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Abstract

We compared the efficacy of three automated brain injury detection methods, namely symmetry-

integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed

segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the

detection of hypoxic ischemic injuries (HII). Diffusion weighted imaging (DWI, 1.5T) data from

neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T,

4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of

hypoxic ischemic injury were used to check the temporal efficacy of our computational

approaches. Sensitivity, specificity, similarity were used as performance metrics based on manual

(‘gold standard’) injury detection to quantify comparisons. When compared to the manual gold

standard, automated injury location results from SIRG performed the best in 62% of the data,

while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the

best in 67% cases while HRS for 33% data. Prior information is required by HRS and MWS, but

not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not.

Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most

robust, while MWS lags behind in both respects.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) datasets contain information that characterizes normal

and abnormal tissues based on their MR physical properties and anatomical locations. In

clinical trials, MRI indices are used as outcome measures to assess pathological changes and

to monitor treatment efficacy (Schiemanck et al., 2006). Traditionally, regions or boundaries

of interest (ROI) on MRI, either in healthy or injured tissues are manually traced and can be

fraught with inconsistencies between users, potential biases, difficulty in replicating data,

and low throughput (Niimi et al., 2007). Computational advances in efficient ROI detection

algorithms are important for both 1) clinical diagnosis, 2) assessment of treatment and 3)

experimental and clinical research objectives (Ghosh et al., 2012a).

Advances in computer vision and pattern recognition have made inroads using several

computational ROI detection techniques in medical MRI data (Anbeek et al., 2008; Bergo et

al., 2008; Birgani et al., 2008; Cuadra et al., 2004; Hojjatoleslami and Kruggel, 2001; Kabir

et al., 2007; Kharrat et al., 2009; Khotanlou et al., 2009; Manana et al., 2006; Ray et al.,

2007; Saha and Bandyopadhyay, 2007; Van Leemput et al., 2001; Zhiguo et al., 2005).

Comparison of these existing methods (Table 1) reveals several computational challenges,

including: (a) partial volume effects, (b) low contrast, and (c) motion artifacts that blur ROI/

anatomical boundaries (Table 2). These challenges still remain even after a range of

proposed solutions to improve computational assessments, including registration (Schmidt et

al., 2005), normalization (Kabir et al., 2007), or use of prior brain tissue models particularly

for adult MR data (Birgani et al., 2008). While prior probabilistic models for brain anatomy

and specific diseases have been used (Corso et al., 2008), they are not robust to injury

induced brain distortions, as model-subject co-registration often fails (Cuadra et al., 2004;

Ghosh et al., 2012a). Curve fitting based methods like active contour snakes (Droske et al.,

2001; Liang et al., 2006; Zhou and Xie, 2013), level-set propagation (Droske et al., 2001)

and their combined and/or modified versions (Bai et al., 2013; Kazemifar et al., 2014; Le

Guyader and Vese, 2008; Liang et al., 2006; Mesejo et al., 2014; Somkantha et al., 2011;

Wang et al., 2013) have been applied to medical image segmentation. But these methods

suffer from manual interventions (Liang et al., 2006; Zhou and Xie, 2013), computational

complexity (Kazemifar et al., 2014; Mesejo et al., 2014), dependence on MRI contrast levels

(Kazerooni et al., 2011; Liang et al., 2006; Somkantha et al., 2011) and inadequate cues for

efficient registration to prior-models (Bai et al., 2013; Le Guyader and Vese, 2008; Wang et

al., 2013) and atlases (Kazemifar et al., 2014), specifically in low-contrast noisy MRI data

(Zhou and Xie, 2013).

Moreover, for neonatal brains, age-matched brain maps and prior models are not readily

available (due to scarce data from healthy controls) and often cannot be co-registered easily

as a result of increased water content and structural variability in immature brains (Ghosh et

al., 2012a). Thus, MRI based automated detection of neonatal brain injury remains

extremely challenging and a comparative study of different techniques might bring forth

case-specific applications and future computational improvements by wisely fusing more

than one techniques.
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The rationale for undertaking the current study was to twofold: firstly, to compare three fully

automated computational approaches to study neonatal HII without using any prior models

or brain atlases, and secondly to evaluate these advances temporally, as the ischemic lesion

rapidly evolves. We tested all aspects first in our well characterized model of rodent

neonatal HII followed by validation in human HII MRI data. We report on the comparative

usage of three state-of-the-art computational methods for ROI detection from MR images

following neonatal HII. Specifically, we assessed a symmetry-integrated region growing

(SIRG) method (Yu et al., 2009), a hierarchical region splitting (HRS) method (Ghosh et al.,

2011), and a modified watershed (MWS) method (Ratan et al., 2009). Using MRI data from

an animal model and patients with neonatal ischemia, the performance of these three

methods were compared to manually detected ground-truths based on usage of prior

knowledge, volumetric accuracy, regional overlap and robustness (lesion detection in in

multiple MR slices and across cohorts). We found that for evolving neonatal ischemic

injury, SIRG performed best overall but HRS was the most robust, and fusion of these two

techniques in future studies has a greater potential for automated injury detection from brain

MRI data.

2. MATERIALS AND METHODS

2.1. Clinical and Animal MR Data

All three of our computational methods were tested on human and animal datasets. In our

animal studies we utilized postnatal 10d old rat pups that underwent neonatal HII, using the

Rice-Vannucci Model (RVM) of unilateral permanent carotid artery ligation with 8%

hypoxia (Ghosh et al., 2012a). The current study utilized neonatal rats (n=4) at 7 different

time points to monitor to evolution of the ischemic injury. In addition, n=4 rodents were also

assessed at a lower MR field strength (4.7T) at later time-points. T2-weighted images

(T2WI) were acquired at seven different time-points (1, 4, 7, 10, 17, 24 and 31d) post

induction of HII. This dynamic range of time points was chosen based on previous studies

that revealed the dynamic nature of the evolving HII injury (Obenaus et al., 2011a). All

animal protocols were approved by our Institutional Animal Care and Use Committee. All

of the key imaging acquisition parameters are summarized in Table 3 (see also (Ghosh et al.,

2011)).

