
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Cross-subject EEG Emotion Recognition based on Multitask Adversarial Domain Adaption

Permalink
https://escholarship.org/uc/item/4jt9f3k9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Qiu, Lina
Ying, Zuorui
Feng, Weisen
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jt9f3k9
https://escholarship.org/uc/item/4jt9f3k9#author
https://escholarship.org
http://www.cdlib.org/


Cross-subject EEG Emotion Recognition based on Multitask Adversarial Domain
Adaption

Lina Qiu (lina.qiu@scnu.edu.cn)
Zuorui Ying (854535913@qq.com)
Weisen Feng (fws0104@163.com)

Jiahui Pan (panjh82@qq.com)
School of Software, South China Normal University, Guangzhou, China

Abstract

Emotion recognition is crucial for enhancing human-computer
interaction. Due to considerable individual differences in emo-
tion manifestation, traditional models do not adapt well to new
individuals. Moreover, existing algorithms typically focus on
identifying a single emotion, overlooking intrinsic connections
among multiple emotions. Therefore, we propose a multi-task
adversarial domain adaption (MADA) model for EEG-based
emotion recognition. First, domain matching is employed to
identify the most similar individual from the dataset as the
source domain, alleviating individual differences and reduc-
ing training time. Subsequently, multi-task learning is uti-
lized to simultaneously classify multiple emotions, capturing
their intrinsic connections. Finally, adversarial domain adap-
tion is applied to learn the individual differences between the
source and target domains. Cross-subject experiments on the
DEAP dataset indicate that our model achieves accuracies of
76.48%, 69.72%, and 68.14% on the valence, arousal, and
dominance, respectively, surpassing state-of-the-art methods.
This indicates the effectiveness of our model in recognizing
multi-dimensional emotions.
Keywords: Electroencephalogram (EEG); Emotion recogni-
tion; Cross-subject; Domain adaption; Multi-task learning

Introduction
The field of human-computer interaction (HCI) is advanc-
ing toward greater intelligence and personalization. Human-
computer interaction systems can create a more natural and
effective interactive environment by analyzing users’ emo-
tional changes and adjusting their behavior and feedback in
real time. The signals used for emotion recognition can
be divided into physiological and non-physiological signals.
Non-physiological signals include facial expressions, voice
intonation, and others. Compared to non-physiological sig-
nals, physiological signals, such as electroencephalograms
(EEGs), are less likely to be consciously controlled or dis-
guised, making them more suitable for emotion recognition
(Shu et al., 2018). EEG records the electrical signals pro-
duced by the activity of brain neurons, which are closely re-
lated to emotions (Y.-P. Lin et al., 2010). EEGs can capture
rapidly changing dynamic emotions (Akhand, Maria, Kamal,
& Murase, 2023) and are currently widely used in emotion
recognition, demonstrating commendable performance.

However, due to individual differences and the non-
stationarity of EEG signals (Kamrud, Borghetti, & Kabban,
2021), cross-subject EEG-based emotion recognition still
faces challenges. With the continuous advancement of deep
learning techniques, there have been extensive applications

in the field of emotion recognition. However, deep learn-
ing methods often require a large amount of data to train
the model for recognizing the emotions of a new individ-
ual, which is a time-consuming and complex process. Trans-
fer learning proves to be an effective means to address this
issue. Transfer learning aims to apply knowledge learned
from one domain (source domain) to another different but re-
lated domain (target domain). Adversarial domain adaption
is a branch of transfer learning that employs a concept sim-
ilar to Generative Adversarial Networks (GANs). Through
adversarial training, the model cannot distinguish between
data from the source domain and the target domain. This
reduces the distribution differences between the source and
target domains, ensuring that the learned features are domain-
invariant(Tzeng, Hoffman, Saenko, & Darrell, 2017). In re-
cent years, domain adaption has been applied to emotion
recognition with promising results. Zhang et al.(2019) com-
bined transfer learning with AdaBoost, selecting appropri-
ate source data by measuring the maximum mean discrep-
ancy (MMD) between target and source instances, and then
transferring knowledge from the source data to aid in training
the target model. Li et al.(2020) applied style transfer map-
ping (STM) to EEG-based cross-subject emotion recognition,
and achieved favorable test results. Zheng et al.(2015) iden-
tified common components shared between the source and
target domains through transfer component analysis and ker-
nel principal component analysis (PCA), thereby facilitating
emotion recognition. Luo et al.(2018) utilized generative ad-
versarial network domain adaption for emotion recognition,
projecting features of the source and target domains into the
same space, and then reducing the differences in the distribu-
tion of the data through adversarial learning to improve clas-
sification accuracy.

