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Abstract of the Thesis

Approximation in Synchronization and
Computation

by

Amirhossein Reisizadehmobarakeh

Master of Science in Electrical Engineering

University of California, Los Angeles, 2016

Professor Lara Dolecek, Chair

Approximate solutions result in lower complexity and expense compared to

exact solutions, by tolerating a limited distortion. This thesis in centered on two

primary problems: synchronization and computation. We will seek approximate

solutions for these two problems throughout the thesis.

The first part of the thesis in concerned with approximation in file synchro-

nization. File synchronization plays an important role in data sharing applications

where several users own edited versions of an original file and they need to synch

their files with the original one. Previous works have studied bounds and algo-

rithms for exact reconstruction, where the goal is to exactly synchronize the copies

of the original file. In contrast, a more challenging scenario is where the copies

may not need to be perfectly synched, i.e. it suffices to reconstruct them within

a pre-defined distance, in some notion. In this part, we address approximate syn-

chronization from an information-theoretic viewpoint. The model we employ for

edition is via a binary deletion channel. Transmitter owns a binary file, which can

be the representation of any type of data including text, image, video, etc., and

feeds it to the deletion channel. Receiver obtains an edited version of the string
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and approximately reconstructs the main sequence along with extra information

receives from the transmitter.

In this thesis, we study the approximate synchronization problem, a more

relaxed scenario in which the final reconstructed file does not need to be identical

to the original file. We study the case when a binary file undergoes deletion errors

with some small deletion rate (so that the total number of deletions is linear in

file length). We derive an upper bound on the optimal rate of information that

the transmitter (owner of the original file) needs to provide to the receiver (owner

of the edited file) to allow the receiver to reconstruct the original file to within a

predefined target distortion.

The second part of the thesis focuses on approximate in computation, and

Hamming distance calculation as a specific type of computation. Performing com-

putation inside the memory unit (and not fetching data to the processing unit)

introduces several benefits, e.g. energy and time saving, avoiding bottleneck con-

gestion. Memristors are introduced as the memory units storing data in the resis-

tive arrays. Computation in the memory in performed by measuring the resistance

of the resistive elements, each representing one 0/1 bit. However, noisy measure-

ments challenge the addressed scheme proposed before. We explicitly take the

effect of noise into the consideration. Confidence bounds quantitatively show how

accurate one can perform the computation in the noisy setup compared to the

noise-free scenario. With respect to the context of the problem, we model the

noise in two different approaches. One is bit-flipping noise, in which resistive

components are read in a way similar to a binary symmetric channel with cer-

tain error probability. Secondly, a Gaussian model is considered for the noise in

which the output of the measurement will be a continuous random variable. We

provide confidence bounds for this two noise models and two single and multiple

measurements settings.
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“We know the past but cannot control it. We control the future but cannot

know it.”

Claude Shannon
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Chapter 1

Introduction

This thesis is concerned with two common operations occur on data files, synchro-

nization and computation. We open with reviewing some known facts on these

two concepts and the new fields of study they introduce.

1.1 Background on Synchronization and

Computation

Recently, we have been hearing the term big data frequently. Where does this

term originate? Every day, we take photos and store them on our devices. We

may post our photos on Facebook. We store our files on Dropbox. We share them

with our friends, etc. One can imagine how huge is the amount of data being

produced/transferred/stored every day. Various operations are applied on data.

In this work, we specifically study two of them: synchronization and computation.

File Synchronization

As pointed out before, we transfer our files to our friends on a shared medium.

We can consider a two-party communication medium which the two ends are linked

to each other. These two parties may share a text file. One party slightly changes
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Chapter 1. Introduction

the file at his/her end. How can he/she inform the other party about these changes

such that the other party can reconstruct the edited file? Obviously, the first party

has to provide the second party some more information about the changes. This

procedure is called file synchronization or briefly synchronization (Figure 1.1).

In this context, file may refer to any collection of data, e.g. a binary sequence.

The problem of interest here is to study the required supplementary information

one party has to provide for the other party for synchronization and algorithms

performing reconstruction.

Figure 1.1: file synchronization

Several synchronization protocol have been introduces; however, most of them

perform exact synchronization, i.e. the copies at the two ends are synchronized

perfectly. But, depending on the type of the files, it may not be required to synch

them perfectly. Approximate synchronization arises in this situation, allowing the

two copies of the file to have a limited distortion. One can easily observe that we

can perform the synchronization with less extra information from the first party,

in the approximate setup.

In-memory computation

As pointed out before, we deal with huge volume of data nowadays. Com-

putation is one of the canonical operations performed on data. Data is stored

in memory unit and computation occurs in precessing unit. Therefore, for any

2



Chapter 1. Introduction

computation on the data, it firstly needs to be transferred from memory unit to

the processing unit. Transfer of data between units has several downsides; it con-

sumes energy and occupies the linking bottlenecks. Therefore, finding efficient

scheme for computation is vital in energy/time saving. In-memory computation

is one solution for this challenge. One may not need to fetch data from memory

unit to processing unit for computation. Instead, one may be able to perform

computation in the memory unit and as the result, much energy and time would

be saved.

We study one specific operation on binary vectors which is Hamming distance

calculation, i.e. Hamming distance of two binary vectors stored in the memory

is calculated by some measurements inside the memory. Several coding schemes

have been proposed to calculate the distance for non-ideal memory components.

However, all of these works are along with noise-free measurements assumption.

We take the noisy measurements assumption into our consideration in this thesis.

1.2 Outline of Contributions

Below, we present a brief outline containing the contributions of this thesis. The

first part of the work is centered on the previously-described concept of approx-

imate synchronization. The second part is concerned with Hamming distance

calculation with noisy measurements. Our contributions and future directions for

our work are summarized in Chapter 4.

Chapter 2 Contributions

In this chapter, after reviewing some known results from exact synchroniza-

tion, we formulate the approximate synchronization problem from an information-

theoretic point of view. Then, we provide an upper bound on the optimal rate of

approximate problem in therms of the optimal one of the exact problem. Firstly,
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Chapter 1. Introduction

i.i.d. uniform and non-uniform binary sources are studied. Afrewards, we extend

the result to arbitrary M -ary i.i.d. sources.

Chapter 3 Contributions

In Chapter 3, we introduce the notion of noisy measurements in the memory

units and study the effect of noise in the accuracy of Hamming distance calculation.

Two models will be considered for noise in this context, bit-flipping and Gaussian

noise. We provide upper bounds on the deviation of the calculations due to the

presence of noise. We then extend our results from single measurement setup to

multiple measurement scenario.
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Chapter 2

Approximation in

Synchronization

2.1 Introduction and motivation

We are living in the era of information where gigantic volumes of data are being

produced, transferred, or stored every day. This data expectedly keeps data stor-

age and data links operate constantly which yields in undesirable rise in energy

consumption and traffic congestion. However, not the whole volume of data is

new, i.e. a significant portion of produced/transferred/stored data is repetitive.

Here is the point we can exploit this fact and seek the more efficient schemes for

data transmission. One of the most applicable operations between two separate

users is data synchronization.

The ability to efficiently synchronize large files is critical to the success of

sharing resources on the cloud. Since the data being stored in shared mediums

grows exponentially every year, it is imperative to use optimized synchronization

algorithms and protocols. File synchronization techniques have been developed

through a variety of approaches. The popular utility rsync synchronizes files by
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Chapter 2. Approximation in Synchronization

combining a strong hash function with a weaker rolling checksum [Tri09]. More

recently, there has been a growing body of research from Venkataramanan et al.