In our clinical data sets we utilized diffusion weighted imaging (DWI) and their quantitative

apparent diffusion coefficient (ADC) maps from neonatal patients (n=2) evaluated for

arterial ischemic stroke (AIS). De-identified neonatal data were acquired at 3-5d post injury

(Ghosh et al., 2012b). All patient data were approved by our Institutional Review Board. All

of the key imaging acquisition parameters are summarized in Table 3.

In both experimental animal models and human MR data, experienced evaluators provided

ground-truth manually derived ROIs for comparison and testing purposes. As we found

earlier that inter-observer variability for lesion detection is small (Ghosh et al., 2012b), we

have used the mean ROI location from two experienced raters as the gold-standard for

comparison. A minor caveat is that both SIRG and MWS methods used relative intensity

based TIFF images whereas HRS approach can utilize directly T2- and ADC values for
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detection. In addition, skull stripping and brain extraction from MRI data was performed by

HRS using published preprocessing steps (Ghosh et al., 2012b).

2.2. Lesion Detection by Symmetry-Integrated Region Growing (SIRG)

The SIRG lesion detection method (Yu et al., 2009) takes the original MR image (Fig. 1a),

finds the axis of symmetry (Fig. 1b), derives a symmetry affinity matrix (Fig. 1c) that is

used as a measure of symmetry in later steps. The next step enhances segmentation results

by verifying that the symmetric parts are segmented appropriately (Fig. 1d), followed by

computation of kurtosis and skewness from the symmetry affinity matrix which are used to

extract the asymmetric regions from segmented brain (Fig. 1e). Simultaneously, the

symmetry affinity matrix (Fig. 1c) from each MRI slice is also used for clustering and

identification of asymmetric groups using 3D relaxation (Fig. 1f). The 3D relaxation and

kurtosis/skewness results are then fused to obtain a more refined asymmetric region (Fig.

1g). Finally, an unsupervised classifier extracts the regions of injury from the asymmetric

regions (Fig. 1h) by incorporating 3D information from 2D MRI slices as an additional new

feature (Fig. 1, right panel). Key parameters used in SIRG method are summarized in Table

4.

Symmetry Extraction—A high-speed method was used to extract the global reflective

symmetry axis of the brain. We used a global symmetric constellation of features (Lowe,

2004) to detect the symmetry axis of the MRI brain images (Fig. 1b), that were then utilized

to compute a symmetry affinity matrix (Fig. 1c), which is a cross-correlation between the

original image and the symmetrically reflected image. The value of each point in an affinity

matrix corresponds to the pixel’s symmetry level, valued from 0 (symmetric) to 1

(asymmetric). The symmetry affinity measure is computed using the Curvature of Gradient

Vector Flow (CGVF) (Gupta et al., 2005; Prasad and Yegnanarayana, 2004).

Segmentation—We utilized a symmetry-integrated region growing segmentation

approach (Sun and Bhanu, 2012; Yu and Bhanu, 2009) to segment the brain into different

tissues. The pixels i and neighboring region j with similarity less than a threshold δ(i, j)<δg

is grown into a larger region. The similarity δ(i,j)=δR(i, j)δS(i, j) is composed of the region

feature similarity and the symmetry similarity constraints, respectively. Traditional region

growing segmentation accepts color, gray scale, texture or shape as a similarity constraint

δR(i, j) for segmentation (Nan et al., 2009). However, we included a symmetry constraint

derived from the symmetry affinity matrix which was integrated into the region growing

algorithm as shown below:

Eq. 1

where, Ci and Cj are symmetry affinities of pixel i and neighboring region j. For the first

term of Equation (1), if both patterns i and j indicate low symmetry affinities (highly

symmetric), they are more likely to be aggregated by decreasing the constraint δsymmetry(i, j);

while the second term favors more similar symmetry affinities. This results in tissues being

segmented more symmetrically (see Fig. 1d).
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Asymmetric Region Extraction—Symmetry-based segmentation separated the

segmented regions as either symmetric or asymmetric, in which the asymmetric regions

contained the ROI. The final asymmetric regions (Fig. 1g) were a fusion of the results from

the asymmetric regions by region growing (Fig. 1d) followed by region kurtosis/skewness

asymmetry determinations (Fig. 1e) and the segmentation of symmetry affinity matrix (Fig.

1f). The asymmetric segments (Fig. 1e) were extracted from all segmented regions based on

kurtosis and skewness of symmetry affinity matrix (Yu et al., 2009). Larger kurtosis of a

region’s symmetry affinity values indicated more deviation in the region’s symmetry affinity

distribution (Du and Kopriva, 2008), which was designated as an asymmetric region. The

negative skewness of a region means that its symmetry affinity distribution is left-tailed,

which also indicates an asymmetric region. Separately, 3D asymmetry was extracted (Fig.

1f) using a 3D relaxation method (Bhanu and Parvin, 1987). This algorithm segmented the

symmetry affinity matrix by iteratively separating its histogram into two classes, symmetric

and asymmetric. The final step was to determine the asymmetric regions by identifying at

least 50% overlap between the asymmetry from 3D relaxation (Fig. 1f) and kurtosis/

skewness steps (Fig. 1e).

ROI Extraction—The derived asymmetric regions were potential candidates for

designation as putative HII lesions. An unsupervised Expectation Maximization (EM)

classifier with Gaussian Mixture Model (GMM) (Bilmes, 1998) was used to classify

candidate asymmetric regions (see Fig. 1g) into two classes: lesion vs. non-lesion using a 2D

feature composed of region’s gray scale intensity and the 3D asymmetry volumes assembled

from the 2D slices (Fig. 1, right panel). Mean intensity values of normal and injured tissues

were first estimated from a small training set comprised of three MRI slices from each

dataset, and the classifier was then trained by unsupervised EM around those mean values as

the centers of GMM. The 3D asymmetry volume then became the 3D binary mask for the

final asymmetric regions. The binary results of all slices from the MRI dataset were summed

together to build a 3D asymmetry volume image (Fig. 1, right panel), where groups of

brighter pixels in the 2D asymmetry volume image indicate larger asymmetric volume

values, in which the lesion was located. The mean 3D asymmetry volume of each

asymmetric region (Fig. 1g) was used as a feature for classification, where increased mean

3D asymmetry volumes were identified as the ROI (lesion) class (Fig. 1h). The classification

by EM/GMM using these features is unsupervised and fully automated.