Moreover, currently, most of the EEG emotion recognition
studies based on transfer learning are predominantly single-
task learning, focusing independently on the dimensions of
valence, arousal, or dominance. Single-task learning necessi-
tates training for each emotional dimension separately, which
not only consumes a considerable amount of time but also
overlooks the potential connections between different emo-
tions (C. Li et al., 2022). To address this issue, we intro-
duce multi-task learning into emotion recognition. In multi-
task learning, multiple tasks share knowledge, and learning
one task can help improve the performance of other tasks
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(Caruana, 1997). Multi-task learning enhances the model’s
generalization ability by learning multiple related tasks si-
multaneously. It also allows for the acquisition of additional
data from other related tasks, which is beneficial for address-
ing data scarcity issues (Chen et al., 2022). For example,
Priyasad et al.(2022) proposed an encoder network based on
SincNet that combines deep learning and multi-task learning
to classify three emotional dimensions, exploring the feasi-
bility of multi-task learning in emotion classification.

To address these two aforementioned issues, this study pro-
poses a cross-subject EEG emotion recognition method based
on multi-task adversarial domain adaption, named as MADA
model. This model, on one hand, flexibly matches the most
similar source domains (i.e., all subjects in the training set)
for target domain emotion recognition, significantly reducing
training costs. On the other hand, it employs multi-task learn-
ing for multiple emotional dimensions, effectively leveraging
the intrinsic connections between different emotional dimen-
sions.

The remainder of this paper is organized as follows. The
next section provides a detailed introduction to the framework
of the MADA model. The experimental details and results on
the DEAP dataset are presented. The final section is dedicated
to the discussion.

Methods
As illustrated in Figure 1, the framework of the proposed
MADA model consists of three main parts, namely domain
matching, multi-task emotion classification and adversarial
domain adaption.

Figure 1: The framework of the proposed MADA model.

The domain matching is employed to assess the similar-
ity between the training data and the target domain, marking
the data most similar to the target domain as the source do-
main. In the multi-task emotion classification, the encoder
transforms data from a high-dimensional feature space to a
low-dimensional feature space, while the classifier simulta-
neously categorizes multiple emotion labels. In adversarial
domain adaption, the encoder generates features that are chal-
lenging for the domain discriminator to differentiate, and the
domain discriminator attempts to identify the domain of these
features.

Domain matching
In the field of EEG-based emotion recognition, the data col-
lection is costly and there are significant individual differ-
ences in the collected data (G. Li et al., 2022). Traditional
deep learning-based emotion recognition algorithms often re-
quire the use of as many samples as possible for model
training, including those with substantial individual differ-
ences. This can increase computational costs and lead to
a decrease in algorithm accuracy. Therefore, we propose a
domain matching method to reduce the impact of individual
differences. Since EEG data are temporally correlated and
brain activity is highly nonlinear, traditional clustering meth-
ods struggle to directly cluster EEG data. We use the accu-
racy of subject-independent classification as a metric to mea-
sure the similarity between the source and target domains.
Specifically, for each source domain, a classification model is
pre-trained using its own data. During domain matching, the
data from the target domain are used to test each classification
model. For a training set containing N subjects, the target do-
main obtains N subject-independent classification accuracies.
The subject with the highest accuracy is then marked as the
best-matched source domain.

Multi-task emotion classification
The proposed multi-task emotion classification module first
extracts features from the raw input through an encoder; these
features are subsequently utilized for emotion classification.
The structure of this module is depicted in Figure 2. The en-
coder extracts domain-invariant features, transforming source
domain data into higher-level, more compact features. The
encoder consists of two convolutional layers (Conv1, Conv2)
and two fully connected layers (FC1, FC2). After the FC2
layer, the high-level features are flattened to form a one-
dimensional input vector for the classifier. A MaxPooling
layer is added after the second convolutional layer to reduce
the dimensionality of the features. The rectified linear unit
(ReLU) activation function is employed to address the vanish-
ing or exploding gradient issues. All the convolutional layers
undergo batch normalization to reduce the risk of overfitting
and accelerate the training process.