[VZR10, VTR13, VSR15] and Dolecek et al. [YD14, BSYD13, SBSD14], that

provides synchronization algorithms for the recovery from edit errors for the in-

teractive setting in which the transmitter and the receiver are connected through

a two-way communication link. File synchronization has also been studied in

interactive communication and coding theory settings [Bra14], and a related prob-

lem of set reconciliation in which remote users reconcile sets of unordered ob-

jects [MTZ03, MV12].

In this context, edition refers to insertion/deletion/substitution of symbols in

a sequence. The insertion/deletion/substitution channel was introduced by Lev-

enshtein [Lev66], and Dobrushin in [Dob67] provided the information coding. This

channel was primarily studied by Gallager and Dobrushin in [Gal61] and [Dob67].

Gallager exploited convolutional codes over insertion/deletion/substitution chan-

nels to correct synchronization errors and derived lower bounds for achievable

rates.

Optimal synchronization under deletion edits is closely associated with the

capacity of deletion channel. Although the capacity of deletion channel is still

an open problem, different tight bounds have been provided, [DMP07], [KM10],

[TKMS10]. Diggavi et al. in [DG01] and [DG06] derived lower bounds on the

achievable rate for deletion channels, motivated by the transmission of information

over finite buffer channels. In [DMP07], Diggavi et al. provide two upper bounds

deletion channel which one provides an asymptotic upper bound for large deletion

probability. [KM10] computes two leading terms of the capacity expansion for

small deletion probability and proves that the capacity, up to these two terms, is

achieved. A detailed survey on binary deletion channel and related channels with

synchronization errors is provided in [Mit09].
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Chapter 2. Approximation in Synchronization

In contrast to [VZR10]-[SBSD14] which focus on exact synchronization, in

this work we study another interesting case: approximate synchronization. We

derive an upper bound on the optimal rate of information that the encoder needs

to transmit to allow the decoder to reconstruct the original file to within a prede-

fined target distance. Our elementary derivation adapts the information-theoretic

source coding approach from [MRT11] for the approximate synchronization sce-

nario.

Consider two parties A and B communicating in a shared medium. Party A

owns a text file and would like B to have a copy of this file. Therefore, party A

sends a copy of his own file to other end, B. It is possible that A slightly modifies

the text file. But how can he inform B about theses changes? A trivial approach

is that A sends out the whole new file to B. One can easily conclude that this

approach is much sub-optimal, in this sense that much of the transferred data from

A to B already exists on the other end. In other words, A needs not to transfer the

whole new file, but it suffices to inform B just about the changes. The procedure

in which the two parties inform each other about the changes in their data files

is called file synchronization. In this context, file may refer to any collection of

data, e.g. a binary string of a certain length. There are various applications

that synchronization plays a critical role in them, e.g. Dropbox, Google drive etc.

Sometimes A and B require to reach perfectly synchronized copies of a file. We

call this scenario exact synchronization. On the other hand, there exists situations

where A and B are satisfied with two slightly different copies of a file, similar

to each other with respect to a small imperfection. This scenario is named as

approximate synchronization.

In this thesis, we will consider certain models for file (string) editing. We

can point out to three well-studied notions of edition operations on files: deletion,

insertion, substitution. In this work, we put our main focus on file synchronization

under deletion errors.

7



Chapter 2. Approximation in Synchronization

2.2 Problem setup

The problem of efficient file synchronization has been studied in [MRT11] and

[VTR11] through a source coding approach, where synchronization errors are in-

duced by a deletion channel. Deletion channel and its associated problems are

known as hardest ones in information theory.

Encoder

Deletion Channel

Decoder-

-

-

?

-Xn X̂n
R

Y (Xn, Dn)

Figure 2.1: Sequence synchronization with help of deletion side-information

Throughout the thesis, we use Xj
i to denote the string (Xi, Xi+1, · · · , Xj). We

drop the subscript i when i = 1. Consider a binary sequence Xn = (X1, · · · , Xn),

where the Xi’s are independently drawn from the Ber(1/2) distribution. This

sequence is fed to a memoryless deletion channel with deletion probability β,

0 < β � 1, i.e., every Xi gets deleted independently with this small probability

β. The output sequence, Y (Xn, Dn), is a function of the input sequence Xn and

the deletion pattern Dn. The deletion pattern is a binary sequence representing

the positions of the deleted bits in the input sequence. For instance, if Xn =

(1, 1, 0, 1, 0, 0, 1) and Dn = (0, 1, 0, 0, 1, 1, 0), then Y (Xn, Dn) = (1, 0, 1, 1). The

goal is to reconstruct sequence Xn at the receiver, provided the transmitter sends

additional side-information of rate R. Our set-up is shown in Figure 2.1.
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Chapter 2. Approximation in Synchronization

For arbitrary binary sequences of the same length, Xn = (X1, · · · , Xn) and

Zn = (Z1, · · · , Zn), we denote the normalized Hamming distortion as

dH(Xn, Zn) =
1

n

n∑
i=1

Xi ⊕ Zi.

The set of all binary sequences of any lengths is denoted by {0, 1}∗.

2.3 Exact synchronization

As pointed out in the introduction, there are certain situations in which the two

copies of file at the two ends need to be exactly the same. For instance, if the

type of file is text file, then even a minor a-synchronization in the two copies

would result in corrupting the whole content of the file. Now, we review some

results on exact synchronization problem. Figure 2.1 depicts the model for a

synchronization scheme. Transmitter (party A) owns string Xn. The other party,

owns an edited version of Xn which is Y (Xn, Dn). As the notation explains, the

received sequence is the output of a deletion channel, with input Xn and deletion

pattern Dn, where P(Di = 1) = β. Therefore, transmitter needs to provide more

information about its own sequence for the receiver such that the receiver can

exploit this new information along with the edited sequence and reconstruct the

sequence X̂n.

We recall the following important results for the exact synchronization case.

Definition 2.1. ([MRT11]) A distributed source code for deletion side-information

with parameters (n, |Mn|) is a tuple (gn, ψn) consisting of an encoding function

gn : {0, 1}n →Mn and a decoding function ψn : Mn × {0, 1}∗ → {0, 1}n.

Definition 2.2. ([MRT11]) A real number Re is called an achievable rate for exact

synchronization if there exists a sequence of distributed source codes {(gn, ψn)}n≥1

9



Chapter 2. Approximation in Synchronization

for deletion side-information with parameters (n, |Mn|) satisfying

lim
n→∞

P(Xn 6= ψn(gn(Xn), Y (Xn, Dn))) = 0

and lim supn→∞
1
n

log |Mn| ≤ Re.

It was shown in [MRT11] that for the exact synchronization problem, the

minimum achievable rate is R∗e = −β log β+β(log 2e−C)+O(β2−ε), for any ε > 0

and constant C =
∑∞

l=1 2−l−1l log l ≈ 1.29.

Finding the optimal rate for exact synchronization under deletion edits is

closely related to the problem of capacity of deletion channel which is known as

one of the hardest open problems in information theory ([DMP07]). From informa-

tion theory, Shannon capacity of a channel is the maximum mutual information

between input and output of the channel over all possible input distributions.