2.3. Lesion Detection by Hierarchical Region Splitting (HRS)

HRS is an automated and recursive region segmentation method that segments MR images

based on both image intensities or on quantitative MR values (T2 relaxation times, ADC

values), into uniform image regions recursively. In each recursive splitting, regions from the

previous step (iteration) are separated into smaller yet more uniform image regions (Ghosh

et al., 2011). The brain exhibits different contrast levels between anatomically distinct brain

tissues (e.g., cortex vs. striatum) and thus, a uniform region within the brain likely represents

a single brain tissue type. MRI contrast levels within the brain can be further altered by

disease, such as HII, where increased T2 relaxation values (or increased image intensities)

reflect increased water content indicative of edema. Similar increases/decreases in ADC

occur in HII. The HRS method exploits these differences to segment uniform regions in
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which brighter signal on T2 maps is expected to indicate the location of the brain lesion.

Similarly, ADC maps reflect water mobility and as many lesions have restricted water

mobility compared to normal brain tissues at the early stage of the injury (Ghosh et al.,

2012a), the HII lesions are hypo-intense (darker) in ADC maps so that HRS can separate

these regions during recursive splitting (Fig. 2).

The HRS sequence is comprised of: Rescaling: To reduce computational complexity and

increase robustness to MRI signal variation, we rescaled the T2WI or ADC values to a range

[0, 255] and the scaling factors were saved to map the automatically derived results in image

intensity values back to the original MR (T2 or ADC) values. As T2 values >255ms are not

typical, rescaled data are very similar to the actual T2 values. For ADC maps (or other MRI

modalities), this rescaling step makes HRS generic and compatible to any range of MR

values. Deriving the HRS histogram: The signal spectrum histogram H(i) of the rescaled

MRI was computed, where i = [1,2,… N =255]. Computing adaptive segmentation

threshold: Similar to Otsu’s method (Otsu, 1979), we modeled the MRI histogram at every

region splitting level (i.e., level 0-2 in Fig. 2B) as a bimodal distribution with two distinct

and distant peaks (see Fig. 2A). Histogram H is normalized to estimate the probabilistic

distribution function, , and the cumulative distribution function

. The cumulative weighted means at every intensity value

 and the final cumulative mean μt = μ(N) are used to compute the

sequence of Otsu’s measure,

Eq. 2

where its mode(s) define the valley of the original distribution p(i). For more than one

closely-spaced modes, we use the mean  as the valley and

compute the threshold (valley of p(i)) by Th=(idx-1). The above threshold Th defines the

valley between these peaks as an adaptive threshold to split the image into two sub-region

images (Fig. 2A), in which one region has values greater and the other region has values less

than the threshold Th. Each peak is a region with a minimum intra-regional and maximum

inter-regional MR variance. Recursive bimodal segmentation: A unique aspect of the HRS

method is its recursive application of the above bi-partite segmentation. The sub-images

were then recursively further split to generate a tree-like hierarchical data structure (Fig. 2B)

which we describe as the HRS tree. Criteria for stopping segmentation: Recursive splitting

is continued until individual segments or sub-regions have near-uniform MRI intensities.

Uniformity was measured based on three factors, whether: (a) the individual connected

regions were small (area < 50 pixels = 2ml in neonatal rat brain) and unlikely to be from

different tissue-types; (b) the MR signal value for the region had a low standard deviation

(STD < 10 rescaled MR values), that is, the regional MRI intensities were relatively

uniform; and (c) the MR histogram for the segmented region had a low kurtosis value

(kurtosis < 1.5) where the peak is too distinct to be modeled as a bimodal distribution. The

brain regions obtained from HRS (e.g., HRS trees in Fig. 2B) were not always uniform in
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MR (or rescaled MR) values, but as we descend down the HRS tree, we achieve greater

uniformity within individual regions. The threshold values or split-stopping criteria (area <

50; STD < 10; kurtosis < 1.5) were selected based on published results (Ghosh et al., 2011).

These thresholds do not affect ROI detection but minimize unnecessary over-segmentation

of small or very uniform regions and thus, reduces HRS tree size and computational (space

and time) complexity. Scale-back to actual MR values: The statistics (e.g., mean, standard

deviation) of each HRS sub-regions are rescaled back to actual MR values using the saved

scaling-factors (see above). Detection of Lesion: Based on previously published studies and

established T2 and ADC ranges of normal brain tissues (Ghosh et al., 2011; Ghosh et al.,

2012a), we used a T2 relaxation time of 75ms (in animal data) and ADC value of 100 × 10−5

mm2/sec (for clinical data) that can efficiently delineate the HII lesion from normal tissues.

The method uses these values as a soft threshold for the lesion mean, called meanTh. It

accomplished this by systematically checking the (mean ± standard deviation) value of the

sub-regions in the HRS tree one by one, starting from the top (level 0) and gradually

descending down branches of the HRS tree until reaching a sub-region with: (a) either

(mean – standard deviation) is greater than the meanTh (=75) for T2-based HRS trees, (b) or

(mean + standard deviation) is less than the meanTh (=100) for ADC-based HRS trees. HRS

then categorizes this sub-region as an ischemic lesion (Fig. 2B). The threshold – meanTh

was the cutoff for the MR mean of HII lesion. Use of regional standard deviations (unlike

those reported (Ghosh et al., 2011)) improves outlier rejection. Key HRS parameters are

summarized in Table 4. Finally, regional properties (area, mean, and standard deviation),

and 3D volumes of the injury were then computed.

2.4. Lesion Detection by Modified Watershed Segmentation (MWS)

The watershed algorithm has been used for brain tumor segmentation and has been validated

for segmentation and lesion detection from MRI datasets (Ratan et al., 2009). This method

can segment ROIs provided that the desired parameters for segmentation and ROI properties

are properly set. A conceptually simple supervised image-based (shape, texture, and content)

technique has been used here to analyze MRI brain images with relatively low

computational requirements. The parameter’ features of the brain images are extracted: the

image contrast edges (E), gray values (G), and local contrast (H). Then, the watershed

segmentation method separates the brain into different compartments. Finally, injury regions

were detected from the segmented regions by a supervised classifier. Key MWS parameters

are summarized in Table 4.

