
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Addressing Device Compromise from the Perspective of Large Organizations

Permalink
https://escholarship.org/uc/item/4jw6g3rj

Author
DeKoven, Louis Floyd

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4jw6g3rj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Addressing Device Compromise from the Perspective of Large Organizations

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Louis Floyd DeKoven

Committee in charge:

Professor Stefan Savage, Co-Chair
Professor Geoffrey M. Voelker, Co-Chair
Professor Kirill Levchenko
Professor Ramesh R. Rao
Professor Alex Snoeren

2019

Copyright

Louis Floyd DeKoven, 2019

All rights reserved.

The Dissertation of Louis Floyd DeKoven is approved and it is acceptable in

quality and form for publication on microfilm and electronically:

Co-Chair

Co-Chair

University of California San Diego

2019

iii

DEDICATION

To my parents:

Beverly and Benjamin

and to my family:

Florence, Melissa, Chris, Ezra, and, Leron

iv

EPIGRAPH

The important thing is to not stop questioning.

Curiosity has its own reason for existing.

Albert Einstein

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Introduction . 1

Chapter 1 Malicious Browser Extensions at Scale . 6
1.1 Introduction . 6
1.2 Background . 9
1.3 Collecting Browser Malware . 10

1.3.1 Detecting Compromised User Accounts . 11
1.3.2 Malware Scanner and Cleanup . 12
1.3.3 Static Analysis . 13

1.4 Browser Extension Labeling . 14
1.4.1 Automated Extension Labeling . 15
1.4.2 Manual Labeling . 17
1.4.3 A Real World Example . 18

1.5 System Evaluation . 19
1.5.1 Extensions Collected . 20
1.5.2 Malicious Extensions Detected . 21

1.6 Evaluating Alternatives . 22
1.6.1 VirusTotal . 23
1.6.2 Chrome Web Store . 23

1.7 Conclusions . 24

Chapter 2 Following Their Footsteps . 26
2.1 Introduction . 27
2.2 Background . 29
2.3 Account Automation Services . 32

2.3.1 Reciprocity Abuse . 32

vi

2.3.2 Collusion Networks . 33
2.3.3 Studied services . 33

2.4 User Experience . 36
2.4.1 Methodology . 37
2.4.2 How Accounts Are Used . 39
2.4.3 Quantifying Reciprocation . 40

2.5 Business Perspective . 42
2.5.1 Customer Base . 43
2.5.2 Revenue . 46
2.5.3 Activity Generated . 50

2.6 Interventions . 51
2.6.1 Countermeasures . 53
2.6.2 Identifying Eligible Actions . 54
2.6.3 Narrow Interventions . 55
2.6.4 Broad Interventions . 57

2.7 Conclusion . 60

Chapter 3 Security Practices . 61
3.1 Introduction . 62
3.2 Background . 64
3.3 Methodology . 66

3.3.1 Protecting User Privacy . 66
3.3.2 Network Traffic Processing . 68
3.3.3 Log Decoration . 70
3.3.4 Feature Extraction . 72

3.4 Data Set . 80
3.4.1 Device Filtering . 80
3.4.2 Identifying Dominant OSes . 82

3.5 Recommended Practices . 83
3.5.1 Operating System . 83
3.5.2 Update Software . 84
3.5.3 Visit Reputable Web Sites . 90
3.5.4 Use HTTPS . 91
3.5.5 Use Antivirus . 94
3.5.6 Software Use . 95

3.6 Ranking Feature Importance . 97
3.6.1 Experimental Setup . 97
3.6.2 All Features . 98
3.6.3 One Hour Before Compromise . 100

3.7 Conclusion . 101

Chapter 4 Conclusion . 102

Bibliography . 105

vii

LIST OF FIGURES

Figure 1.1. An overview of our system highlighting the detection, malware scanner, and
static analysis steps. The dashed arrows describe normal user interaction,
and solid arrows are transitions within the described system. 10

Figure 1.2. The user consent prompt explaining actions the Facebook scanner will take
if the user agrees. In this instance the scanner is paired with a third party
scanner responsible for removing other types of infections. 13

Figure 1.3. Daily proportion of user devices detected with a DOM-based indicator of
the botnet, and the proportion of user devices that have the botnet remediated. 19

Figure 1.4. The number of unique extensions labeled as malicious each day of the
six-week measurement period. 22

Figure 2.1. Instalex Web site providing an example account control panel with action
counts performed on Instagram. 34

Figure 2.2. Percentage of Account Automation Service (AAS) customer Instagram ac-
count locations by country. “OTHER” includes all countries that contribute
less than 5% to the total distribution. 46

Figure 2.3. CDFs of the number of users followed by each target for three samples of
accounts: 1,000 random accounts targeted by the two Reciprocity AASs,
and 1,000 random Instagram users. 52

Figure 2.4. CDFs of the number of followers for a random sample of 1,000 targets
selected by two third-party applications compared to a sample of 1,000
Instagram users. 53

Figure 2.5. Median follows per user each day participating in Boostgram. We show
the countermeasure threshold as a dashed line, and the median actions for
both users who are blocked by countermeasures, and in our control (no
countermeasures) . 56

Figure 2.6. The proportion of Hublaagram likes each day that are eligible for a coun-
termeasure. We noticed at around the third week the service makes a strict
adjustment significantly reducing the number of eligible likes. 58

Figure 2.7. Proportion of Boostgram follows eligible for countermeasures each week
during the experiment. On day 6, we switched the countermeasure response
from delay to block, shown by a vertical line. 59

Figure 3.1. Network traffic processing system architecture. 67

viii

Figure 3.2. Device operating system (OS) classification after removing Internet of
Things (IoT) and mobile devices, including the total number of devices
with each OS and the number with a security incident. 83

Figure 3.3. Number of days a Mac OS X device takes to update to a specific version.
The version number on the x-axis denotes the day that the specified version
update was published. 85

Figure 3.4. Distribution of days a device takes to update Chrome before compromise
and after compromise. 88

Figure 3.5. Distributions of average weekly device web activity for clean and compro-
mised devices. 94

Figure 3.6. Five most prevalent antivirus products observed, with all others aggregated
as “Other”. 95

ix

LIST OF TABLES

Table 1.1. Browser extensions analyzed. 20

Table 2.1. Services offered to customers of Reciprocity Abuse AASs and Collusion
Network AASs. 35

Table 2.2. Reciprocity Abuse service model . 36

Table 2.3. Hublaagram service model . 36

Table 2.4. Followersgratis service model . 37

Table 2.5. The probability of receiving a reciprocated inbound action given an out-
bound action of a specific type. For each service, we show the reciprocation
ratio for both empty (E) and lived-in (L) honeypot accounts. 41

Table 2.6. Customers participating in each AAS over a 90-day period. Long-term
customers of Reciprocity Abuse AASs are active beyond a trial period, and
long-term Collusion Network AAS customers request service for more than
four days. 44

Table 2.7. The operating location for each AAS as reported on their Web site and the
Autonomous System Numbers (ASNs) from service activity originates. . . . 45

Table 2.8. Estimated monthly gross revenue for Reciprocity Abuse AASs. 47

Table 2.9. Gross revenue estimates for Hublaagram. The “No outbound” service has
a one-time fee for the lifetime of the account, and the remaining services
have monthly fees. 49

Table 2.10. Breakdown of revenue between new and existing paying customers for each
AAS over one month. 50

Table 2.11. Action types performed from each AAS over a 90-day period. We normalize
each value by the total number actions performed by each service. 50

Table 3.1. Data set characterization. Our network vantage point provides DNS request
from the local resolver which includes DNS traffic from devices in this
paper as well as other devices using the university’s networks. 81

Table 3.2. Windows device updates deltas. We compute the average, median, P90,
P95, P99, and variance of the number of days between when the update
was released, and when we observe each device download the update. The
devices are partitioned by those with and without a security incident. 85

x

Table 3.3. Number of days between when an update is published and when devices
update. Compromised devices update faster than their clean counterparts. . 87

Table 3.4. Flash Player updates on Windows devices. 89

Table 3.5. Types of content accessed more by clean or compromised devices. We show
the median fraction of registered domains accessed in the category for clean
(Cln.) and compromised (Cmp.) devices, and delta in median. 91

Table 3.6. HTTPS use among devices. 92

Table 3.7. Differences in network usage for clean (Cln.) and compromised (Cmp.)
devices. We use the Kolmogorov-Smirnov (KS) test with Bonferroni correc-
tion to compare the ECDF of usage for each device type, and present the
p-value along with median values for each population. 93

Table 3.8. Software features correlated to compromise. 96

Table 3.9. AUC gains from the top four features used to detect devices with security
incidents. For each feature we also provide the ratio of median (continuous)
or mean (categorical) values. Ratios > 1 (green) indicate that compromised
devices exhibit more of the feature. 99

Table 3.10. AUC gains for the top eight features used to detect devices with security
incidents one hour before being compromised. 100

xi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisers: Professors Stefan Savage, and

Geoffrey M. Voelker. I feel so incredibly privileged to have had their support and guidance

throughout my time in graduate school. Under their guidance, I have learned how to conduct and

present research. Their support for a highly collaborative community within computer science,

and broad research interests has made my graduate school experience one that I will always

cherish.

I would like to thank Professors Alex Snoeren, Kirill Levchenko, and Ramesh Rao for

being on my doctoral committee and being available whenever I needed any help.

My colleagues at UCSD and CESR made my six years of graduate school a fun and

memorable experience. I would like to thank: Brown Farinholt, Sen Zhang, Neha Chachra,

Brian Johannesmeyer, Vector Li, Gautam Akiware, Sunjay Cauligi, Ariana Mirian, Gary Soeller,

Audrey Randall, Stew Grant, Anil Yelam, Ansel Blume, Nadah Feteih, Nishant Bhaskar, Shu-

Ting Wang, Rob McGuiness, John Sarracino, Steven Hill, Rajdeep Das, Shelby Thomas, Liz

Izhikevich, Danny Huang, Tristan Halvorson, Joe DeBlasio, David Kohlbrenner, Paul Pearce,

Frank Li, Grant Ho, Damon McCoy, Alexandros Kapravelos, Karyn Benson, David Wang, Jake

Maskiewicz, Edward Sullivan, Benjamin Braun, Ian Foster, and Nima Nikzad.

I would like to thank the systems and networking research staff, and UCSD Information

Technology Services. Cindy Moore and Brian Kantor helped me configure and harden servers,

and experiment with Hadoop cluster deployments. Jennifer Folkestad provided me with con-

tinued support. Coop Nelson, Nick Colias, Jim Madden, and Michael Corn went beyond their

responsibilities to enable my research by providing support for our passive network monitoring

infrastructure.

Throughout my time in graduate school, I collaborated with Facebook and Instagram

security to conduct research. I would like to thank those who made this possible, as well a fun

experience. In particular: Nektarios Leontiadis, Trevor Pottinger, Mark Hammell, Chad Greene,

Gregg Stefancik, Matt Henley, Jenn Lesser Henley, Kyle Barry, Eoghan McKee, Jesse Kornblum,

xii

Mark Vilanova, Lauren Berger, Meagan Kruman, Brandon Dixon, and Matt Richard.

Additionally, I would like to thank to Professors: Lawrence Saul, Aaron Schulman, and

Mohan Paturi. Lawrence helped me understand and apply statistical learning. Aaron is incredibly

fun to work with, and helped with our understanding of networked devices. Lastly, during my

first year of graduate school Mohan took time beyond what I expected to help me learn.

Graduate school is a long process, and challenging at times. I am grateful for the love

and support of my friends and family. There are no words to describe how much you’ve helped

me. Thank you for enabling me to accomplish my goals.