In [KM10], Kanoria et al. showed that the mutual information across the i.i.d.

deletion channel with i.i.d. Ber(1/2) input is

lim
n→∞

1

n
I(Xn;Y (Xn, Dn)) = 1 + β log β − β(log 2e− C) +O(β2−ε),

which implies

lim
n→∞

1

n
H(Y (Xn, Dn)|Xn) = −β log β + β(log 2e− C) +O(β2−ε).

This result is consistent with the optimal rate R∗e obtained in [MRT11], in the

sense that both have the same leading terms −β log β + β(log 2e− C).
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Chapter 2. Approximation in Synchronization

2.4 Approximate synchronization

We briefly reviewed some results from exact synchronization problem in the last

section. As pointed out before, there are certain applications in which the two

copies of the file at the two ends may not need to be perfectly synched. For

instance, for two image files, a small distortion between the two images could be

tolerated. We call these two copies approximately synchronized. Allowing a minor

distortion in the synchronization results in saving the bandwidth or smaller rate.

In this section we study the problem of approximation from an information theory

point of view.

Let us first set up the problem of approximate synchronization, originated

from the exact synchronization problem. We define distributed source codes for the

approximation problem similar to ones defined for the exact problem (Definition

2.1). Here, encoder provides rate-Ra information to help the decoder reconciling

the original file (see Figure 2.1).

Definition 2.3. A real number Ra is called an achievable rate for approximate

synchronization if there exists a sequence of distributed source codes {(gn, ψn)}n≥1

for deletion side-information with parameters (n, |Mn|) satisfying

lim
n→∞

E[dH(Xn, ψn(gn(Xn), Y (Xn, Dn)))] ≤ dT

and lim supn→∞
1
n

log |Mn| ≤ Ra, for a pre-defined target distortion dT ∈ [0, 1].

Note that the exact synchronization problem is a special case of the approxi-

mate problem for which dT = 0. The minimum achievable rate for the approximate

synchronization problem is denoted by R∗a.

11



Chapter 2. Approximation in Synchronization

2.4.1 Uniform sources

Binary Sources

As the first step, we study the approximate synchronization for i.i.d. Ber(1/2)

sources. Let us first recall some basic facts.

Consider two binary sequences Uk = (U1, · · · , Uk) and V k = (V1, · · · , Vk),

where Ui’s are drawn from the distribution Ber(1/2) independently. Then,

E[dH(Uk, V k)] =
1

2
.

In other words, estimating the input by choosing a sequence of random bits with

respect to an arbitrary Bernoulli distribution results in an expected distortion of

1
2
. Therefore, for dT ≥ 1

2
, the minimum achievable rate is R∗a = 0.

Let Xn = (X1, · · · , Xm, Xm+1, · · · , Xn) be a binary sequence fed into a dele-

tion channel outputting Y (Xn, Dn), where Xi’s are i.i.d. and Ber(1/2). As-

sume that Y (Xm, Dm) is the corresponding output for a deletion channel with

Xm as input (Figure 2.2). For simplicity, let us denote [Y (Xn, Dn)]
dm(1−β)e
1 as

Y (m)(Xn, Dn). Intuitively, we expect sequences Y (Xm, Dm) and Y (m)(Xn, Dn) to

convey the same amount of information about input sequence Xm for large enough

m. Due to the causality and memoryless assumptions for the channel, Y (Xn, Dn)

is a concatenation of corresponding outputs of two input sequences Xm and Xm+1
n .

Since E[|Y (Xm, Dm)|] = m(1−β), then Y (m)(Xn, Dn) and Y (Xm, Dm) reveal the

same information about Xm, asymptotically. More precisely,

lim
m→∞

1

m
(I(Xm;Y (m)(Xn, Dn))− I(Xm;Y (Xm, Dm))) = 0.

12



Chapter 2. Approximation in Synchronization

Deletion Ch.

Deletion Ch.

Xm

Xn

Y (Xm, Dm)

Y (Xn, Dn)

Y (m)(Xn, Dn)

Figure 2.2: Relationship between encoded and decoded sequences.

Paper [MRT11] provides explicit form of R∗e for i.i.d. and non-i.i.d. deletion

channels, both with uniform i.i.d. sources. Following theorem relates the rates of

the exact and approximate reconstruction for uniform sources.

Lemma 2.4. Consider two binary sequences Xn = (X1, · · · , Xn) and Y n =

(X1, · · · , Xj, Zj+1, · · · , Zn), where Xi’s and Zi’s are i.i.d and Ber(1/2). Then,

E[dH(Xn, Y n)] ≤ dT for j ≥ n(1− 2dT ).

Proof. As shown before, E[dH(Xn
j+1, Y

n
j+1)] = E[dH(Xn

j+1, Z
n
j+1)] = 1

2
. Therefore,

E[dH(Xn, Y n)] = E[
1

n

n∑
i=j+1

Xi ⊕ Zi]

=
n− j

2n

≤ dT .

Theorem 2.5. The optimal rate R∗a for approximate synchronization is bounded

by R∗a ≤ (1− 2dT )R∗e, where dT is the target distortion and R∗e is the optimal rate

for exact synchronization.

Proof. It is sufficient to show that rate R = (1− 2dT )R∗e is achievable for approxi-

mate synchronization problem. Thus, we need to show that there exists a sequence

of distributed source codes {(gn, ψn)}n≥1 for deletion side-information with param-

eters (n, |Mn|) satisfying limn→∞ E[dH(Xn, ψn(gn(Xn), Y (Xn, Dn)))] ≤ dT and

13
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lim supn→∞
1
n

log |Mn| ≤ (1− 2dT )R∗p, for a given target distortion 0 ≤ dT ≤ 1
2
.

As [MRT11] shows, there exists a sequence of source codes {(g∗m, ψ∗m)}m≥1 for

deletion side-information with parameters (m, |M∗
m|) satisfying

lim
m→∞

P(Xm 6= ψ∗m(g∗m(Xm), Y (Xm, Dm))) = 0

and lim supm→∞
1
m

log |M∗
m| ≤ R∗p.

perfect synch random 0/1 assignmentX̂n

Xn

m n1

Figure 2.3: Approximate reconstruction for uniform source

Now, we need to introduce proper encoding and decoding functions for ap-

proximate synchronization problem achieving desired rate. Encoding and de-

coding functions are denoted by gn and ψn, respectively. For n ≥ 1, put m =

dn(1− 2dT )e. We will establish the lossy distributed source code for the approxi-

mate problem based on the source code achieving the minimum rate for the perfect

problem. For any binary sequence Xn, define the encoding function as

gn(Xn) = g∗m(Xm),

and the decoding function as

Mn =M∗
m,

ψn(gn(Xn), Y (Xn,Dn)) = (ψ∗m(g∗m(Xm), Y (m)(Xn, Dn)), Zn−m),

where Zi’s are randomly drawn from Ber(1/2) distribution (Figure 2.3). As an

14
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immediate result of Lemma 3.2, the introduced code satisfies the distortion con-

straint, i.e.,

lim
n→∞

E[dH(Xn, ψn(gn(Xn), Y (Xn, Dn)))] ≤ dT .

