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ARTICLE

Genomic variants affecting homoeologous gene
expression dosage contribute to agronomic trait
variation in allopolyploid wheat
Fei He 1,2,22, Wei Wang 1,3,22, William B. Rutter 1,4, Katherine W. Jordan 1,5, Jie Ren1,6, Ellie Taagen7,

Noah DeWitt 8,9, Deepmala Sehgal 10, Sivakumar Sukumaran 10, Susanne Dreisigacker 10,

Matthew Reynolds 10, Jyotirmoy Halder11, Sunish Kumar Sehgal11, Shuyu Liu 12, Jianli Chen13, Allan Fritz14,

Jason Cook15, Gina Brown-Guedira8,9, Mike Pumphrey 16, Arron Carter 16, Mark Sorrells7,

Jorge Dubcovsky 17, Matthew J. Hayden 18,19, Alina Akhunova 1,6, Peter L. Morrell 20, Les Szabo21,

Matthew Rouse21 & Eduard Akhunov 1,3✉

Allopolyploidy greatly expands the range of possible regulatory interactions among func-

tionally redundant homoeologous genes. However, connection between the emerging reg-

ulatory complexity and expression and phenotypic diversity in polyploid crops remains

elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci

(eQTL) and evaluate their effects on the population-scale variation in homoeolog expression

dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is

strongly affected by both selection and demographic events. Though trans-acting effects play

major role in expression regulation, the expression dosage of homoeologs is largely influ-

enced by cis-acting variants, which appear to be subjected to selection. The frequency and

expression of homoeologous gene alleles showing strong expression dosage bias are pre-

dictive of variation in yield-related traits, and have likely been impacted by breeding for

increased productivity. Our study highlights the importance of genomic variants affecting

homoeolog expression dosage in shaping agronomic phenotypes and points at their potential

utility for improving yield in polyploid crops.
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Whole-genome duplications (WGD) can provide short-
term evolutionary advantages1,2 and likely played an
important role in the origin of most crops3,4. Wheat

experienced more than one round of WGD5. Compared to
their diploid relatives, polyploids have broader geographic
distribution6. This suggests the importance of WGD for
improving the crops’ fitness in new environments, a factor that
was critical for the spread of agriculture around the world1,6. The
success of polyploid crops can potentially be attributed to the
adaptive genetic diversity contributed by ancestral species or
generated de novo after WGD2,6–9. The redundant genetic nature
of polyploid genomes could promote the accumulation of novel
variants without detrimental effects on fitness, consistent with the
observed mutational robustness of polyploids1,2,8,10–12.

Regulatory variants affecting gene expression levels play an
important role in adaptive evolution and variation in complex
traits13,14. WGD greatly expands the range of possible trans-
interactions for regulatory variants controlling the expression of
redundant homoeologous genes from different genomes15,16. This
contributes to substantial changes in the expression patterns of
polyploids relative to their diploid ancestors4,17–20. The genomic
distribution of these trans-acting variants and their role in the
regulation of homoeologous (duplicates from distinct sub-
genomes) genes in polyploid crops is not well understood, though
a transcriptomic study of polyploid cotton has highlighted the
importance of trans-regulatory evolution for domestication4. An
aspect of regulation unique to WGD is that homoeologous reg-
ulatory proteins can now interact with the redundant regulatory
elements in the duplicated genomes creating a more complex
regulatory network. In addition, many regulatory variants linked
with one of the homoeologs have the potential to alter a gene’s

expression and change its dosage relative to other homoeologs
(Fig. 1a). While previous genetic mapping studies in allopolyploid
wheat identified several genes where regulatory variants asso-
ciated with adaptive and domestication traits21–24 also change the
relative levels of homoeolog expression, the overall impact of
genomic variants on the population-scale variation in the relative
expression of homoeologs and their role in shaping adaptive traits
in polyploid crops remains poorly understood.

Here, we perform expression quantitative trait loci (eQTL)
analysis using geographically and genetically diverse allohex-
aploid wheat (genome formula AABBDD) accessions. The study
use association mapping to identify cis- and trans-acting variants
that explain the variance in homoeologous gene expression, with
gene expression treated as a phenotype. We partition the genetic
variation of gene expression traits using the approach of Yang
et al.25. This approach can separate the genetic effects of portions
of the genome on gene expression variance, and we use it to
explore the relative contribution of variants from the three wheat
genomes to population-scale transcript abundance variation from
homoeologous genes. We show that the relative contribution of
cis- and trans-acting variants to expression of homoeologous
genes is affected by demographic events and selection. The rela-
tive expression dosage of homoeologous genes is primarily
defined by the frequency of rare and common cis-regulatory
variants whose accumulation is associated with biased homoeolog
expression. The analyses of frequency, effect sizes, and levels of
linkage disequilibrium between the cis-variants of homoeologous
genes suggest that the relative homoeolog expression dosage is
under selection. By investigating the distribution of cis- and trans-
acting eQTL across genomic regions showing distinct epigenetic
marks and chromatin architecture26–28, we demonstrate that

Fig. 1 Relative expression of homoeologous genes in the diverse panel of wheat lines. a Homoeologous gene pairs with matching and biased expression
abundance of homoeolog A relative to homoeolog B. Red and green colors show low-expressing homoeologs in the A and B genomes, respectively.
Increase in the frequency of accessions with a biased homoeolog is expected to reduce correlation between the levels of homoeolog expression measured
in the panel. b Distribution of Spearman correlation coefficients (SCC) calculated between the AB, BD, AD gene pairs within the same homoeologous gene
triplets (red) and random (black) pairs of genes using gene expression values from the 198 accessions. c The mean of the sum of the total triplet
expression (A+ B+D) in groups of accessions with (y-axis) and without (x-axis) one of the gene copies downregulated. The red and blue dotted lines
show the 1:1 and 2:3 combined expression ratios, respectively. Source data are provided as a Source Data file.
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eQTL are enriched in the regions of active chromatin. Finally,
summary-level eQTL and GWAS mapping data29, and gene co-
expression networks (GCN) are analyzed jointly to study the role
of variants linked with homoeologous gene regulation in shaping
variation in major agronomic traits in wheat. We show that the
frequency of genomic variants associated the relative expression
dosage of homoeologous genes is predictive of variation in pro-
ductivity traits in allopolyploid wheat and appear to be targeted
by improvement selection. Thus, our study highlights the
importance of WGD and emerging regulatory complexity in
the evolution of phenotypic diversity that serves as a basis for the
development of adapted crop varieties.

Results
Population-scale homoeologous gene expression variation. We
collected RNA-seq data from total RNA isolated from 2-week-old
seedlings of 198 diverse accessions (Supplementary Data 1)
selected to represent the broad geographic and genetic diversity of
bread wheat. An average of 65.7 million paired-end Illumina
reads (2 × 100 bp) were collected for each sample, and after
quality trimming mapped to the reference genome RefSeq v.1.05.
The proportion of reads unambiguously mapped to the individual
wheat genomes was 81% (Supplementary Data 1). A simulation-
based estimate suggested that the alignment settings used in our
study provide 98% correct read mapping to the polyploid wheat
genome (see “Methods”). Expression levels measured as Tran-
scripts Per Million (TPM) were estimated for high-confidence
(HC) genes in RefSeq v.1.0, with 52,511 transcripts (47,274 genes)
showing TPM > 0.5 in at least three wheat lines (PRJNA670223)
(Supplementary Data 2). In addition, we have analyzed RNA-seq
previously generated for 90 wheat lines from spikes at the double-
ridge development stage30.

In allohexaploid wheat, genes appear as homoeologs present in
three (‘triplets’) or two copies or as singletons18. Compared to
singletons, on average, homoeologs in triplets showed higher
expression levels (ANOVA F-test= 87, df= 1, p= 2.2 × 10−16),
but lower expression variance (Supplementary Fig. 1a). The inter-
genomic comparison of the population means of homoeolog
expression in seedlings showed a positive correlation (Supple-
mentary Fig. 1b), indicating that the relative expression levels of
the most of homoeologs in our wheat panel tend to match. As a
measure of the relative expression of homoeologs at the
population level, we used Spearman Correlation Coefficient
(SCC), which was calculated for each pair of homoeologs using
their expression values in the panel of 198 accessions. While a
strong positive correlation would be indicative of matching
homoeolog expression levels (Fig. 1a) in most accessions in the
panel, an increase in the proportion of accessions with biased
homoeologs would decrease SCC (Fig. 1a). Compared to random
pairs of genes selected from the distinct wheat genomes, the SCC
distribution for the pairs of homoeologs was strongly shifted
towards positive values (Fig. 1b, c), suggesting that the majority of
accessions in the panel carry homoeologs with the matching levels
of expression. The SCCs calculated for the same sets of
homoeologs using RNA-seq data from both the seedlings and
spike tissues30 collected from a distinct set of accessions were
generally similar, suggesting that tissue-specific factors do not
substantially affect co-expression of the majority of homoeologs
at the population scale (Supplementary Fig. 1c).

In polyploids, the relative dosage of duplicated genes tends to
be balanced18,31,32. To investigate whether the downregulation of
one of the homeologs in the population is compensated by
increased expression of other homoeologs, we selected a set of
1443 gene triplets that met two criteria: (1) one out of three
homoeologs was downregulated (TPM < 0.1) in at least two wheat

lines, and (2) at least two wheat lines have all three homoeologs
expressed (TPM > 2). We applied these criteria to each triplet to
split 198 accessions into two groups, one group composed of
accessions with one of the homoeologs downregulated and
another group including accessions with all three homoeologs
expressed. The sum of expression values from all three
homoeologs (A+ B+D) was calculated for each accession and
used to derive the mean of total homoeologs’ expression for each
group. In most cases, the mean expression ratio between these
two groups across gene triplets (Fig. 1c) was below 1:1 but above
2:3, suggesting that decreased combined expression associated
with homoeolog downregulation is not fully compensated by
increase in the expression of other homoeologs.