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of Workshop on

Cyber Security Experimentation and Test (CSET). Louis F. DeKoven, Stefan Savage, Geoffrey

M. Voelker, Nektarios Leontiadis, 2017. The dissertation author was the primary investigator

and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the ACM

Internet Measurement Conference (IMC). Louis F. DeKoven, Trevor Pottinger, Stefan Savage,

Geoffrey M. Voelker, Nektarios Leontiadis, 2018. The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in part, has been submitted for publication of the material as it may appear in

Proceedings of the ACM Internet Measurement Conference (IMC). Louis F. DeKoven, Audrey

Randall, Ariana Mirian, Gautam Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman,

Geoffrey M. Voelker, Stefan Savage, 2019. The dissertation author was the primary investigator

and author of this paper.

xiii

VITA

2013 Bachelor of Science in Computer Engineering, California State University, Chico

2013–2019 Research Assistant, University of California, San Diego

2015 Master of Science in Computer Science, University of California, San Diego

2019 Doctor of Philosophy in Computer Science (Computer Engineering), University of
California, San Diego

xiv

ABSTRACT OF THE DISSERTATION

Addressing Device Compromise from the Perspective of Large Organizations

by

Louis Floyd DeKoven

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2019

Professor Stefan Savage, Co-Chair
Professor Geoffrey M. Voelker, Co-Chair

Addressing compromised device is a problem for virtually all large organizations. Com-

promised devices can propagate malware resulting in theft of computing resources, loss of

sensitive data, and extortion of money. Unfortunately, large organizations do not have an oracle

into device compromise. Instead, organizations must address compromise without straight-

forward answers to critical questions such as: “Is this device compromised?”, “Why/How is

this device compromised?”, “What’s the best intervention?”. This problem, in part, results

from limited observational vantage points, differences in intervention capabilities, and evolving

adversaries with differing incentives. In this dissertation, I develop systems that empirically

xv

address multiple types of device compromise using large-scale observations within different

organizations, thus placing us on a stronger footing to devise better interventions.

I first describe an approach used at Facebook for detecting malicious browsers extensions.

I present a methodology whereby users exhibiting suspicious online behaviors are scanned (with

permission) to identify extensions in their browsers, and those extensions are in turn labeled

based on the threat indicators they contain. Employing this methodology at Facebook I identify

more than 1,700 lexically distinct malicious extensions, and use this labeling to drive user device

clean-up efforts as well notify browser vendors.

Next, I examine for-profit services offering to artificially manipulate a user’s social

standing on Instagram. I identify the techniques used by these services to drive social actions,

detail how they are structured to evade straightforward detection, and characterize the dynamics

of their customer base. Finally, I construct controlled experiments to disrupt these services and

analyze how different approaches to intervention can drive different reactions, thus providing

distinct trade-offs for defenders.

Lastly, I describe a large-scale measurement of 15,000 laptop and desktop devices on

a university’s network to characterize the prevalence of security “best practices” and security-

relevant behaviors, and quantify how they relate to device compromise. I use passive network

traffic analysis techniques to infer a broad range of device features and per-machine compromise

state. I find a number of behaviors positively correlate with host compromise, and few “best

practices” exhibit negative correlations that would support their value in improving end user

security.

xvi

Introduction

Large organizations connect a multitude of devices, and house sensitive information.

Unsurprisingly, they also attract unwanted malicious and abusive actions originating from

compromised devices using their platforms. Some of these actions result in the propagation

of malware [10, 9, 18, 55], theft of computing resources [59, 73], and extortion of money [15].

Indeed, large organizations dedicate significant effort to preventing many types of compromise

from impacting their platforms.

Unfortunately, large organizations do not have an oracle into device compromise. Instead,

in many cases organizations must address compromise without straightforward answers to vitally

important questions: Is a device compromised? Why/How is device a compromised? What’s the

best intervention?, etc. This problem, in part, results from limited observations available at each

organization’s vantage point (e.g., actions within a social network, encrypted network traffic

connections, etc.), the types of interventions at an organization’s disposal, and continuously

evolving adversaries with differing incentives. In some cases, traditional countermeasures such

as blacklisting or rate limiting are sufficient to address compromise. However, a motivated

adversary may be able to subvert these interventions. Deriving an empirical understanding

around device compromise is critical for developing long-lasting and effective interventions.

Specifically, the prevalence of differing types of compromise coupled with the constrained

vantage points and intervention capabilities of large organizations creates a need to develop

empirically-grounded systems, that in-turn, can help drive intervention efforts.

In this thesis, I address the challenges inherent in developing systems aiming to remediate

compromised devices engaging with large organizations. In particular, I demonstrate multiple

1

approaches for developing systems to address different types of device compromise using large-

scale observations within organizations, thereby placing us on a stronger footing to devise better

interventions. I describe multiple real-world and large-scale studies where I develop empirically-

driven systems at three large organizations. In each system, the organization’s vantage point,

intervention techniques, and types of compromise differ. Specifically, I develop systems to:

detect and cleanup browser malware, understand and disrupt abusive underground services

selling inauthentic actions on online social networks, and explore how a range of recommended

security practices (e.g., using antivirus, etc.) and behaviors correlate with ground truth security

outcomes.

In the first study, I develop a system to detect and mitigate malicious browser extensions

(MBE) impacting the online social network Facebook (Chapter 1). This work is motivated by

previous studies that develop techniques to detect MBEs, and find that online social networks

are a commonly targeted by MBEs. In 2014, Kapravelos et al. [50] develop a system that detects

MBEs using dynamic analysis to study an extension’s behavior when accessing honey Web

pages that try and trick browser extensions into exhibiting malicious behavior. Similarly, in

2015, Jagpal et al. [47] describe a system used at Google to quickly detect MBE uploaded to the

Chrome Web Store (an extension marketplace) by periodically monitoring the static and dynamic

behaviors of each extension. In both related studies, the systems process browser extensions

directly and evaluate each extension on a periodic basis.

From the perspective of an online social network the extensions themselves are not

directly accessible. Additionally, how or why the extension is installed is unknown. Instead,

malicious behaviors from browser extensions targeting online social network are observable.

By leveraging these malicious behaviors first-hand, I drive detection and cleanup efforts of

MBEs. I first discuss some examples of how Facebook can identify user accounts that are

likely compromised. Next, I describe the workings of a custom malware scanner that uses static

analysis to process browser extensions. From the processed extensions, I develop an automated

MBE labeling system that uses malicious indicators (e.g., URLs, IP addresses, etc.) identified

2

by Facebook to classify MBEs. Deploying this system at Facebook over six weeks, I identify

more than 1,700 new lexically distinct MBEs, show that existing anti-malware and anti-abuse

mechanisms offer limited effectiveness against the MBEs, and notify anti-malware and browser

vendors.

In the second study, I develop a system for the online social network Instagram to detect

and disrupt underground markets offering to artificially inflate an Instagram account’s social

status (Chapter 2). Users with more followers are able to reach larger audiences with their

posts and thus can be seen as carrying more “weight” in some abstract social hierarchy. Since

this standing is directly monetizable via advertising, it is unsurprising that this aspect of social

media has attracted organized abuse. These underground services have evolved adversarially as

a result of prior interventions and the demand for more “real looking” actions: from producing

inauthentic actions by way of fake or bot accounts, to utilizing more sophisticated techniques

involving real Instagram accounts. Similar to my work on MBEs, the actions from abusive

services can be observed directly by an online social network’s vantage point. However, unlike

browser extensions the malicious software is not required to run directly on each device making

the use of a malware scanner-like approach impractical.

I describe two techniques used by popular underground services to artificially inflate the

social status of an Instagram user’s account: collusion networks and reciprocity abuse. I then

develop a honeypot account framework for Instagram that allows me to engage with abusive

services as a customer. I design the honeypot account framework in a way that enables the

systematic creation of both fake and real looking honeypot accounts. I use the honeypot account

framework to attribute abusive actions to each underground service, to evaluate how services

use their customer’s Instagram accounts, and to quantify the natural effects of reciprocation

that are exploited by reciprocity abuse services. Next, by using a set of signals produced by

Instagram I am able to identify the broader set of actions produced by each service. This rich data

set allows me to estimate each service’s customer population size, customer stability, monthly

gross revenue, the types of service that are most popular among customers, and biases in how

3

reciprocity abuse services operate. Finally, using my understanding of how these service operate

I develop two controlled interventions to compare the effectiveness of different countermeasures

(e.g., blocking actions, etc.). The first explores how a small fraction of service customers react

to different countermeasure techniques, and the second measures the service-wide reaction to

different countermeasure techniques when applied to a large fraction of abusive actions. I find

that underground services are able to attract a large clientele, and generate over $1M in monthly

revenue. Additionally, different approaches to intervention (i.e., transparent interventions such

as blocking abusive services vs. more opaque approaches such as deferred removal of artificial

actions) can drive different reactions and thus provide distinct trade-offs for defenders.

In the third and final study, I develop a system that passively monitors a university’s

residential network to explore how a range of security “best practices” (e.g., using antivirus,

updating software quickly, etc.) and behaviors (e.g., the types of Websites visited, etc.) correlate

to ground truth security outcomes (Chapter 3). Security is a discipline that places significant

expectations on lay users. In fact, there are a wide array of technologies and behaviors that end

users are expected to adopt and thereby reduce their security risk. However, the adoption of

these “best practices” — ranging from the use of antivirus products to actively keeping software

updated — is not well understood, nor is their practical impact on security risk well-established.

I describe the architecture and implementation of a large-scale passive network monitor-

ing system that produces per-device models measuring a range of security practice and behavioral

features. Unlike the vantage point of online social networks which is constrained to social net-

work actions, passive network traffic contains a broader set of device actions (e.g., software

updates, social network activity, etc.). However, this activity is encoded within network traffic,

and fine-grained detail into the context of each action is commonly obscured by encryption.

Consequently, network traffic requires considerable processing to identify device features. To

address these challenges, I develop network traffic signatures that enable the detection of a range

of security practices and behaviors. I then use operational security logs and network intrusion

detection system (IDS) alerts to identify compromised machines on the network. Combining this

4

information, I investigate how recommended security practices and behaviors correlate to device

compromise. Lastly, I describe a logistic model that compares device features in terms of their

ability to predict security outcomes relative to one another. Analyzing months of longitudinal

data I find that a number of recommended security “best practices” are followed, however, they

do not negatively correlate with device compromise. Most positively correlated is the type of

web sites a device visits (e.g., adult content, video games, etc.), and the volume of traffic devices

produce. Subsequently, using a logistic model I find that behavioral features such as visiting

web sites related to gaming and illegal content are relatively more useful for distinguishing

compromised devices.

In this dissertation, I demonstrate multiple approaches to develop empirically-grounded

systems that address device compromise within different organizations. I present solutions that

take advantage of analytic data to determine: what is measurable under the limitations in each

organization’s vantage point, as well as the trade-offs across different types of intervention. This

dissertation is organized as follows. In Chapter 1, I develop a system for an online social network

to detect and cleanup MBE. In Chapter 2, I develop a system for an online social network to

understand and disrupt underground markets selling inauthentic actions. In Chapter 3, I develop

a system for an enterprise network to explore how recommended security practices and behaviors

correlate to ground truth security outcomes. Finally, I conclude in Chapter 4.

5

Chapter 1

Malicious Browser Extensions at Scale

In this chapter, we develop an automated framework for Facebook that identifies and

mitigates malicious browser extensions (MBE) targeting the online social network. Online

social networks are not in a position to easily detect and remove known MBEs from infected

devices. From the vantage point of an online social network, malicious activity can be directly

experienced. However, the extensions themselves are not readily available. We overcome

these obstacles by developing a custom malware scanner that labels extensions using threat

indicators previously associated with abusive behavior. We describe the scanner’s methodology

for propagating malicious indicators across browser extensions, and present an evaluation of the

system when deployed at Facebook over a few weeks. Our system quickly detects and mitigates

new MBEs. We also find that existing anti-abuse and anti-malware offer limited effectiveness

against MBEs.

1.1 Introduction

Today, Web browsers encapsulate dynamic code, interact with users and are implicated

in virtually every activity performed on computers from e-mail to game playing. While some

of these activities have been made possible by enhancements to the standard languages and

capabilities supported by the browsers themselves, many others are made possible via browser

extensions designed to augment this baseline functionality.

6

Notably, browser extensions enable customization not only with respect to visual appear-

ance (e.g., by changing the look and feel of the browser), but also on a deep behavioral level

(i.e., in the way the browser interacts with Web sites). Browsers enable the latter functionality

by allowing extensions to use a set of permissions that Web sites do not normally have. For

example, extensions are capable of modifying HTTP headers, bypassing the Content Security

Policy (CSP) [96] set by Web site owners and hiding the results of any actions by rewriting Web

site content before it is displayed. These capabilities allow extensions to offer complex and

rich modifications to the user experience and support the implementation of services that would

otherwise be impossible to implement. However, these same capabilities can provide a powerful

vehicle for performing malicious attacks [20]. Unsurprisingly, this problem has evolved from one

of abstract potential into a concrete threat, and today the problem of MBEs is widely understood

to be real and growing [81, 20, 58, 50, 47]. We consider MBEs to be extensions that take actions

on behalf of a user without their consent, or replace Facebook’s key functionality or content.