Therefore, we just need to show that this code achieves rate (1− 2dT )R∗p. We can

write

lim
n→∞

sup
1

n
log |Mn| = lim

n→∞
sup

1

n
log |M∗

m|

= lim
m→∞

sup
1− 2dT
m− δ

log |M∗
m|

≤ (1− 2dT )R∗p,

note that m = dn(1− 2dT )e yields m− δ = n(1− 2dT ) for some δ ∈ [0, 1).

M-ary Sources

We can extend the results of binary sources to non-binary sources by the

similar arguments. Let Xn be a vector such that for every 1 ≤ i ≤ n, Xi is

uniformly drawn from an M -ary alphabet X = {b1, · · · , bM}, independently, i.e.

P(Xi = bj) = 1
M

for all 1 ≤ j ≤ M . We can define the synchronization problem

for M -ary sources just similar to the binary case. The only modification is in the

definition of normalized Hamming distance which here is the number of positions

in the two vectors normalized by the length of the two sequences.

Following corollary summarizes the the upper bound for M -ary source sce-

nario which can be proved similar to Theorem 2.5.

Corollary 2.6. The optimal rate R∗a for approximate synchronization for i.i.d.

M-ary sources is bounded by R∗a ≤ (1−MdT )R∗e, where dT is the target distortion

and R∗e is the optimal rate for the exact synchronization.

To briefly comment on the proof of the above Corollary, notice that two

random M -ary sequence of the same length ave the expected distance of 1/M .
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Therefore, to synchronize two sequence of length n within target distance dT , it

suffices to exactly synchronize them in the first n(1−MdT ) positions and randomly

assign symbols in remaining positions.

2.4.2 Non-uniform sources

Thus far, we have bounded the optimal rate of the approximation synchronization

for i.i.d. Ber(1/2) sources. A more general problem arises when the source outputs

Xn where Xi’s are i.i.d. Ber(q), i.e., P(Xi = 1) = 1 − P(Xi = 0) = q for some q

between 0 and 1. We define distributed source codes and achievable rates for both

exact and approximate synchronization problem in the same manner as we did for

uniform sources. The problem of interest is to upper bound the optimum rate of

the approximate problem by the one of exact problem.

Let us denote the optimal rate for exact synchronization by R∗e(q), where

q is the source distribution parameter. Similarly, the minimum achievable rate

for approximate synchronization is denoted by R∗a(q). Clearly, the minimum rate

is also a function of the deletion probability and the target distortion as well;

however, we will omit them from our notation for simplicity. We seek to upper

bound R∗a(q) in terms of R∗e(q) and target distortion. The key idea is that the

decoder reconstructs a portion of the sequence exactly and assigns 0/1 bits to

the remaining portion. Notice that finding a closed form expression for R∗e with

arbitrary source distributions is a difficult problem which warrants its own separate

study.

Lemma 2.7. Consider two binary sequences of the same length Uk = (U1, · · · , Uk)

and V k = (V1, · · · , Vk), where Ui’s and Vi’s are drawn i.i.d. from the distribution

16



Chapter 2. Approximation in Synchronization

Ber(q) and Ber(r), respectively. Then,

r∗ = arg min
r

E[dH(Uk, V k)] =


0 if q ≤ 1

2
,

1 if q > 1
2
.

As Lemma 2.7 denotes, for i.i.d. distributed input sequence drawn from

Ber(q), if q ≤ 1
2
, then estimating the input sequence by assigning an all-one se-

quence would guarantee the expected distortion to be q. Therefore, for dT ≥ q,

the minimum achievable rate is R∗e(q) = 0. By the same argument, if q > 1
2
, then

the minimum achievable rate is R∗e(q) = 0, for dT ≥ 1− q.

Lemma 2.8. Consider two binary sequences Xn = (X1, · · · , Xn) and X̂n =

(X1, · · · , Xj, Zj+1, · · · , Zn), where Xi’s are i.i.d. Ber(q). Then, E[dH(Xn, X̂n)] ≤

dT for

• j ≥ n(1− 1
1−qdT ), q ≤ 1

2
, and Zn

j+1 = (0, · · · , 0),

• j ≥ n(1− 1
q
dT ), q > 1

2
, and Zn

j+1 = (1, · · · , 1).

Now, we have all the required ingredients to provide an upper bound for the

optimal rate of approximate synchronization problem.

Theorem 2.9. For i.i.d. and non-uniform sources,

• if q ≤ 1
2
, R∗a(q) ≤ (1− 1

1−qdT )R∗e(q),

• if q > 1
2
, R∗a(q) ≤ (1− 1

q
dT )R∗e(q).

Proof. We prove the first case here; the second case can be derived by the same ar-

gument. It is sufficient to show that the rate R = (1− 1
1−qdT )R∗e(q) is achievable for

the approximate synchronization problem. Thus, we need to show that there exists

17
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a sequence of distributed source codes {(gn, ψn)}n≥1 for deletion side-information

with parameters (n, |Mn|) satisfying

lim
n→∞

E[dH(Xn, ψn(gn(Xn), y(Xn, Dn)))] ≤ dT

and lim supn→∞
1
n

log |Mn| ≤ (1 − 1
1−qdT )R∗e(q), for a given target distortion

0 ≤ dT ≤ q.

From the exact synchronization problem, there exists a sequence of source

codes {(g∗m, ψ∗m)}m≥1 for deletion side-information with parameters (m, |M∗
m|) sat-

isfying

lim
m→∞

P(Xm 6= ψ∗m(g∗m(Xm), Y (Xm, Dm))) = 0

and lim supm→∞
1
m

log |M∗
m| ≤ R∗e(q).

perfect synch all-0/all-1 assignmentX̂n

Xn

m n1

Figure 2.4: Approximate reconstruction for non-uniform source

Now, we need to introduce proper encoding and decoding functions for the

approximate synchronization problem achieving the desired rate (Figure 2.1). The

encoding and decoding functions are denoted by gn and ψn, respectively. For n ≥ 1,

set m =
⌈
n(1− 1

1−qdT )
⌉
. We will establish the lossy distributed source code for

the approximate problem based on the source code achieving the minimum rate

for the exact problem. Define the encoding function as follows: for any binary

sequence Xn, gn(Xn) = g∗m(Xm), Mn =M∗
m, and the decoding function

ψn(gn(Xn), Y (Xn,Dn)) = (ψ∗m(g∗m(Xm), Y (m)(Xn, Dn)), Zn−m),

18
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where Zn−m = (0, · · · , 0), Figure 2.4. As an immediate result of Lemma 2.8, the

introduced code satisfies the distortion constraint, i.e.,

lim
n→∞

E[dH(Xn, ψn(gn(Xn), Y (Xn, Dn)))] ≤ dT .

Therefore, we just need to show that this code achieves rate (1− 1
1−qdT )R∗e(q),

lim sup
n→∞

1

n
log |Mn| = lim sup

m→∞

1− 1
1−qdT

m− ε
log |M∗

m|

≤ (1− 1

1− q
dT )R∗e(q).

Note that m =
⌈
n(1− 1

1−qdT )
⌉

yields m−ε = n(1− 1
1−qdT ) for some ε ∈ [0, 1).

These results show how efficient the two parties could be in their synchro-

nization scheme, in terms of the optimal exact synchronization scheme. Several

exact synchronization schemes have been introduced. In the next section, we will

exploit the scheme used for roof of the main theorems of this section to come up

with an deterministic algorithm performing approximate synchronization.

