first chip-specific set, the second data-specific set is maintained

constant, and vice versa.

Degeneracy in parameter estimation, however, remains a concern in the specification

of the physical model. Hence we eliminate from the estimation pool subsets of redundant

parameters that are multiplicatively dependent on other parameters. For instance, for

purposes of estimating reversal potentials, the theoretical model (3.17) is adapted to

consolidate the multiplicative factors Rrev and Irev into equivalent parameters Vrev =

RrevIrev:

EX = Vrev (1 + εe,X) (eX/1024) + Vref . (3.22)

In the experiments below, we distinguish between the two distinct sets of parameters

in conjugate DA estimation procedures for data-specific model estimation, and chip-specific

mismatch calibration, progressing from ‘twin experiments’ (see below) on synthetic data to

experimental validation of model instantiation on the NeuroDyn analog hardware.
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Figure 3.3: Twin Experiment using the model (3)-(16) of the operation of the NeuroDyn
chip.
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3.4 Experiments and Results

3.4.1 Data Assimilation with Synthetic Data: Twin Experiments

The experiments we conducted confirm the power of the DA method to perform

parameter estimation and predict neuronal dynamics from limited data, both in computer

simulation and in measurements on the NeuroDyn chip. To establish a baseline for the

DA experiments with the NeuroDyn chip, a twin experiment of DA in software with

synthetic data was conducted first, in which the data was generated to fit the model of the

NeuroDyn chip perfectly. We used the theoretic model, (3.3)-(3.16), extracted from the

chip, and a chaotic time-series injected current waveform IInj(t) to generate the time-series

of membrane potential V (t). We then used the DA method of Section II to estimate the

model parameters. The results shown in Fig. 3.3 suggest that when the measurement

functions hl are known and the model of the physics on the chip is without error, sufficient

measurements can be obtained from the chip for the DA algorithm to correctly estimate all

unknown parameters. Parameters, shown in Table 3.1, were selected and data was generated

for the dynamical variables {V (t),m(t), h(t), n(t)}. Then using the variational annealing

method we presented the known injected current and the data for V (t) to the model as

described in the cost function/action in (2). The parameters and the unobserved gating

variables {m(t), h(t), n(t)} were estimated for 0 ≤ t ≤ T = 0.07 sec. Using the estimated

parameters and the values of {V (T ),m(T ), h(T ), n(T )} the differential equations of the

model were integrated forward for t ≥ T . Top Panel: The injected current presented to

the NeuroDyn model in the interval 0 ≤ t ≤ 0.2 sec. Middle Panel: The estimated voltage
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within the observation window is presented in blue; the predicted voltage is presented in red

and the ‘data voltage is presented in black. Bottom Panel: Estimation and prediction of

gating variables. The excellence of the prediction validates the data assimilation procedure.

We recommend one always check ones DA calculations this way to be sure there are enough

measured variables being presented to the model.

The purpose of a twin experiment is to test the applicability of the DA procedure

on the problem at hand: we numerically generate data from a given model in which

we use chosen parameters and then use ‘data’ from the observed state variable, here

V (t) alone, to estimate both the known parameters and the unobserved state variables

{m(t), n(t), h(t)}. It is not obvious from the outset that one observed state variable contains

enough information to accurately estimate all of the parameters (here 48) and unobserved

state variables. In the case of our simple H-H model, V (t) suffices for this. However, for

other simple looking nonlinear model this may not be the case; one should check each case

carefully.

It is also important to note that ‘fitting’ the model to the V (t) data is not sufficient

to give full confidence in the DA method. One must also estimate the full state of the model

system at the end of an observation window and use those plus the estimated parameters

to predict beyond that. Without the prediction aspect, one has only completed part of the

required task.
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Table 3.1: Reference and Estimated Parameter Values

Param. Ref. Est. Param. Ref. Est.

gNa 600 697.9 ah5 0 0.257

eNa 450 462.6 ah6 0 0.014

gK 160 202.0 ah7 0 30.018

eK 200 180.3 bh1 0 0.083

gL 12 13.9 bh2 0 3.26 10−7

eL 250 231.3 bh3 0 5.93 10−7

kinj 1 0.998 bh4 0 0.0114

µ 27 27.9 bh5 41 49.8

Vb1 0.61 0.61 bh6 25 29.9

Vstep 0.123 0.123 bh7 8 9.9

am1 0 0.047 an1 0 0.0122

am2 0 0.041 an2 0 1.26 10−6

am3 120 100.5 an3 0 4.59 10−7

am4 400 320.5 an4 0 0.018

am5 800 702 an5 18 22.3

am6 1023 1000.23 an6 5 0.029

am7 1023 1000.26 an7 43 20.2

bm1 1023 1022.0 bn1 1 0.0289

bm2 1023 1022.7 bn2 0 0.0242

bm3 1023 1022.7 bn3 0 1.18 10−6

bm4 1023 1001.3 bn4 1 1.07

bm5 0 0.97 bn5 0 0.35

bm6 0 0.98 bn6 0 0.029

bm7 0 0.97 bn7 1 1.08

ah1 237 249.4 Imaster 25 26.7

ah2 5 9.89 Ivol 225 228.3

ah3 7 9.05 Vref 1 0.999

ah4 6 8.03

3.4.2 Data Assimilation with the NeuroDyn Chip

In subsequent experiments DA was applied to estimate parameters in the NeuroDyn

model from measurements on the NeuroDyn chip. Another complex stimulating current

waveform IInj was applied to the NeuroDyn chip to elicit dynamical waveforms, which

where then used as the data for DA of the NeuroDyn model. Data obtained from the chip
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yielded time series measurements of [V (t),m(t), h(t), n(t)] at a time resolution of 500 kHz.

Details on the experimental prototols used to obtain the recordings of these time series are

presented in [249].

This is quite distinct from a ‘twin experiment’ as we do not know the actual param-

eters of the model for the performance of NeuroDyn; this, indeed, is our implementation of

the method verified in the previous twin experiments.

The results of DA are displayed in Fig. 3.4. Using the injected current shown in the

Top Panel data which was generated for the dynamical variables {V (t),m(t), h(t), n(t)};

then using the variational annealing method with all four state variables presented to the

NeuroDyn chip, we estimated the parameters of the model. Bottom Panel: We shown the

observed data for V (t) = Vdata(t) in black; the estimated Vest(t) is in blue, and the predicted

Vpred(t) is in red. The excellence of the prediction validates the data assimilation procedure.

Although the estimates and predictions are quite good, there is some disagreement between

the theoretical values given the model of the chip and the configured values, shown in

Table 3.2. It is desirable to check for discrepancies between configured parameter values

and theoretical parameter values obtained with DA. Two factors mainly result in the

discrepancies: inaccuracy of the model describing circuits implemented in NeuroDyn, and

mismatch during fabrication.

Next we investigated systematic means to correct for model error and mismatch,

using the extended DA procedures operating on two distinct sets of parameters to conduct

data-specific modeling and chip-specific calibration as outlined in Sec. 3.3.4.

The calibrations of NeuroDyn using this first parameter set were incorporated to
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Table 3.2: Reference and Estimated Parameter Values

Param. Ref. Est. Param. Ref. Est.

gNa 600 294.8 ah5 0 4.33 10−6

eNa 450 408.1 ah6 0 3.04 10−6

gK 160 100.0 ah7 0 3.03 10−6

eK 200 234.4 bh1 0 10.0

gL 12 2.6 bh2 0 2.82 10−6

eL 250 235.8 bh3 0 1.04

kinj 1 0.1 bh4 0 3.08 10−5

µ 27 30.0 bh5 41 80.0

Vb1 0.61 0.61 bh6 25 50.0

Vstep 0.123 0.13 bh7 8 48.8

am1 0 0.0003 an1 0 4.91 10−5

am2 0 0.0001 an2 0 0.037

am3 120 222.9 an3 0 1.32 10−6

am4 400 306.7 an4 0 1.22

am5 800 600.0 an5 18 50.0

am6 1023 800.2 an6 5 1.52

am7 1023 809.8 an7 43 19.0

bm1 1023 1000.1 bn1 1 0.041

bm2 1023 1022.9 bn2 0 0.001

bm3 1023 1023.0 bn3 0 2.39

bm4 1023 800.0 bn4 1 8.33 10−6

bm5 0 9.9 bn5 0 2.21 10−5

bm6 0 9.9 bn6 0 0.0067

bm7 0 9.9 bn7 1 2.70

ah1 237 120.0 Imaster 100 83.5

ah2 5 1.0 Ivol 232 228,9

ah3 7 1.0 Vref 1 0.991

ah4 6 14.5

refine the mathematical model. This refined model was then used to conduct DA on

neurobiological data to estimate the configurable digital parameters in the model. The

results are presented in the next sections (Sec. 3.4.3 and 3.4.4).
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Figure 3.4: Experiment using the model (3)-(16) of the operation of the NeuroDyn chip
to estimate the parameters of the NaKL model.
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Figure 3.5: Using the NaKL model tested on the NeuroDyn chip, we presented NeuroDyn
with V (t) observed from two HVCI interneurons in the song system of a zebra finch.
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Figure 3.6: Action (cost function) trace during data assimilation.

3.4.3 Data Assimilation with Biological Neuron Data Using the

NeuroDyn Chip

We now turn to the use of the DA method using the NaKL biophysical model

implemented on the NeuroDyn chip as discussed in the previous sections. The data source

is a set of experiments on interneurons in the HVC nucleus of the brain of zebra finch. We

know from extensive experiments by [54] that the NaKL model we have developed is not

sufficient for these data. In [54] it is shown that at least two Ca2+ currents, L type and T

type, are present. It is also shown that an h-type current, an SK (Ca induced K current),
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and a KNa, (Na induced K current), are also likely present.

However, the goal of using NeuroDyn to represent biophysical neuron activity is

to explore step-by-step the quantitative approximation of the model on NeuroDyn to

experimental data. In this we begin by not knowing what currents are required. In the case

of the HVCI neuron we know that more currents than Na, K, and L may be important. So,

we explore here just the NaKL model we have implemented and tested to this point. We

find it is ‘OK’ but clearly shows us that more dynamical structure is needed to describe

there HVCI data. To proceed beyond this finding, we would begin again with a somewhat

more complicated model and investigate, in the same systematic approach, what more is

required.