Unfortunately, detecting MBEs is challenging because the malicious nature of a given

extension can manifest dynamically and the online targets of its abuse have no natural way

to attribute those behaviors back to particular extensions. More concretely, while a browser

vendor or extension marketplace is in a position to inspect extension code, inferring malicious

intent may not be possible from that vantage point. In addition to the traditional challenges

with such code analysis approaches (e.g., polymorphic encoding), extensions routinely fetch

resources from third-party sites and, as a result, an extension may only exhibit malicious actions

at certain times or when certain Web services are visited. Conversely, from the vantage point

of a targeted Web service, abusive actions may be clear, but the source of those actions can be

murky. Extensions frequently hide by emulating a normal user’s interactions and there are no

standard mechanisms to link browser actions back to a particular extension (or even to enumerate

the extensions present on a user’s browser). Indeed, because the viewpoint of the Web service

provider is limited to the Document Object Model (DOM) there is no shared language by which

they can crisply share threat intelligence with browser vendors or extension marketplaces.

7

In this paper, we have started to bridge this gap between the Web site and browser

vantage points, which we believe will enable more effective interventions against the threat of

MBEs. In particular, we examine MBEs from the perspective of Facebook — which, among

others, is extensively targeted by such extensions (e.g. [47]). We describe our approach for

automatically collecting browser extensions of interest, detecting the malicious ones (within

seconds of reaching Facebook’s infrastructure) and then working to remove such extensions

from our customer ecosystem. In particular, this paper describes the following contributions:

• A methodology for collecting browser extensions from devices suspected of malware

compromise.

• A methodology for automated labeling of malicious extensions using indicators we ex-

tract from the collected samples and threat indicators previously associated with abusive

behavior.

• Deploying this methodology at Facebook, we identify more than 1700 malicious Chrome

and Firefox extensions1 out of a total of more than 34000 scanned extensions during a

6-week period spanning late 2016 into 2017.

• We show that existing anti-malware and anti-abuse mechanisms only offer limited effec-

tiveness against MBEs, addressing a small fraction of the samples we detect (and with far

greater delay when they do).

The remainder of this paper is organized as follows: Section 1.2 provides an overview of

browser extensions and related work; Section 1.3 outlines Facebook’s approach for detecting

compromised user accounts, and collecting and analyzing browser extensions; Section 1.4

describes the automated extension labeling system, and Section 1.5 evaluates it, characterizing

the volume of extensions Facebook deals with and system behavior over time; Section 1.6

motivates the need for the new labeling system; and Section 1.7 concludes.
1While most recent browsers support extensions (e.g. Safari, Opera, Internet Explorer, etc.), we focus on Chrome

and Firefox since visitors using these two browsers constitute 54% and 13% of browser traffic respectively seen per
day at Facebook.

8

1.2 Background

Browser authors have tried to provide as dynamic and programmable experience as

possible, but inevitably some applications have required capabilities beyond those provided via

standard Web programming interfaces. To address this need, virtually all major browsers support

extension interfaces. Extensions written to these interfaces are allowed to execute code, interact

with the browser core and initiate network calls — all independent of particular Web pages being

viewed. While extensions can use a variety of technologies and languages, for this paper we will

be focusing on HTML and JavaScript (JS) which are used predominantly in the development of

Chrome and Firefox extensions.

Because browser extensions are given permission to interact with the browser in manners

that would otherwise be classified as “high-risk” [56], there is a range of opportunities to enable

malicious behavior. For example, extensions can violate typical cross-site request forgery

(CSRF) or cross-site scripting (XSS) protections, inject arbitrary code in a page’s DOM, rewrite

its content, and access Web traffic as a page is being loaded (including all cookies and POST

parameters). Indeed, the permissions available are sufficiently powerful that they can even

prevent the user from removing an extension once loaded.

Users frequently load browser extensions via online marketplaces (e.g., the Chrome Web

store), which try to vet both code and authors, and remove extensions that are clearly abusive.

However, browsers also allow a range of alternate “sideloading” options including manual

installation, operating system administrative policies, and native binaries. While browser vendors

are actively reducing such sideloading opportunities, attackers have shown great creativity in

bypassing ad hoc limits. Moreover, even when the browser is configured to prevent sideloading,

we have observed one class of malware (BePush) enabling sideloading by simply installing an

older version of the browser that lacks such protections.

These issues have been understood for some time, with Dhawan and Ganapathy identify-

ing early malicious extensions in 2009 and proposing techniques to protect against them [20].

9

Researchers have shown similar problems exist in modern browsers [56, 27, 90, 13] and large-

scale empirical measurements [50] and operational experience [47] show that malicious browser

extensions are a widespread problem. Much of the existing research in this space has focused

on how to either better harden the browser [58, 21, 56, 34] or to provide a better mechanism for

vetting code in extension marketplaces [4].

Our work builds on ideas from these prior efforts. Our approach is data driven, like

the work of Jagpal et al. [47] and Kapravelos et al. [50], but is based on static analysis using

Facebook’s own contemporaneous threat indicator data (e.g., abusive domains / URLs) to label

extensions. This allows our approach to be browser-agnostic and adapt quickly to changes in the

kinds of abuse being perpetrated on Facebook. Of course, Rice’s theorem says there is no way to

figure out whether a piece of code will be malicious, so there is no way to make a promise to

catch every MBE. We further describe a soup-to-nuts operational workflow — including how

we obtain samples, process and label them, and remediate affected users.

1.3 Collecting Browser Malware

Logged in

user

Clustering

&

Classifiers

 User action

Non-malicious

Enroll in

scanMalicious action

Should

Scan?

Logout

userNo, Log in

Malware

Cleanup

Yes

Malware

 Scan

Logged out

user

Login attempt

2. Scanner dl, run

1. User consent

3. Upload MD5

Fetch MD5 status

New

sample?
Yes, go to 5

Store Unpack Indicator Extraction
5. Upload sample

Store indicators

(go to 4)

S3.1

S3.3

S3.2

4. No, remove if bad

Figure 1.1. An overview of our system highlighting the detection, malware scanner, and
static analysis steps. The dashed arrows describe normal user interaction, and solid arrows are
transitions within the described system.

10

Facebook has collected more than 1 700 unique malicious samples over the 6-week

analysis period.2 Naturally, manual analysis of extensions at this scale is infeasible, so Facebook

has developed new techniques to automate the collection and analysis of samples.

In this section we describe some of the ways Facebook detects malware-compromised

user accounts. We further outline what happens after detecting such accounts and, specifically,

how we collect and analyze the responsible malware samples from malware victims’ computers

via a custom malware scanner. Finally, we report on the initial analysis we perform on the

collected extensions.

1.3.1 Detecting Compromised User Accounts

The process of acquiring new malware samples starts by detecting user accounts suspected

of being compromised with malware. At a high level, this process is guided by the clustering

and classification systems (shown in Figure 1.1) using as input (i) signals of abnormal activity,

(ii) client-side third-party injected code in Facebook’s DOM, (iii) and user-reported objectionable

content. While the detailed process of detecting malware-compromised accounts is mainly

beyond the scope of this work, in the following paragraphs we present some examples of related

signals.

Negative Feedback. In the event a user account is compromised with malware, the

malware may attempt to either use the compromised account for monetization — e.g. by posting

links that redirect to ad-filled pages — or to spread the infection by posting links to malware. The

latter usually happens via clickbait. In either case, Facebook users have the ability to report the

content as objectionable (e.g. abusive, malicious, etc.), and links to such content may eventually

get blacklisted.

Spiking Content. Facebook’s real-time abuse detection systems monitor the time series

of user activity to detect anomalies based on diurnal patterns of normal activity. Such anomalies

fall into two high-level categories: anomalies that can be remediated automatically, and ones that

2Uniqueness is based on MD5 hashes of extension contents.

11

need an analyst to examine and take action.

An example of the latter case would be auto-generated objectionable content being

shared on Facebook (e.g. adult content) with similar characteristics, e.g. directing viewers to the

same external domain that results in a drive-by malware infection. In such a case, the analyst

would typically add the related domains to a blacklist and enqueue the users participating in

such activity into a malware cleanup flow. Anomalies that can be auto-remediated are either

simple anomalies that make use of other high quality signals (e.g. spiking negative feedback) or

anomalies that have been previously seen and the responses are already codified.

DOM-based indicators. Facebook uses client-side code to self-inspect its own rendered

DOM for injected third-party code. One challenge with client-side code is that a MBE may

attempt to prevent such code from running. In the event third-party code is discovered, code-

specific features are analyzed by Facebook’s clustering and classification systems. When features

related to malware are identified, users’ devices containing such features may get enrolled into a

malware cleanup flow.

1.3.2 Malware Scanner and Cleanup

Once Facebook identifies an account suspected of having been compromised by malware,

the account may be enrolled in a process that is capable of detecting and remediating malware

via an online scan session.3 This process is shown in Figure 1.1 under “Malware Cleanup”.

Following user consent (see Figure 1.2), the user downloads a one-time malware scanner that runs

on the potentially compromised system. If user consent is not provided, the user can continue

to access their account using other devices. After a cool-down period the potentially-infected

device is allowed to access Facebook again.

Once the scanner process starts, it inspects locations on the file system known to hold

Firefox and Chrome extensions. For each observed sample, the scanner communicates the file

hash with Facebook’s infrastructure, which in turn provides a verdict on whether Facebook

3If the account was recently enrolled, it may not be re-enrolled.

12

Figure 1.2. The user consent prompt explaining actions the Facebook scanner will take if the
user agrees. In this instance the scanner is paired with a third party scanner responsible for
removing other types of infections.

believes the sample is malicious. Suspicious extensions or files that have not been seen before

(e.g. based on their extension ID) are uploaded to Facebook’s infrastructure for real-time analysis.

When Facebook’s server-side infrastructure indicates to the scanner that a sample is malicious,

the scanner attempts to start a cleanup routine that removes the offending sample.

1.3.3 Static Analysis

After the we collect and store samples on ThreatExchange4 – Facebook’s threat intelli-

gence infrastructure – and while the malware scanner is still running on the user’s device, we

initiate a static analysis pipeline that extracts threat intelligence from the samples.

Our decision for using a static versus a dynamic analysis is based on the understanding

that the specific malicious extensions being analyzed are already exhibiting their malicious

behavior at collection time. Consequently, we do not have to overcome issues of, e.g., time-

gating that a dynamic analysis would be helpful for [47]. Although we execute several distinct

analysis functions, the following three are relevant to this paper.

Unpacking. We start by unpacking the sample. Then, we recursively schedule analysis

4https://developers.facebook.com/products/threat-exchange

13

https://developers.facebook.com/products/threat-exchange

for any files contained within the extracted object. This function can be unsafe in the case where

the archive is compressed and has malicious intent, which we handle via sanity checks, such as a

limited recursion depth.

Indicator extraction. We attempt to extract threat indicators from each potential mal-

ware sample without parsing binaries or code. Instead, we treat each file as a plain text document.

This approach, although naive, still generates actionable intelligence from each sample.

We use a series of regular expressions to extract Uniform Resource Locators (URLs), IP

addresses, domain names, cryptographic hashes, browser extension IDs, and email addresses.

In addition, we attempt to deobfuscate, decompress, decode, and otherwise clean up the code

contained in the extensions we analyze. We also make reasonable effort to repair broken URLs

and other malformed data.

Once we have the set of initially extracted indicators, we make a second pass, but this

time on the extracted data. During this pass we attempt to find more indicators using the type of

the original indicator as a clue. For example, for URL indicators that contain API keys, the first

pass extracts the URL and the second pass extracts the API key from the URL.

External sharing. We share the full collected samples with ThreatExchange and Virus-

Total only if either of the following two conditions are met: (i) the number of users having

the specific sample are beyond a specific threshold, or (ii) in the case of Chrome extensions, if

the extension is live on the Chrome store. We are able to detect the latter by constructing and

accessing a URL that points to the extension on the Chrome Web store.

1.4 Browser Extension Labeling

In this section we describe our methodology for labeling browser extensions. Labels

represent a status of maliciousness, and we assign extensions one of two values in decreasing

order of severity:

• MALICIOUS samples are those deemed with high confidence to be malicious. The malware

14

scanner described in Section 1.3.2 will subsequently remove them when users agree to an

anti-virus scan.