Multi-parameter Calculation—The image contrast edge (E) parameter is often used to

determine the boundaries of an object, based on the assumption that semantically similar

objects have closer edges. Given this understanding, we used the Sobel edge detection

method to detect image edges (IE), obtained by filtering an input image with two

convolution kernels (Sobel Kernels) concomitantly, to detect changes in vertical and

horizontal contrasts, as Ix and Iy respectively. Image output IE is obtained by calculating the

gradient magnitude of each pixel (xp,yp) of the filtered images Ix and Iy, as shown in

Equation (3). Subsequently, the edge parameter (E) of a pixel (xp,yp) is calculated, whereby

E is increased by one each time when IE(xp_n,yp_n) = ‘1’ (indicating as an edge pixel), as
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shown in Equation (4), where (xp_n,yp_n) is any neighboring pixel in an m by m block B

centered at the pixel (xp,yp)

Eq. 3

Eq. 4

The gray values (G) parameter is the gray scale (or T2/ADC) value of the pixel of the brain

image. The local contrast (H) parameter is often used to characterize the extent of variation

in pixel intensity. We adopted the stretch algorithm to compute the contrast parameter of a

pixel (xp,yp), based on the m by m neighborhood connectivity (block B) centered at (xp,yp),

as shown in Equation (5), where min(B) and max(B) represent the minimum and maximum

intensity values of the neighborhood pixels inside block B. The contrast parameter H is

obtained by totaling the contrast of a block B, as shown in equation (6).

Eq. 5

Eq. 6

The above three features (E, G, H) are used to compute the pixel-based similarity for the

watershed segmentation.

Watershed Segmentation—Watershed segmentation is realized by considering the gray

scale value of each brain pixel as the altitude of the water basin. Drops of water reach the

maxima of values, and then flow along certain paths to finally reach the local minima. In

this respect, the watershed corresponds to the limits of the adjacent catchment basins of the

drops of water, and it also is equal to the boundary of the segmented regions. The watershed

segmentation approach, a classic in image segmentation, is one of the most automatic

methods. The watershed segmentation technique segregates images as different intensity

segments with ROIs having a high radiation density leading to high pixel intensities. Thus,

the watershed segmentation is an efficient tool to classify tumors and other high intensity

tissues within the brain. Watershed segmentation, as a region-based segmentation method,

can also classify intensities that exhibit very small differences. Further, MWS is useful for

detecting multiple regions, which cannot be reached by counter-based segmentation methods

such as level-set or snakes. In MWS, multiple parameters (E, G, H in Equations (3)-(6)) are

used as different cues for watershed segmentation and lead to segmented regions.

Lesion Detection—The final lesion detection was performed using ‘prior knowledge’

from ground-truth (manually derived) ROI properties, gray-scale and texture to separate

lesions from other normal tissues.
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2.5. Statistical Comparisons

From 2D slice-based injury and brain areas (Areainjury, Areabrain), percentage lesion

volumes (V%) over the entire brain was determined by the equation,

Eq. 8

where Ns equals the number of MR slices in the sequence, anterior to posterior. We further

compared the performance of these computational methods, in terms of volumetric and

location-overlap indices (sensitivity, specificity, and similarity) using the following

equations:

Eq. 9

Eq. 10

Eq. 11

Where LG and BRG represent the number of pixels in the ischemic injury and the entire

brain, respectively, in the manually segmented data; and LD and BRD represent the

corresponding counterparts from the detected results from each computational method.

Methods and experimental details for those reported are available upon request to the

corresponding author.

3. RESULTS

We quantitatively and qualitatively evaluated and compared all three proposed

computational methods, SIRG, HRS and MWS, in their ability to identify neonatal HII

lesions which were then compared to expert manual lesion extraction in clinical and rodent

MRI data sets. Firstly, we compared all three methods at a single time point when the lesion

volume is relatively static. Secondly, we then expanded our computational assessment to test

their efficacy in a temporal dataset where the lesion volume is dynamically evolving. This

step is critical for clinical translation when it is often difficult to assess the time of injury,

particularly in neonates. Thirdly, our final assessment, used human neonatal data to validate

that our computational methods can be readily applied in a clinically relevant manner

demonstrating proof of concept.
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3.1. Comparisons in an Animal HII Model: Single time point

We compared the three methods (SIRG, HRS, MWS) using T2WI images obtained from a

cohort of animals 10 days post HII induction (Fig. 4A). All three computational approaches

identified virtually the same regions, with overlap to manual segmented results. However,

the automated results were almost always smaller, which was confirmed in the quantitative

volumetric data (Fig. 5A). SIRG performed slightly better than HRS or MWS compared to

the manual segmentation (ground-truth). All three methods had close performance based on

lesion volumes (Fig. 5A) and regional sensitivity/specificity/similarity indices (Fig. 5B) both

for entire 3D volume and individual 2D MR slices from anterior to posterior of the brain.

3.2. Comparisons in an Animal HII Model: Temporal lesion evolution

We further extended our computational analysis of the three methods (SIRG, HRS, MWS)

to determine their ability to identify HII lesions as they evolve dynamically over time. We

utilized T2WI data that spanned between 1-31d post HII and performed volumetric (Fig. 5C)

and performance comparisons (Table 5) for both the entire 3D volumes and the individual

2D slices. The ischemic injury initially decreased with time and then increased towards its

final volume (Fig. 5C). Volumetrically, SIRG and HRS performed the best at 3 time-points

each (SIRG: 4d, 17d, 31d; HRS: 1d, 7d, 24d post HII), while MWS results varied most

widely and performed best only at 1 time-point (10d post HII). Performance comparisons for

the entire 3D volume (Table 5) indicated SIRG performed the best (13/21 cases) compared

to HRS (6/21 cases) and MWS (2/21 cases). When evaluated for performance of individual

2D MR slices, anterior to posterior of the brain, HRS had the lowest standard deviations (in

62% cases) and hence was the most robust compared to SIRG (29% cases) and MWS (9%

cases) (Table 5).

3.3. Comparisons in an Animal HII Model: Discrimination of Injury Severity

To compare the performance of SIRG, HRS and MWS in injury severity discrimination, we

further classified injury based on manually detected lesion volumes as mild (<10%),

moderate (10-25%) or severe (>25%) injury (Fig. 4B). Volumetrically, SIRG performed the

best for mild and moderate injury, while HRS for severe injury (Fig. 4B). Similar

performance trends were also observed for sensitivity, specificity and similarity (Table 6).