Using the above DA method, we proceeded to assimilate voltage data obtained

from zebra finch HVCI neurons [124] to the model of the physics on the chip. Integrating

forward the state of the model with the obtained parameter set, the resulting waveform

matches the recorded voltage data within the intrinsic variability of the neuron. This

is displayed in Fig. 3.5. Top Panel: The neurons were stimulated with these injected

current waveforms. Middle Panel: We display the recorded Vdata(t) (black) from the HVCI

neurons, the estimated Vest(t) (red) voltage in the observation window ([0, 0.32] sec) and

the predicted voltage Vpred(t) for t > 0.32 sec in blue. We see that the NaKL channels are

good at representing the performance of the biological neuron, but not excellent. This

means that we require more dynamical channels in the NeuroDyn model [182], and that

capability is already built into the chip. This paper does not present that work. Bottom

Panel: Expanded view to allow examination of the accuracy of the estimated and predicted
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measurable state variable V (t).

This result is notable because to our knowledge such a simple HH model with only

INa, IK and IL has previously been insufficient to accurately describe features including

spike timing and amplitude, AP shape, and subthreshold variations. Typically a number

of sodium, potassium, and calcium currents are included in conductance based models as

well as a number of spatial compartments. These have been tuned by hand [57,177,237] or

by using other approaches including exhaustive grid, stochastic, and evolutionary search

algorithms [35, 66, 71, 94, 167, 199, 206]. The ability to successfully assimilate data to

such a simple model may be attributable to our methods of DA and/or to the flexible

implementation of opening rates α and closing rates β in NeuroDyn’s highly parameterized

model.

The action plot as a function of β for all of the initial paths is plotted in Fig. 3.6.

Rf is increased by a factor of α = 1.5. More than one action levels are present in the figure,

reflecting the presence of a distribution of parameters producing similar time evolution

in the voltage trace when integrated forward. Some of the paths produced satisfying

predictions. One is shown in Fig. 3.5.

3.4.4 Biological Neuron Emulation with NeuroDyn

Finally, to validate consistency in the DA model estimation and calibration pro-

cedures, the digital configuration parameters estimated from HVC neuronal data using

the corrected analog model from NeuroDyn calibration were used to directly configure

the NeuroDyn chip, which was then evaluated on test data. It is important to note, for
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purposes of the demonstration, that we did not post-tune the estimated parameters to

bring NeuroDyn observed dynamics closer to that of the HVC neuronal data.

The observed output from the NeuroDyn chip, shown in Fig. 3.7. Top Panel:

Hardware NeuroDyn was stimulated with these injected current waveforms. Middle Panel:

Emulated (red) data from two HVC interneurons (HVCI) [124] and instantiated onto the

NeuroDyn hardware model. Bottom Panel: Expanded view, from 1.0 s to 1.6 s, allowing

examination of the accuracy of the estimated and predicted measurable state variable V (t).

Fig. 3.7 reproduces, at least qualitatively, the HVC neuronal behavior on previously unseen

data. The capability to predict, from limited data, the dynamics of a dynamical system as

complex as an in vivo biological neural circuit is the hallmark of data assimilation, here

and now demonstrated in analog hardware. This demonstration of emulated natural neural

dynamics in analog neuromorphic hardware presents exciting new opportunities ahead in

interfacing between live and artificial neural systems. The activation and inactivation of

channels are shown in Fig. 3.8. The values of estimated and actually configured parameters

are shown in Table 3.3.

Using the NaKL model to describe the HVC data, we found that some of the spiking

behavior of the neruon is contained in the model, but the subthreshold activity is not yet

well represented. It is likely that much of that may be better represented using Ca currents

and the SK current, but this paper continues to focus on the simpler model recognizing it

is likely not complex enough. There is no algorithmic method we know to determine which

additional degrees of freedom are needed. One must improve the model and redo the twin

experiments to assure that V (t) alone is enough to accurately do DA on data where only
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(a)
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(c)

Figure 3.7: The results of emulation.
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Table 3.3: Estimated and Configured NeuroDyn Parameter Values

Param. Est. Conf. Param. Est. Conf.

gNa 600.0 690 ah3 111.4 100

eNa 855.9 800 bh4 30.0 20

gK 701.3 800 bh5 60.0 60

eK 235.7 200 bh6 42.2 40

gL 37.1 40 an4 30.0 40

eL 297.4 310 an5 100.0 100

am4 128.1 160 an6 300.5 300

am5 678.5 680 an7 350.8 350

bm3 982.5 1000 bn1 14.6 14

bm4 303.0 300 bn2 8.4 10

bm5 120.0 98 bn3 20.0 15

V (t) is available.

3.5 Discussion

The formation of biohybrid circuits between biological and silicon neurons has

enabled neuroscientists to investigate the interactions of cellular and network properties with

an unprecedented level of experimental control inaccessible with traditional pharmacological

and electrophysiological techniques. Over the last two decades, the coupling of biological
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Figure 3.8: Estimated voltage dependence of Na and K activation (m and n) and Na
inactivation (h) gating variables, from the HVC neuron recorded data using the NeuroDyn
mathematical model. (a) Asymptotes, and (b) time constants.
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and silicon neurons through an artificial synapse has allowed to dissect and reveal the

role of various individual cellular and synaptic conductances in the activity of a single

neuron or neuronal network in invertebrates [227,233] and vertebrates [111,129]. Analog

silicon neuron designs and implementations ensure that the model neuron runs in real-time

independently of the model complexity while offering a great level of flexibility for the

configuration of different neuron types [130,265]. While a high level of programmability is

desirable, the configuration of analog silicon neurons can become problematic due to the

inherent nonlinearities of the model neuron and the intrinsic VLSI process variability of

the hardware implementation. Thus, automated parameter estimation and configuration of

silicon neurons are needed, especially for extended dynamic clamp applications where more

than one silicon neurons are couped with biological neurons [31,194].

Here, we have presented a DA procedure capable of tuning the parameters of a

model of an analog VLSI chip emulating membrane dynamics and channel kinetics of

generalized H-H neurons, and have shown that if all measurement functions hl are known

and the dynamical model of the chip is accurate, we can correctly estimate all of the

parameters, many of which enter the equations nonlinearly. We have also shown that

given noisy voltage data recorded from zebra finch HVCI neurons and the relatively simple

extended H-H model of the NeuroDyn chip with only two ionic currents, INa and IK , the

time evolution of an HVCI neuron can be accurately predicted. Finally, we have shown that

NeuroDyn’s model is approximately correct. With some additional manual adjustment,

NeuroDyn’s parameters can be tuned, starting from parameter estimates using DA, to

achieve emulation of biological data. Potential discrepancies between theoretical values of
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parameters estimated using DA and configured parameters on NeuroDyn have also been

identified. Further work is needed to ascertain whether these discrepancies caused by

mismatch of transistors can be resolved with improvements to the model, measurement

functions hl, and/or refinements to the DA procedure. We also found during DA on

synthetic data and chip data that without prior constraints about the range of parameter

values, many different parameter sets could be found which produced accurate estimations

and predictions of all state variables which could not be distinguished from each other.

In our case we have good evidence that the three currents, Na (sodium), K (potas-

sium), and leak, are not the full set of currents in this neuron [54]. The prediction results

indicate that we have not enough degrees-of-freedom to characterize the observed neuron

behavior. This suggests we add other currents, but we conclude this paper without that

additional effort. Fortunately, the NeuroDyn chip has the capability to add additional ion

currents, so the next steps suggested by our results in this paper can be implemented using

the present neuromimetic hardware.

The unique combination of DA and neuromorphic instantiations of neuronal dynam-

ics offer a promising dynamical interface tool to emulate, communicate, and even control

biological neurons in real-time, suggested in Fig. 3.9. Further developments on this front

will require further advances in accurate mathematical modeling enabled by accelerating

and scaling up DA techniques, and larger and more versatile instantiations of the models

in custom integrated neuromorphic hardware.

Chapter 3 is largely a combination of material in the following two venues: Jun

Wang, Daniel Breen, Abraham Akinin, Henry D.I. Abarbanel and Gert Cauwenberghs,
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Figure 3.9: Dynamic clamp. (Left) Neuromorphic NeuroDyn chip and measurement
PCB setup, (Right) Biological neurons on a multi-electrode array capable of recording and
stimulation.

“Data Assimilation of Membrane Dynamics and Channel Kinetics with a Neuromorphic

Integrated Circuit,” IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.

584-587, Oct. 2016. Jun Wang, Daniel Breen, Abraham Akinin, Frédéric Broccard, Henry

DI Abarbanel and Gert Cauwenberghs, “Assimilation of biophysical neuronal dynamics in

neuromorphic VLSI,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no.

6, pp. 1258-1270, Dec. 2017. The author is the primary author and investigator of this

work.
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Chapter 4

Neuromorphic Dynamical Synapses

with Reconfigurable Voltage-Gated

Kinetics

4.1 Introduction

In both vertebrates and invertebrates, synapses are the fundamental computational

elements of nervous systems enabling communication and information processing at spatial

and temporal scales spanning over several orders of magnitude [77]. Synapses are highly

diverse and use two main modalities of transmission: electrical and chemical. In electrical

synapses, the cytoplasm of adjacent neurons is directly connected by intracellular channels

called gap junctions, allowing the exchange of small molecules (e.g. Ca2+, cAMP, IP3) and

electrical potentials [47,179]. The strength of electrical synapses depends on the graded
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Figure 4.1: Neuromorphic dynamic clamp. (a) Dynamic clamp protocol with neural
models. (b) The NeuroDyn chip [260,264] (Sec. 4.2) with four silicon neurons and twelve
conductance-based synapses is used here. (c) Dynamic clamp with multiple reconfigurable
silicon neurons.
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transsynaptic voltage difference, thus providing bidirectional and analogical communication

among adjacent neurons. In chemical synapses, neurotransmitter molecules released at

the presynaptic site diffuse across the synaptic cleft and activate postsynaptic receptors.