• UNKNOWN is the default status for all samples for which we do not have a definitive opinion.

We describe the rules our system uses to propagate labels from individual indicators all

the way to entire extensions, and also how changing labels propagate through the system. While

the system automatically extracts indicators and propagates labels, there are some situations

where traditional manual analysis still plays a role and we end by discussing how the system

incorporates input from analysts.

1.4.1 Automated Extension Labeling

We start by assigning high-quality labels to individual threat indicators (e.g. URLs).

These indicators come primarily from the system responsible for identifying spam activity, as

described in Section 1.3.1, which the labeling system assumes to be ground truth. In essence,

the malware labeling process is designed to apply these vetted threat labels onto the indicators

extracted from samples via the static analysis pipeline (Section 1.3.3).

All indicators receive an initial label, but Facebook also maintains a feedback process to

flag and re-evaluate them over time if it learns new information. As a result, a URL erroneously

marked as MALICIOUS, for example, will be appropriately re-labeled. This update will then

automatically propagate to the relevant samples, which will subsequently be queued for re-

labeling.

Propagating Maliciousness Labels

At a high level, our automated browser extension labeling system operates under the

basic assumption that if a text file (e.g. a JS file) contains indicators marked as MALICIOUS in

the ground truth data, then we can deterministically propagate this label to the containing file.

Furthermore, if a file labeled as MALICIOUS is a part of container (e.g. a browser extension),

then we can deterministically propagate that label to the container. For example, if the URL

15

http://www.example.com/evil.php is considered MALICIOUS, and a file background.js contains

this URL, then the file will be labeled as MALICIOUS. And if a Chrome extension goats.crx

contains background.js, then the extension will also be labeled as malicious.

In practice, there are also cases that require an explicit policy decision on how to

propagate labels. Although the policies we have chosen may introduce noise into the analysis,

our experience has been that overall the system has a sufficient number of strong indicators that

it overcomes that noise when it ultimately labels extensions.

Shared resources. If an indicator represents a shared resource — e.g. an IP address

used as a Network Address Translation protocol (NAT) gateway — it can be used by both benign

and bad actors concurrently. In this case, labeling a file that contains the named IP address as

MALICIOUS would be equivalent to erroneously marking all traffic originating from that IP as

MALICIOUS. For simplicity of implementation, our policy is to still propagate labels even on

indicators for shared resources, rather than to try to identify and differentiate between shared and

non-shared situations.

Inactive code. Another example are inactive blocks of code referencing MALICIOUS in-

dicators. Indeed, the malicious block of code is not executable, why label the file as MALICIOUS?

Our policy is to still propagate the label from indicators on inactive code to the containing object.

We argue that, if an actor has the capability to add any type of code into a file, then they may

also have the ability to activate previously inactive malicious code.

Gating. Finally, indicators with geographically or temporally gated malice have the

potential of erroneously labeling samples when the labeling action occurs outside such boundaries.

For geographic gating, our policy is to disregard the boundary and apply globally the label of the

indicators with the highest severity. If any users experience malicious behavior, our goal is to

protect all users. However, temporal gating requires more attention, specifically for indicators

that have been malicious in the past, but, after re-evaluation, we can positively characterize them

as not malicious.

16

http://www.example.com/evil.php

Cleaning Up False Positives

The system needs to react quickly and automatically to the discovery of false positives.

If the system incorrectly labels an extension as MALICIOUS, then the extension will be removed

by the malware scanner the next time devices with the extension are scanned.

Using the same rule engine used for propagating labels from indicators to files and

extensions, we also create a set of rules to automate correcting false positives. Specifically, if an

indicator changes status from MALICIOUS to a lesser severity (e.g., UNKNOWN), (i) we identify all

malware samples containing the indicator, (ii) we filter out all samples that have any status other

than MALICIOUS, and (iii) for the remaining samples we set their status to UNKNOWN if they do not

have any remaining MALICIOUS indicators. Similarly, when the a MALICIOUS sample receives a

new, less severe status, we re-compute the status of its containers by applying the same set of

rules used for updating indicators.

Known False Positives

Throughout the 6-week measurement period our system collected over 34k unique

extensions of which 124 are known to have been incorrectly labeled as MALICIOUS. Additionally,

the median time to identify a false positive is 18 days. As a result, in 0.8% of total scan sessions,

our system removed one or more of these 124 extensions erroneously. After the extension is

removed, the user can re-install the extension and likely will not be re-enrolled in the malware

cleanup process described in Section 1.3.2. We consider this number of false positives as small

in number and of an acceptable magnitude.

1.4.2 Manual Labeling

While we consider our automated MBE labeling system highly effective, there are also

cases where a threat analyst may need to manually examine a sample to decide its status. Such

cases include: (i) Suspicious extensions with highly obfuscated code that circumvents the

static analysis pipeline’s ability to extract threat indicators. (ii) Suspicious samples that may

17

contain evolved adversarial capacity to bypass our detection capabilities. Even if the sample

was correctly labeled as MALICIOUS, in such cases analysts are responsible for examining the

samples and communicating their findings within Facebook. (iii) Malicious indicators or samples

that are responsible for labeling multiple samples within a short period of time and beyond a

certain alerting threshold. Such cases are indicative of a commonly reused, erroneously labeled

MALICIOUS sample, and the manual analysis step will prevent many false positives.

Any threat status manually applied by an analyst always dominates labels originating

from the automated systems. Therefore, such systems are configured to never overwrite an

analyst-originating threat label.

1.4.3 A Real World Example

To make this process more concrete, we conclude with an end-to-end example of a botnet

that targets Facebook users to disseminate malicious content. A user’s browser becomes infected

when the MBE5 is installed via the Chrome Web Store (it is unknown if installation is a result of

user choice, or through another attack vector). Once installed, the extension monitors all Web

content that the user accesses by sending the URLs to a command-and-control (C&C) server.

Additionally, the extension periodically requests from a C&C server remote resources that are

executed in the user’s browser. Most of the time, the resources do nothing, allowing the MBE

to appear benign until the botnet operator initiates an attack. This behavior helps explain why

VirusTotal’s 57 anti-virus engines consider the extension to be non-malicious, and why it was on

the Chrome Web Store.

When active, the MBE manipulates Facebook’s DOM with side effects that are detectable

both by the DOM scanner, as well as by users themselves (who subsequently reported issues to

Facebook). As a result, when the botnet began executing malicious payloads, these side effects

provided the first signals of its existence to our system, which resulted in automated classification

of the sample as MALICIOUS.

5e.g. MD5 a369ecc2e8ca5924ddf1639993ffa3aa

18

5 10 15

1e−04

2e−04

3e−04

4e−04

5e−04

6e−04

7e−04

Botnet DOM−based detection

Days after first detection

P
ro

po
rt

io
n

of
 d

ev
ic

es
/a

ll
de

vi
ce

s Devices with indicator
Devices cleaned

Figure 1.3. Daily proportion of user devices detected with a DOM-based indicator of the botnet,
and the proportion of user devices that have the botnet remediated.

Figure 1.3 shows the detection and remediation of this MBE over time. The x-axis shows

the number of days after the MBE was first detected by Facebook. The y-axis, normalized by

the number of devices scanned daily, shows both the proportion of scanned devices detected as

being infected, and the proportion of devices with the MBE cleaned from their system. The lag

from when an indicator is detected on a device, and when the device performs malware cleanup,

is due to the two processes being independent. In less than a week it peaks while Facebook’s

malware scanner actively cleaned infected devices. After two weeks, almost all extensions had

been removed from the browsers of Facebook’s users.

1.5 System Evaluation

We now evaluate our system for automatically labeling malicious browser extensions

using extension data collected over a period of six weeks, spanning the end of 2016 through

early 2017. We start by characterizing the volume of data our infrastructure processes, focusing

on Chrome and Firefox extensions. The volume underscores the need for an automated system.

19

Table 1.1. Collected browser extensions broken down by browser name, status, contained
samples and indicators, and by number of scan sessions reporting a specific type of extension. A
scan session may collect both Firefox and Chrome extensions if both browsers are present on a
given machine, and thus these percentages add up to more than 100%.

All extensions Malicious extensions Extension contents Extracted indicators Scan sessions
% # % of total JS HTML Total # Malicious (#/%) # %

Chrome extensions 23 376 67.6 1 697 7.3 67 380 720 66 134 1 559 (2.4%) 718 497 96.9
Firefox extensions 11 183 32.4 88 0.8 17 979 16 19 004 609 (3.2%) 257 164 34.7
Total unique 34 559 100.0 1 785 5.2 84 905 733 73 281 1 516 (2.1%) 741 276 100.0

We then show the system in operation and its behavior over time.

1.5.1 Extensions Collected

Table 1.1 shows a high-level breakdown of the browser extensions we collected over

the six-week period. Overall, Facebook’s malware scanner collected a total of 34559 distinct

browser extensions from 741k distinct scan sessions. We uniquely identify a browser extension

by its XPI identifier for Firefox extensions, and by its CRX identifier for Chrome extensions.

Extensions are more popular among Chrome users as the majority of collected distinct extensions

(67.6%) came from Chrome.

As shown in Table 1.1, throughout the six-week period our system extracted more than

85000 unique HTML and JS files, with 79.5% of them originating from Chrome extensions. Note

that a small number of JS files (454 in total) appear both in Chrome and Firefox extensions, and

are cases of libraries like jQuery commonly shared among JS-based applications. Additionally,

three HTML files appear in both Chrome and Firefox extensions, and are related to the Potentially

Unwanted Program (PUP) Conduit.A.

Among the collected extensions, our infrastructure extracted a total of 73281 unique

indicators. Most of these indicators (90%) were embedded in samples extracted from Chrome

extensions. As with the JS files, 9398 indicators overlap across the two types of extensions due

to common references to certain resources like domains, URLs, and email addresses.

For Chrome extensions, we find 2200 (9.4%) of the 23376 total extensions to have been

on Google’s Web Store at least once. The high proportion of extensions likely installed via

20

sideloading (90.6%) is not surprising as Facebook’s malware scanner runs on devices suspected

of being infected, and Google removes extensions they consider malicious from the Web Store.

1.5.2 Malicious Extensions Detected

We now consider the methodology for automated MBE labeling we presented in Sec-

tion 1.4.1, and examine its application to the extensions we collected and the files we extracted

during the six-week measurement period.

Of the 34559 extensions from this period, we classified 5.2% of them as malicious. As

expected, attackers clearly target Chrome more often. From the 11183 Firefox extensions, only

0.8% of them are labeled malicious. Yet, of the 23376 Chrome extensions, 7.3% are malicious.

This bias naturally reflects browser market share, as Facebook sees predominantly more traffic

from Chrome and attackers concentrate on the platform most popular with users. Of the malicious

Chrome extensions identified, 24.9% have been accessible on the Web Store at least one time

throughout the measurement period.

The small portion of extracted threat indicators labeled malicious in Table 1.1 (2.1% of

all extracted indicators) highlights the effectiveness of our labeling methodology in trickling up

known badness. The malicious indicators used to label MBE are primarily domains and URIs,

with the exception of a single email address that resulted in labeling one Chrome extension as

malicious.

Figure 1.4 shows the behavior of the automated labeling system over time as it detects

and labels MBEs. Each point represents the number of new extensions labeled as malicious on a

given day (x-axis), even if the extension was first seen on different day. The spike spanning days

32–35 is linearly correlated with the fluctuation in the number of users clearing the malware

checkpoint at the same period. On an average day the system labels 39.5 (median: 37) Chrome

extensions and 2 (median: 1) Firefox extensions as malicious.

In general, identifying new malicious extensions is immediate: for over 90% of newly-

collected browser extensions, the system labels them as MALICIOUS with a median time of 21

21

0 10 20 30 40

0

50

100

150

Extensions automatically marked as malicious by labeling time

Days

of

 m
al

ic
io

us
 e

xt
en

si
on

s

Chrome extensions
Firefox extensions

Figure 1.4. The number of unique extensions labeled as malicious each day of the six-week
measurement period.

seconds after collection. However, some extensions are initially labeled benign and are only

later discovered to be malicious when their embedded indicators are associated with abusive

behavior. In our measurement period, we only found 143 (8.0%) extensions that are eventually

labeled MALICIOUS more than 1 day after they are first collected, and these extensions are found

on ≈ 9% of all users cleaned during the measurement period. Delayed discovery is expected

with an indicator-based labeling system as the status of an indicator can change over time, and

we consider the number to be acceptably low for an operational system.