MWS had lower performance than SIRG and HRS in both these respects.

3.4. Neonatal AIS: Single Time Point

Finally, we evaluated SIRG, HRS, and MWS methods in neonatal AIS patients with a range

of injury severities, specifically using ADC maps computed from DWI data. All three

methods successfully extracted the AIS lesion (Fig. 3B) that was found in two regionally

distinct brain areas. Scalar volumetric comparison (Fig. 5D) and performance indices (Fig.

5E) revealed that HRS and SIRG had comparable performance, while MWS lagged behind

in both respects, suffering from over-estimation (false positives), particularly when the

injury was more severe.

A close inspection of regional overlap indices (Fig. 5E) revealed that for a larger AIS lesion

(17.7% of total brain volume, Fig. 3B, Fig. 5D) HRS outperformed SIRG (Fig. 5E, AIS#1),
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while for a smaller AIS lesion (4.5% of total brain volume, Fig. 5D) while SIRG

outperformed HRS (Fig. 5E, AIS#2).

4. DISCUSSION

In experimental and clinical ischemic injury, the location of the lesions are often abnormal

foci within normal brain tissues that vary in location, size and shape, and are likely

comprised of different MR characteristics (i.e., T2 relaxation times, ADC values or their

associated image intensities). Automated detection of HII lesions from MRI could

potentially help in candidate selection, treatment and monitoring (Ghosh et al., 2012a;

Wechsler, 2011), specifically for neonatal HII where current prior-model based alignment

techniques (Table 2) fail due to developmental changes within maturing brains.

We compared three state-of-the-art region-based injury detection methods – symmetry

integrated region growing (SIRG) (Yu et al., 2009), hierarchical region splitting (HRS)

(Ghosh et al., 2011), and modified watershed segmentation (MWS) (Ratan et al., 2009) –

none of which require model-subject alignment or co-registration. All three methods

automatically detected lesion volume from either T2- relaxation or ADC maps of clinical

AIS neonates and experimental animals with HII. Their volumetric and location-overlap

performance were computed with respect to the manually detected ground-truth data and

compared for accuracy and robustness. With respect to different MR acquisitions, in the

clinic, diffusion weighted imaging is used predominately to monitor early ischemic injury,

so we undertook assessment of our algorithms using clinically relevant imaging sequences/

data. SIRG and HRS performed equally well on T2- or diffusion weighted imaging. Thus,

one could suggest that either SIRG/HRS can be used on a variety of clinically relevant

imaging sequences. The key results were: 1) SIRG performed best for lesion volumes and

location for entire 3D MRI; 2) HRS was most robust (with lowest standard deviation) over

individual 2D MR slices; 3) MWS was out-performed by SIRG and HRS in all respects.

Current MRI based lesion extraction techniques (Table 1) mostly adopt one of the two

following approaches. (A) Healthy tissue segmentation followed by abnormality (lesion)

extraction. Here prior models are used to classify healthy tissues into different anatomical

regions (Birgani et al., 2008; Kabir et al., 2007) or a single normal tissue class (Cuadra et al.,

2004; Van Leemput et al., 2001) and then the outlier regions that do not satisfy any normal

tissue class are designated as lesion. A significant weakness of this approach is the

requirement for a large volume of training data (to fit all normal tissue or complex prior

models for anatomy) which is often not readily available, particularly for neonates. (B)

Digital subtraction to detect changes in longitudinal (serial) MR data (Manana et al., 2006;

Sadasivan et al., 2009). However, accurate subtraction relies firstly on temporal datasets,

and secondly, heavily on 2D or 3D registration among serial MRI data which often suffers

when neuroimaging time-points are too far apart for rapidly maturing neonatal brains (Klein

et al., 2010; Zhiguo et al., 2005; ZitovÃ¡ and Flusser, 2003).

Curve fitting of tissue-boundaries based on partial differential equations, including

parametric methods like active contour snakes (Kazerooni et al., 2011; Liang et al., 2006;

Zhou and Xie, 2013), non-parametric methods like level-set propagation (Droske et al.,
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2001), and their several modified versions (Bai et al., 2013; Kazemifar et al., 2014; Le

Guyader and Vese, 2008; Liang et al., 2006; Mesejo et al., 2014; Somkantha et al., 2011;

Wang et al., 2013) have been adopted in different medical image analysis applications.

Success of these methods heavily depends on MRI intensity contrast edge detection

(Kazerooni et al., 2011; Liang et al., 2006; Somkantha et al., 2011), seed-initialization

(which is often manual) (Zhou and Xie, 2013) and choice of energy function (Kazerooni et

al., 2011; Liang et al., 2006) that is to be minimized by heuristic gradient descent algorithms

(Wang et al., 2013). These methods are often computationally expensive due to the need for

an initial training module (Kazemifar et al., 2014; Mesejo et al., 2014), need for manual

interventions (Liang et al., 2006; Zhou and Xie, 2013), need for obtaining local-minima

during energy minimization instead of global minima (inherent problem of greedy search in

gradient descent algorithms) (Mesejo et al., 2014; Wang et al., 2013) and sometime requires

prior models (Bai et al., 2013; Le Guyader and Vese, 2008; Wang et al., 2013) or atlas-

registration (Kazemifar et al., 2014) with their associated limitations as mentioned earlier.

These pitfalls often restrict use of level-set and active contour snake methods in real-time

clinical applications. SIRG, HRS and MWS methods compared in this paper do not utilize

atlas or prior models, reduce computational complexity to a large extent, and perform

segmentation without manual intervention.

Further, MR data issues are aggravated by ROI fuzziness (Table 2). Motion artifacts and

noise levels (Table 2, problem ID 3) might be partially reduced with conventional image

filtering in some cases (Klein et al., 2010; Zhiguo et al., 2005; ZitovÃ¡ and Flusser, 2003).

ROI contrast and sharpness enhancement (Table 2, problem ID 1,2) based on low-level

image features fail unless complex prior models are used (Birgani et al., 2008; Cuadra et al.,

2004; Kabir et al., 2007; Manana et al., 2006; Van Leemput et al., 2001; Zhiguo et al.,

2005). Model-subject registration (Cuadra et al., 2004; Schmidt et al., 2005) also suffers

when injury crosses anatomical boundaries (Ghosh et al., 2012a) and/or when noisy low-

level features, including image intensity (Kabir et al., 2007), texture (Kruggel et al., 2008),

shape, 3D volume (Liu et al., 2005), etc. are used to align multiple data and time points.