Partitioning genetic variance for gene expression traits onto
different wheat genomes. The genetic architecture of gene
expression could be complex and driven by multiple cis- and
trans-acting variants with a broad range of effect sizes. To
account for the cumulative effect of all SNPs from the distinct
wheat genomes on the expression of individual homeologs, we
performed partitioning of genetic variation (Fig. 2a)25. For this
purpose, 2,021,936 SNPs with MAF > 0.05 identified in our panel
were grouped into three genome-specific sets from the A, B, and
D genomes. These sets were used to build genetic relationship
matrices and estimate the genetic variance25 for the expression of
each gene (Supplementary Data 3). SNPs located within the same
genome as a gene of interest were referred to as cis-genomic
SNPs, whereas SNPs located in other genomes were referred to as
trans-genomic SNPs (Fig. 2a). For the 10,000 most highly
expressed genes, the mean of gene expression variance explained
by the entire SNP set from all three wheat genomes was 40.4%
(Supplementary Fig. 2a and 2b). The D genome explained a lower
proportion of variance (7.7%) in gene expression than either
the A (19.1%) or B (13.6%) genomes (Mann–Whitney test
WA/D= 23,172,000, p-value < 2.2 ×;10−16; WB/D= 41,122,000,
p-value < 2.2 × 10−16) (Supplementary Figs. 2a and 2b).

We found that, on average, cis-genomic SNPs from the A or B
genomes explained a higher proportion of gene expression
variance (21.7% and 28.7%, respectively) than trans-genomic
SNPs (5–17%) from other genomes (Fig. 2a). However, in the
evolutionarily younger D genome33, the proportion of variance
explained by the cis-genomic SNPs (12%) was only slightly higher
than that explained by the trans-genomic SNPs from the A (11%)
and B (9%) genomes (Fig. 2a). The results of variance partitioning
in the developing spikes30 were consistent with the results
obtained in seedlings (Fig. 2a).

The expression variance of a number of genes was largely
explained by the trans-genomic SNPs (Supplementary Data 3).
Among 34,691 genes with at least 20% of the total variance in gene
expression explained jointly by SNPs from all three genomes, 6173
genes (17.8%) had <1% of variance explained by the cis-genomic
SNPs, with the remaining variance explained by the trans-genomic
SNPs. While this group of genes showed significantly reduced cis-
regulatory diversity compared to trans-regulated genes (Fig. 2b),
no significant reduction of diversity between cis- and trans-only
regulated genes (Wilcoxon rank sum test p-value = 0.1) was
found in wild emmer using data from the previously published
study8, indicating that shift towards trans-regulation in these
genes from the A and B genomes is likely associated with diversity
loss during wheat improvement. Of these 6173 genes, 47.8% were
located in the D genome, which shows reduced diversity
(πD= 0.0003) relative to the A and B genomes (πA= 0.0007 and
πB= 0.0010)34. This result also indicates that polyploidization
bottleneck, which disproportionately affected the D genome,
explains most of the cis-regulatory diversity loss in wheat.
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We further split all SNPs into cis-genic (SNPs within ±1Mb
region around genes) and trans-genic (SNPs outside of ±5Mb
region around genes and SNPs located on other wheat
chromosomes) subsets. The partitioning of variance for gene
expression showed that the average variance explained by trans-
acting variants (19.3%) is substantially higher (Wilcoxon test,
W= 3,228,268, p-value < 2.2e−16) than that explained by cis-
acting variants (12.3%). We also compared the means of total
variance explained for two groups of genes: (1) genes with
variance explained only by cis-genic SNP, where trans-genic SNPs
contribute <1% to variance, and (2) genes with variance explained
only trans-genic SNPs, where cis-genic SNPs contribute <1% to
variance. The means of variance in these two groups of genes
were similar (47.0% vs. 46.4%), suggesting that in the cases of cis-
regulatory diversity loss in the allopolyploid genome, the
contribution of trans-genic variants to expression variance is
similar to the contribution of cis-genic variants.

The effects of cis- and trans-acting variants on expression
correlation between homoeologs. The accumulation of rare and
common mutations in gene promoters leads to dysregulation of
gene expression in diploid genomes35. Even though polyploidy
was expected to increase the mutation load in wheat8,18 and result
in expression dosage bias, the majority of homoeolog pairs in our
study showed matching levels of expression. To better understand
the genetic basis of homoeolog co-expression, we compared the
proportions of expression variance in individual homoeologs
explained by cis- and trans-genic SNPs among pairs showing the

distinct levels of expression correlation (SCC) (Fig. 2c). An
increase in SCC was accompanied by a decrease in the total
variance explained, with the largest proportion of explained
variance observed for homoeologs with SCC < 0 (Fig. 2c). While
SCC increase was accompanied by threefold decrease in variance
explained by trans-genic SNPs, more substantial 11-fold decrease
in variance explained was observed for cis-genic SNPs, reaching
only 1.6% for homoeologs showing high correlation in the
expression levels (SCC > 0.90) (Fig. 2c). These results suggest that
discordant expression of homoeologs in the panel is likely asso-
ciated with the accumulation of cis- rather than trans-regulatory
diversity affecting the homoeologous genes. This conclusion is
consistent with a decrease in the number of common (MAF
≥ 0.05) and rare (MAF < 0.05) SNPs around the homoeologs with
an increase in levels of their expression correlation (Fig. 2d).
These trends were consistent across all three wheat genomes
(Supplementary Fig. 3a and 3b), indicating that negative rela-
tionship between cis-genic diversity and SCC is independent of
the levels of genetic diversity in individual genomes. The lack of
strong relationship between the inter-genomic sequence diver-
gence and SCC suggests that divergence in the regulatory regions
inherited from diploid ancestors unlikely has substantial global
impact on the relative levels of homoeolog expression (Supple-
mentary Fig. 3c).

To assess the impact of rare cis-variants (MAF < 0.05) on the
homoeolog expression levels, we investigated the relationship
between the expression ranks of each homoeolog in the
population, ordered from lowest to highest expression levels
across wheat accessions, and the rare allele load in the upstream

Fig. 2 Partitioning variance in homoeolog expression using SNPs from different parts of the wheat genomes. a An example of genetic variance
partitioning for a gene located in the A genome using SNPs from the same genome (cis-genomic SNPs) or other homoeologous genomes (trans-genomic
SNPs). As shown in the seedling panel, for genes in the A genome, variance explained by cis-genomic SNPs was 3.1 and 5.7 times higher than that explained
by the B and D genomes’ trans-genomic SNPs, respectively. Expression variance in the B genome was better explained by the B genome SNPs, which
explained 1.3 and 3.4 times more variance than the SNPs from the A and D genomes, respectively. The variance explained by the cis-genomic SNPs from
the D genome was comparable to that explained by the trans-genomic SNPs from the A and B genomes. Top 10,000 genes showing the highest expression
variance were used in the analyses. b A 52.2% reduction in the mean SNP diversity (two-sided Mann–Whitney testW= 142,90,644, p-value < 2.2 × 10−16)
was observed near 6173 genes with the expression variance mostly explained by trans-genomic SNPs, compared to 2852 genes with the expression
variance explained predominantly by the cis-genomic SNPs. In (a) and (b), box shows the median and interquartile ranges (IQR). The end of the top line is
the maximum or the third quartile (Q)+ 1.5 × IQR. The end of the bottom line denotes either the minimum or the first Q− 1.5 × IQR. The dots are more or
less than Q ± 1.5 × IQR. c The relationship between the proportion of genetic variance explained by cis- and trans-genic SNPs calculated for individual
homoeologs and the levels of expression correlation (SCC) between the pairs of homoeologs in the wheat panel. The mean of genetic variance was
calculated for data binned based on the SCC values. d The counts of rare and common SNPs in the genic regions of the 21,809 pair-wise combinations of
homoeologs (gene body ± 10 kb) showing different levels of expression correlation. The mean and standard error of SNP counts were calculated for data
binned based on the ranked SCC values. Source data are provided as a Source Data file.
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5-kb regulatory regions. In humans and maize35,36, the total
number of rare alleles in the regulatory regions coincides with the
extremely low or high levels of expression in the population. We
observed a similar trend using the entire set of homoeologous
genes (Supplementary Fig. 2c). However, a subset of homoeologs
showing high levels of expression correlation (SCC > 0.8) showed
no enrichment for down- or upregulating rare alleles (Supple-
mentary Fig. 2d). Combined together, our results suggest that the
biased expression of homoeologs in the panel is primarily
associated with the accumulation of both common and rare cis-
acting variants.