1.6 Evaluating Alternatives

The system evaluation shows that Facebook’s MBE labeling is effective at detecting,

labeling, and cleaning malicious extensions. A related question is whether it is necessary to

create a new system to perform this task. Next we evaluate alternatives to underscore the need for

developing a new system to protect Facebook and its users from large-scale abuse via browser

extensions. For this evaluation, we focus on Chrome extensions since they dominate what

22

we encounter on user’s devices. In particular, 2200 extensions once available as “public” or

“unlisted” on the Chrome Web Store, of which Facebook labeled 422 (19.2%) as malicious, and

1778 (80.8%) as unknown. Recall that these are extensions from users that exhibited suspicious

activity on Facebook and triggered an anti-virus scan, so we would expect a greater concentration

of malicious extensions in this smaller set.

1.6.1 VirusTotal

We first use VirusTotal to evaluate whether Facebook can use general databases of

malware to detect malicious extensions. VirusTotal is a popular online system owned by Google

that analyzes malware files using a suite of 57 anti-virus products, and reports which A/V

products label a file as malicious (if any).

We initially use the set of new extensions publicly available on the Chrome Web Store

overlapping with our measurement period. The authors of the Hulk system [50] kindly shared

these extensions with us, and they total 9172 unique CRXs. As a baseline we submitted the

shared public extensions their system collected to VirusTotal. VirusTotal was aware of only 73

(0.8%) of them, and considered only 5 (0.1%) as malicious.

Additionally, out of the 422 MALICIOUS extensions as labeled by Facebook, only 22.7%

are identified as malicious by one or more anti-virus engines. We conclude that a general malware

database like VirusTotal is insufficient for detecting MBEs for sites like Facebook.

1.6.2 Chrome Web Store

Google also has a vested interest in maintaining the health of the Chrome extension

ecosystem, and therefore also actively removes extensions that it determines to be malicious.

Since another option for Facebook would be to rely upon Google’s efforts, as a final step we

quantify the benefits that Facebook’s MBE labeling system is able to provide by focusing on just

its service beyond what Google provides to all Chrome users.

When an extension is removed from the Chrome store, we conservatively assume that

23

the extension was removed because Google considered it malicious. Since extensions may be

removed for other reasons (e.g., developers removing their own extensions), this represents an

upper bound of Google’s detection capability. By the end of the measurement period, Google

removed 367 of the 9 172 extensions from the Chrome store (70 MALICIOUS and 297 UNKNOWN

based to our labels).

In addition to cleaning up the malicious extensions, another goal of our MBE labeling

system is to reduce the time that they are active and profitable to attackers. Using the public

user counts listed on the Web Store we estimate that these 70 malicious extensions have been

installed 1009806 times. Of the 70 MBEs, Facebook always labels the extensions as malicious

before Google removes them, with a median difference of 67.3 hours. Thus reducing the median

monetization window of malicious extensions by over 2.8 days.

1.7 Conclusions

Malicious extensions are a vexing problem and one that is challenging to address from

any single vantage point. While browser vendors are in a position to restrict which extensions

are distributed and, in principal, which extensions may be installed, they have limited insight

into which extensions act abusively in the wild. Indeed, some extension’s malicious code is only

loaded at run-time and even then may only be activated for particular sites. Conversely, abused

sites directly experience malicious behaviors but they are not in a position to identify which

extensions are implicated in a given attack because this information is not available through the

Web interface.

In over six weeks of deployment at Facebook our system has identified more than 1700

malicious Chrome and Firefox extensions. Comparing our findings with both contemporaneous

anti-malware detections (as reflected in VirusTotal) and takedowns from the Chrome Web

Store, reveals a considerable detection gap in the existing abuse ecosystem. We hope that by

highlighting this issue and sharing our data we can encourage a broader and more collaborative

24

focus on this under-addressed attack vector 6.

Acknowledgements

Chapter 1, in part, is a reprint of the material as it appears in Proceedings of Workshop on

Cyber Security Experimentation and Test (CSET). Louis F. DeKoven, Stefan Savage, Geoffrey

M. Voelker, Nektarios Leontiadis, 2017. The dissertation author was the primary investigator

and author of this paper.

6MD5 hashes of the 422 identified Chrome MBE available in VirusTotal and ThreatExchange: https://pastebin.
com/nzVGPLnr

25

https://pastebin.com/nzVGPLnr
https://pastebin.com/nzVGPLnr

Chapter 2

Following Their Footsteps: Characterizing
Account Automation Abuse and Defenses

In this chapter, we develop a system to disrupt abusive underground services selling

inauthentic actions on Instagram. Similar to our first study (Chapter 1), the actions produced

by these services are observable from the vantage point of an online social network. However,

the corresponding malicious software is not required to run directly on each customer’s device;

making the use of a malware scanner-like approach impractical. As a result, we explore different

intervention techniques to disrupt the abusive actions themselves.

We focus on five popular underground services. From these services, we identify two

techniques used to inflate the social status of a customer’s account: collusion networks and

reciprocity abuse. We then develop a honeypot framework for Instagram that allows us to engage

with abusive services as a customer. Using this framework and signals produced by Instagram,

we measure a number of operational characteristics for each underground service. Lastly, we

develop two controlled interventions to compare the effectiveness of different approaches to

countermeasure. We find underground services are able to attract large clientele, and generate

over $1M in estimated monthly revenue. Additionally, we experimentally demonstrate that

transparent interventions (e.g., blocking actions from a given account automation service)

quickly provokes adversarial adaptation, while deferred interventions (e.g., removing service

actions a day later) is far more likely to go unanswered.

26

2.1 Introduction

Social media, as with all forms of mass communication, provides a platform whereby a

single message can reach large audiences. However, the reach of any given message is determined

by the popularity of the user who publishes it. Concretely, users with more followers are able

to reach larger audiences with their posts and thus can be seen as carrying more “weight” in

some abstract social hierarchy. Since this standing is directly monetizable via advertising, it is

unsurprising that this aspect of social media has attracted organized abuse. Indeed, the medium

has engendered a large underground service market that focuses on bypassing the organic nature

of social relationships and instead advertises the ability to create artificially enhanced social

network status in exchange for payment.

In this paper we explore this phenomena in the context of the popular Instagram photo-

sharing service. To wit, searching for “Instagram likes” in a search engine will produce pages of

sites with inducements such as “Buy Instagram Likes from $2.97 only!” or “Instant Instagram

Likes — 100% Real & Genuine Likes”. However, the precise mechanism by which such services

ply their trade is unclear and, in fact, simplistic “bot-based” approaches (whereby a service

creates fake accounts and uses them to initiate social actions to customer content) are easy to

detect and filter. In our work, we focus on the more sophisticated segment of this market, AASs

in which users provide their Instagram credentials to third party actors who, in turn, use those

credentials to perform actions on the user’s behalf in a manner that violates Instagram’s Terms of

Use [42].

We have explored these services through a variety of techniques. Using a broad array

of independent “honeypot accounts” we engaged (on behalf of these accounts) with five large

account automation services: Instalex, Instazood, Followersgratis, Boostgram and Hublaagram.

By requesting a range of “social actions” from each AAS, and then monitoring activity to and

from the associated accounts, we inferred the mechanisms each service uses to achieve its ends.

Notably, we distinguish two distinct techniques — collusion networks and reciprocity abuse —

27

used to artificially create social connectivity. Using our service characterizations we were then

able to identify all accounts used by customers of each service. Collecting data on this corpus

over several months, we were able to characterize the dynamics of their customer populations

and the underlying revenue of each business. Finally, we performed controlled experiments to

evaluate different kinds of interventions (e.g., blocking such services from accessing Instagram

vs. removing their actions at a future date) and the reactions each kind of intervention evoked

from the services and their customers.

We believe our work is the most comprehensive study of this kind to date on Instagram,

and that our analysis provides several insights that were not previously understood or lacked

empirical validation in the broader space of social network abuse:

• Social action laundering. We identify two techniques designed to artificially create

social actions while evading traditional detection mechanisms. The first, reciprocity

abuse, leverages the tendency of some users to issue complementary follows or likes in

response to an unknown user following them or liking their content. This reciprocity

effect allows services to quickly inflate the follower or like counts of their customers

by automating outbound actions to a curated set of recipients.

The second approach, collusion networks, uses the entirety of a service’s population to

orchestrate the exchange of social actions. Thus, each customer account is used to issue

follows or likes to other customers, and they in turn receive inbound actions from yet

other customers (similar, in principal, to the notion of a mix network [16]).

• Commercial scale. We find that these services are quite successful as business entities

and we estimate the gross revenue among three of the five AASs alone to be over $1M

per month. Moreover, we show that long-term customers (i.e., customers who repeatedly

contract for services over multiple months) provide the lion’s share of these proceeds (i.e.,

that the core set of customers is stable and customer churn is modest).

28

• Intervention impacts. We experimentally demonstrate that transparent interventions (e.g.,

blocking actions from a given account automation service) quickly provokes adversarial

adaptation, while deferred interventions (e.g., removing service actions a day later) is far

more likely to go unanswered. Somewhat unintuitively, our results suggest that related

abuse interventions will be most effective and long-lived precisely when they do not visibly

undermine the business model of the abusive service.

In the remainder of this paper we provide background on how such social networks

operate and are abused, describe the set of AASs we explored, and provide a detailed description

of our measurement methodology. We provide an analysis of both user dynamics and service

revenue, and then describe a series of controlled intervention experiments that explore how

for-profit service abuse businesses respond to different varieties of disruption.

2.2 Background

Online social networks (e.g., Twitter, Facebook, Instagram, Youtube, Snapchat, etc.) are

targeted by abusers that engage in activities spanning from selling fake actions to hijacking user

accounts. We are not the first to identify this phenomenon, and other researchers have charac-

terized a range of such practices that we build on in our own work. Javed et al. characterized

generic traffic exchange services that provide customers with inflated view counts—including

for social media—from large pools of IP addresses, and find many exchanges which pay users

in return for views to their content [49]. This work establishes both the commercial nature of

such abuse and the use of live humans as traffic sources. Hooi et al. develop a bipartite graph

algorithm to detect abusive actions on the Twitter follower-followee graph, where miscreants

may camouflage their abusive actions by producing actions to non-customers [37]. Again, this

work identifies the use of organic (i.e., non-bot) accounts as a critical challenge in social network

abuse and uses statistical techniques to try to distinguish legitimate and illigitmate actions from

such accounts.

29

Other researchers have tried to overcome this issue by using honeypot accounts to

crisply identify abuse targeting across a range of social networks including MySpace, Twitter,

and Facebook [54, 83, 88, 1, 93]. Moreover, in some cases, this data has then been used to

successfully train classifiers to identify those accounts complicit in collusion networks [1, 88].

Our work builds on both of these techniques—the use of honeypots to obtain abuse data and

using this data to train abuse classifiers—in our analysis of Instagram abuse.

The honeypot approach has also been combined with active purchasing from third-

party services to investigate commercial abuse. For example, De Cristofaro et al’s analysis of

Facebook services [19] and Stringhini et al’s analysis of Twitter following services [84] both use

this approach and characterize the nature of the fraudulent social networks they find. Our work

is distinct, not only due to the different social network examined (Instagram), but also because

we focus on more complex (i.e., non-bot) forms of abuse in our work. As well, we are able to

provide a grounded analysis about service revenue that informs how we consider the nature of

the threat and focused experiments exploring the impact of different interventions.

Mislove et al. identified the existence of high degrees of reciprocated actions within

online social networks (e.g., Flicker, YoutTube, etc.) which, a decade later, forms the basis for the

reciprocity abuse we identify in this work [63]. Finally, most closely related to our work is that

of Farooqi et al. who describe a collusion network abusing third-party application OAuth tokens

on Facebook, and the results of large-scale network-level blocking of the organizations behind

this activity [25]. Our work brings a related analysis to a distinct social network and extends

it by analyzing reciprocity abuse as well as collusions networks, quantifying the underlying

business and revenue model for multiple abuse groups, and performing active experiments with

finer-grained (i.e., account-level) interventions.

For this paper, we focus squarely on Instagram, a popular online social network structured

around sharing and discussing photos posted by its 800 million users [41]. In normal use, each

Instagram user can upload photos and videos, apply visual filters and tag photos with hashtags.