In summary, the majority of current ROI extraction methods depend heavily on large

amounts of training data (often not available), significant preprocessing (time-consuming),

complex prior models (often not reliable, specifically for neonates), model-subject

registration (labor-intensive) and significant user intervention (human bias) that reduce their

practical applicability in real-time medical image analysis (Neumann-Haefelin and

Steinmetz, 2007). The three methods compared in this paper – SIRG, HRS and MWS – do

not require model-subject registration/alignment nor any training data, and very little prior

knowledge for injury classification in HRS and MWS (Tables 1, 2). They effectively handle

ROI detection problems using only high-level features like symmetry and mean MR or

grayscale values representative of the injury (Table 2). This also significantly reduced

computational complexity, required for practical real-time clinical applications.

When compared between themselves, all three performed quite satisfactorily correlating

with the manual ground-truth for clinical AIS (Fig. 3B) and in an animal model of HII, for

temporal evolution (Fig. 4A) and for different injury severities (Fig. 4B). SIRG performed

the best for scalar percent-volumes (Fig. 5A) and regional overlaps (Fig. 5B). Interestingly,
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substantial performance variations (mean ± standard deviation) were observed over different

MR slices anterior to the posterior portion of the brain when SIRG was used (Fig. 5B).

Lower variations indicate more robustness and stability of the methods, and this is where we

observed that HRS performed the best. In our manual “ground truth” data, there were some

cases where an experienced researcher manually included regions (e.g., lateral portions of

the ventral cortex in Fig. 4A, 10d) that were not identified by any of the computational

approaches. This was reflected in volumetric comparisons (Fig. 5A) and in larger variations

in similarity (Fig. 5B), which effectively measures regional precision for detection (ratio of

true positive over false negative).

HII lesions are very dynamic as the brain responds to the injury (Ashwal et al., 2007;

Obenaus et al., 2011a). Volumetric temporal evolution of HII matched well with previously

published results (Obenaus et al., 2011b). Again SIRG and HRS had close 3D volumetric

performance (Fig. 5C) while HRS was the most robust (Table 5) with serial MRI

assessments. Similarly, variation in injury severity in clinical and animal HII and could be

correctly distinguished by all three methods (Fig. 4B, Fig. 5D) (Ghosh et al., 2012b).

Interestingly, SIRG performance was best in mild and moderate HII while HRS was better

for severe HII (Table 5). Previous studies have noted that a limitation of HRS is that it does

not perform well in mild injuries (Ghosh et al., 2011), which we confirmed. Similar trends

were also observed in clinical AIS where HRS results overlapped best for larger injuries

whereas SIRG had better results for small injuries (Fig. 5E).

SIRG approach (Yu et al., 2009) utilized symmetry as a high level feature and 3D

connectivity based outlier rejection that significantly improved its power for injury

discrimination, despite noisy, blurred or motion-affected boundaries seen in MRI. The

limitations of SIRG lies in extensive tuning of many parameters (compared to HRS and

MWS; Table 2) which even may be injury-specific. SIRG would also fail in challenging

cases where brain structure lacks defined symmetry or the injury itself is symmetric

(bilateral) with regard to the axis of the brain (Ghosh et al., 2011). Fusion of SIRG with

HRS and using prior MR knowledge, particularly using quantitative T2/ADC values could

potentially solve this weakness. The strength of HRS (Ghosh et al., 2011) lies in the use of a

small set of parameters (Table 2), stable bipartite segmentation leading to robustness (lowest

variations; Table 5) as well as using quantitative MR values (T2 relaxation times, ADC) that

assist in improved HII lesion detection from healthy tissue. Limitations of HRS were that,

(a) it did not consider 3D connectivity of injury for inclusion and exclusion of sub-regions,

and (b) it underperformed for mild injury because of small ROIs. Fusing symmetry features

and 3D asymmetric volume models (Fig. 1) from SIRG may mitigate these HRS

weaknesses. MWS approach (Ratan et al., 2009) was always the least effective among the

methods evaluated in this paper (Fig. 5, Tables 5, 6). MWS suffered from over-segmentation

inherent in watershed methods (Ratan et al., 2009), insufficient cues to reject outliers, and

used additional noisy non-injury regions as prior information (Fig. 5A). This resulted in

many false positives in MWS detected injury (Fig. 4B) that significantly reduced its

performance (Fig. 5, Table 6). Symmetry cues and use of quantitative MR values might

improve MWS results (Fig. 4B).
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A short note on how much time is required to run these algorithms. We have used the term

“real-time” to further demonstrate that both SIRG and HRS could be used clinically in the

context of rapid stroke or ischemic patient treatment. Though SIRG and MWS take couple

of hours for training the respective parameters, once trained they can identify lesion or

injuried tissues from MRI data in less than 5 minutes. Further, HRS does not require any

training and once the data are skull- stripped it can produce lesion results within 15 seconds.

Hence, these algorithms could be used by clinial neurologists in treatment paradigms where

early intervention is often desirable.

5. Conclusions

In conclusion, unlike most of the current methods, the three region-based injury detection

methods assessed– SIRG, HRS and MWS – are objective and robust for real-time clinical

applications. They do not require labor-intensive preprocessing, complex prior-models and

model-subject alignment. Specifically for neonatal ischemic injury, SIRG performed best

overall but HRS was the most robust, and fusion of these two techniques in future studies

has a greater potential for automated injury detection from brain MRI data, particularly in

neonates.
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Highlights

• Automated detection of brain injury in the neonate is critically needed but

lacking

• Three approaches were tested: symmetry, watershed and hierarchical splitting

• SIRG performed the best for lesion volume

• HRS was the most robust (smallest standard deviations)

• MWS lagged in performance on all measures
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Figure 1. Symmetry Integrated Region Growing (SIRG) based Lesion Detection (Left Panel)
SIRG lesion detection in a newborn AIS data starts with the original ADC map (a) from

which the axis of symmetry (AoS) was detected (dotted line) (b) A symmetry affinity matrix

was computed where brighter (yellow) regions are more asymmetric across the AoS (c). The