Chemical synapses are predominant in vertebrates and exhibit a vast diversity of sub-types

with high molecular heterogeneity [50,140] and large functional differences in individual

properties expressed both at the pre- and postsynaptic sites. At the presynaptic site, the

molecular heterogeneity is exemplified by the large variety of neurotransmitters present in

synaptic vesicles, including amino acids, monoamines, peptides, purines, gaseous molecules,

and other molecules such as acetylcholine [115]. At the postsynaptic site, the types of

receptor show a corresponding diversity with several different sub-types of receptors for a

given neurotransmitter, each of these sub-types existing in various forms depending on the

composition and past molecular modifications of their individual sub-units. Taken together,

the heterogeneity of mechanisms involved in synaptic transmission (and their plasticity) is

thought to underlie the complex adaptive and multistable dynamics of neurons [123,140].

At the network level, recent theoretical analysis and computational works suggest that the

heterogeneity of neuron and synapse types reduces the cost of computation [14,136], and

enables the implementation of energy-efficient population codes [41,186,220].

In mixed analog-digital neuromorphic VLSI systems, the electronic circuits of

silicon neurons and synapses exhibit an inherent structural heterogeneity due to device

mismatch, noise, and temperature sensitivity during fabrication processes [190]. However,

the functional diversity of synapse types remains largely unexplored, and most of the neural

network models implemented on mixed analog-digital neuromorphic hardware typically
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implement one type of excitatory –and one type of inhibitory– synapse [168]. The small

number of synapse types emulated on hardware also severely limits the range of dynamic

clamp applications using neural models implemented on neuromorphic chips [134,198].

This paper presents theory and experimental validation of biophysically realistic

synapses implemented on NeuroDyn (Sec. 4.2 [260, 264]) as a fully programmable and

reconfigurable neuromorphic VLSI chip. In addition to energy-efficient computation,

an increase of synaptic variability in neuromorphic hardware is also attractive for the

implementation of a larger variety of synapse model for dynamic clamp applications with

neuromorphic VLSI chips (Fig.4.1). Here we offer a complete characterization of a wide

range of different types of synapses, extending on initial characterization reported in [251],

by including excitatory and inhibitory chemical synapses mediated by ionotropic receptors,

as well as electrical synapses mediated by gap junctions.

The remainder of this paper is organized as follows. Section 4.2 details the implemen-

tation of the reconfigurable biophysical electrochemical synapses, and Section 4.3 describes

their characterization with measured data including the mapping of dynamical response

characteristics for synapses with excitatory (AMPA and NMDA) and inhibitory (GABAA,

GABAC, Glycine) receptors. The characterization of electrical synapses is presented in

Section 4.4. Finally, discussion and and concluding remarks are presented in Sections 4.5

and 4.6.
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4.2 Synapse Implementation

Chemical and electrical synapses were implemented on a fully programmable and

reconfigurable, biophysically realistic neuromorphic VLSI chip, NeuroDyn (Fig. 4.1), of

which the neuronal soma dynamics were previously detailed in Sec. 4.2 [260, 264]. The

12 synapses are governed by half of the 384 fully digitally programmable parameters in

NeuroDyn, each synapse having 16 parameters. The other half of the parameters governs

the individual dynamics of the 4 neurons, as described in Sec. 4.2.

The HH dynamics in membrane potential Vmem, for each of the neurons Ni in

Eq. (3.3) but now extended with chemical synaptic input, is described by

Cmem
dVmem
dt

= −INa − IK − IL + IInj + ISyn (4.1)

where Cmem is the membrane capacitance, INa, IK and IL represent the sodium, potassium,

and leak conductance-based currents, respectively, IInj is the externally injected current,

and ISyn is the net synaptic current as contributed by the other three neurons Nj , j 6= i. By

default NeuroDyn implements chemical synapses, which however can further be configured

to function as electrical synapses (Sec. 4.4). In the default chemical synapse mode of

operation, each of the three conductance-based synaptic currents is modeled as

ISyn(t) = gsyn r(t) (Vpost(t)− Esyn) (4.2)

through a single rate-based kinetic variable r(t) governed by Vpre. The presynaptic potential

Vpre induces release of neurotransmitter that binds with receptors on the postsynaptic site

to activate the conductance on the postsynaptic membrane Vpost with reversal potential
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Esyn. Similarly to the other channel gating variables, the dynamics of the synaptic variable

r, the fraction of receptors in the open state, is described by first-order kinetics through

the usual rate equation:

dr

dt
= αr(Vpre) (1− r)− βr(Vpost) r (4.3)

where the opening rate αr depends on the presynaptic membrane voltage Vpre and the

closing rate βr depends on the postsynaptic membrane voltage Vpost. Hence αr(Vpre) models

activation of postsynaptic conductance triggered by a presynaptic action potential, and

βr(Vpost) models relaxation of the conductance which particularly for the NMDA synapse

type is strongly dependent on postsynaptic potential, giving rise to nonlinear dynamics.

Like the rates for the other kinetic variables m, n and h that modulate cell excitability in

NeuroDyn [260,264], the opening αr and closing βr rates for the synapse kinetic variables

are modeled and regressed as 7-point additive spline sigmoidal functions:

αr(Vpre) =
7∑

k=1

αr,k σk(Vpre) (4.4)

βr(Vpost) =
7∑

k=1

βr,k σk(Vpost) (4.5)

with fixed sigmoids

σk(V ) =
1

1 + e±µ(Vb,k−V )
(4.6)

at uniformly spaced centers spanning the voltage range

Vb,k = Vb,min +
k − 1

6
(Vb,max − Vb,min). (4.7)

As such, αr,k, βr,k,cVb,min and Vb,max are programmable parameters that allow control

over the temporal characteristics of individual synapses, emulating various dynamical
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synapse types. The polarity (±) in the exponent in Eqn. (4.6) is programmed as either

+1 or −1 through an additional binary parameter for each αr and βr, supporting either

a monotonically increasing or a monotonically decreasing voltage profile for each of the

opening and closing rates.

These parameters govern the voltage-dependent profile of αr and βr and thereby

determine the voltage-dependent time constant and asymptote of synaptic variables r

that can be tuned to observed time constants and asymptote from patch clamp cellular

recordings of synaptic function. NeuroDyn provides two means of user control over

these parameters: i) global biasing to uniformly scale all currents αr,k, βr,k by a current

reference Iref and, independently, a voltage reference Vref = Vb,max − Vb,min; and ii)

individual digital programming of each of these parameters relative to these reference scales.

NeuroDyn supports operation over a wide range of these scales to allow reaching biologically

consistent ranges of conductances and time constants, although in this work we have fixed

these ranges at larger current and voltage scales for convenience in the measurements

accommodating dynamic range above instrumentation noise and below saturation levels.

Digital programming accommodates 12 bits of resolution in each of the parameters. The

sensitivity of the spline function parameters αr,k and βr,k depend on the range of the

membrane voltage Vmem and are greatest near their respective bias point Vb,k.

We tuned the parameters governing neuromorphic synapses to fit the published

data describing the kinetic properties of several ionotropic receptors and gap junctions

present in biological synapses. The particular functional form of NeuroDyn postsynaptic

dynamics, with strictly monotonic opening and closing rates in presynaptic and postsynaptic
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potential, respectively, limit the approximation quality of general nonlinear dynamics in

postsynaptic conductance that can be realized, although we were able to generate distinct

dynamics specific to different biological synapse types. For proof-of-concept we performed

manual parameter tuning; more systematic methods can be applied for automated tuning of

parameters through data assimilation [250] but require explicit data on internal dynamics

of at least a subset of the state variables in response to specific stimulus sequences, which

are not available here. In particular, we performed an initial manual parameter sweep in

order to identify suitable regions of the parameter space. We then used a relatively simple

calibration and parameter fitting procedure by tuning each of the internal variables in

the dynamics in isolation based on detailed model knowledge and applying rectified linear

regression and iterative linear least-squares residue correction as described in detail in [260].

This method proved adequate to compensate for device mismatch and to set parameters in

the biophysical model approximately to desired values [260].

4.3 Chemical Synapses

To characterize the different chemical synapses, two silicon neurons were randomly

selected from the NeuroDyn chip and assigned as pre- and postsynaptic neuron, respectively.

The presynaptic neuron was then stimulated with an electrical pulse of 20 mV for 2000 ms

(pulse width= 1000 ms) that mimicked the neurotransmitter release and triggered a current

flow into the postsynaptic neuron. These parameters were chosen based on convenience of

recording but could be set to smaller or larger values. The postsynaptic neuron had its
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potential clamped in order to measure the whole-cell current which simulated the response

of the ionotropic receptors. The stimulation of the presynaptic neuron and the recording

of the postsynaptic receptor responses were achieved with two Keithley source meters

(Tektronics, El Cajon, CA). Currents and voltages were measured from peripheral pads of

the NeuroDyn’s supporting PCB board. The membrane potentials of both the pre- and

postsynaptic neurons were recorded with an oscilloscope (Agilent Technologies, La Jolla,

CA) and saved with a custom Matlab script (The MathWorks, Inc., Natick, MA) for off-line

analysis. The responses of five different common ionotropic receptors present in both

excitatory (AMPA, NMDA) and inhibitory (GABAA, GABAC and Glycine) synapses were

obtained by configuring the NeuroDyn on-chip digital parameters for the synaptic reversal

potentials, conductance, and opening and closing rate voltage splines. The measured I-V

characteristics of the five types of ionotropic receptors were compared with biological data

published in the literature.

4.3.1 AMPA and NMDA receptors

The amino acid glutamate mediates most of the excitatory synaptic transmission in

the central nervous system and spinal cord. Glutamate binds and activates three families

of cation permeable ligand-gated receptors, including the α-amino3-hydroxy-5-methyl-

isoxazolepropionic acid (AMPA) receptors, the N -methyl-D-aspartate (NMDA) receptors,

and kainate receptrors. All three families of ionotropic glutamate receptors play essential

roles in synaptic plasticity. The different affinity of these families of receptors for glutamate,

their different activation/deactivation kinetics, and ionic selectivity have all important
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functional consequences.