2.5 Conclusion

In this chapter, we briefly went over results from exact synchronization problem

and then introduced an approximate variation of the file synchronization. We

considered the deletion model and formulated the problem through information-

theoretic techniques and established an upper bound on the optimal rate for both

uniform and non-uniform i.i.d. binary sources. This bound was then extended

to M -ary i.i.d. sources. These bounds show that -in the worst case- how much

better one can synchronize two files when a limited amount of distortion is allowed,

compared to synchronize them perfectly.
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Chapter 3

Approximation in Computation

3.1 Introduction and motivation

In recent years, we have been hearing the term “big data” more often. Numerous

smart devices with several software applications have been distributed. Unsur-

prisingly, the volume of data created by this applications are growing faster and

faster. This amount of data should be stored in reliable storage devices, leading

to establishment of huge data centers. Storage is not the end of the story. Useful

data is stored since it most likely will be recalled again later. Any operation on

stored data requires the device to recall the information from the memory and

bring it to the processing unit. Therefore, transfer of data inside the storage de-

vices is another energy and time consuming characteristics of big data centers. It

has been said that in near future, the most energy consuming units will be data

centers. Moreover, fetching the data from the memory unit to the processing unit

imposes clogging on the bottlenecks. Hence, improving in-memory computations

more efficient is vitally critical for energy consuming issues. One applicable op-

eration on binary vectors is calculating the Hamming distance between a pair of

vectors stored in the memory. To comment about previous works, Cassuto et. al
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[CC15] studied the problem of in-memory computation; they first model a memory

unit by an array of resistive components which will be called memristor. Every

resistive has a binary state which can store one bit of information. Then it is

shown that how one can calculate the Hamming distance between a pair of row

vectors by measuring the equivalent conductance in the memristor. Then the ef-

fect of physical non-ideality on the measurement scheme is studied. As expected,

non-ideal memristor arrays would require more efforts (in terms of measurements)

to calculate the Hamming distance. They proposed several coding constructions

such that the distance would be calculated more efficiently even though the resis-

tive elements are not ideal. Memristor arrays have been studied under different

issued, as well. As a downside of memristor crossbar arrays, the way these ar-

rays are programmed may undesirably effect the correctness of reads from the

memory. Sneak paths is the phenomenon causing the accuracy of reads from the

memory to depend on the content of the memristor. Cassuto et. al [CKY14a],

[CKY14b] investigated this issue from an information-theoretic perspective and

provided efficient scheme to read the array elements while avoiding sneak paths.

Even though [CC15] solidly models the Hamming distance calculation by ar-

ray measurements, however, it has been assumed that the reads are noise-free.

Therefore, computation under noisy measurements seems a reasonable path for

extending their results. We study this problem in this chapter for different scenar-

ios. Reading from the memory is does not occur always perfectly, i.e. the measured

value could be a noisy version of the actual stored data. Moreover, the memory

device may not be physically ideal, as well. We will investigate the effect of all of

these undesired issues on the accuracy of the distance measurement between two

row vectors.
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3.2 Problem setup

The model we consider for a memory in this context is an array of resistors which

will be called memristor in this thesis. Every resistive element in the memristor has

a binary state, either high-resistance or low-resistance. For the sake of simplicity in

calculations, we alternatively use the notion of conductance for resistive elements.

We denote the 1-state conductance by G and 0-state conductance by εG, where

G is a finite conductance and 0 ≤ ε < 1 is the physical parameter denoting the

accuracy of the hardware. For instance, ε = 0 is translated to physically ideal

memristor. In Figure 3.1, high-conductance resistive elements (representing bit

“1”) and low-conductance resistive elements (representing bit “0”) are depicted

with black and white elements, respectively.

Figure 3.1: memristor: arrays of resitances (from [CC15])

For two binary vectors x = (x1, · · · , xn) and y = (y1, · · · , yn), we employ the

standard definition Hamming weight WH(x) =
∑n

i=1 xi and Hamming distance

DH(x,y) =
∑n

i=1 |xi − yi|.
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3.2.1 Ideal memristor

We start our model description from the ideal case in which ε = 0. Then, the

equivalent conductance of the circuit induced by the row pair x,y is

Geq(x,y) =
G

2

n∑
i=1

xiyi.

For the brevity in the notation, define the normalized equivalent conductance

Gx,y =
∑n

i=1 xiyi. The following simple derivation expresses the Hamming dis-

tance of x and y in terms of Hamming weights and eqivalent conductance

DH(x,y) =
n∑
i=1

|xi − yi|

=
n∑
i=1

|xi − yi|2

=
n∑
i=1

xi +
n∑
i=1

yi − 2
n∑
i=1

xiyi (3.1)

= WH(x) +WH(y)− 2Gx,y. (3.2)

The latter expression conveys the fact that having three measurements, WH(x),

WH(y), and Gx,y, one can easily calculate the Hamming distance. Notice that

implementation of physically ideal resistive devices may be expensive, therefore,

we need to take the effect of non-ideality into our consideration.

3.2.2 Non-ideal memristor

Now, suppose the memristor is not ideal, i.e. 0 ≤ ε < 1. The equivalent conduc-

tance of the circuit induced by the row pair x,y is

Geq(x,y) =
G

2

n∑
i=1

xiyi +
2ε

1 + ε
(1− xi)yi +

2ε

1 + ε
xi(1− yi) + ε(1− xi)(1− yi).
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Similar to the ideal case, define the normalized equivalent conductance Gx,y =

2
G
Geq(x,y). We can write

Gx,y =
n∑
i=1

xiyi +
2ε

1 + ε
(1− xi)yi +

2ε

1 + ε
xi(1− yi) + ε(1− xi)(1− yi)

=
ε(1− ε)

1 + ε

n∑
i=1

xi +
ε(1− ε)

1 + ε

n∑
i=1

yi +
(1− ε)2

1 + ε

n∑
i=1

xiyi + nε.

Using equation (3.2), Hamming distance can be rephrased as

DH(x,y) =
1 + ε

(1− ε)2
[
(1− ε)(WH(x) +WH(y)) + 2nε− 2Gx,y

]
. (3.3)

This expression denotes that Hamming distance can be calculated by having

three measurements, WH(x), WH(y), and Gx,y, and the accuracy parameter ε.

Thus far, we have been implicitly assumed that all the measurements are

noise-free; however, this is not usually the case. In the following discussions we

will consider the effect of noisy measurements on distance calculations. Before

that, we need to mathematically model the noise presented in the measurements.