SIRG algorithm then extracted these initial asymmetric regions (d) which were then

modified using kurtosis-skewness measures of the regions (e). A separate algorithm

identified asymmetric clusters using a 3D gradient relaxation algorithm (f). Robust

asymmetric regions from (e) and (f) were then fused (g), from which, GMM/EM then

classified the stroke (AIS) regions (h). 3D Asymmetry Volume Computation (Right
Panel). Binary masks of the ischemic lesion were detected in 2D and each slice was added

to sum the lesion from the entire brain. 3D connectivity was color coded to visualize relative

reliability of 2D detections to the final 3D asymmetry ischemic injury volume.
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Figure 2. Hierarchical Region Splitting (HRS) based Lesion Extraction
(A) ADC histogram: ADC values were rescaled (v’) to an intensity range [0-255]. The HRS

method then fitted a bimodal distribution and detected a valley (at v’ = 143 in this example)

as the threshold to split the histogram. This splitting was repeated recursively (next level

thresholds were v’ = 101 and 194). (B) HRS tree: Segmenting the ADC map into regions

with v’ values derived from the histogram formed the HRS tree. HRS automatically detected

the left image in Level 2 as the ischemic lesion (arrow – injury). Only part of the complete

HRS tree is shown.
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Figure 3.
(A) Modified Watershed Segmentation (MWS) based Lesion Detection. Multi-parameter

image feature – grayscale intensities, Sobel contrast edges, and local contrast indices were

evaluated. These features form a topological map where MWS starts from regional peaks,

followed droplet paths defined by a Genetic Algorithm, and reached the catchment basins

that marked segmentation boundaries. To counter over-segmentation that is often

encountered in watershed segmentation, similarity based region merging was performed.

Finally, prior knowledge from testing data and ground-truth results were utilized to classify

the segmented regions into either lesion, normal brain or outlier regions. (B) Comparative
results for human ADC data. Representative results for a single ADC map image from an

AIS patient illustrates that SIRG, HRS and MWS methods extract comparable lesion

regions.
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Figure 4. Comparative results for (A) temporal MRI and for (B) graded injury severities in a
rat-pup model of ischemia
(A) Detection by all three methods largely overlapped with the manual detection over the

temporal data and were often better at later time points (17-31 d). For the earlier time-points

(1-10 days), MWS method resulted in some misclassifications, while SIRG and HRS

produced more accurate and similar results (Table 5 summarizes the performance of

different methods in terms of overlap in injury locations for entire 3D volumes, as well as

for individual 2D slices). (B) For different injury severities all three methods resulted in

comparable results. SIRG performed well for all severity types, with few false positive

(mild) or false negative (moderate) detections. HRS under-estimated mild and moderate

injuries but performed the best (among the three methods compared) for severe injury.

MWS method was more prone to detect outliers at all injury severities compared to other

two methods. (Respective overlap measures are summarized in Table 6).
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Figure 5. Summary of performance indices
For neonatal rats, lesion volumes between the three methods (SIRG, HRS, MWS) compared

favorably for 3D volumes (A) and in performance over 2D MRI slices (B). Volumetric

comparisons for temporal data (1-31 days post ischemia) in HII rat pups (C) illustrates that

all three methods followed manual detections at most of the imaging time-points. At 4d

SIRG and HRS underestimated and MWS overestimated with respect to manual detection.

Regional overlap comparisons are also summarized in Table 5 for the entire 3D volumes as

well as for variations across different MRI sections. The temporal variation of HII severity is

shown in C. Volumetric comparisons (D) and 3D regional overlaps (E) are summarized for

two AIS patients (severe, mild) with respect to respective manual detections.
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Table 1

Overview of state-of-the-art MRI based injury detection methods. Last three rows (in gray) summarize the

methods we used in our comparisons.

Author Methods Automation

Comments
Segmentation Injury

Detection Alignment Prior
Model Training

Birgani et al 2008 Fuzzy Cluster Neural
Network

Model-based
detection NO YES NO

Need to set the number
of classes; need ROI
prior model.

Kabir et al 2007 Maximum a posteriori
(MAP)

Multimodal
Markov random
field (MRF)

YES YES YES
Need to know the
distribution of lesion
intensities.

Khotanlou et al 2008 Expectation Maximization
(EM) with MRF EM NO YES NO

The prior model
contains only limited
categories of brain
tissues.

Cuadra et al 2004 Adaptive statistical
algorithm

Model of lesion
growth YES YES NO

Too many model
dependent steps; less
robust.

Anbeek et al 2008 Manually by experts K-nearest
neighbors NO YES YES

The detected lesion
contains too many noisy
regions.

Hojjatoleslam and Kruggel
2001 Region growing Manual Lesion

location NO NO NO The lesion needs to be
located manually.

Corso et al 2008 Weighted aggregation
Gaussian
mixture
Model (GMM)

NO YES YES Lesions contain too
many noisy regions.

Kruggel et al 2008 Texture-based
segmentation

Gaussian –
based clustering YES YES NO Lesions contain too

many noisy regions.

Nan et al 2009 Region growing Multi-kernel
based SVM NO YES NO

Support vector machine
(SVM) is insufficient in
lesion clustering.

Liu et al 2005 Fuzzy connectedness
segmentation

Fuzzy volume
rendering YES YES NO User needs to locate

tumor regions manually.

Schmidt et al 2005 Soft-margin SVM Model-based
detection YES YES NO

Performance depends
on the complex
alignment step.

Kharrat et al 2009 Wavelet-based
segmentation

K-means
clustering NO YES NO High fuzziness on

detected boundaries.

Sun and Bhanu 2012 Symmetry-based region
growing EM classifier NO NO NO

MRI-specific
parameters; high level
features.

Ghosh(Ghosh et al.,
2011)et al 2011

Hierarchical region
splitting

Area-based
detection NO YES NO

ROIs in many sub-
images; possible over-
segmentation; low level
features.

Ratan et al 2009
Watershed boundaries
followed by similarity
based merging

Manual
allocation NO YES NO

Over-segmentation
occurs; requires manual
derived prior
knowledge; low level
features.
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Table 2

Challenging problems in injury detection from MRI data and how three methods overcome these challenges.