AMPA receptors are highly permeable to Na+ ions, have a low affinity for glutamate,

and a fast kinetics ensuring a rapid depolarization of the neuronal membrane. As AMPA

receptors with different sub-unit composition display a wide range of rectification properties,

we emulated AMPA receptors exhibiting either inward or outward rectification (Fig. 4.2), as

described for native and other common variation of AMPA receptors, respectively [104,253].

Top, NeuroDyn measurements of three different I-V relations exhibited by different receptor

subtypes (a-c), from outward (Type I) to slight (intermediate) and pronounced inward

rectification (Type II), as observed in rat neocortical neurons (bottom) [104]. Discrepancies

in the mapping are mostly due to the functional form of NeuroDyn limited to strictly

monotonic slopes in nonlinear postsynaptic conductance.

The scale of the NeuroDyn currents is adjustable, and shown here is larger than

biophysical for faster-than-real time in the emulated dynamics. Stimulation from presynaptic

neurons were mimicked by a 20 mV electrical pulse with a pulse width of 1000 ms while

the current in the postsynaptic neuron was recorded in voltage-clamp mode.

In contrast to AMPA receptors, NMDA receptors have unique biophysical properties

including a high permeability to Ca2+ ions, a high unitary conductance, a voltage-sensitive

block by extracellular Mg2+, and a slower activation/deactivation kinetics. NMDA receptor

characterization by emulating the conductance and ion permeability properties of NMDA

receptor channels is presented in Fig. 4.3. Top panel is NeuroDyn measurements, and

Bottom panel is electrophysiological recordings adapted from [171]. (a) is the result of

emulating the effect of extracellular Mg2+ on NMDA-activated whole-cell currents. The
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Figure 4.2: Characterization of the AMPA receptor responses. Top, NeuroDyn measure-
ments of three different I-V relations exhibited by different receptor subtypes (a-c), as
observed in rat neocortical neurons (bottom) [104].

current responses were measured either in presence or absence of Mg2+. The membrane

potential was set at -60 mV. (b) shows emulating the voltage and concentration dependence

of block by extracellular Mg2+ on glutamate-activated steady-state I − V relations. The

four curves represent steady-state whole-cell I−V relations measured during voltage ramps,

in the absence of extracellular Mg2+ (No Mg) and in the presence of different amount of

Mg2+ (Mg 1-3). Different values for the parameters governing the β(Vpost) (Eqn. (4.5))

mimic Mg2+ with different concentration. (c) presents divalent permeability in which the

reversal potential shifted when the extracellular solution was changed from high Na+ to

high Ca2+ extracellular solution by changing the value of the synaptic reverse potential
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parameter (Esyn; Eqn. (4.2)). The shift of reversal potential is configurable and was set to

+20 mV.

NMDA receptors also have a higher affinity for glutamate than AMPA receptors.

The different glutamate affinity and kinetics of AMPA and NMDA receptors have important

functional consequences in central synapses where both receptor types are often co-localized;

the rapid activation of AMPA receptors elicit a quick depolarization of the neuronal

membrane that relieve NMDA receptors from their voltage-sensitive Mg2+ blockade. The

effect of the Mg2+ blockade limiting the conductance of an NMDA synapse is shown in

Fig. 4.3a. The voltage-sensitive Mg2+ blockade and resulting outward rectification are

shown in Fig. 4.3b. In that case, the value of the reverse potential was 0 mV. Changes

in the Mg2+ concentration were triggered by applying a step function to the presynaptic

voltage (Vpre). We also studied the divalent cation permeability of the NMDA receptors by

mimicking a change in the extracellular ionic composition, as shown originally in cultured

neurons [161] and recombined heteromeric receptors [171]. Changing the extracellular

Na+ ions by Ca2+ ions resulted in a 20 mV shift of the reversal potential, from 0 to 20

mV, respectively (Fig. 4.3c). This was achieved by changing the value of the synaptic

reversal potential, Esyn, from 0 to 20 mV, and adjusting the maximum conductance gsyn

(Eqn. (4.2)). This effect of Mg2+ changing the current flow into the postsynaptic neuron is

mediated by the postsynaptic membrane potential, as modeled here through the dependence

of the closing rate βr on the postsynaptic potential Vpost according to (4.5). Based on this

assumption, we conducted experiments to demonstrate the effect of the NMDA synapse

on neuronal spiking patterns. The results are shown in Figure 4.4. Before ‘adding Mg2+’,
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Figure 4.3: NMDA receptor characterization by emulating the conductance and ion
permeability properties of NMDA receptor channels.

the presynaptic neuron is spiking spontaneously, and the postsynaptic neuron was silent

(top). After ‘adding Mg2+’, the postsynaptic neuron is triggered to spike (bottom). ‘Adding

Mg2+’ here was achieved by changing governing parameters.

4.3.2 GABAA and GABAC receptors

Next, we implemented inhibitory chemical synapses for the γ-aminobutyric acid

(GABA), the major inhibitory neurotransmitter in the central nervous system [53, 149].

GABA acts on two types of ionotropic receptors, GABAA and GABAC, and one type of

metabotropic receptor, GABAB. GABAA and GABAC receptors have different pharmaco-

logical properties, different single channel, conductances while retaining similar kinetics and
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Figure 4.4: Effect of an NMDA synapse on the spiking pattern of the postsynaptic neuron.

permeability to chloride ions. Following GABA release, GABAA receptors are responsible

for the transient component of the GABA response, whereas GABAC receptors mediates

a more sustained response [201]. To further demonstrate the versatility of the NeuroDyn

chip, we emulated the synapses of both types of GABA ionotropic receptors and compared

their characteristics with GABA receptor responses recorded in different cell models such

as GABAA receptor chimera expressed in human kidney cells [25] (Fig. 4.5a) and GABAA

123



and GABAC responses at synapses in rat retinal bipolar cells [266] (Fig. 4.5b). (a) is

NeuroDyn measured I-V curves for the GABAA and GABAC receptors (top) as observed

in dissociated rat retinal bipolar cells (bottom) [266]. (b) is current-voltage relation for the

emulated GABAA receptor (top) as observed in rat GABAA receptors composed of the

α1β3γ2L subunits expressed in HEK293T cells (bottom) [25]. The I-V curve was derived

from current measurements at three time points: 5, 10, and 15 seconds. The application

of GABA was elicited by applying a 2000 ms voltage pulse of 20 mV to the presynaptic

neuron. The I-V curves for all receptor types were obtained from current measurements at

different voltages for different time points corresponding to the application of a voltage

pulse (amplitude= 20 mV, duration= 2000 ms) to the presynaptic neuron mimicking GABA

releases [25]. Experimental results of the synaptic coupling of two silicons neurons with

reciprocal inhibitory GABAA synapses were presented in [260].

4.3.3 Glycine receptor

The amino acid glycine is the main inhibitory neurotransmitter in the spinal cord.

Similarly to ionotropic GABA receptors, glycine receptors are permeable to Cl− ions and

contribute to fast synaptic inhibition [132]. There is a broad variety of glycine receptor

subtypes but their electrophysiological characterization remains elusive. Recently, patch

clamp recordings showed that the linear I-V curve becomes progressively inwardly-rectifying

during desensitization for certain receptor subtypes involved in temporal lobe epilepsy [205].

We decided to emulate receptor desensitization because it is a fundamental property of most

ligand-gated ionotropic receptors –limiting current flow after transitioning to a ligand-bound

124



!"#$!%#$

Figure 4.5: Characterization of synapses with GABAA and GABAC receptors.

closed state following a prolonged ligand exposure– and can have important physiological

consequences by altering the neuron firing activity. Figure 4.6 shows the progressive

rectification of the glycine current obtained by modifying the opening and closing gate

parameters. Top, the I-V curves at peak are linear and become progressively inwardly

rectifying upon receptor desensitization. The different colors correspond to different values
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of the opening αr and closing βr gate parameters. Bottom is current desensitization of a

homomeric glycine receptor composed of GlyR α3L subunits at different time points (1-4)

in response to 1 mM glycine, reproduced from [205]. The time point 1 corresponds to the

linear response at peak.

Figure 4.6: NeuroDyn characterization of synapses with glycine receptors.

4.3.4 Postsynaptic membrane dynamics

We characterized the postsynaptic membrane dynamics upon activation with a

presynaptic action potential. These dynamics are controlled in NeuroDyn through adjusting
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the receptor time constant τr through their dependence on presynaptic and postsynaptic

potentials as τr = 1/(αr(Vpre) +βr(Vpost)). Excitatory postsynaptic potentials (EPSPs) and

inhibitory postsynaptic potentials (IPSPs) evoked by the different receptor types are shown

in Fig. 4.7. Various types of chemical synapses were activated by a presynaptic action

potential (bottom), evoking excitatory postsynaptic potentials (EPSPs) for the AMPA

receptor subtypes (purple lines) and NMDA receptors (green solid line), and inhibitory

postsynaptic potentials (IPSPs) for the GABA receptor subtypes (red lines) and glycine

receptor (blue line). As expected from the I-V curves, EPSPs evoked by the different AMPA

receptor subtypes had different amplitudes and were maximal for the type I. Similarly,

IPSPs evoked by the different GABA receptor subtypes had different amplitudes and was

maximal for the GABAA subtype. For the glycine receptor, we used a linear I-V curve as

shown in Figure 4.6. The longer time constant of the NMDA receptor EPSP was obtained

by adjusting the closing rate β(r) to decrease substantially with increasing postsynaptic

potential.