3.3 Noise modeling: BSC

Different statistical models can be considered for noise in this context. Since we

are dealing with binary bits, it seems natural to assume a bit-flipping for the noise

like what happens in binary symmetric channel (BSC). More precisely, suppose

x̃ and ỹ are noisy measurements of x and y, respectively. We model the noisy

measurement by a BSC, i.e. every bit is correctly read from the memory with

probability 1− β and is read as the fllipped bit with probability β. For instance,

x̃i is the output of a BSC(β) with xi as input (Figure 3.2). The Hamming distance

between vectors x̃ and ỹ is denoted by DH(x̃, ỹ).
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x̃1 · · · x̃n

x1 · · · xn

BSC(β) BSC(β)

Figure 3.2: Noisy measurement: BSC model

3.3.1 Single measurement

Having considered a solid model for the noise, now we can evaluate the Hamming

distance perturbed by noise. As the first step, assume every bit is measured once

from the ideal memristor. Using equation (3.1), the deviation in the Hamming

distance can be written as

|DH(x̃, ỹ)−DH(x,y)| =

∣∣∣∣∣
n∑
i=1

(xi − x̃i) +
n∑
i=1

(yi − ỹi)− 2
n∑
i=1

(xiyi − x̃iỹi)

∣∣∣∣∣
≤

n∑
i=1

|xi − x̃i|+
n∑
i=1

|yi − ỹi|+ 2
n∑
i=1

|xiyi − x̃iỹi| . (3.4)

Taking the expected value from the latter equation and Lemma 3.1 yields

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤

n∑
i=1

E
[
|xi − x̃i|

]
+

n∑
i=1

E
[
|yi − ỹi|

]
+ 2

n∑
i=1

E
[
|xiyi − x̃iỹi|

]
≤ 4nβ − nβ2

Lemma 3.1. For independent reads x̃i and ỹi, we have 1− γ = P (x̃iỹ = xiyi) =

1− β + β2

2
.
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Proof. Since every bit is equally probable 0 or 1, we can write

1− γ =P (x̃iỹi = xiyi)

=
1

4
p(x̃iỹi = 0|xi = 0, yi = 0) +

1

4
p(x̃iỹi = 0|xi = 0, yi = 1)

+
1

4
p(x̃iỹi = 0|xi = 1, yi = 0) +

1

4
p(x̃iỹi = 1|x1, yi = 1)

=
1

4

{
p(x̃i = 0, ỹi = 0|xi = 0, yi = 0) + p(x̃i = 0, ỹi = 1|xi = 0, yi = 0)

+ p(x̃i = 1, ỹi = 0|xi = 0, yi = 0) + p(x̃i = 0, ỹi = 0|xi = 0, yi = 1)

+ p(x̃i = 0, ỹi = 1|xi = 0, yi = 1) + p(x̃i = 1, ỹi = 0|xi = 0, yi = 1)

+ p(x̃i = 0, ỹi = 0|xi = 1, yi = 0) + p(x̃i = 0, ỹi = 1|xi,= 1yi = 0)

+ p(x̃i = 1, ỹi = 0|xi = 1, yi = 0) + p(x̃i = 1, ỹi = 1|xi = 1, yi = 1)
}

=1− β +
β2

2
.

If WH(x) and WH(y) are known, by a similar argument,

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 2nβ − nβ2.

As a more general situation, we consider the effect of noisy measurements in

the non-ideal memristor array, i.e. 0 < ε < 1. Cassuto et. al [CC15] showed that

for enough hardware accuracy, Hamming distance of two vectors can be calculated

by only one measurement of equivalent conductance. More explicitly, they proved

the following theorem for non-ideal memristors.

Lemma 3.2. ( [CC15]) If 0 < ε < 1/(2n − 1), then the Hamming distance

DH(x,y) can be calculated exactly from a single array measurement Gx,y by

DH(x,y) =
Gx,y − bGx,yc − ε(n− bGx,yc)

ε1−ε
1+ε

.
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Proof. See [CC15].

The hardware accuracy in the memristor is translated by parameter ε. Smaller

ε represents higher hardware accuracy. Now, we can bring the hardware accuracy

issue into our analyses of Hamming distance deviation.

Let Gx̃,ỹ be a noisy measurement of the equivalent conductance of the row

pair x,y. For 0 < ε < 1/(2n − 1), Lemma 3.2 indicates that Hamming distance

could be calculated by a single measurement, i.e.

DH(x̃, ỹ) =
Gx̃,ỹ − bGx̃,ỹc − ε(n− bGx̃,ỹc)

ε1−ε
1+ε

.

Therefore, we can write the deviation in the Hamming distance as

DH(x̃, ỹ)−DH(x,y) =
1 + ε

ε(1− ε)

{
Gx̃,ỹ −Gx,y + (ε− 1)bGx̃,ỹ −Gx,yc

}
.

We take the expectation from the absolute value of distance deviation and

have

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 1 + ε

ε(1− ε)

{
E
[
|Gx̃,ỹ −Gx,y|

]
+ (1− ε)E

[
|bGx̃,ỹ −Gx,yc|

]}
≤ 1 + ε

ε(1− ε)

{
(2− ε)E

[
|Gx̃,ỹ −Gx,y|

]
+ (1− ε)

}
≤ 1

ε

(
2nβ + n

β2

2
(3ε− ε2 − 2) + 1 + ε

)
,

for 0 < ε < 1/(2n − 1). Equation (3.3) represents the equivalent conductance

between a non-ideal row pair in terms of individual bits. Following lemma is
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directly derived from this equation and justifies the inequalities employed in the

latter derivations.

Lemma 3.3. For a non-ideal memristor arrays with accuracy parameter ε, the

difference between the noisy and actual equivalent conductances can be bounded as

|Gx̃,ỹ −Gx,y| ≤
ε(1− ε)

1 + ε

n∑
i=1

|xi − x̃i|+
ε(1− ε)

1 + ε

n∑
i=1

|yi − ỹi|

+
(1− ε)2

1 + ε

n∑
i=1

|xiyi − x̃iỹi| . (3.5)

3.3.2 Multiple measurements

We have been studied the case in which every stored bit in the memristor is read

from the memory only once. For this scenario, we obtained the confidence bound

on the measured hamming distance of two sequences x and y. In order to have

more reliable measurements, we can employ multiple reads for every single bit

stored in two sequences. Returning to the ideal case, suppose that every bit is

measured from the memristor 2m + 1 times independently. More precisely, for a

stored bit xi, we read the memory 2m+1 times and x̃
(1)
i , · · · , x̃(2m+1)

i are the noisy

measurements. Therefore, P (x̃
(j)
i = xi) = 1− β, for 1 ≤ j ≤ 2m+ 1.

Now, it is up to us to how to use these measured values to estimate the Ham-

ming distance in a reasonable fashion. We consider two different scenarios for this

sake.

Scenario I: One naive way to estimate a good measurement x̃i based on

these 2m+ 1 reads is by majority rule, i.e.

x̃i =


xi if at least m+ 1 of x̃

(j)
i s agree to xi,

1− xi otherwise.
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The same argument holds for vector y. Now, we can analyze the confidence

bounds for hamming distance measurement in this scenario. First let us review

some simple lemmas regarding this scenario.

Lemma 3.4. In Scenario I, for 2m+ 1 reads for sequence x we have

1− α = P(x̃i = xi) =
2m+1∑
j=m+1

(
2m+ 1

j

)
(1− β)jβ2m+1−j (3.6)

Proof. Since all the reads are independent, by majority rule,

P(x̃i = xi) = Prob[at least m+ 1 of x̃
(j)
i s agree to xi]

=
2m+1∑
j=m+1

(
2m+ 1

j

)
(1− β)jβ2m+1−j

Lemma 3.5. In Scenario I, for 2m+ 1 reads for sequences x and y, we have

1− α′ = P(x̃iỹi = xiyi) =
2m+1∑
j=m+1

(
2m+ 1

j

)
(1− γ)jγ2m+1−j, (3.7)

where γ = β(1− β) + β2

2
.