Figure 2: Network architecture of the multi-task emotion
classification module
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There are certain correlations between different dimen-
sions of emotions, and simultaneously engaging in various
emotion-related tasks may be advantageous for enhancing the
precision of emotion recognition. The shared mechanism in
multi-task learning allows for the acquisition of more infor-
mation from different tasks. Therefore, in emotion prediction,
we classify the arousal, valence, and dominance of emotions
simultaneously, allowing for the sharing of complementary
information that is beneficial to each other. The classifier
receives the feature vector outputted by the encoder and si-
multaneously predicts multiple emotional labels. However,
due to the imbalance in the ratio of positive to negative la-
bels for some individuals, binary classification may be biased
(He & Garcia, 2009). Here, we employ focal loss (T.-Y. Lin,
Goyal, Girshick, He, & Dollár, 2020) to address the issue of
sample inequality. This loss function is designed to reduce
the weight of a large number of easy negative samples during
training. The formula for the focal point is stated below:

L f =

{
−(1− y)λ log(y), y = 1
−yλ log(1− y), y = 0

(1)

The weight coefficient λ is a hyperparameter. When λ >
0, the model reduces the loss of easily classified samples,
thereby focusing more on those samples that are difficult to
classify or misclassified. Lin et al.(2020) validated that the
optimal value for λ is 2; hence, in the experiments of this
work, we also set λ to 2.

In multi-task learning, a common challenge is that the
model may exhibit a preference for a specific task, resulting
in good performance on that task but underperformance on
others. To address this issue, we construct a dynamic weight-
ing mechanism to balance the learning of multiple tasks. The
formula for calculating dynamic weights can be expressed as
follows:

Wnew = max(Wmin,

min(Wmax,Wold × (1+β× (1−Acc))))
(2)

L =
n

∑
i=1

Wi ·Li (3)

where β is a hyperparameter related to the scale of adjust-
ment. Wnew is the previous weight, and Wmax and Wmin control
the range of weight adjustment.

This dynamic weighting strategy dynamically adjusts the
weight of each emotion in multi-task learning based on its
predictive performance, thereby ensuring that the model pays
balanced attention to each task.

Adversarial domain adaption
In the proposed method, to learn which category the features
belong to while distinguishing between the source and target
domains, we divided the sample pairs into four groups, as
shown in Figure 3. This includes two positive sample pairs
and two negative sample pairs. The positive sample pairs in

Pair 1 and Pair 3 share the same label, where Pair 1 consists of
samples from the same domain, while Pair 3 is composed of
different domains. On the other hand, negative sample pairs
in Pair 2 and Pair 4 have different labels. Pair 2 consists of
samples from the same domain, while Pair 4 is composed of
subjects from different domains.

Figure 3: Sample pairs in the adversarial domain adaption
module

Figure 4: Network architecture of the adversarial domain
adaption module

This study uses a joint discriminator to align the source
and target domains. The joint discriminator needs to identify
not only whether the data come from the source or the target
domain but also consider the category information, thereby
ensuring content alignment between the source and target do-
mains. As shown in Figure 4, the domain mapping layers Adv
1 and Adv 2 use the leaky-ReLU activation function, and Adv
3 uses the Softmax activation function; Adv 1-Adv 3 layers
are all fully connected layers. The adversarial domain adap-
tion process for each label shares the first two layers. The loss
of the joint discriminator can be expressed as follows:
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LDCD =−
4

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)]−

λ

4

∑
i=1

[zi log(ẑi)+(1− zi) log(1− ẑi)]

(4)

where λ is a hyperparameter used to balance the class loss and
domain loss. For the ith sample pair, yi and zi represent the
true class and domain labels, respectively,, while ŷi and ẑi de-
note the model’s predicted probabilities for class and domain,
respectively.

Training process
The training process can be divided into four steps. The first
step is to identify the source domain most compatible with
the target domain, referred to as the best-matched source do-
main. It is crucial to note that each source domain dataset
undergoes preliminary training with a straightforward clas-
sification model. These models are instrumental in the do-
main matching process. The target domain data are evaluated
through classifiers trained on each source domain separately.
The source domain exhibiting the highest accuracy is then se-
lected as the best-matched source domain. The second step
trains the encoder and classifier utilizing the best-matched
source domain data. The third step employs a joint discrimi-
nator to facilitate adversarial domain adaption training, deter-
mining the domain of origin for the samples and the category
labels to which they belong. Sample pairs are created by com-
bining the source domain and target domain, and each sample
pair is annotated with domain labels, reflecting whether they
originate from the same domain and whether their labels are
consistent. These annotated sample pairs are subsequently
used to train the discriminator. Finally, a training session is
performed to integrate the trained encoder, classifier, and dis-
criminator until the model converges. It should be noted that
all training data and testing data are strictly separated.