Mapping and functional annotation of variants affecting gene
expression variation. We conducted genetic mapping of cis- and
trans-acting variants (eQTL) associated with the expression var-
iation of individual genes among 191 wheat lines (Supplementary
Data 1). After LD-based merging (r2 ≥ 0.2), we identified 36,898
and 15,238 significant SNPs (FDR < 10−5) in the RNA-seq
datasets from wheat seedlings and spikes, respectively (Supple-
mentary Data 4 and 5; Supplementary Figs. 4 and 5). A con-
servative criterion was applied to define trans-eQTL as eQTL
located in different genomes or chromosomes relative to the
target gene, and cis-eQTL as eQTL located ±1Mb around a target
gene. According to these criteria, in the seedlings, 8568 cis-eQTL
and 14,645 trans-eQTL were associated with the expression of
8315 (8837 transcripts) and 8255 (8500 transcripts) genes,
respectively. Out of these cis- and trans-eQTL in the seedlings,
247 eQTL affecting the expression of 1,469 genes (1500 tran-
scripts) overlapped. In the RNA-seq data from spikes30, we
identified 3172 cis-eQTL for 3476 transcripts, and 9891 trans-
eQTL for 7250 transcripts. The location of a cis-eQTL density
peak averaged across all target genes relative to the coding
sequence start site was similar between the A and B genomes but
was ~200 bp more distant for the D genome (Supplementary
Figs. 6a, 6b) and likely to be a consequence of lower diversity and
more extended LD in the D genome34.

The functional properties of identified eQTL were evaluated by
calculating their enrichment within the specific regions of the
genome tentatively affecting the coding potential of a gene or its
regulation. The effects of SNPs on coding sequences were assessed
using SNPeffect37. SNPs resulting in splice-site disruption and
premature termination codons were considered as putatively
deleterious. The regulatory regions were previously defined based
on distinct epigenetic marks and open chromatin using a
combination of MNase digest26, DNaseI digest, and combined
analyses of epigenetic variation, chromatin immunoprecipitation,
and DNase-seq data27. The greatest levels of cis- and trans-eQTL
enrichment relative to all variants in the genome were found for
putatively deleterious variants, followed by missense and synon-
ymous variants (Fig. 3a). Both cis- and trans-eQTL were found
enriched in the regulatory regions (Fig. 3b, c) and depleted in the
regions of closed chromatin hyper-resistant to MNase treatment
(Fig. 3b). The cis- and trans-eQTL showed similar levels of
enrichment across the various epigenetic marks, with both types
of eQTL enriched for epigenetic modifications associated with
gene body (H3K4me1), transcription (H3K36me3), and active
expression (H3K27ac, H3K4me3) (Fig. 3e, f)27,38,39. Simulta-
neously, we observed a depletion of both cis- and trans-eQTL
within epigenetic marks often associated with the repression of
gene expression (H3K27me3) or transposable elements
(H3K9me2) (Fig. 3c)40,41.

Recent studies indicate that interaction between distant
regulatory elements and their target genes could be facilitated
by 3D chromatin contacts42, which is consistent with the
enrichment of cis-eQTL within regions involved in the formation

of chromatin loops in humans and maize42,43. To investigate the
potential involvement of chromatin loops in gene expression
regulation in wheat, we compared the distribution of eQTL-target
gene pairs across the interacting regions identified by Hi-C28 in
cultivar Chinese Spring, which was not part of our diversity panel.
Although, the low resolution of wheat Hi-C data does not allow
us to map precisely regulatory regions involved in interaction, it
could be used to assess the enrichment of eQTL-target gene pairs
within chromatin loops relative to randomized data. First, we
found that both cis- and trans-eQTL p-values positively correlate
with the frequency of Hi-C contacts. This suggests that regions
harboring eQTL-gene pairs showing stronger association are also
more likely to have a higher frequency of chromatin contacts than
regions harboring eQTL-gene pairs showing weaker associations
(Fig. 3d, e, Supplementary Data 6). Second, the regions harboring
trans-eQTL between both homoeologous and non-homoeologous
chromosomes showed elevated Hi-C contacts (log10[Hi-
C]= 1.24) compared to a distribution based on the 100
randomized samples (mean log10[Hi-C]= 0.92) (Fig. 3g). This
result indicates that the probability of trans-eQTL-target gene
pair occurrence within the chromatin loops is substantially higher
than within the randomly selected regions. Among trans-eQTL-
target gene pairs with a Hi-C contact frequency >50, 15% were
located with the homoeologous chromosome regions, which are
involved in chromatin interaction more frequently than non-
syntenic regions (Fig. 3f, Supplementary Data 6)28.

Genetic architecture of homoeologous gene expression reg-
ulation. To better understand the role of polyploidy in the reg-
ulation of homoeologous gene expression, we analyzed the
genomic distribution of trans-eQTL and their gene targets. The
total number of trans-eQTL in the A and B genomes for target
genes in the same genomes was similar (Fig. 4a). However, the
total number of trans-eQTL in the A and B genomes targeting
genes in the D genome was 4.0 and 3.6 times higher than the total
number of trans-eQTL in the D genome targeting genes in the A
and B genomes, respectively (Fig. 4a). These results are consistent
with the differences in the levels of genetic diversity between the
wheat genomes34 that also contributed to differences in the
proportions of genetic variance for gene expression explained by
SNPs from different genomes (Fig. 2a).

Also, we observed a tendency for the co-localization of trans-
eQTL and target genes in the syntenic regions of homoeologous
chromosomes (Fig. 4b, Supplementary Figs. 4 and 5). These
patterns of trans-eQTL-target gene distribution are likely
associated with the presence of shared regulatory elements in
homoeologous genes that influence their co-regulation by
regulatory feedback loops conserved among homeologs, as was
demonstrated for the three homoeologs of the Vrn-1 gene44. This
hypothesis is supported the finding that, in a set of the 6,371
homoeologous gene triplets, 23% of homoeologs shared at least
one eQTL, and that correlation in expression levels between the
homoeologs increased with an increase in the proportion of
shared eQTL (Fig. 4c).

Prior studies showed that gene expression is under purifying
selection45,46. However, it remains unclear how genetic redun-
dancy provided by polyploidy would affect selection on the
expression of homoeologs. To answer this question, we compared
the relationship between the minor allele frequency and the effect
size of cis-eQTL for two groups of genes, homoeologs and
singletons. Purifying selection acting against cis-eQTL with strong
effects on gene expression results in negative correlation between
cis-eQTL minor allele frequency and effect size45. We argue that if
genetic redundancy influences the strength of purifying selection
on the expression of duplicated genes, we expect to see the
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reduced or lack of correlation between the allele frequency and
effect size in homoeologs compared to singletons. However, we
found that both groups of genes showed significant negative
correlations (homoeologs: SCC=−0.23, p < 2.2e–16; singletons:
SCC=−0.20, p= 0.002) between the cis-eQTL minor allele
frequency and effect size (Fig. 4d). There was no significant
difference between the two correlation coefficients (Fisher’s z-test:
z= 0.53, p-value= 0.60). The negative relationship between
frequency and effect size was observed in homoeologs even for
the subset of cis-eQTL whose effects are detectable at all
frequencies (Supplementary Fig. 7). These results indicate that
the expression levels of both homoeologs and single-copy genes
are likely under purifying selection. Compared to homoeologs,
the single-copy genes had cis-eQTL effect sizes higher across
all MAF classes, likely due to the increased contribution of

trans-acting variants to the expression variation of homoeologs
compared to that of the single-copy genes.

To understand the effects of cis- and trans-eQTL on the
relative levels of homoeolog expression in our panel, we
investigated the distribution of expression correlation values
between the pairs of homoeologs (SCC) for the sets of
homoeologs grouped based on the following eQTL-target gene
configurations: (1) a homoeolog pair has no eQTL, (2) a
homoeolog pair is regulated by shared trans-eQTL and has no
cis-eQTL, (3) each gene within a homoeolog pair is regulated only
by cis-eQTL, and (4) one of the genes within a homoeolog pair
has cis-eQTL that also acts as a trans-eQTL for another
homoeolog (Fig. 4e, Supplementary Data 7). We found that
homoeolog pairs with no eQTL associated with their expression
showed high levels of expression correlation (mean SCC= 0.57),

Fig. 3 Functional annotation of eQTL. The x-axis represents eQTL enrichment expressed as the log2 of the proportion of eQTL within specific classes of
SNP variants (y-axis) relative to the proportion of eQTL within the random samples of SNPs. All analyses of enrichment and Hi-C contacts are based on
2,021,936 SNPs, 14,645 trans-eQTL and 8568 cis-eQTL. a Mean enrichment of cis-eQTL and trans-eQTL among SNP variants from different functional
classes defined based on gene and transposable element (TE) annotation (N= 2,021,936 SNP sites). bMean enrichment of cis-eQTL and trans-eQTL in the
MNase Sensitive Footprints (MSF), MNase Resistant Footprints (MRF), and regulatory regions identified based on the sensitivity to DNase I treatment,
epigenetic variation, and open chromatin marks. Enrichment was assessed relative to genome-wide patterns, except for MSF vs MRF, where enrichment
was tested for eQTL located within MSF relative to MRF. ‘Reg’ region corresponds to regulatory elements, as defined in Li et al.27. ‘Reg2’ corresponds to
regions classified as states 5–7 in the same study. c Mean enrichment of cis-eQTL and trans-eQTL in the epigenetically marked regions. d Relationship
between the binned trans-eQTL p-values and frequency of Hi-C contacts between regions harboring a trans-eQTL and its target gene. Data are presented as
mean values ± SEM. e Relationship between the binned distal (>2 Mbp) cis-eQTL-target gene p-values and frequency of Hi-C contacts between regions
harboring a cis-eQTL and its target gene. Data are presented as mean values ± SEM. f Comparison of Hi-C contacts (log10-transformed) between regions
harboring trans-eQTL-target gene pairs to Hi-C contacts between a random set of genes (two-sided Wilcoxon rank-sum test, W= 191,789,322, p-
value= 8.8e−16). g Comparison of Hi-C contacts (log10-transformed) between the pairs of homoeologs and random pairs of genes.
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consistent with the observed decrease in both SNP diversity
(Fig. 2d) and expression variance explained by SNPs (Fig. 2c)
with an increase in the homoeolog expression correlation. The
expression correlation between homoeologs regulated only by
shared trans-eQTL without effects detected from cis-eQTL
showed bi-modal distribution with most homoeologs having a
strong positive correlation (mean SCC= 0.59) (Fig. 4e); the
subgroup with a higher correlation showed less diversity in the
cis-regions than the subgroup with the lower correlations. These
findings were consistent with the observation that the expression
variance of the highly correlated homoeologs is defined largely by
the trans-genic variants (Fig. 2c). Compared to these two eQTL-
target gene configurations (1 and 2), more than a threefold
reduction in the level of expression correlation between the
homoeologs (SCC= 0.17) was associated with the presence of cis-
eQTL, which appear to change the relative expression dosage of
homoeologs in the panel. The set of homoeologs having variants
acting as cis-eQTL for one homoeolog and trans-eQTL for
another homoeolog showed a negative expression correlation
(SCC=−0.26) (Fig. 4e). These cases represent an extreme form
of homoeolog expression bias, where a high-expressing homo-
eolog in one genome is often associated with a low-expressing
homoeolog on another genome (Fig. 1a).