4.4 Electrical synapses

Electrical synapses are formed by gap junctions between adjacent neurons in both

vertebrates and invertebrates [48,179]. Contrary to chemical synapses, most of the electrical

synapses operate in analog mode and allow the nearly ohmic bidirectional passage of

current and small metabolites between the connected neurons. This bidirectional form

of analog signaling enable populations of neurons to rapidly share and propagate voltage
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Figure 4.7: Measured postsynaptic membrane dynamics.

changes among them. Theoretical and experimental evidence indicate that electrical

synapses have both excitatory and inhibitory effects [47], can enhance the signal-to-noise

ratio [64], and contribute to patterns of network activity including synchronization and

oscillations [19,183,238,239]. We implemented bidirectional (symmetric) electrical synapses

in two different ways. In NeuroDyn, the trivial solution to allow the bidirectional passage

of current between two silicon neurons is to connect their membrane voltage pins through
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an external resistance wire. NeuroDyn further permits more general, biophysical forms

of electrical synapses with voltage-gated conductance by modifying the synaptic current

(4.2) such that the voltage difference driving the synaptic current is between the membrane

voltages of the pre- and postsynaptic neurons, i.e.

ISyn(t) = gsyn r(t) (Vpost(t)− Vpre(t)) (4.8)

modeling first-order kinetics in gap junctions in rat Schwann cells (glia cells) [40]. Fig. 4.8

shows the effect of voltage-gated electrical synapses on the neural activity of an all-

to-all network of four silicon neurons. Top, in the absence of electrical synapses, four

unconnected silicon neurons have independent firing dynamics. Bottom, connecting the

silicons neurons with voltage-dependent electrical synapses (gsyn = 100 µS and r = 1)

promotes synchronous firing of the four coupled silicon neurons. Without activating the

electrical synapses (gsyn = 0), the four identically tuned neurons showed no dynamical

coupling, firing independently and asynchronously due to jitter induced by noise and

device mismatch. In the presence of electrical synapses, the neurons displayed synchronous

membrane voltage fluctuations and fired in phase. Similar, but not identical, firing dynamics

could be achieved for two silicon neurons by tuning the governing parameters to compensate

for device mismatch. However, this does alleviate the effect of phase noise in desynchronizing

the dynamics of the two neurons.
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Figure 4.8: Electrical synapses and synchronization of neural network activity in
NeuroDyn.

4.5 Discussion

In this study, we emulated in neuromorphic VLSI hardware the current-voltage

(I-V) characteristics of the main ionotropic receptors present at excitatory, inhibitory,

and electrical synapses. In addition to the classic, linear, fast AMPA-like excitatory and

GABAA-like inhibitory synapses generally implemented on neuromorphic hardware [168],

we also emulated postsynaptic currents from NMDA, GABAC, and glycine receptors, as

well as two other AMPA receptor sub-types with different rectifying properties. Voltage-
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dependent ionic currents were described by a first-order Markov kinetic model of the

receptor channel and the sign of a chemical synapse could easily be configured by the

polarity of the reversal potential. Using programmable opening and closing channel rate

functions, we implemented neuromorphic synapses with receptors exhibiting different kinetic

properties and I-V relationships, including linear (Fig. 4.5a), inward (Fig. 4.6), and outward

(Fig. 4.3b) rectifications.

By independently modulating the spline functions of the opening and closing rates

of NeuroDyn, it should be straightforward to implement the postsynaptic current of the

other main ionotropic receptors present in the central and peripheral nervous systems,

including the serotonin type 3 (5-HT3) receptor which has an I-V curve similar to that of the

intermediate AMPA receptor sub-type [163], the neuronal nicotinic acetylcholine receptor

which has a linear I-V curve exhibiting strong inward rectification [86], the ATP-gated

P2X receptor cation channel family which have a mostly linear I-V relationship with slight

amounts of rectification [116], and the transient receptor potential (TRP) cation channels

which have a voltage dependence similar to the NMDA receptor [231]. Although the

NeuroDyn kinetic model has only two states (open and closed), it provides a great flexibility

for the emulation of the I-V properties of additional desensitized states as we showed for a

class of glycine receptors (Fig. 4.6). By dynamically reconfiguring the parameters of the

spline sigmoidal functions, we were able to simulate the desensitization dynamics. A more

accurate modeling of receptor desensitization could be achieved with kinetic models having

more than two conformational states [61]. In general, a better estimation and configuration

of the NeuroDyn parameters can be achieved using data assimilation from intracellular
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neural recordings of the receptor and ionic current of interest [250].

Besides fast excitatory and inhibitory synapses, the NMDA receptor is the only other

ionotropic receptor that has received a significant amount of interest in the neuromorphic

community. Some authors have developed neuromorphic circuits of the NMDA receptor

present outside the synaptic cleft and in dendrites. Irizzary-Valle and Parker designed

and simulated a model of extrasynaptic NMDA receptor activated by astrocytes during

neural synchronization in a tripartite neuromorphic synapse [103]. Schemmel and colleagues

proposed a neuromophic NMDA channel model for emulating dendritic NMDA plateau

potentials in a multicompartment neuron circuit [1, 217]. Other authors reproduced the

voltage dependence and slower kinetic of the NMDA receptor and used them as coincidence

detectors for the implementation of synaptic learning rules [17,204]. Bartolozzi and Indiveri

described a NMDA circuit that could emulate short- and long-term plasticity when connected

to other circuit modules [17]. This circuit was later implemented on a neuromorphic chip

with hundreds of silicon neurons and on-line learning capabilities [44, 172, 203]. In that

neuromorphic chip, the nonlinear conductance dynamics resulted from adaptive and learning

features such as spike-frequency adaptation and bi-stable plastic synapses. Using a more

complex synaptic model, Rachmuth and colleagues implemented a neuromorphic synapse

circuit able to reproduce both rate- and spike-time-dependent plasticity learning rules [204].

In that synaptic model, NMDA receptors acted as coincidence detectors at both the pre-

and postynaptic sites. Postsynaptic site contained both AMPA and NMDA receptors as

well as an additional circuit for modeling intracellular calcium signal. Presynaptic site

contained NMDA and CB1 receptors as well as intracellular calcium signals. Overall, these
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different hardware implementations of the NMDA receptor typically require additional

circuit blocks. One of the main advantages of our approach is that the reconfigurable

architecture of NeuroDyn provides a versatile platform to implement a variety of synapse

types in biophysical terms of ionotropic receptors, with programmable DACs that scale to

deep-submicron CMOS technologies, and without the need for additional analog circuit

blocks. In NeuroDyn, power consumption scales linearly with the number of neurons and the

numbers of synapses, in particular with the number of gating variables and conductances.

Power comnsumption and bandwidth can be traded, also with linear trade-off, through

global tuning of bias currents scaling all conductances and rate constants in the model.

Increasing the variety of synapse types in neuromorphic hardware is critical for

at least two distinct applications at different levels of organization. At the single neuron

level, a greater synaptic heterogeneity will provide more flexibility for interfacing biological

and silicon neurons through artificial synapses in dynamic clamp applications using neural

models implemented in VLSI hardware [133–135,198,226]. In particular, our implementation

of glycinergic synapses would enable connecting silicon neurons with neurons in the spinal

cord where glycine acts as the main inhibitory neurotransmitter [52]. Similarly, our

implementation of bidirectional electrical synapses would enable dynamic clamp applications

of a large variety of circuits where gap junctions are present. This would prove particularly

useful to dissect the contribution of chemical and electrical synaptic transmission in mixed

chemical-artificial synapses where gap junctions are present at the synaptic terminal next

to synaptic vesicles and postsynaptic density [191,228]. These mixed chemical/electrical

synapses have only been found at glutamatergic axon terminals and their role still remains
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obscure (for a recent review, see [178]). However, the current version of NeuroDyn does

not allow the emulation of asymmetric electrical synapses which let current preferentially

pass in one direction. Further work is necessary as the extent of rectification can have

subtle computational effects that can significantly alter network activity [84, 156]. At

the population level, neuromorphic synapses expressing different types of receptors are

required for the emulation of biologically realistic neural network models with complex

dynamics. Neuromorphic platforms for the simulation of large-scale neural networks up to a

million of neurons are now available in digital and mixed analog-digital VLSI hardware [72].

As emerging CMOS-compatible memristive devices [87] will soon enable the emulation

of large-scale neural network models on neuromorphic VLSI hardware with a number of

neurons, and synapses, similar to their biological counterparts, it is essential to design

and implement neuromorphic circuits taking into account the functional heterogeneity and

complex spatiotemporal dynamics of biological synapses. In addition, the immense number

of neuron and synapses in these emerging new hardware platforms will require systematical

parameters estimation approaches, such as data assimilation methods [250] and their

extensions, and means for implementing synaptic plasticity innately in the neuromorphic

circuits [38].

4.6 Impact and Significance

This work presented the first neuromorphic VLSI instantiation of a truly biophysical

dynamic clamp, providing great configurability in controlling the kinetics of ionotropic re-
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ceptors and postsynaptic membrane dynamics present in chemical excitatory and inhibitory

synapses, as well as gap junctions present in electrical synapses.

As theoretical and experimental neuroscience continue to reveal the extraordinary

complexity of biological synapses, further work will pursue the design and implementation of

neuromorphic synapses endowed with a larger temporal dynamic range, including the slower

dynamics of metabotropic and perisynaptic receptors, retrograde messengers, receptor

desensitization, neuromodulation, and receptor trafficking to name but a few. A greater

heterogeneity of synapse types and synaptic dynamics will be advantageous both for large-

scale neuromorphic computing and for neuromorphic neural interfaces between silicon

and biological neurons. Dynamic voltage/current-clamp interfaces between silicon and

biological neurons, through nanoscale integration of electrodes and interface electronics,

are the subject of the remaining chapters.

Chapter 4 is largely a combination of material in the following two venues: Jun

Wang, Theodore Yu, Abraham Akinin, Gert Cauwenberghs and Frédéric Broccard, “Neuro-

morphic synapses with reconfigurable voltage-gated dynamics for biohybrid neural circuits,”

IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct. 2017. Jun Wang,

Gert Cauwenberghs and Frederic D. Broccard, “Neuromorphic Dynamical Synapses with

Reconfigurable Voltage-Gated Kinetics,”IEEE Transactions on Biomedical Engineering

(TBME), 2019. The author is the primary author and investigator of this work.
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Chapter 5

1,024-Electrode Hybrid

Voltage/Current-Clamp Neural

Interface System-on-Chip

5.1 Introduction

Integration of microelectrode arrays directly on top of CMOS has provided means to

increase neural recording density, quality, and bandwidth. The vast majority of integrated

neural interfaces to date are limited to recording electrical potentials [13], [118], [56], [176],

and some are capable of simultaneous current stimulation through the same electrodes,

implementing basic functionality of current-clamp electrophysiology [143]. However, few

offer simultaneous current recording and voltage stimulation capabilities for voltage-clamp

electrophysiology [155], which are essential to characterize ion currents through membranes,
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as well as voltammetry to measure redox currents from neurotransmitter electrochemical

activity. One latest work presents a system including both current and voltage clamp

function [4], but it requires off-chip ADC. To save power and minimize noise coupling, and

to make system implantable, on-chip ADC is necessary.