Proof. Since all the reads are independent, by majority rule we have

P(x̃iỹi = xiyi) = Prob[at least m+ 1 of x̃
(j)
i ỹ

(j)
i s agree to xiyi]

=
2m+1∑
j=m+1

(
2m+ 1

j

)
(1− γ)jγ2m+1−j

Theorem 3.6. In Scenario I, for 2m+ 1 reads for sequences x and y, we have

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 2n(α + α′).
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Proof. The proof is similar to the argument we made for single-read scenario.

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ E

[ n∑
i=1

|xi − x̃i|+
n∑
i=1

|yi − ỹi|+ 2
n∑
i=1

|xiyi − x̃iỹi|
]

≤ nα + nα + 2nα′

= 2n(α + α′),

where α and α′ are defined in equations (3.6) and (3.7).

Figure 3.3 depicts the improvement in the normalized confidence bounds for

different number of reads.

In certain situations, it is possible that Hamming weights of x and y are

known a priori. Therefore, we can expect to have better confidence intervals

for Hamming distance deviation. Following lemma represents the improvement

obtained in confidence interval precisely.

Lemma 3.7. For multiple reads scenario, if WH(x) and WH(y) are known, then

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 2nα′.

Proof. Recall from equation (3.2) that Hamming distance of two vectors can be

described in terms of their Hamming weights and the equivalent conductance mea-

sured in the memristor array. Hence, when WH(x) and WH(y) are known, then

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 2

n∑
i=1

E
[
|xiyi − x̃iỹi|

]
= 2nα′

Scenario II: We have been following the multiple reads approach in which

every bit of all vectors (two vectors in Hamming distance computation) stored in

the memrsitor array are read more than once. In scenario I, every stored bit, e.g.
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xi was read from the array 2m + 1 times and finally x̃i was estimated from these

reads based on majority rule. Now, consider the situation where we first estimate

the Hamming distance of x and y for every read from the memristor and then

we decide how to make a final estimations for Hamming distance, based on the

estimations in hand. More precisely, assume vectors x and y are read 2m+1 times

and vectors x̃(j) and ỹ(j) are obtained, for 1 ≤ j ≤ 2m+ 1. For every j, we define

jth Hamming distance estimation

D
(j)
H = DH(x̃(j), ỹ(j)).

Now, we take the average of these measured distances as a final estimation for

DH(x,y), as follows

D̃H(x,y) =
1

2m+ 1

2m+1∑
j=1

D
(j)
H .

Lemma 3.8. For multiple reads scenario II, the confidence interval is bounded as

follows

E
[ ∣∣∣D̃H(x,y)−DH(x,y)

∣∣∣ ] ≤ 4nβ − nβ2

Proof. The estimated Hamming distance is defined by equation (3.4). We can

write

E
[ ∣∣∣D̃H(x,y)−DH(x,y)

∣∣∣ ] = E
[
| 1

2m+ 1

2m+1∑
j=1

D
(j)
H −DH(x,y)|

]
≤ 1

2m+ 1

2m+1∑
j=1

E
[
|DH(x̃(j), ỹ(j))−DH(x,y)|

]
≤ 4nβ − nβ2

Notice that multiple-read Scenario II introduces no benefits compared to the

single-read case.
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Figure 3.3: Confidence bounds for multiple-reads: BSC model

3.4 Noise modeling: AWGN

In previous analysis we considered a simple BSC model for noisy reads from the

memristor, in which every bit was read correctly with probability 1 − β and was

read as the flipped one with probability β. Therefore, all the post-operations on

the vectors were employed on the hard values of measurements. Now, we turn our
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consideration into a soft-valued measurement. More explicitly, we assume that ev-

ery bit is additively distorted with a Gaussian noise N ∼ N (0, σ2
N). For instance,

suppose bit x is stored in the memristor. As the noisy measurement, x̃ = x + N

is the soft-valued read for x (Figure 3.4). We will analyze the confidence bounds

for this model in the following.

3.4.1 Single measurement

Let vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) be two binary vectors stored in

a memristor array. Every bit is measured from the memristor with respect to the

Gaussian model described above, i.e. x̃ = (x̃1, · · · , x̃n) and ỹ = (ỹ1, · · · , ỹn) are

measured vectors in which

x̃i = xi +N
(x)
i for 1 ≤ i ≤ n, (3.8)

and

ỹi = yi +N
(y)
i for 1 ≤ i ≤ n. (3.9)

Notice that all of the noise components N
(x)
i and N

(y)
i are i.i.d. from a Gaus-

sian distribution N (0, σ2
N).

x̃1 · · · x̃n

x1 · · · xn

+N
(x)
1

+N
(x)
n

Figure 3.4: Noisy measurement: AWGN model
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Before turning into the distance analyses, let us first review some useful prop-

erties of Gaussian random variables.

Lemma 3.9. For two random variables N1, N2 ∼ N (0, σ2
N), we have

1. E[|N1|] = E[|N2|] = σN

√
2
π

2. E[|N1N2|] ≤ σ2
N .

Proof. Define the folded Gaussian random variable N+
1 = |N1| and N+

2 = |N2|.

1. The probability density function of N+
1 is

fN+
1

(η) =
2√

2πσ2
N

e
−−η2

2σ2
N for η ≥ 0.

Taking expectation from this distribution yields E[|N1|] = E[N+
1 ] = σN

√
2
π
.

Similarly, E[|N2|] = σN

√
2
π
.

2. From Cauchy-Schwarz inequality we have

E[|N1N2|] = |E[|N1||N2|]| ≤
√

E[N2
1 ]E[N2

2 ] = σ2
N

Recall from equation (3.4) that

|DH(x̃, ỹ)−DH(x,y)| ≤
n∑
i=1

|xi − x̃i|+
n∑
i=1

|yi − ỹi|+ 2
n∑
i=1

|xiyi − x̃iỹi| .

However, vectors x̃ and ỹ are real-valued (and not binary) vectors and we can

not employ Hamming distance operation on these vectors. Instead, we define a

Hamming-like distance metric for real-valued vectors. For two real-valued vectors
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x̃ and ỹ, define Hamming-like distance

DHL(x̃, ỹ) =
n∑
i=1

|x̃i − ỹi|2.

Notice that for binary vectors, the Hamming-like distance defined above simplifies

to the typical Hamming distance metric.

Therefore, we can evaluate the deviation in the Hamming distance as follows

|DHL(x̃, ỹ)−DH(x,y)| ≤
n∑
i=1

∣∣x2i − x̃2i ∣∣+
n∑
i=1

∣∣y2i − ỹ2i ∣∣+ 2
n∑
i=1

|xiyi − x̃iỹi| .

Replacing equations (3.8) and (3.9) in the latter expression yields

|DHL(x̃, ỹ)−DH(x,y)| ≤
n∑
i=1

|2xiN (x)
i +N

(x)
i

2
|+

n∑
i=1

|2yiN (y)
i +N

(y)
i

2
|

+ 2
n∑
i=1

|xiN (y)
i + yiN

(x)
i +N

(x)
i N

(y)
i |.

Taking the expectation from both sides yields

E
[
|DHL(x̃, ỹ)−DH(x,y)|

]
≤ 2n

(
σN

√
2

π
+ σ2

N

)
+ 2n

(
σ2
N + σN

√
2

π

)
= 4nσN

(√ 2

π
+ σN

)
.