Joint eQTL and GWAS analyses of agronomic traits. Recent
studies have demonstrated the utility of gene expression data for
interpreting GWAS results and identifying candidate causal genes
by jointly analyzing eQTL and SNPs linked with trait

variation29,43,47–49. Consistent with these findings, we found a
significant enrichment of cis-eQTL among SNPs associated with
variation in yield component and development traits in a diverse
set of wheat lines (Supplementary Fig. 8, Supplementary
Data 8–9). In addition, we used the results of QTL mapping in bi-
parental populations and diversity panels to assess the overlap of
eQTL detected in our study with significant marker-trait asso-
ciations (MTAs) for a number of agronomic traits identified in
WheatCAP (www.triticeaecap.org) and IWYP (iwyp.org) projects
(Supplementary Note 1, Supplementary Data 10). Using strict
criteria for overlap (±1 kb), out of 1,112 non-redundant MTAs,
70 and 36 MTAs had cis-eQTL and trans-eQTL located within
±1 kb, respectively. While for trans-eQTL, this overlap was not
substantially different from the randomized control, for cis-eQTL,
this overlap was nearly two times higher than the maximum
overlap of 33 eQTL obtained in the randomized control (Sup-
plementary Fig. 8d and 8e). Consistent with an earlier study, these
results suggest that the trait-associated SNPs are more likely to be
cis-regulatory rather than trans-regulatory variants50.

Further, we used GWAS and eQTL summary-level Mendelian
Randomization (SMR) data analysis29 to detect candidate genes
whose expression levels co-vary with phenotypes due to
pleiotropy or causal association (Fig. 5a). We obtained the SNP
effects by performing GWAS for 14 productivity traits evaluated
in two wheat populations, one characterized in this current study
(see “Methods”) and another characterized in the 1000 wheat
exomes project8. By applying SMR to test for association between
gene expression and productivity traits, we detected 971 and 424

Fig. 4 Effects of cis- and trans-eQTL identified in wheat seedlings and spikes on homoeologous gene expression. a The total number of trans-eQTL
targeting genes located either in the same genome (A→A, B→ B, D→D) or in different genomes (A→ B, A→D, B→A, B→D, D→A, D→ B). b
Location of eQTL relative to positions of target genes on wheat chromosomes 2A, 2B, and 2D in wheat spikes. c. Distribution of Spearman Correlation
Coefficient (SCC) estimated for the pairs of homoeologs that either share at least one eQTL or do not share any eQTL. d The relationship between cis-eQTL
minor allele frequency and effect size (absolute values) for two groups of genes, homoeologs, and singletons. Box shows the median and interquartile
ranges (IQR). The end of the top line is the maximum or the third quartile (Q)+ 1.5 × IQR. The end of the bottom line denotes either the minimum or the
first Q− 1.5 × IQR. e Distribution of expression correlation values between the pairs of homoeologs for various eQTL - target gene configurations. A pair of
homoeologs from chromosomes 3B and 3D was used to illustrate locations of cis- and trans-eQTL relative to their target genes. Source data are provided as
a Source Data file.
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genes (p-value < 10−4) using eQTL from the seedlings and spikes,
respectively (Supplementary Data 11). Since the association of
variants with gene expression and traits could be due to either
pleiotropy or linkage, a HEIDI method was applied to distinguish
between these two scenarios29. A total of 329 and 95 genes
identified using the seedling and spike eQTL, respectively, passed
the HEIDI test (p-value ≥ 0.05) (Supplementary Data 11). Among
these genes we had homologs that showed association with
productivity and development traits in wheat and other plants,
supporting the utility of SMR for investigating genetic mechan-
isms underlying trait variation in wheat. To connect the SMR
candidate genes and biological pathways, we built an eQTL-based
GCN (Fig. 5a), which includes genes co-expressed with the SMR
candidate genes, as well as genes identified as regulators and
regulatory targets in the wheat eQTL map (see “Methods”,
Supplementary Figs. 9 and 10, Supplementary Data 12–14).

In rice, SPL14 was linked with increased panicle branching and
yield51, but no TaSPL14 alleles positively affecting productivity
traits in wheat were reported. Here, we show that the TaSPL14
transcription factor (TraesCS5B01G512800) is associated with
variation in spike compactness, grain length, and harvest weight
(Fig. 5b, Supplementary Data 11), consistent with the decreased
spikelet number and thousand-grain weight observed in wheat
mutants with the TaSPL14 gene knocked-out52. Among genes
identified by SMR and connected with the TaSPL14 in the eQTL

network (Fig. 5a, b) was the homolog of the FAR1 gene,
responsible for phytochome A-mediated far-red response,
associated with flowering time regulation in Arabidopsis and
wheat53,54. The wheat homologs of FAR1 were also differentially
expressed in wheat lines with the knocked-out homolog of
SPL1452, suggesting that FAR1 is likely one of the downstream
TaSPL14 regulation targets in wheat.

The SMR analysis linked the Early Flowering 3 (TaElf3) gene in
the B genome (TaElf3-B1) with heading date (HD) and spikelet
number per spike (SPN) in our population (Fig. 5b). A
subtelomeric deletion polymorphism, including the TaElf3-D1
gene, also detected in our population (Supplementary Fig. 11a),
was previously associated with the heading date variation in
wheat55. We showed that TaElf3-B1 expression is associated with
a trans-eQTL on chromosome 1D (pos. 493,768,787 bp), which is
in strong LD (r2 > 0.8) with variants that act as a cis-eQTL for
TaElf3-D1 (Fig. 5c), and likely linked with the presence/absence
variation (PAV) affecting TaElf3-D1.

The lack of the TaElf3-D1 transcripts in accessions with the
terminal deletion leads to biased expression of the TaElf3-D1 and
TaElf3-B1 homoeologs, and negative correlation between the
expression levels of these homoeologs in the panel (SCC=−0.18,
p-value= 0.01) (Fig. 5c). The higher expression of TaElf3-B1 in
lines with the TaElf3-D1 deletion than in the lines without the
deletion (t-test p-value= 2 × 10−4) (Supplementary Fig. 11b)

Fig. 5 Joint eQTL and GWAS analysis of agronomic traits in wheat. a Outline of the strategy used to integrate eQTL and GWAS data to investigate the
genetic basis of yield component and development trait variation in wheat (see “Methods”). We used field-based phenotyping data collected for a diverse
panel of ~800 wheat accessions from the 1000 wheat exomes project8 including grain filling period (GFP), harvest weight (HW), drought susceptibility
index for harvest weight (HWS), heading date (HD) and plant height (PHT) traits. A set of phenotypic traits was collected for a diverse panel of 400 wheat
accessions: grain length (GL), grain width (GW), thousand-grain weight (TGW), grain area (GRA), spike compactness (SPC), spikelet number per spike
(SPN), awnedness (AWN), and height (PHT) (Supplementary Data 10). b Gene co-expression network (GCN) modules, including TaSPL14 and Elf3 genes,
are enriched for genes associated with agronomic traits in SMR analyses. c eQTL located on chr. 1D acts as a cis-variant for Elf3-D1:TraesCS1D01G451200
(GWAS FDR-corrected p-value= 4e−54) and is tightly linked (r2 > 0.8) with variants acting as trans-variants for Elf3-B1:TraesCS1B01G477400 (GWAS
FDR-corrected p-value= 9e−10). A deletion of Elf3-D1 (Elf3-D1Δ locus) in wheat affects both HD and SPN traits. d. Distribution of LD between negatively
correlated homoeologs compared to LD between the random set of homoeolog pairs. LD was measured between the cis/trans-eQTL in one homoeologue
and SNPs within a 2-Mb window, including another homoeologue. Only LD values above r2 > 0.2 were plotted. The right y-axis shows the ratio of SNP pairs
within different LD ranges (the dotted line shows a ratio of 1.0) estimated for the negatively correlated and random pairs of homoeologs. Source data are
provided as a Source Data file.
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suggests that the level of TaElf3-B1 expression could be
conditioned by the allelic state of the TaElf3-D1 homoeolog.
This result combined with the presence of 30 SNPs near TaElf3-
B1 showing high LD (r2 > 0.4) with the trans-eQTL on 1D
indicates that the combinations of the TaElf3-D1 and TaElf3-B1
alleles in our panel could be non-random.