A conventional SAR ADC performs a binary search through level comparisons for

the nearest quantized level in a series of successively twice smaller steps, cycling from

MSB through LSB by zooming in two-fold starting from the mid-range level (Fig. 5.1,

bottom left). As such, SAR binary search is most efficient for full-Nyquist memory-

less, uniformly distributed signals, but is a poor match for typical neural (such as low

frequency spike, local field potential LFP, and electrocorticogram ECoG) signals that are

mostly very small in amplitude with substantial low-frequency content and infrequent

large fast transients. To this end, a data-dependent SAR was proposed to increase energy

efficiency [257]. Importantly, it utilizes LSB-first successive approximation, unlike the

conventional SAR which proceeds steadily from MSB to LSB regardless of the data. Despite

several advantages, the main drawback of the LSB-first SAR technique is that the number

of cycles per conversion depends on the previous signal amplitude, and could be very long

even for subtle (LSB-level) changes. For instance, it may requires 12 cycles to complete

conversion in case the previous output is 100000000000 and the current sample input is

011111111111. Another disadvantage is that it might not be able to accurately follow

rapid changes in the input, such as sharp action potentials, because of DAC charge loss

due to the DAC voltage exceeding supply rails [257].
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Figure 5.1: Architecture of the 1,024-electrode hybrid current/voltage-clamp neural
interface-on-chip (NISoC), and architecture and operation of incremental SAR (iSAR)
ADC.
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5.2 NISoC Concept

To overcome the existing issues and to increase energy efficiency, here we present

an integrated array of 32 × 32 electrodes on a 2mm × 2mm 65nm CMOS silicon neural

interface system-on-chip (NISoC) that includes on chip ADC which covers the entire

frequency range of neural biopotentials from LFPs to action potentials, while providing

fully configurable spatially patterned simultaneous electrical stimulation capability.

The system supports voltage and current clamping through a programmable interface

(Fig. 5.1). For either current or voltage stimulation, each electrode on the NISoC can

be individually configured with a coefficient of -1, 0 or +1 as a scalar multiplier of the

global stimulation amplitude waveform, which itself is supplied as a time series of -1, 0 and

+1 values scaled by the supplied stimulation reference voltage or current. All electrodes

simultaneously acquire, at up to 25ksps, either voltage or current, ranging from 6µV to

1V , and from 30fA to 100nA. Dedicated circuits underneath each electrode serve either

(or neither) current or voltage clamp functions from the local scalar coefficient and the

global signal waveform (Fig. 5.1 top right). Global control variables also configure gain

and bandwidth for either voltage or current recording, generating a proportional voltage

output that is buffered and time-multiplexed along column output lines. Each of the 32

column outputs is digitized by a 12-b SAR ADC, alternating every row in two groups of 16

each on the top and bottom of the electrode array. The digital outputs are scanned and

combined for array-serial 12-b readout.

To cover wider signal range without compromising energy efficiency of signal depen-
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dent ADC [90], [257], we here consider another strategy, dynamic incremental SAR (iSAR)

with adaptive start index and overflow protecting circuit.

It starts from the previous conversion level rather than mid-level, and proceeds from

thereon with a smaller step, zoomed-in at a radix-2 scale index lower than MSB-1 (Fig.

5.1, bottom right). If the sampled input is sufficiently close to the previous conversion

level (blue traces), then the iSAR search continues to successively zoom in with the index

stepping down to the LSB in a number of cycles less than the number of bits needed for the

conventional SAR (cSAR). If the input changes from its previously level to a greater extent

(greater in step than the radix-2 scale of the start index), the search requires zoom-out

operations to catch up, and the index undergoes upward excursions before resuming a

downward settling trend towards the LSB (green dotted traces). Specifically, iSAR steps

up the index (increases the step size twofold) if and as long as the comparator retains the

same polarity (or the index reaches its maximum at MSB-1), and steps down the index

(decreases the step size twofold) as soon as and whenever the comparator flips polarity (or

the series terminates when the index reaches its minimum at LSB). iSAR further maintains

the index when the comparator stays for consecutive cycles at the same polarity; this

slows down the process somewhat but produces more robust convergence in the presence

of noise and errors in the comparison. iSAR settles in a limit cycle of alternating LSB

steps up and down; for the terminal cycle a downward step is reverted to recover one

bit of precision. iSAR is implemented using essentially the same hardware as the cSAR,

except for a presettable indexed up/down counter [118] rather than a standard register,

and additional index control logic(Fig. 5.1, right center). The control logic includes an
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overflow protecting circuit which avoids DAC charge loss due to DAC voltage exceeding

supply rails [257].

iSAR requires a frame memory buffer to store and recall 1,024 previous 12-b output

values for preload in sequential scanned order; in the current implementation this requires

external memory although a 2kB SRAM internal solution would provide substantial energy

savings at negligible cost in silicon area.

5.3 Integrated Circuit Implementation

Circuit detail for major parts of the interface front-end circuit, integrated beneath

each electrode, is shown in Fig. 5.2.

Current and voltage clamp functions are activated by analog switches controlled by

local state variables based on local ternary coefficient and global signal waveform. Non-

inverting voltage and integrating current amplification share a single folded double-cascode

OTA (94dB open-loop gain at 500nA bias) with configurable capacitive feedback for gain

and bandwidth control through global control variables. Analog switches directly in contact

to the integrating node are centrally bulk-source connected for ultra-low leakage extending

integration time for fA-range current acquisition. Unity gain, low-input capacitance

buffering of the voltage output [108] is dynamically biased (70uA on) synchronous with

time-multiplexed readout for substantial power savings with negligible kick-back noise.
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Figure 5.2: Front-end circuit implementation.

5.4 System Characterization and Experimental Veri-

fication

Fig. 5.3 shows the measured performance of one ADC configured in cSAR and

iSAR modes, as a function of the number of cycles. iSAR requires choice of start index,

the optimal value of which is signal dependent but can be dynamically tuned by tracking

average peak consecutive level differences in the signal. For slowly varying signals, iSAR

reaches higher ENOB than the cSAR (11.2 rather than 10.9), in less than half the number

of cycles (fewer than 6 rather than 12). ENOB is defined here as the effective number of

bits of the ideal quantizer producing the same SNDR as the measured output at the signal
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Figure 5.3: Conventional SAR and incremental SAR (iSAR) ADC characterization:
measured effective number of bits (ENOB) and ADC figure-of-merit (FOM).

input level. As SAR energy per conversion is almost directly proportional to the number

of cycles, the iSAR reaches an ADC FOM (measured ADC energy per conversion level

at ENOB) more than twice lower than SAR (2fJ/level rather than 5fJ/level) for signals

changing slower than 1mV/ms, typical of LFP, ECoG, dopamine, and other biopotential

and electrochemical neural signals. Changes in these signals are frequently limited to a few

levels only, so that a few cycles of LSB-level iSAR iteration help to boost signal-to-noise

ratio beyond the quantization level. Only for occasional fast transients due to signal

artifacts and noise will iSAR lag behind cSAR; however it is able to catch up in subsequent

cycles for rapid recovery similar to the predictive digital autoranging strategy in [118].

Measured voltage gain, bandwidth, and input-referred noise (G = 60) as a function
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Figure 5.4: Voltage recording mode characterization: measured gain, bandwidth, unifor-
mity, input-referred noise, and pre-recorded spike neural data re-recorded through saline in
contact with the electrodes, for different number of iSAR cycles per conversion.

of frequency are shown in Fig. 5.4.

Recording of pre-recorded spike data from a leech ganglion neuron, reconstituted to

original amplitude and presented through an external electrode immersed in saline within

an epoxy seal ring over the exposed depassivated top-metal electrode array, yields accurate
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Figure 5.5: Voltage clamp, current recording, and current clamp mode characterization:
measured non-uniformity in voltage offset, range of current recording, and self-calibrating
recorded current stimulation.

reconstruction through the front-end (G = 60) and back-end even down to 3 iSAR cycles

per conversion (Fig. 5.4 bottom right). Measured current extending from 30fA (G = 60,

1ms integration) to 100nA (G = 1, 5us integration) at less than 1mV compliance, with

loop-back recording of stimulation currents for self-calibration, are illustrated in Fig. 5.5.

Finally, in vitro recording from rat hippocampal brain slice shows stimulus evoked

excitatory post-synaptic potentials (EPSP). The experimental setup is presented in Fig.

5.6. Key performance metrics of the NISoC are summarized in Fig. 5.7, validating versatile

and biologically relevant functionality at record noise-energy efficiency.

One representative die photo including the indication of main functional blocks is
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Figure 5.6: Experimental Setup.

show in Fig. 5.8.
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Figure 5.7: Field excitatory post-synaptic potential (EPSP) recording of stimulation
evoked action potential from rat hippocampal slice, and metric comparison with state of
the art.
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Figure 5.8: NISoC micrograph.
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Chapter 6

Nanowire Electrode Array Neural

Interface System-on-Chip for

Intracellular Electrophysiology

6.1 Introduction

Developing new power-efficient and compact tools that enable scalable high spatiotemporal

resolution recording of intracellular potentials is one of the primary goals for advancing

electrophysiology studies from single cells to networks. Patch clamping is the gold standard

for studying electrophysiology of electrogenic cells. However, conventional patch clamp

systems with glass electrodes are only capable of patching a few cells at a time. They

are not suited for observing dynamics at the network scale. As a consequence, dense and

high throughput network level recording and stimulating has been a challenging issue
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to be addressed. To overcome this challenge, nanoscale electrodes and complementary

metal-oxidesemiconductor (CMOS) large scale integrated circuits are combined to realize

a high-fidelity and high-throughput intracellular recording at the neuronal network level

[4, 5, 13, 144].