Problems Methods which overcome these challenges

ID Details Symmetry
(Sun and Bhanu 2012)

HRS
(Ghosh et al 2011)

Watershed
(Ratan et al 2009)

(1)

Insufficient cues/features to
discriminate between ROI
and normal tissues. Only
low-level cues (features),
e.g., gray scale, texture or
shape, are used to extract
the ROIs, leading to a low
detection accuracy.

Uses symmetry
as a new cue,
which is able to
discriminate
between ROIs
and normal
tissues. It is
automatic and
without prior
models.

Use prior
knowledge
(region’s
mean MR
values) to
detect ROI.

Manual
initialization
for prior
knowledge
(position and
ROI’s mean
gray scale).

(2)

Blurred boundaries between
tissues belonging to different
tissue structures that are
partially caused by the loss
of resolution and contrast,
during the collection and
digitization of a MR image,
mainly due to partial volume
effects.

The blurred
boundary is
outlined properly.

Segment
regions at
different
levels.

Outlines
small and
blurred
region
boundaries.

(3)

Movement artifacts due to
the patient’s head movement
during scanning that result in
recording errors, especially
for MR sequences taken at
different time points.
Different MRI slices might
have different motion
artifacts and hence different
noise levels that present an
additional challenge for
image pre-processing due to
image-dependent variations
in image contrast.

No registration or
alignment is
needed. It is
invariant to
rotation and
scaling.

Same as
Symmetry
method.

Same as
Symmetry
method.
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Table 3

Neuroimaging acquisition parameters for rodent and human MRI.

Parameters 11.7T (rodent)
T2

4.7T (rodent)
T2

1.5T (human)
DWI

Repetition time (ms) 2358 3563 3000

Echo time (ms) 10.21 20 110

Echoes / b-values
(s/mm2)

10 6 0, 1000

Number of averages 4 2 1

Field of view (cm) 2×2 3×3 220×220 –
240×240

Matrix 128×128 128×128 256×256

Number of slices 20 25 17

Slice thickness (mm) 0.5-1 1 4-5

Inter-slice gap (mm) 1 1 1.2-1.5

Acquisition time (min) 20 12 1.5-3.8
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Table 4

Parameter sets for injury detection utilized for our comparative three methods.

Authors Parameters (thresholds)

Symmetry
(Sun, Bhanu, 2012)

1 Region growing segmentation:

a. pixel aggregation criterion;

b. region merging criterion;

2 Asymmetric region extraction:

a. region’s mean kurtosis and skewness of symmetry affinity values;

b. region’s mean symmetry affinity value;

c. number of iterations in 3D relaxation;

d. percentage of overlap for final asymmetric region extraction.

e. very small segments are filtered before ROI detection.

HRS
(Ghosh et al 2011)

1 Region split stopping criteria:

a. area of the region;

b. standard deviation of region’s MR values;

c. kurtosis of region’s MR values;

2 ROI detection:

region’s approximate mean MR values.

Watershed
(Ratan et al 2009(Ratan et al., 2009)(Ratan et al.,
2009))

1 Watershed segmentation:

region merging criterion;

2 ROI detection (manually):

a. position of ROI;

b. region’s mean MR values.
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Table 5

Comparison of temporal performance measures following experimental HII. Computations were assessed over

the entire 3D MRI volume or over individual 2D MRI slice volumes. Shaded and bolded entries are optimal

for their respective comparisons.

Overlap
measures

Time
post

injury

Based on entire 3D MRI
volume Based on individual 2D MRI slices

SIRG HRS MWS SIRG HRS MWS

Sensitivity

1 day 0.81 0.81 0.77 0.62±0.26 0.69±0.26 0.66±0.22

4 days 0.87 0.81 0.68 0.66±0.19 0.62±0.14 0.61 ±0.29

7 days 0.88 0.88 0.70 0.75±0.23 0.72±0.19 0.52±0.24

10days 0.71 0.69 0.63 0.71±0.16 0.69±0.09 0.64±0.19

17 days 0.90 0.87 0.81 0.71±0.16 0.71±0.11 0.68±0.22

24 days 0.88 0.77 0.85 0.69±0.26 0.61±0.28 0.59±0.36

31 days 0.84 0.85 0.82 0.64±0.21 0.67±0.24 0.63±0.21

Specificity

1 day 0.94 0.92 0.89 0.95±0.05 0.95±0.03 0.94±0.04

4 days 0.91 0.92 0.85 0.92±0.06 0.93±0.05 0.91±0.05

7 days 0.97 0.95 0.97 0.93±0.02 0.93±0.07 0.93±0.04

10days 0.97 0.97 0.96 0.97±0.03 0.98±0.02 0.91±0.04

17 days 0.98 0.96 1.00 0.98±0.02 0.96±0.02 0.99±0.04

24 days 0.99 0.92 0.97 0.98±0.01 0.91±0.02 0.97±0.03

31 days 0.98 0.96 0.98 0.98±0.03 0.95±0.02 0.98±0. 04

Similarity

1 day 1.40 1.41 1.21 1.08±0.40 1.12±0.38 0.97±0.43

4 days 1.23 1.18 0.79 0.96±0.38 0.94±0.39 0.70±0.39

7 days 1.34 1.31 0.98 0.98±0.35 0.94±0.30 0.64±0.38

10days 1.09 0.99 0.93 0.73±0.43 0.71±0.41 0.70±0.47

17 days 1.62 1.44 1.68 0.92±0.43 0.86±0.49 0.89±0.50

24 days 1.67 1.67 1.62 0.90±0.35 0.91±0.32 0.89±0.34

31 days 1.59 1.59 1.55 0.88±0.39 0.88±0.34 0.86±0.34
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Table 6

Comparison of performance measures for mild, moderate and severe injury for the three methods.

Computations were performed over the entire 3D MRI volumes. Shaded and bolded entries are the optimal

indices for their respective comparisons.

Measures Severity SIRG HRS MWS

Sensitivity

Mild 0.71 0.69 0.63

Moderate 0.87 0.81 0.68

Severe 0.81 0.81 0.77

Specificity

Mild 0.97 0.97 0.96

Moderate 0.91 0.92 0.85

Severe 0.94 0.92 0.89

Similarity

Mild 1.09 0.99 0.93

Moderate 1.23 1.18 0.79

Severe 1.40 1.41 1.21
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