Allelic combinations of homoeologs showing negative expres-
sion correlation in the panel is not random. Previous studies
indicate that the non-random combinations of alleles showing
elevated inter-locus LD could arise due to population structure,
selection, or epistasis56–59. In our study, we identified a number
of homoeologous gene pairs whose expression levels, similar to
the TaElf3-D1 and TaElf3-B1 homoeologs, show a negative cor-
relation in our panel, which results from the presence of acces-
sions carrying homoeologs showing both matching and biased
expression levels in the panel (Fig. 1a). To test whether negative
expression correlation between homoeologs is associated with the
non-random combinations of homoeologous alleles, we estimated
inter-chromosomal LD between SNPs located near the pairs of
negatively correlated homoeologs showing SCC <−0.4 (59
homoeologs in total). LD was calculated between the cis-eQTL
associated with variation in the expression of one of the homo-
eologs and SNPs located within a 2-Mb region around another
homoeolog (Fig. 5d). To take into account the effects of popu-
lation structure, which could also lead to elevated inter-locus
LD57, we calculated LD between SNPs from the randomly
selected pairs of homoeologs (Fig. 5d). Compared to this random
set of SNPs, the regions harboring the negatively correlated
homoeologs still showed nearly a two-fold increase in the pro-
portion of high-LD SNPs (r2 > 0.4) (Fig. 5d), suggesting that the
allelic combinations of negatively correlated homoeologs in the
panel could result from selection.

Accumulation of homoeologs with biased expression affects
agronomic traits. Prior studies suggest that some adaptive traits
in wheat could be impacted by the relative expression of the
homoeologous copies of causal genes21–24. To better understand
the overall impact of the biased homoeolog expression on phe-
notype, we investigated the relationship between productivity
traits and the number of homoeologous alleles resulting in biased
expression in the set of 59 negatively correlated homoeologs
(SCC <−0.4), which were identified in the RNA-seq data from
the seedlings (Supplementary Data 15). In the RNA-seq data
from spikes, these homoeologs also showed the lack of coordi-
nated expression (mean SCC= 0.03 ± 0.05), although not as
substantial as in the seedlings. The majority of these homoeologs
had low-expressing alleles in at least two wheat lines. On average,
for this set of homoeologs, we detected eight low-expressing
alleles per line, ranging from 1 to 31 per line in the panel
(Fig. 6a–c, Supplementary Data 15). The minor allele frequency
(MAF) of cis-eQTL associated with these negatively correlated
homoeologs was shifted towards common variants, with the
mean MAF of 0.30 ± 0.01 (Supplementary Fig. 12), indicating that
the homeologous alleles contributing to biased expression are
present at high frequency in our panel. To assess whether the low-
expressing alleles of homoeologs are associated with gene dele-
tions, similar to the deletion of the TaElf3-D1 homoeolog
(Fig. 5c), we compared the sequences of homoeologs with the
wheat PanGenome60. This analysis showed that the lack of
transcripts from only two of 59 homoeologs could be linked with
the presence/absence variation (Supplementary Data 16).

The majority of analyzed traits showed a significant positive or
negative correlation with the total number of low-expressing
alleles of homoeologs per line (Supplementary Fig. 13a), with the

absolute correlation coefficients being higher than those obtained
using the random control (Supplementary Fig. 13b). The
accumulation of the low-expressing alleles of these homoeologs
was associated with an increase in grain length (SCC= 0.26),
width (SCC= 0.41) and weight (SCC= 0.39), and a decrease in
heading date (SCC=−0.29), number of spikelets per spike
(SCC=−0.35), spike length (SCC=−0.19), and plant height
(SCC=−0.18) (Supplementary Fig. 13a). A similar analysis
performed using the negatively correlated homoeologs detected in
the spikes and the number of grains and the number of spikelets
per spike also revealed negative correlation between the low-
expressing homoeologous alleles and traits (SCC=−0.25 and
SCC=−0.16, respectively).

We also tested for association between the negatively correlated
homoeologs and phenotypes (Fig. 6a–c) by predicting productivity
traits using the expression values of homoeologous alleles and
ridge regression modeling35. Except for spike length, spike
compactness, and awnlessness traits, the correlation between
predicted and observed trait values for major productivity traits
ranged from 0.25 to 0.37 (Fig. 6d, Supplementary Table 1). For
many traits, including spikelet number per spike and grain length,
the correlation between the true traits and traits predicted using
the expression levels of negatively correlated homoeologs was in
the 99th percentile of distribution generated using expression data
from the random sets of genes (Fig. 6e, Supplementary Table 1).
This further confirms that the negatively correlated homoeologs
are predictive of variation in productivity traits. These results
combined with the observed correlation between the number of
low-expressing alleles and the grain size/grain number traits
(Supplementary Fig. 13b) suggest that the negatively correlated
homoeologs could be connected with processes affecting variation
in and trade-off between the productivity traits.

Association between the negatively correlated homoeologs and
phenotype was independently validated using a panel of lines
from the 1000 wheat exomes project8. By correlating the number
of cis-eQTL alleles associated with the low-expressing alleles in
the set of 59 negatively correlated homoeologs and traits we
showed that an increase in the number of these alleles is linked
with an increase in grain yield and decrease in heading date
(Supplementary Fig. 14). Combined together, our results indicate
that the accumulation of eQTL variants linked with the relative
changes in the homoeolog expression dosage have potential to
affect traits of agronomic importance in polyploid wheat.

Discussion
We characterized the genetic variants associated with variation in
homoeologous gene expression measured in a panel of diverse
allopolyploid wheat lines. The enrichment of detected variants in
the regions of active chromatin26,27 suggests we uncovered many
SNPs involved in regulatory function in the wheat genome. We
used the developed eQTL resource to interpret GWAS results for
complex productivity traits, which are subjected to human-driven
selection during wheat improvement. Using extensive trait
mapping data from the WheatCAP (www.triticeaecap.org) and
IWYP (iwyp.org) projects, we showed significant enrichment of
cis-eQTL around the top marker-trait associations. Applying a
transcriptome-wide SMR analysis29, we identified a number of
candidate genes whose expression is linked with variation in these
traits. We showed that TaSPL14, the rice ortholog of transcription
factor SPL14 (IPA1) controlling plant architecture51, is associated
with natural variation in spike and spikelet development traits in
wheat51,52. Our results suggest that joint modeling of GWAS and
eQTL data using summary-level statistics has the potential to
identify causal genes associated with trait variation in wheat or to
prioritize candidate genes for further functional validation.
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The relative contribution of cis- and trans-acting variants to
population-scale variation in homoeologous gene expression and
relative expression dosage appears to be strongly influenced by
the demographic events accompanying wheat origin (poly-
ploidization and gene flow) and human-mediated selection for
domestication and improvement traits8,33,34,61. The A and B
genomes of hexaploid wheat are more genetically diverse than the
D genome because of the post-polyploidization gene flow from
tetraploid (AB genome) into hexaploid wheat8,62–64. This factor
contributed to a higher number of trans-acting variants in the A
and B genomes compared to that in the D genome and likely
accounts for the similar proportion of expression variance
explained by cis- and trans-genomic variants for genes in the D
genome. The latter is in contrast to the higher proportions of gene
expression variance explained by cis- rather than trans-genomic
variants in the genetically more diverse A and B genomes.

Our study highlights in importance of inter-genomic trans-
effects in the regulation of genes that lost their cis-regulatory
diversity in polyploid wheat due to either selection or poly-
ploidization bottleneck8,60,63,65–67. Among genes whose expres-
sion is largely explained by trans-genomic effects and that show
the evidence of reduced genetic diversity, half were located in the
D genome indicating that the loss of cis-acting diversity in these
genes occurred during hybridization between the tetraploid wheat
and the D genome ancestor8. The loss of cis-acting variants in the
A and B genomes is likely associated with domestication and
improvement selective sweeps, which affected a significant

portion of the wheat genome8,60,65,66. The cumulative effect of
trans-acting variants on the expression variance of genes that lost
cis-regulatory diversity was comparable to the effects cis-acting
variants on genes showing no evidence of trans-regulation,
indicating that inter-genomic interactions should play significant
role in regulating genes controlling domestication and improve-
ment traits in wheat.

We showed that in allopolyploid wheat, the relative levels of
homoeolog expression are defined by the combination of cis- and
trans-acting variants from all three genomes. On average,
expression variance explained by trans-acting variants for all
analyzed genes was 57% higher than variance explained by cis-
acting variants. For homoeologous genes, the relative contribu-
tion of cis- and trans-acting variants for negatively correlated
homoeologs (SCC < 0) was also comparable. However, with
increase in the levels of homoeolog expression correlation con-
tribution of cis-acting variants to expression variance significantly
declined, indicating that these variants play more prominent role
in creating expression dosage imbalance than trans-acting var-
iants. The functional importance of cis-regulatory variants leading
to homoeolog expression bias was confirmed by earlier studies,
which showed that causal variants underlying several adaptive
and domestication traits21–24 also lead to changes in the homo-
eolog expression dosage.