Existing systems increasingly support high-throughput voltage measurement [5, 13,

144]. Among the most promising recent advances is a system which can be configured

in different modes to measure the effects of drugs on ion channel currents and record

intracellular action potentials from thousands of neurons, towards electrophysiological

screening and other functional interrogations of neuronal networks [4]. However, to data

most such systems lack integrated data acquisition, requiring off-chip analog signaling and

digitization at the expense of additional power.

Although significant advances have been made in combining nanodevices with

integrated circuits, full system integration for high-density and low-power operation has

not been achieved. Here, we present a new system-on-chip integrating nanowire electrodes

and all acquistion and control functions, illustrated in Fig. 6.1. It provides a versatile

tool to in vitro electrophysiology to bridge the kinetics of ion channels and bio-markers

of networks, thus opening up new opportunities in fundamental studies of electrogenic

cells and their networks. When combined with a wireless data transmission module

such as Bluetooth Low Energy (BLE) and powered by a coin-cell battery, it is sufficiently

miniaturized and low-power to find additional use as a wireless head-mounted in vivo neural

interface system-on-chip to a model animal, such as a mouse, opening up opportunities for

behavioral-physiological studies.
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Figure 6.1: Integrated system-on-chip for in vitro intracellular electrophysiology with four
wells of 8 × 8 nanowire electrodes. Nanowire fabrication courtesy of the Dayeh Laboratory
(Ren Liu and Youngbin Tchoe).

6.2 System Design and Analysis

The architecture of the electrophysiology system-on-chip (eSOC) is shown in Fig. 6.2.

The eSOC has 256 channels which share a reference slope generator with synchronous

Gray-code counter, and a global digital control block. Each channel includes an analog

front-end (AFE) for simultaneous current stimulation and voltage recording, a continuous

comparator, and a data reading block.

Each AFE in the 256-element array includes a nanowire electrode mounted over the

top-metal shield, a current stimulator, a voltage reference, an operational transconductance

amplifier (OTA), a gain and bandwidth controller, and a local digital control block. In

current-clamp mode the AFE injects a programmable bipolar current, and simultaneously

acquires and amplifies the voltage on the same electrode through a non-inverting amplifier,
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Figure 6.2: Architecture system diagram.

shown in Fig.6.3.

The AFE is followed by a single-slope analog-to-digital converter (ADC). The timing

of the ADC clocks and waveforms is shown in Fig. 6.4. The Gray counter Count starts

counting and the slope generator VSlope starts ramping on the falling edge of Reset.

When VSlope crosses VSignal, the output of the comparator Comp triggers Latch sampling

Count to hold its value. Since at most one bit transitions at any time in the Gray code,

glitches are avoided and the worst-case sampling error is one least-significant bit (LSB). A

Strobe completes the ADC cycle, transferring the digital output for ChSel time-multiplexed

readout.

The stimulation current is controlled by the product of a locally stored trinary

coefficient (-1, 0, and +1) and a globally supplied trinary envelope waveform (-Istim, 0,

and Istim). Hence both the spatial and temporal profile of the stimulation can be digitally

programmed by writing locally stored and globally shared configuration bits on-chip.
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Figure 6.3: Analog front-end (AFE) circuit implementation. The current clamp configu-
ration supports simultaneous current stimulation and voltage recording through the same
electrode.

Additional configuration bits also control gain and bandwidth of voltage amplification by

dis/connecting capacitors. The gain can be set as 1 or 10. The bandwidth is determined by

the bias current, the gain, and the loading capacitors. During measurements, the cut-off

frequency of the low-pass filter was set to 25 kHz.

A folded-cascode operational transconductance amplifier (OTA, Fig. 6.5 (a)) is used

in the AFE non-inverting amplifier. Thick-gate transistors for the input pairs reduce leaky

current. To minimize input capacitance, the input pairs are sized with minimum W/L

ratio, but with the addition of two multipliers for layout symmetry to reduce mismatch.
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Figure 6.4: Control timing diagram.

The remaining transistors are sized to set the open loop gain around 10k which is required

for 10-bit resolution in the ADC. As our target application is intracellular recording, an

input referred noise around 100 µVrms is more than adequate [5]. This can be achieved

with a bias current lower than 10 nA drastically reducing power.

To minimize power consumption and kick-back noise from the comparator to the

amplifier, a continuous-time comparator (Fig. 6.5 (b)) is used to compare the locally

amplified input signal Vsignal and the globally generated slope Vslope. Two transistors

are added to quickly reset the comparator upon completion of the previous ADC cycle,

readying the ADC for prompt decisions at the start of the new ADC cycle.

The signal dependent decision variation of continuous comparison causes non-

linearity, as the cross point of Vsignal and Vslope varies within the whole range of Vslope,
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Figure 6.5: Transistor-level detail of select circuit components. (a) Operational transcon-
ductance amplifier (OTA); (b) Continuous-time comparator; (c) Latch; (d) Slope generator.

which was configured as 1 Vpp in all the measurements. The effect of non-linearity on

intracellular recording is negligible as the signal ranges no more than 100 mV .

The output of the comparator needs to be converted to a pulse functioning as a

reading enable signal to read the value of the counter. This could be easily achieved by

a delay block, an inverter, and an AND logic gate. However, this simple solution would

fail in achieving stable delays for all 256 channels. Too short delays, resulting in narrow

pulse, will cause reading failure; too long delays will delay the reading. Therefore, a latch
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with a pre-amplifier was used (Fig. 6.5 (c)), which is conventionally used as a dynamic

comparator. It consumes little power here because it is clocked by the output of the

continuous comparator.

A self-cascoded current mirror is used in the slope generator to increase linearity

(Fig. 6.5 (d)). The W/L of the cascode pMOS is 100× larger than that of the bias pMOS.

6.3 Post-fab Processing and Nanowire Growth

For a proof-of-concept, sharp-tipped Pt nanowires were fabricated by Focused Ion

Beam (FIB) deposition on the surface of the Al top-metal pads for each of the electrodes

on the eSOC. We previously obtained highly resolved individual action potentials from

neurons cultured over similar arrays of Si-based nanowire electrodes [141]. The electrode

pitch in each of the four 8 × 8 electrode arrays is 50 µm, with each electrode 40 µm in

both width and length, shown in Fig. 6.1. To increase the strength and stability of the

electrodes, each of them is comprised of a solid stack of top two metals with dense inter-vias.

A culture ring was installed to facilitate cell culture using Polydimethylsiloxane (PDMS) as

glue. The installation was done after wire bonding followed by epoxy filling and installation

of an acrylic in vitro seal ring (Fig. 6.1, top right).
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6.4 System Characterization and Experimental Veri-

fication

The circuit offers superior energy efficiency, consuming less than 0.5 µW of power

per recording and stimulation channel at 25 kHz data rate, or less than 20 fJ of energy per

sample conversion level at 10b resolution. Around 1/3 of power is consumed by the digital

blocks. Input referred voltage offset within ±10 mV is largely eliminated, along with 1/f

noise, through correlated double sampling (CDS).

The measured gain of the amplifier in 10× mode is 20 ± 0.1 dB (Fig. 6.6 top) with

a peak SNR in the 54–59 dB range (Fig. 6.6 bottom). Measured noise spectral densities

both in unit gain and 10× gain modes are shown in Fig. 6.7. The eSOC offers 132 µVrms

input referred noise, suitable for intracellular recordings with amplitudes ranging greater

than 100 mV. CDS does not lower the total IRN, which is thermal noise limited at the

current bias level for low power.

Self-impedance within channels, and cross-talk across channels through air (under

dry conditions in the absence of ionic solution in the culture ring), is characterized in

Fig. 6.8. For this test, we activated current stimulation in a single channel located neat the

center of a representative well (lower left panel of Fig. 6.8) and simultaneously recorded

voltage across all 256 channels within the same well. The recorded potentials are shown

in the top panel of Fig. 6.8. The cross-talk, shown in the lower right panel of Fig. 6.8, is

determined by the normalized amplitude of the signal measured in the off-center channels,

relative to that measured in the center channel. Lower left : square-wave current stimulus
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Figure 6.6: Spread of gain and peak signal-to-noise ratio (SNR) across all 256 channels.

generated through a center electrode. Top left : corresponding voltage recorded across the

well 8 × 8 array. Top right : zoom-in of cross-talk in off-center electrodes. Lower right :

Corresponding cross-talk in dB. Center reference electrode reference (0 dB) shown in white.

The worst-case measured through-air cross talk across channels is -40.6 dB, with an average

of -55.3 dB.
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Figure 6.7: Input-referred noise density across 256 channels, at 1× and 10× gain.

Figure 6.8: Electrode self-impedance and cross-talk in air.
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To validate the function of the eSOC in its intended application setting while

providing ground-truth for comparative evaluation, we subjected all 256 channels to the

same in vitro electrical signal reconstituted from a prerecorded intracellular action potentials.

This was accomplished by presenting the prerecorded signals from a signal generator through

a resistive voltage divider in contact with the saline solution in the culture ring through an

external electrode, with the reference shared between the eSOC and the voltage divider for

minimal noise in the system setup. The top panel of Fig. 6.9 shows the experimental in

vitro set up; the recordings in the bottom panel validate uniformity across all 256 channels

resolving the signal at SNR higher than that in the prerecorded signal. A comparison

with other state-of-the-art systems is given in Table 6.1, showing favorable density and

noise-energy efficiency at applicable noise levels.

Finally, we conducted in vitro intracellular neural recording experiments to verify

the function and performance of our system. Representative results from recordings of rat

cortical neurons cultured directly onto the chip are shown in Fig. 6.10. The top left panel

shows the spontaneous spiking of neurons without any chemical treatment; the top right

panel is the response of neurons treated with KCl; and the bottom left panel shows the

effect of TTX injection, within 1 minute, on the neural activity.