Experiments
Dataset
To evaluate the effectiveness of the proposed model, this
study utilized the publicly available international dataset
DEAP (Koelstra et al., 2012), for EEG-based emotion recog-
nition. The DEAP dataset consists of data from 32 healthy in-
dividuals (50% female) with ages ranging from 19 to 37 years
and an average age of 26.9 years. During the experiment,
each subject was asked to watch 40 music video clips, each
lasting one minute, while their EEG signals were recorded.
The EEG signals underwent artifact removal processing, re-
sulting in data from 32 channels with a sampling frequency of
128 Hz. After the experiment, the subjects rated each video
on multiple dimensions, including overall valence, arousal,
dominance, and liking, using an integer scale from 1 to 9. For
instance, in the valence dimension, 1.0 represents extreme
sadness, while 9.0 represents extreme happiness. The data

collected in this study included 40 EEG recordings from each
subject and their corresponding emotional labels. Each data
segment consisted of 60 seconds of experimental signals and
3 seconds of baseline signals (recorded in a relaxed state).
Table 1 shows a summary of the DEAP dataset.

Table 1: The summary of key features of the DEAP dataset.

Features
Number of subjects 32
Number of video clips 40
Recorded signals 32-channel EEG(128Hz)
Labels Valence, Arousal, Dominance

Experimental design
Data segmentation For data segmentation, within the con-
text of the DEAP dataset, participants were presented with
40 video clips, each consisting of EEG data for 60 seconds
across 32 channels, sampled at a frequency of 128 Hz. In
this study, a 1-second segment of EEG data was designated
as the fundamental unit for emotion analysis. Consequently,
the data from a single participant can be segmented into 2400
samples of dimensions 32×128 using a non-overlapping win-
dow technique. These samples are labeled across three di-
mensions, valence, arousal, and dominance, with each dimen-
sion being rated on a scale of 1 to 9. As shown in Figure 3,
each dimension is further categorized into two binary classi-
fication problems, using 5 as the threshold: high/low valence,
high/low arousal, and high/low dominance (ratings ≤ 5 are
considered low, and ratings > 5 are considered high). Thus,
the task of emotion recognition in this study is formulated as
a binary classification framework.

Feature extraction The differential entropy (DE) feature
was used for emotion recognition in this study, as expressed
as follows:

DE =−
∫ +∞

−∞

p(x) log p(x)dx =−1
2

log(2πeσ
2) (5)

where p(x) denotes the probability density function of the ran-
dom variable x, and x is the value of the random variable.
The DE feature is one of the most commonly used features in
EEG analysis and is a critical feature for EEG-based emotion
classification (J. Li, Qiu, Du, Wang, & He, 2020).

Results
To validate the effectiveness of our proposed MADA model
in emotion recognition, we conducted classification experi-
ments on 32 subjects from the DEAP dataset across three
emotional dimensions: valence, arousal, and dominance. The
classification accuracy for each subject and the average accu-
racy across all subjects are depicted in Figure 5. Our model
achieves commendable cross- subject classification perfor-
mance in these three emotional dimensions. Specifically, an
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Figure 5: Accuracy of valence, arousal and dominance in DEAP dataset.

average classification accuracy of 76.48% was achieved for
valence, 69.72% for arousal, and 68.14% for dominance.

Table 2: Comparison of emotion recognition results with
other domain adaption or multi-task learning methods in the
DEAP dataset.

Method Valence Arousal Dominance
MT-MKL 60.00 56.00 /
PLRSA 61.84 62.07 /
WGANDA 66.85 67.99 /
TS-DATL 71.89 60.42 /
Proposed method 76.48 69.72 68.14