For the Gaussian noise model, we have been assuming that the memristor

array is ideal, i.e. ε = 0, and we derived the confidence bounds on the Hamming

distance deviation. Now, we can employ the same procedure to derive the effect

of non-ideality of the memristor array on the confidence bounds. Recall from

Lemma 3.2 that it has been shown that for enough hardware accuracy, Hamming

distance of two binary vectors can be calculated by a single equivalent conductance

measurement.
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Let x̃ = (x̃1, · · · , x̃n) and ỹ = (ỹ1, · · · , ỹn) be the noisy measurements of

binary vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) stored in the memristor,

where equations (3.8) and (3.9) describe the Gaussian noisy model. In the previous

subsection, we showed that for 0 < ε < 1/(2n−1), the Hamming distance deviation

can be bounded as follows

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 1 + ε

ε(1− ε)

{
(2− ε)E

[
|Gx̃,ỹ −Gx,y|

]
+ (1− ε)

}
.

From equation (3.5), we have

E
[
|Gx̃,ỹ −Gx,y|

]
≤ ε(1− ε)

1 + ε

n∑
i=1

E
[
|xi − x̃i|

]
+
ε(1− ε)

1 + ε

n∑
i=1

E
[
|yi − ỹi|

]
+

(1− ε)2

1 + ε

n∑
i=1

E
[
|xiyi − x̃iỹi|

]
≤ n

ε(1− ε)
1 + ε

σN

√
2

π
+ n

ε(1− ε)
1 + ε

σN

√
2

π
+ n

(1− ε)2

1 + ε

(
σN

√
2

π
+ σ2

N

)
= n

(1− ε)
1 + ε

σN

(
(1 + ε)

√
2

π
+ (1− ε)σN

)
.

Using the obtained bound, we have proved the following theorem in the recent

discussions.

Theorem 3.10. For Gaussian noisy measurements and 0 < ε < 1/(2n − 1), the

confidence bound on the Hamming distance deviation is

E
[
|DH(x̃, ỹ)−DH(x,y)|

]
≤ 1

ε

{
n(2− ε)σN

(
(1 + ε)

√
2

π
+ (1− ε)σN

)
+ (1− ε)

}
.

3.4.2 Multiple measurements

Thus far, we analyzed the confidence intervals for single-read scenario with respect

to a Gaussian model. Now, like we did for BSC model, we can investigate the effect

of multiple reads on the confidence interval improvements. More precisely, assume
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two binary vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) stored in a memristor

array. Each of two vectors x and y are read from the memristor m times and we

obtain measurement vectors x̃(j) = (x̃
(j)
1 , · · · , x̃(j)n ) and ỹ(j) = (ỹ

(j)
1 , · · · , ỹ(j)n ) for

1 ≤ j ≤ m. By the Gaussian model setup,

x̃
(j)
i = xi +N

(x)
i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

and

ỹ
(j)
i = yi +N

(y)
i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

where all the noise components are i.i.d. from N (0, σ2
N).

Now, we have to estimate vectors x̃ and ỹ based on noisy observations x̃(j)

and ỹ(j). For this model where we are dealing with zero-mean Gaussian noise, a

natural approach is taking the average from noisy measured vectors. Therefore,

we define two new vectors x̃ = (x̃1, · · · , x̃n) and ỹ = (ỹ1, · · · , ỹn) as follows

x̃ =
1

m

m∑
j=1

x̃(j) =
x̃(1) + · · ·+ x̃(m)

m
,

ỹ =
1

m

m∑
j=1

ỹ(j) =
ỹ(1) + · · ·+ ỹ(m)

m
.

As described in the beginning of the setup, an additive Gaussian noise distorts

the measurements. Hence, entries of vectors x̃ and ỹ can be expressed as

x̃i = xi +
1

m

m∑
j=1

N
(x)
i,j for 1 ≤ i ≤ n,

ỹi = yi +
1

m

m∑
j=1

N
(y)
i,j for 1 ≤ i ≤ n.
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Having these estimated vectors x̃ and ỹ, now we can analyze the expected

deviation in Hamming distance of vectors x and y. Recall that Hamming-like

distance of two real-valued vectors x̃ and ỹ is defined as

DHL(x̃, ỹ) =
n∑
i=1

|x̃i − ỹi|2.

Therefore, we can express the deviation between the actual Hamming distance

of vectors x and y and the Hamming-like distance between two noisy measurements

x̃ and ỹ. We have

|DHL(x̃, ỹ)−DH(x,y)| ≤
n∑
i=1

∣∣x2i − x̃2i ∣∣+
n∑
i=1

∣∣y2i − ỹ2i ∣∣+ 2
n∑
i=1

|xiyi − x̃iỹi|

=
n∑
i=1

∣∣∣∣∣ 1

m2

( m∑
j=1

N
(x)
i,j

)2
+

2

m
xi

m∑
j=1

N
(x)
i,j

∣∣∣∣∣
+

n∑
i=1

∣∣∣∣∣ 1

m2

( m∑
j=1

N
(y)
i,j

)2
+

2

m
yi

m∑
j=1

N
(y)
i,j

∣∣∣∣∣
+ 2

n∑
i=1

∣∣∣∣∣ 1

m2

m∑
j=1

N
(x)
i,j

m∑
j=1

N
(y)
i,j +

1

m
xi

m∑
j=1

N
(y)
i,j +

1

m
yi

m∑
j=1

N
(x)
i,j

∣∣∣∣∣
Taking the expectation from this inequality and using Lemma 3.9 yield

E
[
|DHL(x̃, ỹ)−DH(x,y)|

]
≤ 2n

(σ2
N

m
+ σN

√
2

π

)
+ 2n

(σ2
N

m
+ σN

√
2

mπ

)
= 2nσN

(
2
σN
m

+

√
2

π
+

√
2

mπ

)
.

Figure 3.5 depicts the improvement in the normalized confidence bounds for

different number of reads.
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Figure 3.5: Confidence bounds for multiple-reads: AWGN model

3.5 Conclusion

To put the discussions of this chapter in nutshell, we studied different models for

approximate computing for a specific function which was calculating the Hamming

distance between two binary vectors. Two canonical models, BSC and AWGN were

investigated in different situations. These situations vary with or without taking
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the effect of noise in measurements and non-ideality of resistive arrays and dealing

with single or multiple read scenarios.
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Conclusion

In this thesis, we explored the notion of approximate synchronization and com-

putation. Having stated the challenge of energy/time/hardware issues, seeking

approximate solutions makes sense. Firstly, we studied the approximate synchro-

nization problem and as the contribution, upper bounds on the optimal required

rate were provided, for uniform and non-uniform i.i.d. sources. We formulated

the problem in the context of distributed source coding and studied that from an

information-theoretic perspective. They showed that how much rate one can save

allowing a limited distortion in the synched files.

The results regarding approximate synchronization have been submitted to

the 2016 IEEE Information Theory Workshop (ITW) [RSTD16], as a part of the

contributions.

In the second part of the thesis, we explored the notion of approximate so-

lutions this time for computation. We centered our focus on Hamming distance

calculation of two binary vectors. We provided the motivation for in-memory com-

puting and extended the results from noise-free computation to noisy computation.

As the first step, we mathematically modeled the noise in measurements and con-

sidered two canonical model for that, bit-flipping and Gaussian noise. Confidence
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bounds on deviation in the distance due to noise were studied for two single and

multiple measurements scenarios.
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