Previous study in maize35 linked the loss of fitness with gene
expression dysregulation caused by rare mutations in the pro-
moters of thousands of non-redundant genes. One of the

Fig. 6 Biased expression of homoeologous genes is linked with variation in productivity traits. a Hierarchical clustering of 198 wheat lines based on the
levels of expression (log2(1+ TPM)) of 59 negatively correlated homoeologs. b Hierarchical clustering of 198 wheat lines based on the normalized
productivity trait values. c The count of low-expressing alleles of homoeologs per line showing evidence of negative expression correlation in the
population. d Correlation between the observed and predicted values for productivity traits. Predictions were performed using ridge regression based on
expression data from the negatively correlated homoeologs. e Distribution of SCC between true and predicted traits from 100 replications of 10-fold cross-
validation using the random sets of homoeologous genes and ridge regression modeling. Predictions generated using real-world data from negatively
correlated homoeologs are shown by a red asterisk. Box shows the median and IQR. The end of the top line is the maximum or the third quartile (Q)+ 1.5 ×
IQR. The end of the bottom line denotes either the minimum or the first Q− 1.5 × IQR. The dots are more or less than Q ± 1.5 × IQR. Source data are
provided as a Source Data file.
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expected consequences of functional redundancy provided by
polyploidy is increase in the mutation load in wheat8,18 that could
disrupt the co-expression of homoeologous genes by creating
low- or high-expressing alleles. The prevalence of homoeologs
with the matching levels of expression in our study could be
explained by the recent origin of allopolyploid wheat33, which
provided less time for the accumulation of dysregulating muta-
tions. However, our results also suggest that the expression levels
of homoeologous genes could be under purifying selection, con-
sistent with the results previously reported for diploid
organisms45,46. The high levels of LD between the combinations
of the high- and low-expressing homoeologous alleles showing
negative expression correlation in our wheat panel, among others
including the Elf3 homoeologs, provides additional support for
selection acting to maintain certain levels of homoeolog expres-
sion dosage. The trans-acting variants appear could provide some
level of robustness against the dysregulating effects of cis-acting
variants, as evidenced by the proportional increase in the
homoeolog expression levels with an increase in the number of
shared trans-eQTL. Nevertheless, this mutational robustness
provided by the recent WGD in wheat8,10 is not sufficient to fully
compensate homoeolog expression bias by increasing the
expression levels of corresponding homoeologs from other gen-
omes. If this expression imbalance affects the regulatory pathways
controlling adaptive traits, the homeolog expression dosage could
be targeted by selection. This is in agreement with the previously
reported evidence of deleterious variant removal from homo-
eologous genes in wheat8.

Our study uncovered an association between the number of the
common low-expressing alleles from homoeologs showing
negative expression correlation and variation in productivity
traits exhibiting trade-offs in wheat. A decrease in the total
number of low-expressing alleles per line was accompanied by an
increase in spikelet number per spike and a decrease in grain size
and weight. Compared to a randomized control, the total number
of low-expressing homoeologous alleles was more predictive of
productivity trait variation, likely due to some connection of these
homoeologs with trait-associated biological pathways. Recent
yield increases in elite winter wheat cultivars were mostly linked
with an increase in the number of spikelets and grains per
spike68,69, whereas in some cultivars from Asia, yield increase was
mostly associated with an increase in grain size and weight70.
These trends are in agreement with studies suggesting that the
contribution of different productivity traits to increased yield
potential is environment-specific71. Based on our results, we
hypothesize that the low-expressing alleles of homoeologs creat-
ing dosage imbalance within the homoeologous gene sets, due to
their impact on productivity traits in wheat, were targeted by
improvement selection. Depending on which productivity trait
was chosen as a breeding target, these homoeologous alleles were
likely either purged (increases the number of spikelets/grains per
spike) or accumulated (increases grain size/weight) in wheat lines.
Identification of these homoeologous genes with imbalanced
expression and associated pathways provides opportunities for
targeted breeding or genome-editing strategies aimed at adjusting
proportions of these alleles in the genome to maximize crop
productivity.

Methods
Plant material. A panel of 400 diverse wheat lines (Supplementary Data 1) was
selected from a larger worldwide sample of 2259 Triticum aestivum accessions that
were previously genotyped using the 9 K iSelect SNP array72. The seeds could be
requested from the USDA National Small Grains Collection. Our panel was
assembled to maximize: (1) genetic diversity, (2) representation of diverse geo-
graphic regions, and (3) representation of phenotypic response to the strains of
fungal pathogen Puccinia graminis f. sp. tritici (Pgt). The panel of 2259 lines was
previously evaluated in the Wheat CAP project by infecting plants at the seedling

stage using Pgt races TTKSK (Ug99), TRTTF, TTTTF, BCCBC, and a bulk of six
races (TPMKC, RKRQC, RCRSC, QTHJC, QFCSC, and MCCFC). The pheno-
typing data is available from the Wheat CAP T3 database (https://
triticeaetoolbox.org). The Stakman infection types recorded on a 0–4 scale were
converted to A through F grades where A corresponded to infection types ‘0’ to ‘;1’;
B to ‘;13’ to ‘31;’mesothetic infection types; C to ‘2-’ to ‘2’; D to ‘2+’ to ‘32+’; and F
to ‘3’ to ‘4’. We selected 50 wheat lines that showed an ‘F’ grade to all five Pgt races.
We also selected 350 additional lines that showed variable, race-specific responses
to the Pgt races. When possible, 10 lines for a given pattern of infection type grades
were selected. No lines possessed an A grade in response to all five races. During
the selection of the lines within a given pattern of infection type grades, both
geographic origin and PCs were used to maximize the diversity of the panel. A
subset of 204 wheat lines representing geographic and phenotypic diversity of this
diversity panel was subjected to RNA-seq analysis and used for the genetic dis-
section of gene expression variation traits. The genetic relatedness analysis of this
subset of lines was performed using an algorithm implemented in PLINK v.1.9. For
this purpose, we have used genome-wide SNPs generated by the regulatory
sequence capture and sequence-based genotyping approaches. This analysis shows
that our panel does not contain highly related accessions, which otherwise might
increase the chances of detecting spurious associations in GWAS (Supplementary
Fig. 15).

RNA-seq data analysis. Total RNA was isolated from 2-week-old seedlings of 204
lines, with each line grown in three biological replicates. Ground tissues from three
biological replicates were combined in equal amounts before RNA isolation using
the RNeasy Plant mini kit. RNA-seq libraries were prepared with TruSeq™ RNA
Sample Prep Kit (Illumina) using the Beckman’s Biomek® FXP Laboratory Auto-
mation Workstation. Up to eight barcoded RNA-seq libraries were pooled per lane
of NextSeq2000 flow cell to generate 2 × 100 bp reads.

A total of 13,415,679,980 paired-end 2 × 100 bp reads were generated for 204
wheat accessions from the wheat diversity panel, with a mean of 65,763,137 reads
per accession (GSE167479). The reads were mapped to the wheat RefSeq v.1.0
using HISAT2 (ver. 2.1.0) with the following parameters: --max-intronlen 70000,
--dta. On average, 81% of all reads were mapped to the genome uniquely, with an
average of 7% reads failing to map (Supplementary Data 1).

In addition, we have analyzed previously published RNA-seq data generated for
90 wheat lines from spikes at the double-ridge development stage30. Fastq files were
downloaded from NCBI BioProject PRJNA348655 using ‘fastq-dump’ from the
SRA Toolkit (v. 2.9.6). The spike RNA-seq dataset contained 46,394,170 paired-end
2 × 125 bp reads, of which 86% reads could be mapped to the reference genome
uniquely, and 5% of reads failed to map.

We generated RNA-seq data for 2-week-old seedlings from 204 wheat lines. We
removed samples with a substantial amount of rRNA contamination and samples
with <40% uniquely mapped reads. The resulting set of 198 RNA-seq samples was
used for further analysis (Supplementary Data 1). We used the Kallisto program
that uses pseudoalignment of RNA-seq reads to reference gene models to assess the
transcript abundance73. Its performance has previously been evaluated in the
polyploid wheat genome18.

All high confidence (HC) and low confidence (LC) gene models from the
IWGSC RefSeq v. 1.05 were combined for estimating the TPM values using Kallisto
(v. 0.4.6.0)73. Transcripts with expression standard deviation >0.5 and expressed
(TPM > 0.5) in at least three samples have been used in our analyses. This set of
included 52,511 transcripts from the HC gene models and 29,226 transcripts from
the LC gene models. Only HC gene expression data were used for further analyses.
The expression data were log2-transformed followed by robust quantile
normalization in R. The probabilistic estimation of expression residuals (PEER)
was used to remove hidden confounding factors in the expression data74, and
residuals were used for studying the genetic effects on expression levels in the
population.

To assess the accuracy of transcript abundance estimation by mapping RNA-
seq reads to the polyploid wheat genome, we have applied several approaches.
The RNA-seq data was simulated using gene models of cultivar Chinese Spring
using Flux Simulator (http://confluence.sammeth.net/display/SIM/Home).
Comparison of transcript abundance estimated for simulated data using Kallisto
with actual transcript abundance levels showed a high level of correlation
(SCC= 0.98).

We also evaluated the accuracy of Kallisto-based transcript abundance estimates
for duplicated homoeologous genes. For this purpose, we simulated RNA-seq
datasets using gene models only from one of the wheat genomes (for example, the
A genome) and then used all gene models from the wheat reference genome to
calculate TPM values. Simulation performed for the A genome showed a high level
of correlation (SCC= 0.92, N= 91,437) between the real values and those
estimated using Kallisto. Only 0.1% of reads simulated using the A genome gene
models were mapped to the B and D genomes, indicating high accuracy of
transcript abundance estimates for the homeologous gene sets.