A user’s followers will see the media the user has posted, and can interact by liking the media

30

and posting comments. Thus, users with more followers will have their content exposed to a

broader audience and will receive on average more interactions.

Typically, differences in social status (e.g., the number of likes per photo, followers,

etc.) are an organic byproduct of each user’s own authentic activity. However, in addition to the

implicit psychological factors that drive users to desire increased social standing, there can be

strong economic incentives as well. Notably, after reaching a social status commonly referred to

as an “influencer”, outside businesses may offer to pay users thousands of dollars in exchange

for posts (e.g., for marketing purposes) [67, 61]. It is a popular belief in this community that,

to become an influencer, a user of Instagram needs an account with both a high engagement

(i.e., a large number of other Instagram users that interact with posted content), and thousands of

followers [61]. The potential for such inducements leads some users to pursue increased social

status via abusive means, and gives rise to third-party services that perform this function for a

fee. Indeed, such services formalize this notion and promote a metric called the “engagement

rate” to evaluate the quality (and hence potential profitability) of an influencer [45]. They argue

that users should try to maximize this metric:

ER =
Number of likes & comments

Number of followers

and commonly offer to manipulate one or more of its components as a key aspect of their service

offering (with one such service claiming that each $1 spent produces a return of $6 in marketing

revenue).

One approach for achieving this end is to create a range of synthetic Instagram accounts

and use them to follow the accounts of paying customers, like their content, and so on.

However, this kind of purely synthetic account manipulation can be easy to detect. Indeed, over

the last year Instagram has worked to disrupt a range of popular bot services including Instagress,

MassPlanner, PeerBoost, InstaPlus, and FanHarvest [31, 60, 66, 86]. The more sophisticated

players in this ecosystem perform “account automation” whereby their customers provide access

31

to their Instagram login credentials, and the service performs actions on their behalf. In fact,

Instagram provides a public OAuth-based API that allows a Web site to perform actions on behalf

of users that grant permission. However, this API is rate limited in a manner that precludes broad

abusive use. Thus, most commercial account automation services bypass these limitations by

reverse engineering the private API used by the Instagram mobile client and generating spoofed

requests to appear as valid mobile client actions.

2.3 Account Automation Services

Based on our observations, AASs use two distinct approaches to achieve their ends:

(i) Reciprocity Abuse and (ii) Collusion Networks. The former aims to provide authentic actions

(i.e., likes, follows, etc.) to their customer’s Instagram account, while the latter provides

customers with inauthentic actions to their Instagram account. In this section we describe each

approach, and then detail the particular set of services we studied in this effort.

2.3.1 Reciprocity Abuse

Reciprocity Abuse AASs provide their customers with organic actions from other Insta-

gram user accounts by exploiting the concept of social reciprocity. For example, when Instagram

user A1 receives an (inbound) action from Instagram user B2, A1 will be notified in real-time

about B2’s action, and A1 may reciprocate by performing an action to user B2. This “you follow

me, I follow you” behavior is an organic response taken by some subset of Instagram users.

Reciprocity Abuse AASs abuse this behavior by automating large numbers of (outbound) actions

from their customer’s Instagram account in the hope that a subset of users receiving an action

will return the favor in kind — thus providing their customer with inbound actions, such as

follows.

32

2.3.2 Collusion Networks

By contrast, Collusion Network AASs provide their customers with inbound inauthentic

actions on their Instagram accounts. A collusion network is a group of Instagram accounts used

in concert to orchestrate actions to one another. Accounts participating in the collusion network

will produce outbound actions to other accounts in the network, as well as receive inbound

actions from the network. Customers of Collusion Network AASs are hoping to strictly increase

the number of actions on their Instagram account and they are willing to have their account used

in the same manner on behalf of others to serve this goal.

2.3.3 Studied services

We study five popular AASs in detail that we discovered through a combination of search-

ing popular underground forums for popular recommendations from the community, together

with repeated complaints from Instagram users caused by unsolicited AAS advertisements. Three

use the reciprocity abuse approach (Instalex, Instazood and Boostgram), while the other two

implement collusion networks (Hublaagram and Followersgratis). For each service, we explored

its Web site in fall 2017 to understand the registration process, what features are offered, and the

advertised business model [43, 46, 8, 39, 29]. Figure 2.1, for example, shows a screenshot of

the Instalex customer control panel. During this process, we also discovered that the Instalex

and Instazood services were independently operated franchisees of the same parent organization

(which offers franchising services ranging from $1,990 to $30,990 per month [44]). Since they

appear to be operated independently, we evaluate these two services separately until Section 2.5

where we combine the two services when we cannot separate their actions.

Registration Process

Both Reciprocity Abuse AASs and Collusion Network AASs produce automated activity

from the Instagram accounts of their customers. Therefore, a required step when registering for

any AAS is for the customer to provide their Instagram account credentials (e.g., in contrast to

33

Figure 2.1. Instalex Web site providing an example account control panel with action counts
performed on Instagram.

abuse methods where the AASs depends on the ability to use customer OAuth tokens [25]). By

sharing their Instagram credentials the customer gives an AAS full control over their Instagram

account, while resetting the password revokes AAS access to the account.

Table 2.1 shows the different AASs by name, service type, and what services are available

to customers. All offer like and follow services, 60% offer comment and unfollow services,

and 40% offer post services. It comes as no surprise that every AAS offers at a minimum likes

and follows as these are the most frequent actions on Instagram. Some AASs provide comment

and post services as additional ways for their customers to attract other Instagram users to

engage with their content. Lastly, all Reciprocity Abuse AASs provide unfollow services that

allow their customers to remove the outbound follows performed by the AAS in an effort to

retain only the inbound follows they receive.

Many Reciprocity Abuse AASs allow their customers to target groups of Instagram

accounts that will receive automated actions, allowing their customers to obtain reciprocated

actions from users with common interests. Customers can provide either a list of Instagram

users, or a list of hashtags to narrow the accounts that a AAS will interact with. When signed

into a Collusion Network AAS, customers are typically given the option to request a specific

34

Table 2.1. Services offered to customers of Reciprocity Abuse AASs and Collusion Network
AASs.

Reciprocity Abuse AASs
Service Like Follow Comment Post Unfollow

Instalex F F F F
Instazood F F F F F
Boostgram F F F F

Collusion Network AASs
Service Like Follow Comment Post Unfollow

Hublaagram F F F
Followersgratis F F

type and quantity of inbound actions (e.g., 2,000 likes, etc.) to other customers of the network,

but cannot specify the interests of accounts they receive actions from.

AAS Business Model

The primary revenue source across the studied AASs is customer payments for the

services they offer.1 In turn, there are two different techniques used by AASs to attract customers

in the hope that they become paying customers: trial periods, and free services.

First-time customers of Reciprocity Abuse AASs are commonly offered a free variable-

length trial period. During the trial period customers have access to all of the service’s features.

However, as soon as the trial period expires the service is discontinued, and if the customer

wants to continue service they are required to pay. Reciprocity Abuse AASs have a relatively

straightforward cost structure where customers pay for each of their Instagram accounts to gain

full use of the service for a specified time period. Table 2.2 presents the free and paid service

options for customers of the Reciprocity Abuse AASs we study.

Collusion Network AASs offer customers the ability to periodically request small quan-

tities of actions onto their Instagram account for “free”. Soon after a customer provides their

Instagram credentials the service will begin to use the account in the collusion network. Hublaa-

1There is also a minor revenue stream arising from advertisements shown to customers, but it does not appear to
be significant by comparison (Section 2.5.2).

35

Table 2.2. For Reciprocity Abuse AAS we show the free trial length, the minimum number of
days that service can be purchased for, and the corresponding cost per Instagram account.

Service Trial Days Min Paid Days Cost

Instalex 7 days 7 $3.15
Instazood 3 days 1 $0.34
Boostgram 3 days 30 $99

Table 2.3. All per-account costs for Hublaagram services. Hublaagram allows customers to pay
a one-time fee that prevents their Instagram account from participating in the collusion network.
Services with an immediate duration are applied as fast as possible to a single post, and services
with a month duration have the purchased quantity of likes applied to each new photo posted
on the account throughout the month.

Description Cost Duration

No collusion network $15 Life

2,000 Likes $10 Immediate
5,000 Likes $20 Immediate
10,000 likes $25 Immediate

250−500 Likes $20 Month
500−1,000 Likes $30 Month
1,000−2,000 Likes $40 Month
2,000−4,000 Likes $70 Month

gram provides free likes, follows, and comments, while Followersgratis only offers free

follows. Free service, though, is rate-limited; Hublaagram, for instance, has a 30-minute

timeout between requests. Naturally, both Collusion Network AASs encourage customers to pay

money to receive a larger quantity of actions. We present the different paid service options for

Hublaagram and Followersgratis in Tables 2.3 and 2.4, respectively.

2.4 User Experience

In this section we evaluate the experience of using Account Automation Services from a

user’s perspective using a collection of fully-instrumented honeypot accounts.

36

Table 2.4. The Followersgratis payment options. With likes, customers who select the less
expensive option receive likes from Instagram accounts located around the world on five
different photos. The more expensive like option provides likes from Instagram accounts
located in Indonesia, and the likes are spread across ten photos. The duration for likes is
specified explicitly on the Followersgratis Web site without explanation.

Description Cost Duration

500 Follows (300 free likes) $3.15 1 Day
1,000 Follows (500 free likes) $5.25 1 Day

500 Likes (250 free likes) $2.10 Instant
500 Likes (500 free likes) $5.25 Fast

2.4.1 Methodology

To identify abusive actions generated by the AASs, we registered multiple distinct

honeypot accounts with each service described in Section 2.3.3. Thus, for each account, we

register it with an AAS, request that the service perform either inbound or outbound actions

on the account, and then monitor the resulting actions. Since they neither generate nor receive

organic actions, honeypot accounts are particularly useful because we can attribute all activity

to the linked AAS. We describe our methodology for using honeypot accounts in more detail

below.

Account Types

We developed a honeypot account framework to programmatically manage a large number

of Instagram accounts. Our framework supports campaign-specific accounts, account creation,

posting content, deletion, and data collection of all inbound and outbound actions on the account.

When deleting a honeypot account, all actions to or from the account are eventually removed

from Instagram.

For each service, we created two different types of honeypot accounts to determine if

AASs differentiate between fake or real-looking Instagram accounts (they do not), and if there is

a difference between reciprocated action rates from Instagram users that receive an outbound

37

action from AASs (there is; more below in Section 2.4.3).

The two types of honeypot accounts we register are “empty” and “lived-in” accounts.

Empty accounts contain the minimum information required to use all of the AASs that we study.

In particular, we populate honeypot accounts with 10 or more photos from one of the following

categories: dogs, cats, lizards, and food. Lived-in accounts, in addition to having uploaded

photos, are fully populated Instagram accounts with a profile picture, biography, and name, all

unique. Lived-in accounts follow 10−20 high-profile Instagram accounts (>1M followers), but

do not themselves have followers when created. Beyond enrolling them in the AAS services, we

do not use them to perform actions on Instagram after being created.

Account Registration

We registered 10 honeypot accounts for every service type offered by each AASs listed

in Table 2.1, specifying that the account be used only for that service type. For example, as

Instalex offers three different services, we registered 30 accounts in the service. Among each

set of 10 accounts, nine are empty and one is lived-in. In total we registered over 150 honeypot

accounts during the course of a month of manual registration effort. Moreover, some of our

accounts engaged with the free services offered by each AAS while others explicitly paid for

contracted services. For AASs that require target information for particular actions (e.g., targets

of likes and follows), we created a static list of hashtags and Instagram accounts that could

be used in common. We chose relatively high-profile hashtags and Instagram accounts (e.g.,

having more than 1M followers) to reduce the impact of the temporary actions produced from our

honeypot accounts. We also made a point to use a diverse set of commercial and residential IP

addresses when accessing each AAS’s site in the unlikely event that any of the services actively

monitor and correlate connections to their site. Finally, we deleted our honeypot accounts after

the measurement period, which removed all of their actions from Instagram.

38

Attribution

When using honeypot accounts with AASs, we attribute the activity on those accounts

solely to their involvement in the AASs. To rule out the possibility that the activity could be due

to other users of Instagram, we used a separate set of 50 inactive honeypot accounts to establish

a baseline of background activity on Instagram. The inactive accounts are not registered with an

AAS, and we never used them to produce actions that are visible to other users of Instagram.