6.5 Impact and Significance

We presented here a first sub-µW electrophysiology system-on-chip (eSOC) for

intracellular stimulation and recording through sharp-tipped nanowire-needle electrode
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Figure 6.9: Characterization with reconstituted prerecorded intracellular action potentials.
Top: experimental set up. Bottom: uniform recording across all 256 channels.

arrays. The eSOC performs simultaneous electrical recording and stimulation through

each of the 256 electrodes, with digital control and time-multiplexed readout. In current

clamp mode, each electrode acquires electrical potential ranging from 100 µV to 1 V under

variable pulsed current activation over the lower pA to upper nA range. These ranges of

voltages and currents can be adjusted for other applications, such as extracellular recording

at lower voltage amplitudes. In voltage clamp mode, current through the electrode is

acquired for stepped voltage activation over the same ranges. We introduced the design
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Table 6.1: Comparison with State of the Art

and characterized the system, showing that its performance is comparable to other recent

state-of-the-art systems, at superior power consumption and integration density. We

validated the eSOC using prerecorded action potential replayed through the saline solution

and demonstrated its ability to accurately measure the signals at high spatiotemporal

resolution at low cross-talk. With the inclusion of nanowires fabricated on the electrode

plates, the eSOC enables precise intracellular electrophysiology experiments at the network

level.
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Figure 6.10: Neuronal intracellular recording results.
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Chapter 7

Conclusion and Outlook

This chapter summarizes the contributions of this thesis and presents an outlook on

ongoing and anticipated future further developments in hybrid neuromorphic and biologi-

cal neural networks and their implications for neuromorphic computing, computational

neuroscience, and systems neuroscience.

7.1 Thesis Contributions and Significance

The theory and experiments presented here have revealed that data assimilation is

not only capable of predicting the waveform information of an HVC neuron of the zebra

finch within the accuracy of the intrinsic variability of the neuron, but further of correctly

recovering all the parameters of a dynamical model describing physical processes on Neu-

roDyn, including mismatch and model errors induced in chip fabrication. Importantly,

we have successfully mapped biological dynamics to a silicon substrate leveraging the
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exponential voltage-current relationship present in biological ionic current kinetics and

transistors. We have surmounted the fabrication mismatch in the NeuroDyn chip and

estimated parameters in the NeuroDyn model, enabling emulation of biological data. We

estimated the in/activation and voltage-dependent time constants of ion channels. These

results demonstrate the analysis of biological neurons by synthesis and provide a basis for

building biologically realistic network models in an integrated analog circuit chip which

has the potential of forming closed-loop interaction between artificial and biological neural

networks. The results may also help to understand the effects of neuromodulators or

neurodegenerative diseases on ion channel kinetics, and may further provide insights into

the relationship between molecular properties of neurons and the emergence of different

spike patterns or different brain behaviors. We have shown that the extended H-H model

implemented on NeuroDyn is sufficient for describing one class of interneurons within

the nucleus HVC, however there is a tremendous diversity of mechanisms in nervous

systems. Such mechanisms include other ion channels such as calcium channels, neuromod-

ulators, multi-compartmental dynamics through linear and nonlinear dendritic coupling,

and intracellular signaling pathways. This motivates the design of neuromorphic chips

containing more neurons which have more channels and each channel is flexible enough to

be programmed to describe different ion kinetics.

Our work on NeuroDyn has further extended to contribute the implementation and

characterization of a wide-ranging heterogeneity of synapse types and synaptic dynamics

on neuromorphic VLSI hardware. We focused on the emulation of the current-voltage

characteristics of the main ionotropic receptors present at excitatory and inhibitory synapses,
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as well as in gap junctions present in electrical synapses. By dynamically reconfiguring

the opening and closing rates parameters, we also emulated the temporal dynamics of

EPSPs, IPSPs, and receptor desensitization. As a new, highly versatile tool for dynamic-

clamp electrophysiology directly emulating the biophysics of synapses, it provides enabling

technology in support of further forays in theoretical and experimental neuroscience to

reveal the extraordinary complexity of biological synapses, which can be readily extended

to include the multiscale temporal dynamics of metabotropic and perisynaptic receptors,

retrograde messengers, receptor desensitization, neuromodulation, and receptor trafficking.

On the neural interfaces front, we contributed the design, implementation and

functional validation of a 1,024-channel neural recording ADC chip. The 4 mm2 chip

accomplished record noise-energy efficiency, with 5.9 µVrms of noise at 0.862 µW power

consumption per channel over 12.5 kHz signal bandwidth. This record performance owes

to: 1) new algorithm utilized to implement ADC to achieve high speed conversion; 2)

multiplexed ADC, one ADC shared by 32 analog pixels; 3) dynamic bias strategy reducing

the power consumption of analog buffer; and 4) single front-end used for both current

and voltage measurement. The neural-interface-on-chip in 65nm CMOS integrates 32 ×

32 electrodes vertically coupled to analog front-ends for current or voltage clamping with

simultaneous recording of voltage or current, ranging from 6 µV to 1V , and from 30fA to

100nA. The backend features an array of 32 incremental SAR ADCs for 25Msps 11-ENOB

acquisition at 2fJ/level FOM.

We further implemented a first sub-µW electrophysiology system-on-chip (eSOC)

for intracellular stimulation and recording through sharp-tipped nanowire-needle electrode
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arrays. The eSOC performs simultaneous electrical recording and stimulation through

each of the 256 electrodes, with digital control and time-multiplexed readout. In current

clamp mode, each electrode acquires electrical potential ranging from 100 µV to 1 V under

variable pulsed current activation over the lower pA to upper nA range. These ranges of

voltages and currents can be adjusted for other applications, such as extracellular recording

at lower voltage amplitudes. In voltage clamp mode, current through the electrode is

acquired for stepped voltage activation over the same ranges. We introduced the design and

characterized the system, showing that its performance is comparable to other recent state-

of-the-art systems, at superior power consumption and integration density. We validated

the eSOC using prerecorded action potential replayed through the saline solution and

demonstrated its ability to accurately measure the signals at high spatiotemporal resolution

at low cross-talk. With the inclusion of nanowires fabricated on the electrode plates, the

eSOC enables precise intracellular electrophysiology experiments at the network level. In

particular, we demonstrated in vitro intracellular electrophysiology verifying the function

and performance of our system with experimental recordings from rat cortical neurons

cultured directly onto the chip, showing trains of clearly resolved full-scale neural membrane

action potentials in response to extracellular KCl activation and TTX deactivation.

7.2 Outlook and Broader Impact

Initially intended as a computational tool for studying the interactions of individual

neuron’s properties and the activity of small networks, biohybrid circuits between biological
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and silicon neurons have matured into a powerful method for investigating neuronal

populations in experimental neuroscience, BMI, and neuroprosthetic research. Whereas

neuromorphic hardware provides a scalable medium for up to a million silicon neurons,

the major limitation for interfacing large neuronal populations with high spatiotemporal

resolution remains the electrophysiological methods used for recording and stimulation.

Indeed, multielectrode arrays only allow extracellular recording and stimulation, thereby

precluding real-time single-cell resolution for a large number of neurons. While extracellular

signals proved to be sufficient for certain recent BMI and neuroprosthetic applications, the

ability to record and stimulate individual neurons at the population level will allow an

unprecedented level of control and open up new exciting research avenues for experimental

and clinical neuroscience. Finally, several features of VLSI neuromorphic hardware make it

a prime candidate for next generation of neural implants for BMI and neuroprosthetics. By

carrying spike (event-based) computation on-chip, VLSI neuromorphic hardware eliminates

the need of telemetric data transmission off-chip and consequently reduces their size and

energy budget. Moreover, the hardware friendly nature of spiking neural models, in contrast

to alternative models, makes them ideally suited to low-power VLSI implementations for

communication and control in biohybrid circuits containing a large number of silicon

neurons.

Due to the ever-changing landscape of machine intelligence, VLSI design, and

materials engineering we will refrain from long-term predictions, instead restricting ourselves

to a short-term horizon. Whereas technological advances in recording and stimulation

methods will undoubtedly benefit the future development of in vitro and in vivo biohybrid
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circuits, several emerging trends will likely accelerate the adoption and use of neuromorphic

hardware for experimental and clinical applications in the near future. First, several

research groups are planning on making their custom-design neuromorphic hardware

platforms available in the cloud to larger scientific communities. In parallel, new methods

for the parameter estimation, mapping, and tuning of neuromorphic chips will facilitate

the configuration of sophisticated large-scale network models on these chips. The modular

design of some BMI systems will also likely encourage further developments of software

and hardware components through open-source tools. Second, the presence of plastic

synapses is expected to lead to the implementation of complex adaptive learning algorithms.

On one hand, this will allow experimentalists to investigate network functions at several

levels of biological organization dynamically, rather than statically. On the other hand,

endowing neural interfaces with adaptive mechanisms will provide more robust neural

prosthesis designs able to cope with dynamic environments. Third, the high computational

power, compactness, and low-power consumption of VLSI neuromorphic chips make them

a prime candidate as processors for embedded integrated systems including BMI and

neuroprosthetics. Following the successful proof of concept studies using neuromorphic

chips in clinical research, these chips will likely find applications for neural interfaces in

awake animals in the next 2-3 years. Finally, the currents efforts to incorporate emerging

memristive devices with traditional VLSI neurmorphic hardware could potentially bring

a new generation of fully scalable, low power, compact, hardware devices with great

computational power, and open up new exciting avenues of research for neuromorphic

neural interfaces.
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D. Brüderle, J. Schemmel, and K. Meier. Six networks on a universal neuromorphic
computing substrate. Frontiers in Neuroscience, 7:11, 2013.

[193] L. Pierre-Simon. Memoir on the probability of the causes of events. Stat. Sci,
1(3):364–378, 1774.

[194] R. Pinto, R. Elson, A. Szucs, M. Rabinovich, A. Selverston, and H. Abarbanel.
Extended dynamic clamp: controlling up to four neurons using a single desktop
computer and interface. Journal of Neuroscience Methods, 108:39–48, 2001.
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