The same RNA-seq simulated dataset was used to estimate the accuracy of read
mapping to the correct location in the wheat reference genome using HISAT275.
We found that 98% of simulated reads could be unambiguously mapped by
HISAT2 to the correct location in the wheat genome.
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SNP genotyping of diverse wheat accessions used for eQTL mapping. We used
a combination of different approaches to obtain genotyping data for the wheat
diversity panel: (1) targeted re-sequencing of the regulatory regions of the wheat
genome using a Nimblegen capture assay76, (2) wheat 90 K SNP iSelect assay77, (3)
complexity-reduced genome sequencing78, and (4) RNA-seq transcriptome dataset.
SNPs discovered using the RNA-seq and regulatory sequence capture datasets for
203 wheat accessions were combined, and missing genotype calls were imputed
using Beagle79. This dataset was combined with the SNPs identified in the entire
panel of 400 wheat accessions using the 90 K iSelect assay77 and complexity-
reduced genome sequencing78. Further, a common set of SNPs shared between our
panel of 400 wheat accessions and 1000 wheat exome dataset8, were used for
genotype imputation (see details below).

Flanking sequences of a genetically mapped set of 46,977 SNPs from the 90 K
SNP iSelect assay77 were aligned to the IWGSC RefSeq v.1.0 using the BLAT
program followed by filtering alignments using the following parameters:
alignment coverage > 95%, sequence identity >97%, e-value < 1e−10. We identified
genomic coordinates for 23,577 uniquely aligned SNPs, which also showed
consistency with the marker order in the previously created genetic maps77. For
these SNP sites, we identified 16,037 SNPs segregating in our wheat panel of 400
wheat accessions.

We have used the wheat regulatory capture assay76 to re-sequence 203 wheat
accessions used for the transcriptome analysis in our study. Up to eight Illumina
genomic libraries produced for each sample were pooled together to perform
enrichment using the regulatory capture assay. A total of 9,418,016,463 paired-end
2 × 150 bp reads were generated for 203 accessions, with the mean of 46,394,170
reads per accession. Reads were aligned using HISAT2 (v. 2.1.0) with the following
parameters: --max-intronlen 70000, --no-spliced-alignment. On average, 87% of all
reads were mapped to the genome uniquely, with an average of 8% reads failed to
map. The recommended best practices were followed to call SNPs using GATK80.
Base quality recalibration was performed using genotyping data generated for the
same set of lines using the 90 K iSelect assay77. The genotype calls for sites with <3
reads depth of coverage were set as missing data. SNPs were filtered to remove sites
with more than two alleles, MAF < 0.05, more than 50% genotype calls missing,
and more than 3% heterozygote genotypes. In total, we have identified 3,320,006
SNPs segregating in the putative regulatory regions.

For SNP calling, the raw RNA-seq fastq files were processed using the NGSQC
Toolkit (v2.3.3) with default parameters. We used HISAT2 (v. 2.1.0) to align reads
to the IWGSC RefSeq v.1.0 with the default parameters, except for parameter
--max-intronlen set to 70,000. We filtered out reads that are not uniquely mapped
to avoid detecting variable sites due to misalignment to the homoeologous
genomes. The GATK’s’HaplotypeCaller’ was used to generate a gvcf file for each
sample with the following parameters, ‘-dontUseSoftClippedBases -stand_call_conf
20.0 ‘. ‘GenotypeGVCFs’ was used to generate a multiple-sample VCF file for all
variants. Only biallelic sites were used in our analysis. Genotype calls generated for
sites with the depth of read coverage less than three or more than 50% genotype
missing were set as missing data. Sites with more than 3% heterozygote genotype
calls were removed. A total of 2.4 million SNPs were detected in the dataset, of
which 138,481 SNPs with MAF > 0.05 were used for analyses.

Construction of complexity-reduced genomic libraries for genotyping the panel
of 400 wheat accessions was performed using the complexity reduction protocol,
which is based on the digestion of genomic DNA with MseI and PstI restriction
nucleases with the follow up ligation of barcoded Illumina sequencing adaptors78.
The pools of barcoded libraries included up to 96 samples were sequenced on a
single lane of HiSeq2500, 1 × 100 bp run. Variant calling was accomplished using
Tassel 5 GBS pipeline81. A total of 49,150 SNPs with MAF > 0.01 were identified in
the panel.

Genotype imputation. Genotype data from the 1000 wheat exome project8 was
used as a reference panel for imputation. An integrated VCF file was created,
including all samples from 90 K iSelect, complexity-reduced sequencing, RNA-seq,
and 1000 exome capture panel. Beagle v. 4.179 (beagle.21Jan17.6cc.jar) was then
used to impute missing genotype calls with the following settings: ‘overlap=500
window=5000 ne=12000’. The genotype calls with probability (GP) <0.8 were
considered as missing. Sites with >3% heterozygous genotype calls or >75% missing
data were removed, resulting in a set of about 195,000 SNPs.

The VCF files from RNA-seq and regulatory sequence capture datasets were
combined into a single VCF file. Imputation was used to fill in missing genotype
calls using the same Beagle settings. After imputation, we set genotype calls with
GP < 0.8 as missing data. All SNP sites with missing rate >75% or heterozygosity
rate >3% were removed, resulting in a set of 4,453,487 SNPs. These SNPs were then
merged with the variants identified using the 90 K iSelect array and complexity-
reduced sequencing, resulting in a set of 4,449,989 SNPs. A total of 2,021,936 SNPs
with MAF > 0.05 in a panel of 198 wheat lines were used for eQTL mapping.

To assess the accuracy of genotype calling, we used genotyping data obtained
for our panel using 90 K iSelect array77. The genotype concordance rate for
different SNP datasets was ~0.98 before imputation and 0.93 after imputation.

For SNP calling using RNA-seq from wheat spikes, fastq files of the previously
published 90 RNA-seq samples were downloaded from NCBI (BioProject
PRJNA348655: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA348655)
using the ‘fastq-dump’ tool from SRA Toolkit (version 2.9.6). A total of 1.7 million

SNPs were identified using the GATK pipeline. The same settings used for calling
variants in the RNA-seq data generated for wheat seedlings were applied to RNA-
seq from wheat spikes, except that (1) no imputation was performed, and (2)
genotype calls supported by <2 reads were set as missing. After filtering sites with
more than 75% missing, 227,922 SNPs with MAF > 0.05 were used for eQTL
mapping. The PEER residuals74 were calculated using the same method used for
the seedling RNA-seq dataset. A total of 50,367 HC gene models from the IWGSC
RefSeq v.1 were used for eQTL analysis.

Partitioning genetic variance of gene expression. To estimate the variance in
gene expression explained by different genomes, a set of 2,021,936 SNPs from our
panel of 198 wheat lines (GF25, GF32, GF37, GF73, GF270, GF41 lines were
removed due to the low proportion of mapped RNA-seq reads to the reference
genome; Supplementary Data 1) and 227,922 SNPs from a set of 90 lines were
grouped into three genome-specific sets (A, B, D genomes). Each set was used to
build genetic relationship matrices using ‘--autosome-num 30 --make-grm-inbred’
in GCTA25. The genetic variance of expression traits was then calculated for three
subsets jointly using ‘--mgrm --reml’. Out of the top 10,000 genes showing the
highest levels of expression variance, 8698 gene expression traits in seedlings and
7090 gene expression traits in spikes were successfully processed (log-likelihood
converged.) To remove the confounding effect of SNP density in different genomes,
we used 1 SNP per 100 kb genomic window for the calculation of the genetic
relationship matrix.

Detection of eQTL. The association between SNPs and gene expression PEER
residuals was performed by Matrix eQTL (v. 2.1.0)82 with the setting ‘useModel =
modelLINEAR’. The set of 191 accessions having matching RNA-seq and SNP
genotyping data was used for final eQTL mapping (Supplementary Data 1). In
addition to 6 lines removed due to low RNA-seq mapping quality (see above), we
also removed 7 lines (GF294, GF342, GF366, GF380, GF381, GF383, GF387) that
showed lack of good genotyping data concordance in the panel. The first three
principal components (PCs) of the SNP matrix were used as covariates. Based on
the estimates of genomic inflation factor (GIF), this approach was effective in
controlling population structure for nearly 61% of genes, which showed no evi-
dence of inflation of test statistics (61% of genes had GIF < 1.1) (Supplementary
Fig. 16). While the remaining genes showed some effect of population structure on
test statistic, these effects did not substantially inflate false discovery rate assessed
by permutation of phenotypic data relative to genotypes. The expression values of
each of the 52,060 genes in our seedling dataset were permuted relative to geno-
typing data (includes 2,021,937 SNPs) to generate 1000 randomized datasets. The
SNP-gene expression association test statistic was calculated using Matrix eQTL. By
applying p-value threshold corresponding to FDR ≤10−5, on average, we detected
3,595 associations in the randomized datasets. In the real-life dataset, we have
identified 11,421,859 associations (before LD merging) passing this significance
threshold indicating that only 3.2 × 10−4 associations passing our threshold are
false positives. A similar permutation approach was applied for assessing the
proportion of false positives among detected eQTL in the spikes. While in the
original non-permuted dataset, 1,336,626 SNPs pass this p-value threshold (before
LD merging), in the permuted datasets, on average we had only 10,858 SNPs
passing threshold, suggesting that in spike eQTL the actual false discovery rate is
around 0.8 × 10−3.

All associations with FDR < 1e−5 were considered as significant. For each
transcript, significantly associated SNPs were merged based on LD (r2 > 0.2) and
distance (<100 kbp) into genomic intervals. SNP with the strongest association
signal within an interval was defined as an eQTL of the transcript. If an eQTL was
located within ±1Mb around the target gene, it was defined as cis-eQTL. In our
analyses we used a conservative definition of trans-eQTL, which was an eQTL
significantly associated with the target gene located on a different chromosome.
The eQTL effect size estimated by Matrix eQTL is based on the linear
regression slope.