For each account we similarly uploaded at least 10 photos at the time of creation. We

then actively monitored whether any inbound action (i.e., likes, follows, etc.) took place on

these accounts. For the duration of our study, we did not observe any activity on any of the

inactive honeypot accounts. As a result, for the honeypot accounts we register with AASs we

attribute all activity on those accounts to their involvement with the services.

2.4.2 How Accounts Are Used

Using the honeypot accounts, we examine how AASs use the accounts registered with

their services.

Since customers provide their Instagram credentials to an AAS during registration (Sec-

tion 2.3.3), it is possible for the AAS to abuse the Instagram account to produce additional,

potentially undesired actions. We compared the types of actions we requested with the types

of actions the services actually performed with our accounts (e.g., when requesting likes does

a service use the account for anything other than like actions?). The services all perform as

advertised. Across the AASs we study, they only perform actions of the type we requested, and

no AASs used our accounts to produce visible un-requested actions.

In later analyses in Section 2.5, such as estimating revenue, it is important to distinguish

between users using the free trial periods on services and those users paying money for service.

Although the services advertise the lengths of their trial periods (Table 2.2), we also experimen-

tally evaluated their durations using the honeypot accounts. Trial service starts immediately, with

39

our accounts becoming active within minutes of requesting free service. And with one exception,

we confirmed that free trial service lasts for the advertised period, and that activity with accounts

stops no more than 12 hours beyond the expected end time. Instazood, however, advertises a

three-day trial period, yet all of our honeypot accounts received seven days of trial service. As a

result, for Instazood we assume that trial period activity is seven days.

2.4.3 Quantifying Reciprocation

As a final experiment we use our honeypot accounts to measure the probability that an

outbound like or follow will spontaneously generate a reciprocated action. Previous work has

shown how collusion networks use their control over the accounts in the network to serve as both

the source and target of actions [25]. In contrast, Reciprocity Abuse AASs fundamentally rely

upon natural social behavior in online networks to fulfill their customer requests. As discussed

in Section 2.3.1, these services produce outbound actions from user accounts under their control,

but the targets of these actions are other Instagram accounts that are not under the control of

the service. The underlying assumption is that, for each action, there is some probability that

the target of the action will naturally reciprocate with a similar action. With a sufficiently high

volume of outbound actions, these services can then organically induce reciprocating actions to

satisfy their customer requests.

Table 2.5 shows the probability of receiving a reciprocated action given an outbound

like or follow for the three Reciprocity Abuse AASs. We separate the results for the two

different kinds of honeypot accounts, empty (E) and lived-in (L). For example, generating an

outbound like with our empty Boostgram honeypot accounts has a 1.5% chance of inducing

a reciprocating like and a 0.1% chance of inducing a reciprocating follow. These results

quantify the reciprocity effect of users on Instagram, and from them we make a number of

observations.

First, the reciprocation rates are for the most part very consistent across the services.

Although Instalex and Instazood are franchises of the same service, they also exhibit recipro-

40

Table 2.5. The probability of receiving a reciprocated inbound action given an outbound action
of a specific type. For each service, we show the reciprocation ratio for both empty (E) and
lived-in (L) honeypot accounts.

Outbound Inbound
Service Likes Follows

Boostgram (E) Likes 1.5% 0.1%
Instalex (E) Likes 2.1% 1.4%
Instazood (E) Likes 2.1% 0.2%

Boostgram (L) Likes 3.9% 0.2%
Instalex (L) Likes 3.7% 1.8%
Instazood (L) Likes 3.5% 0.4%

Boostgram (E) Follows 0.0% 10.3%
Instalex (E) Follows 0.0% 12.8%
Instazood (E) Follows 0.0% 13.0%

Boostgram (L) Follows 0.0% 12.0%
Instalex (L) Follows 0.0% 13.7%
Instazood (L) Follows 0.0% 16.1%

cation rates that are similar with those on Boostgram. These results are consistent with these

services tapping into fundamental underlying online social behavior on Instagram. Moreover, the

reciprocation rates are relatively high for follows. For just 6–10 outbound follow actions, our

honeypot accounts receive a new inbound follow from a real user. (In Section 2.5.3, we show

that the services appear to specifically target users who are more likely to respond to inbound

follows to increase the probability of reciprocation.)

The one anomaly is inbound follows to outbound likes on Instalex, which has a

reciprocation rate many times greater than the other services. Exploring further, though, we

found no significant features in the accounts targeted by Instalex compared to the other services

that might explain the difference: The inbound actions come from hundreds of autonomous

systems, the time between when the actions take place and when the honeypot account was

registered in the service is uniformly distributed throughout the trial period, the inbound actions

come from dozens of countries, etc. As a result, we currently do not have an explanation for this

one difference.

41

Second, users primarily reciprocate with the same action, e.g., Instagram users reciprocate

with a like when receiving a like from one of our accounts. Much less often, users will

reciprocate to an outgoing like by following one of our accounts (an order of magnitude less

often for Boostgram and Instazood). And users never reciprocate with likes when followed

by one of our accounts.

Finally, Instagram users are sensitive to the differences in honeypot accounts. Confirming

expectations, empty accounts have a significantly smaller probability of receiving reciprocal

inbound actions than lived-in accounts, particularly for likes. Lived-in accounts range from

1.6× as likely on Instazood to 2.6× as likely on Boostgram to generate inbound likes. This

difference confirms the utility of more realistic honeypot accounts.

2.5 Business Perspective

Our honeypot accounts gave us insight into the AASs from a user’s perspective. They

were also valuable in providing us with ground-truth on AAS activity, which we were then able

to use to identify all activity generated by all Instagram accounts used by the AASs. Based on

features gathered from our honeypot accounts, such as the type of action (e.g., like, follow,

account login, etc.), commonly tracked information about the client (e.g., IP address, ASN, etc.),

and additional signals produced within Instagram, we can identify the actions initiated by each

AAS. The signals produced by Instagram identify abusive services, including the AASs we

study during the time of our measurement. While Instagram believes that their signals accurately

characterize the entire activity of an AAS, we do not have a way to verify completeness and, as

such, the levels of abuse we characterize in this section constitute a lower bound. Throughout

our study, though, we never detect any changes in the signals tracked by Instagram for our

honeypot accounts. We also periodically register additional trial honeypot accounts in each AAS

as another method for observing the tracked account signals; these signals are consistent with

our original honeypot accounts and also do not change during the course of our study (we delete

42

these accounts immediately after the AAS starts generating activity on them).

In this section we analyze every action that takes place on Instagram originating from the

AASs we study over a 90-day period in late 2017. This rich data set allows us to characterize

the magnitude of abuse and revenue generated from AASs. We also present the types of actions

performed by each service, as well as the users targeted by these actions to understand how

different AASs select their targets.

Note that, for the remainder of the paper, we combine activity from Instalex and Instazood

since we cannot differentiate actions performed by individual franchises (Section 2.3.3). To

minimize confusion, we refer to their combined activity as “Insta*”. Additionally, we exclude

Followersgratis from the remaining analyses as the service was already well-policed by pre-

existing abuse detection systems that prevent high volumes of abuse originating from a small

number of IP addresses. As a result, activity generated by Followersgratis has very limited

impact on Instagram in practice.

2.5.1 Customer Base

We explore a range of account-based measurements that help us better understand AAS

operating characteristics.

Popularity. How popular are these services? Table 2.6 shows the number of Instagram

users who were active in each AAS during our measurement period. Demand for these services

is large: Boostgram has more than 10,000 users, Insta* an order of magnitude more, and

Hublaagram just over a million. One explanation for Hublaagram’s much larger popularity is

that it offers prolonged free features compared to the other AASs, and users naturally prefer

no-fee services.

Since nothing constrains users from engaging with multiple services, we looked at how

many Instagram users enroll their account in more than one service. Overall, account overlap is

small. Fewer than 200 accounts generate any activity in the three AASs, 1,963 participate in

two distinct Reciprocity Abuse AASs, and 4,485 accounts participate in at least one Reciprocity

43

Table 2.6. Customers participating in each AAS over a 90-day period. Long-term customers
of Reciprocity Abuse AASs are active beyond a trial period, and long-term Collusion Network
AAS customers request service for more than four days.

Service Customers Long-term Short-term

Insta* 121,661 41,891 (34%) 79,770 (66%)
Boostgram 11,959 3,975 (33%) 7,984 (67%)
Hublaagram 1,008,127 501,428 (50%) 506,699 (50%)

Abuse AAS as well as the Hublaagram collusion network. In these cases, nearly all are users

experimenting with free trials (fewer than 100 accounts are long-term customers of any AAS).

Table 2.6 also breaks down the active customers into short-term and long-term categories.

For Insta* and Boostgram — both of which rely on reciprocity — we define long-term users as

those who participate for more than seven consecutive days, strictly longer than the length of the

free trial period (Section 2.4.2).2 For Hublaagram, the collusion network, we define long-term

users as those who request service for more than four consecutive days. All other users are

considered short-term users who only briefly engage with the services and then disappear.

One third of customers of both Insta* and Boostgram are long-term, while nearly half of

Hublaagram users are long-term. Having a significant fraction of long-term uses is not surprising

since, again, they offer extended services without a fee. And by far most of the actions attempted

by the services come from long-term users. For Insta* and Boostgram, 91.6% and 89.7% of

actions are from long-term users, and for Hublaagram it is 92.3%.

User Stability. Are AASs growing in popularity over time, or does the market appear

to be saturated? Over the course of three months, we examine the rate at which new long-term

users appear in each service (birth rate), the rate at which long-term users appear to have dropped

out of the service (death rate), and the daily number of active long-term users in each service.

Both Boostgram and Hublaagram shrank slightly over our measurement period, losing a small

percentage of long-term users over time (death rate slightly higher than birth rate). In contrast,

2If an Insta* customer pays for exactly seven days of service but does not use the free trial in our measurement
period, then our methodology incorrectly labels the customer as a short-term account. We expect such behavior to
be infrequent, though.

44

Table 2.7. The operating location for each AAS as reported on their Web site and the ASNs
from service activity originates.

Service Operating Country ASN Location

Insta* Russia USA
Boostgram United States USA
Hublaagram Indonesia GBR, USA

Insta* grew in size by more than 10% and the number of active long-term users per day steadily

increased over the period.

Similarly, we measure the probability that a new AAS user will become a long-term

user within the month they begin service. We find the long-term user conversion rate in the first

month of service to be stable across our measurement period for each AAS, although the rates

vary across services: the conversion rate for Boostgram is 12%, Insta* is 21%, and Hublaagram

is 37%. It is not surprising that Boostgram has the lowest new long-term user conversion rate

since they have the most expensive service (Table 2.2).

Service and Customer Location Where are customers geographically located? For

each AASs we compare the country location of the service with the location of its customers.

We determine the location of a service using geographic information reported on its Web site and

the ASNs from which service activity originates. We define the location of an Instagram account

to be the most frequent country used to login to the account, as determined by Instagram’s IP

geolocation system.3

Table 2.7 shows the locations of each AAS, and Figure 2.2 shows the countries that

account for 5% or more of the user population. For each AAS, the advertised country is also

where the largest number of Instagram accounts are located. Insta* has most of their users in the

“other” category, which we suspect is an artifact of undiscovered franchised services around the

world (Section 2.3.3).
3Note that, while AASs might affect their customer’s geolocation by logging in to their Instagram accounts, they

do so infrequently.

45

Figure 2.2. Percentage of AAS customer Instagram account locations by country. “OTHER”
includes all countries that contribute less than 5% to the total distribution.

2.5.2 Revenue

To estimate the gross monthly revenue of each service we classify the accounts partici-

pating in each service into free and paid accounts.

For Reciprocity Abuse AASs we know the account is paid when it is active in the AAS

for longer than the trial period (Section 2.3.3). For each paid account we estimate the amount

of money paid to the service by measuring the number of days the account is active beyond a

trial period, and use the minimum paid duration as a way to convert the number of days active

into money paid to the AAS. For Insta* we provide an estimated revenue range as each service

(Instalex and Instazood) has a different cost and minimum service duration even though they are

franchises of the same company. Table 2.8 shows our estimate of the monthly gross revenue for

Reciprocity Abuse AASs. On average each service has a significant gross revenue approaching

46

Table 2.8. Estimated monthly gross revenue for Reciprocity Abuse AASs.