Furthermore, we compared our results with other emo-
tion recognition methods based on domain adaption or multi-
task learning approaches. As shown in Table 2, Kandemir
et al.(2014) proposed the MT-MKL method, which com-
bines multi-task learning with multiple kernel learning strate-
gies to simultaneously classify multiple emotions. On the
DEAP dataset, it achieved accuracies of 60.00% for valence
and 56.00% for arousal. Luo et al.(2021) introduced the
progressive low-rank subspace alignment (PLRSA) frame-
work, unifying a semi-supervised instance-transfer paradigm
and an unsupervised mapping-transfer learning paradigm in
a single optimization framework. It achieved accuracies of
61.84% for valence and 62.07% for arousal on DEAP. The
Wasserstein generative adversarial network domain adap-
tion (WGANDA) framework proposed by Luo et al.(2018)
achieved an accuracy of 66.85% for valence and 67.99%
for arousal on DEAP. Pei et al.(2023) proposed the two-step
domain adversarial transfer learning (TS-DATL) framework
based on typical subjects, achieving accuracies of 71.89% for
valence and 60.42% for arousal on DEAP. Compared to these
models, our model demonstrated superior classification per-
formance in the valence and arousal emotional dimensions
on the DEAP dataset. Specifically, our model achieved accu-
racies 4.59%-16.48% higher for valence and 1.73%-13.72%
higher for arousal compared to these four models. While

PLRSA, WGANDA, and TS-DATL utilized domain adap-
tion methods, they were based on single-task learning. Al-
though MT-MKL employed multi-task learning, its accuracy
was relatively lower, possibly due to the limitation of tradi-
tional multi-task learning in effectively handling inter-subject
variability. None of the compared models classified emotions
on the dominance dimension.

To further validate the effectiveness of the proposed
MADA model, we conducted extensive ablation experiments
and compared the classification results in the cases of the
complete MADA model (i.e., complete model), no domain
adaption, and no domain matching. In the no-domain adap-
tion experiment, we utilized the domain matching module
without employing the domain adaption module. The model
trained with the best-matched source domain was directly ap-
plied to predict the target domain. In the no-domain match-
ing experiment, we did not select the best-matched source
domain; rather, the data for each subject in the dataset were
independently treated as a source domain for training, and the
average accuracy of all subject models was computed.

Table 3: Average accuracies(%) of ablation study on the
DEAP dataset.

Method Valence Arousal Dominance
No Domain adaption 54.36 53.90 55.12
No Domain matching 73.08 60.24 62.02
Complete model 76.48 69.72 68.14

The comparative results of no domain adaption, no domain
matching, and the complete model across three emotional di-
mensions (valence, arousal, and dominance) are presented in
Table 3 and Figures 6-8. It is evident that both domain adap-
tion and domain matching modules, particularly the domain
adaption module, play crucial roles in enhancing prediction
accuracy. In the absence of domain adaption, even when
selecting the best-matched source domain for the target do-
main, the average accuracies on valence, arousal, and dom-
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inance are only 54.36%, 53.90%, and 55.12%, respectively,
which are notably lower than the results of the no-domain
matching and the complete model. This indicates the neces-
sity of addressing inter-subject variations in model training to
enhance model performance. Moreover, training the model
with the best-matched source domain for the target domain
contributes to improved model performance, especially in the
arousal and dominance dimensions, with average accuracies
increasing by 9.48% and 6.12%, respectively.

Figure 6: Accuracy of valence in ablation study

Figure 7: Accuracy of arousal in ablation study

Figure 8: Accuracy of dominance in ablation study.

Discussion
In this study, we proposed a novel multi-task adversarial do-
main adaption (MADA) model for cross-subject EEG-based

emotion recognition. The main challenges in the field of
emotion recognition are significant individual differences and
the scarcity of data. By introducing multi-task learning, our
approach captures the intrinsic connections between various
emotions, effectively mitigating the issue of data scarcity.
Additionally, we employ domain matching to identify the
most similar individuals in the source domain for model train-
ing, greatly reducing training time. The use of adversarial
domain adaption techniques allows for the transfer of the op-
timally trained model from the best-matched source domain
to the target domain, effectively alleviating the problem of in-
dividual differences. Extensive comparative experiments and
ablation studies are conducted to validate the effectiveness
of our model. The results affirm that our model enhances
the performance of EEG-based emotion classification in user-
dependent scenarios. In real applications, there is a need to
achieve real-time emotion prediction. Traditional emotion
classification models require extensive training when predict-
ing new individuals. Our proposed MADA model can rapidly
match and accurately predict emotions. However, current re-
search still faces limitations, particularly in the imbalanced
accuracy of predicting three different emotions, likely due to
data imbalance and feature diversity issues. In future stud-
ies, we aim to improve the feature extraction method of the
model to more effectively capture key information across dif-
ferent emotional dimensions. Additionally, we aim to further
enhance the generalizability of the framework through cross-
dataset emotion classification, addressing the challenge of
sample scarcity in EEG-based emotion recognition research.
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