Analysis of eQTL and Hi-C data. Hi-C data for the hexaploid bread wheat cultivar
Chinese Spring was downloaded from the NCBI database28. The Juicer Tools
(v1.21.01) was used to process all valid read pairs downloaded from NCBI GEO
(GSM3929163_Wheat.shoot.hicpro.allValidPairs.txt.gz). We first generated a.hic
file using the ‘pre‘ command, then the observed contact frequency map was cal-
culated at 1 Mbp resolution using the ‘dump‘ command without normalization.
The 3D chromatin contacts between a pair of eQTL-eGene was estimated based on
the contact frequency between the two 1 Mbp genomic intervals. For example, if
eQTL is located at position chr7A_20102690 and its eGene TraesC-
S1A01G002200.1 is located at a position chr1A_1188779, their Hi-C contact fre-
quency was estimated between the genomic intervals 20–21Mbp on chromosome
7A and 1–2Mbp on chromosome 1A. We did not analyze the 3D chromatin
contact between cis-eQTL and its eGene directly due to the relatively low depth of
read coverage in the downloaded data. In order to evaluate the significance of the
observed Hi-C contacts between trans-eQTL and eGene, we generated randomized
distribution of Hi-C contact frequency between randomly selected pairs of genomic
intervals.
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Phenotyping wheat for productivity traits. We have used field-based pheno-
typing data previously collected for a diverse panel of about 800 wheat accessions
from the 1000 wheat exomes project8, including grain filling period (GFP), harvest
weight (HW), drought susceptibility index for harvest weight (HWS), heading date
(HD) and plant height (PHT) traits. Field data for these accessions were collected
for two consecutive years under rainfed and irrigated conditions at the Agriculture
Victoria research station located at Horsham, Victoria, Australia. Three replica-
tions of each accession were planted in 4.5 m single rows in a randomized block
design, with a seed spacing of 3.6 cm and row spacing of 65 cm. HD was recorded
as the date on which 50% of the heads in a row fully emerged from the culms. PH
was measured from the ground to the tip of the spike, excluding awns. The Best
Linear Unbiased Estimates (BLUEs) were obtained using a model with fixed
genotype effects and all other effects set as random in an individual year. The trait
values from the rainfed and irrigated fields were used to calculate the drought
susceptibility index for harvest weight (HWS), according to Fischer & Maurer83.

A panel of 400 spring wheat accessions were selected to represent genetic and
geographic diversity of wheat (Supplementary Data 1). For phenotyping, plants
were grown in Kansas State University greenhouse with 16 h light/8 h dark
conditions with temperature set to 21 °C during the night and 24 °C during the day.
Three plants of each accession were grown in the 1 gallon round pots filled with a
self-made soil mix (volume ratio was 20 soil: 20 peat moss: 10 perlites: 1 CaSO4).
Plants were arranged according to a complete randomized design. Phenotyping
data collected for the panel of wheat lines is listed in Supplementary Data 8. The
heading date (HD) data was collected for two planting seasons when the plants
reach stage 50, according to Zadoks scale84. The date when the first spike in a pot
appeared from the flag leaf sheath was recorded. The awn length (AWN) was
measured after ripening. The accessions without awn, with short awn, and long
awn were given scores 0, 1, and 2, respectively. The data were collected for four
planting seasons. The plant height (HT) was measured after ripening, from the base
to the top of the main stem. The height of three plants for each accession was
measured each season for four planting seasons. The spike length (SPL), spikelet
number per spike (SPN), and spike compactness (SPC) measurements were
collected from the main spike of three plants for each accession. The data was
collected for three planting seasons. Grains from all the spikes of each plot were
harvested and used for data collection. The MARVIN seed analyzer (GTA Sensorik
GmbH, Germany) was used to estimate the Thousand Grain Weight (TGW) and
grain width (GW), length (GL), and area (GAR). In addition, the grain length to
width ratio (GWLR) was calculated by dividing the grain length by grain width.
The grain morphometric phenotypes were collected for three planting seasons.

Summary data-based Mendelian randomization analysis. We used GCTA (v.
1.92.2beta) to perform genome association mapping85 in a panel of 400 wheat lines.
The genetic relationship matrix was calculated using the command ‘--make-grm-
inbred --autosome-num 30’. The best linear unbiased predictions (BLUPs) were
calculated for each phenotype by fitting a mixed linear model using the lmer
function of R86, and used for association mapping. On average, SCC between
BLUPs and mean phenotypic values was 0.99. The ‘-mlma’ was used to calculate
the association between SNPs and phenotypes. We used the first three principal
components to control for population structure.

We applied summary data-based Mendelian randomization analysis (SMR)29 to
evaluate the association between gene expression and trait variation using
summary-level data from our eQTL mapping study and two GWAS, one of which
was performed in the current study, and another one was accomplished within the
1000 wheat exome project8. The summary-level statistic of these two GWAS
datasets was analyzed using the SMR commands ‘--trans-wind 5000 --diff-freq-
prop 0.2’ for trans-eQTL and ‘--diff-freq-prop 0.2 --cis-wind 10000’ for cis-eQTL.
The eQTL identified using RNA-seq data from wheat seedlings and spikes were
analyzed separately. Heidi test was used to separate functional associations from
association due to linkage29.

Construction of GCN connected with the SMR gene candidates. The candidate
genes for each trait from SMR analysis (SMR p-value < 1e−4) based on seedling
stage eQTL were used as a starting list of genes for network construction. In total,
we used 1899 SMR gene candidates identified using the eQTL data identified in the
wheat seedlings and summary-level data from GWAS conducted in the wheat 1000
exome project8. We obtained co-expressed genes (|SCC| > 0.6) among the
198 seedling RNA-seq samples for all SMR gene candidates. All genes co-expressed
with |SCC| > 0.6 with the SMR gene candidates or genes connected with the SMR
gene candidates were included in this network. SMR candidate genes showing no
co-expression with other genes in our dataset were excluded from this co-
expression network. The Gephi (https://gephi.org/) was used to visualize the GCN,
which contains 3642 nodes and 57,837 edges.

In addition, we used the seedling stage RNA-seq dataset to infer regulatory
relationships between cis-eGene and its associated trans-eGene that are showing
high levels of expression correlation at |SCC| > 0.6. For this purpose, we used all
SNP-expression associations (FDR < 1e−5), which included 21,354,094
associations between 1,840,991 SNPs and 32,679 gene transcripts. We assumed that
a SNP associated with both a cis-eGene and a trans-eGene at the same time, there is
a potential regulatory relationship that exists between these two genes (Fig. 5a), and

trans-eQTL effects are observed due to variation in the expression of a cis-eGene
that acts as trans-factor. This scenario could be applied to the cases where a cis-
eGene is a transcription factor, and a trans-eGene is its regulatory target. In total,
we detected 19,186 pairs of putative regulatory interactions among 5150 genes. The
SCC values calculated using the PEER residues for each pair of genes showed a
bimodal distribution (Supplementary Fig. 9). On the contrary, the background
distribution of SCC values for random pairs of genes was unimodal, with a peak
centered around 0. If the absolute value of SCC was larger than 0.6, we predicted a
potential regulatory relationship. In total, we predicted 1,200 regulations between
536 regulators and 294 targets. There were 903 negative regulations (SCC <−0.6)
and 297 positive regulations (SCC > 0.6). Densely connected clusters of genes
(network modules) were identified using a default routine implemented in Gephi87.
The network modules were also tested for GO enrichment (Supplementary Fig. 10,
Supplementary Data 13–15). The network was also supplemented by information
about genes previously characterized in wheat or rice65.

Correlation between productivity traits and number of low-expressing alleles
from the homoeologs with the biased expression. Among 21,807 homoeologous
genes used in our eQTL analysis, we have identified 59 homoeologs showing
evidence of biased expression dosage. We defined biased homoeologous genes (or
negatively correlated homoeologs) using the following criteria: (1) negative cor-
relation (SCC < 0) with both of its two homoeologs from other genomes, and (2)
strong negative correlation (SCC <−0.4) with at least one of its homoeologs. In
most cases, negative inter-homoeolog expression correlation among these 59
homoeologs was associated with the presence of accessions in the population that
carry the downregulated gene variants. In each accession, a homoeologous gene
was considered downregulated if it showed TPM < 3 and TPM <mean - stdev,
where ‘mean’ is the average TPM value among all wheat lines, and the ‘stdev’ is the
standard deviation of TPM values among all wheat lines. Correlation between
productivity trait BLUPs and the total number of low-expressing alleles from this
set of 59 homoeologous genes in each accession was estimated using SCC. These
SCC values were compared with the distributions of SCC values calculated between
1000 random sets of 59 homoeologous genes and each of the productivity traits.

Model-based prediction using the expression matrix of 59 homoeologous
genes showing biased expression. Model-based prediction of productivity traits
was performed using ridge regression method implemented in R package
‘glmnet’88 using gene expression matrix with TPM values of 59 negatively corre-
lated homoeologous genes for 198 wheat lines. Tenfold nested cross-validation was
performed to test the accuracy of predictions35. To assess the association between
negatively correlated homeologous genes and productivity traits, the accuracy of
predictions obtained using these 59 genes was compared with the prediction
accuracy obtained using the random sets of 59 genes from homoeologous gene
triplets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
RNA-seq and genome resequencing data generated in this study are deposited to NCBI
SRA PRJNA670223, PRJNA787276 and NCBI GEO GSE167479. All analyses were
conducted using standard software. The settings of software used for analyses are
described in the Methods. Source data are provided with this paper.
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