Service Accounts Service Fee Revenue

Boostgram 3,016 $99/month $298,584
Insta* (Low) 25,122 $0.34/day $195,017
Insta* (High) 25,122 $3.15/week $223,785

$200,000 to $300,000 per month.

For the collusion network Hublaagram, distinguishing between free and paid accounts

is more challenging and requires a more detailed accounting methodology. Since customers

can request free service for an unbounded number of days, we cannot distinguish between free

or paid solely based on the number of days they are active as we could with the other AASs.

Instead, to estimate Hublaagram’s monthly gross revenue we developed a model tailored to their

cost structure (Table 2.3).

To identify accounts that pay a one-time fee to not participate in the collusion network,

we count those accounts that only receive inbound actions from Hublaagram and never produce

outbound actions from the service. In our measurement period, 24,420 active accounts paid the

one-time fee to prevent their accounts from being used in the collusion network.

There are multiple like services offered by Hublaagram. To identify paying customers,

for each user we count the hourly median number of likes generated by Hublaagram across each

photo on the customer’s account. Using observations from paid honeypot accounts (Section 2.4.1)

in Hublaagram, we know that paid customers exceed the 160 likes/hour rate-limit imposed by

Hublaagram for free customers. Therefore, we count accounts that have ever received more than

160 likes in an hour on any of their photos as paid since they must have purchased one of the

like services.

For accounts classified as paid, we then distinguish among the one-time and monthly

like services. To identify customers that purchase one-time likes for a single photo, we count

the number of photos that have more than 2,000 likes for accounts that have a daily median

of fewer than 250 likes per photo. Similarly, to identify customers that pay for monthly like

47

services, we count accounts that have a median value of likes/photo that fall within the various

tiers of Hublaagram’s service options (e.g., we estimate an account with a median likes/photo

ratio in the 250–500 range to be paying $20/month). We identify just 182 users who paid for

one-time likes, while 31,901 paid for one of the monthly like services.

Lastly, when a customer visits Hublaagram’s Web site to request free actions, they

may be shown multiple advertisements that generate additional revenue for the service. The

site publishes pop-under advertisements4 from the PopAds network [71]. To increase their

ad revenue, Hublaagram’s Web site occasionally shows visitors pop-under advertisements on

every Web site interaction (e.g., clicking on a radio button triggers an advertisement in a new

window).5 Hublaagram provides ≈ 40 follows or ≈ 80 likes per free service request, limited

to two requests per hour. We estimate the number of advertisement impressions by counting

multiples of 40 follows or 80 likes performed by Hublaagram. We conservatively exclude

paying customer accounts in this analysis as we are unable to differentiate paid or free like

actions, and assume that for each request only a single advertisement was shown since we do

not know how the customer interacts with the Web site. Based on PopAd’s revenue model,

we estimate that for every 1,000 impressions (CPM) Hublaagram receives between $0.60 and

$4.00 since their customers are located around the world (Figure 2.2) and geolocation affects

CPM [7, 23, 71].

Table 2.9 lists the number of paid Hublaagram accounts in each of the service categories

and their contribution to overall Hublaagram’s revenue.6 Considering Hublaagram’s large user

base, the fraction of paid users is small. While Hublaagram had over a million active users within

the measurement period, and half of them were long-term users, only about 5% of users paid fees

for some kind of service beyond the free options that Hublaagram offers. Even so, Hublaagram

still has an impressive estimated gross revenue of well over $800,000 per month. Most of

4Pop-under ads typically appear when closing a Web page.
5Hublaagram’s Web site shows between 1–4 pop-under ads per free service request.
6Fewer than 20 customers mapped to the 5,000 or 10,000 one-time like service categories, and we exclude

them from Table 2.9 since their revenue contribution is negligible.

48

Table 2.9. Gross revenue estimates for Hublaagram. The “No outbound” service has a one-time
fee for the lifetime of the account, and the remaining services have monthly fees.

Service Accounts Fee Revenue

No outbound 24,420 $15 $366,300

Total One-Time Revenue $366,300

Service Count Fee Revenue

Ads Shown
Low CPM 5,769,537 0.06¢ $3,461
High CPM 5,769,537 0.4¢ $23,078

Likes Once
2,000 182 $10 $1,820

Likes / Photo
250−500 11,249 $20 $224,980
500−1,000 18,009 $30 $540,270
1,000−2,000 2,488 $40 $99,520
2,000−4,000 155 $70 $10,850

Total Monthly Revenue $880,901 – $900,518

Hublaagram’s monthly revenue derives from customers paying for 250–1,000 likes/photo per

month, while few customers purchase one-time likes for a single photo (reflecting how poor a

bargain that option is). Similarly, while many ads are shown, we estimate that the resulting ad

revenue is dwarfed by the other revenue sources.

Interestingly, users do care about not receiving fake outbound actions from other accounts

in the collusion network, and are willing to pay for preventing it. Of the active accounts in our

observation period, such users collectively paid Hublaagram more than $350,000 in one-time

fees.

A related question is if the majority of monthly AAS revenue is generated from customers

that pay for service only once, or ones that renew. Table 2.10 shows the fraction of new paid

customers versus customers that have paid for service before. Across all services, the majority of

gross revenue is generated from AAS customers who repeatedly pay for service.

49

Table 2.10. Breakdown of revenue between new and existing paying customers for each AAS
over one month.

Service New Preexisting

Insta* 31.4% 68.6%
Boostgram 10.8% 89.2%
Hublaagram 16.5% 83.5%

Table 2.11. Action types performed from each AAS over a 90-day period. We normalize each
value by the total number actions performed by each service.

Action Insta* Boostgram Hublaagram

Likes 30.8% 64.0% 63.0%
Follows 38.6% 19.3% 35.3%
Comments 5.6% 0% 1.7%
Unfollows 25.0% 16.7% 0%

2.5.3 Activity Generated

We now analyze the actions performed by each AAS to understand which types are most

popular among users, and how Reciprocity Abuse AASs target specific kinds of users to obtain

better organic reciprocation rates.

Table 2.11 shows the proportion of action types performed by each AAS throughout

the measurement period. Likes are the most requested action for Boostgram and Hublaagram,

1.8–3.4× more popular than follows. Insta* customers request more follows to likes (1.3×).

Across all AASs, comments and posts are infrequent, suggesting that customers of these AAS

either acquire these actions through other means, or do not consider them as valuable. The

Reciprocity AASs perform a significant number of unfollows, which users can optionally

request to happen automatically after a follow.

Reciprocity AASs depend on general Instagram users to generate reciprocating follows

and likes to their customers’ requests. As a result, if these services can target Instagram users

who are more likely to reciprocate, they can more easily meet their customer demands. To

evaluate whether Reciprocity Abuse AASs have any biases in the accounts that they target, we

50

compare accounts targeted by actions from AASs with accounts from all of Instagram as a

baseline. Specifically, we compare the following and follower counts of a random sample of

1,000 accounts that received an action from AASs with a random sample of 1,000 from all

Instagram accounts that receive actions during our measurement period.

For both metrics we see differences in the account populations. Figure 2.3 shows a

CDF of the number of Instagram accounts followed by the accounts in each sample (account

out-degree). For example, the median AAS accounts have a higher out-degree than a random

Instagram account: Boostgram accounts follow 684 other Instagram accounts and Insta* accounts

follow 554.5, while the median sample of all of Instagram accounts follow just 465. Similarly,

Figure 2.4 shows a CDF of the number of followers of the accounts in each sample (account

in-degree). By this metric, the distributions have even more pronounced differences: The

accounts targeted by the Reciprocity AASs have significantly fewer followers than the broader

Instagram population. Boostgram and Insta* accounts are followed by just a median of 498 and

384 accounts, respectively, whereas the median sample of all Instagram accounts are followed

by 796 accounts.

These results indicate that the Reciprocity AASs do have a selection bias in the accounts

that they target, selecting for accounts with higher out-degree and much lower in-degree to

increase the likelihood of a reciprocated action. In other words, accounts targeted by the AASs

are already inclined to follow other users, but have far fewer followers themselves and, as a

result, are presumably more open to reciprocating when targeted.

2.6 Interventions

Having characterized AAS from a user perspective and as business entities, we subse-

quently actively engage with the abusive services by deploying countermeasures. Our goal is not

to completely disrupt the AASs immediately, but rather we start by evaluating how AASs react

to interventions. This understanding can then provide insight for improving operational abuse

51

Figure 2.3. CDFs of the number of users followed by each target for three samples of accounts:
1,000 random accounts targeted by the two Reciprocity AASs, and 1,000 random Instagram
users.

detection and prevention systems. While Instagram is in a position to identify all AAS customer

accounts, blocking these accounts is not a desirable outcome since Instagram users still use them

to initiate legitimate actions that should not be blocked (even while they are also enrolled in an

AAS). Additionally, as our interventions show in Section 2.6.3, AASs quickly attempt to evade

interventions. As such, we derive a new signal for performing countermeasures (Section 2.6.2),

rather than relying on the signals used to identify AAS customers in the first place. We perform

two interventions, first on a narrow set of AAS activity over a six-week period, and a second on

a broad set of AAS activity over a subsequent two-week period.

52

Figure 2.4. CDFs of the number of followers for a random sample of 1,000 targets selected by
two third-party applications compared to a sample of 1,000 Instagram users.

2.6.1 Countermeasures

Instagram has a variety of options for reducing or disrupting the impact of an abusive

action, and we experiment with two. Each countermeasure response comes with a trade-off

between its effectiveness at disrupting abuse, and the ease with which an adversary detects the

intervention.

Synchronous Block. When blocking AAS actions, the actions are not successful and do

not reach users of Instagram. Such a countermeasure directly undermines the perceived value of

using an AAS. At the same time, though, the transparent aspect of the synchronous response

serves as an oracle of what actions Instagram can detect as abusive. The AAS can use this oracle

53

to easily test and possibly adjust their strategy for delivering their actions to accommodate or

sidestep the countermeasure within a short period of time.

Delayed Removal of Follows. With the delayed removal countermeasure, follows

from accounts used by AASs are initially successful but then are removed by Instagram one day

after taking place. The deferred nature of the delayed response helps mask the countermeasure as

it is more difficult for AASs to realize their actions are being detected. Note that we only apply

this countermeasure to follow actions, as it was not possible to apply a delayed countermeasure

on likes.

2.6.2 Identifying Eligible Actions

As with all anti-abuse measures, from spam filtering to anti-virus, one must balance the

value provided in addressing abusive behavior against the unintentional misclassification of a

benign action. Thus, while AASs are insidious in undermining the confidence in the integrity

of the content being posted, so too must we consider and be sensitive to users whose legitimate

actions might be inadvertently blocked or removed. To this end, we have carefully designed our

interventions to minimize these risks; throughout the duration of our experiments we identified a

handful of false positives and these were remediated manually.

In particular, we start by focusing on actions from the small number of ASNs that the

AASs use. Then we define a per-account daily activity threshold for each ASN, and only actions

above that threshold are candidates for a countermeasure. The threshold is defined in terms

of legitimate activity, so activity by an account above the threshold strongly suggests abusive

behavior by that account. Specifcially, we track the number of outbound actions from Instagram

accounts used by the Reciprocity Abuse AASs, and we track the number of inbound actions from

accounts used by the Collusion Network AAS. We use the same methodology from Section 2.5

combined with paid honeypot accounts to track AAS activity and reactions to countermeasures.

Note that we compute the activity thresholds differently across ASNs since some ASNs

have only AAS traffic while others have benign user activity blended in. For ASNs with both

54

AAS and benign traffic, we measure the daily 99th percentile of likes and follows produced

by Instagram accounts that are not participating in AASs. Since accounts involved in AASs

produce significantly more actions than non-AAS accounts, using the daily 99th percentile of

non-AAS activity represents an upper bound of 1% false positives. For ASNs with only AAS

traffic, we use a threshold of the daily 25th percentile of actions since there is no legitimate user

traffic from those ASNs.

We computed the activity level thresholds at the start of each experiment and did not

change them to prevent an adversary from affecting the false positive rate. Throughout both

experiments we actively monitored complaints to Instagram from users who might be affected

by our experiments. We received only a handful of complaints from legitimate users who were

inadvertently impacted which we worked to address. In contrast, we also monitored complaints

to the AASs from their customers, and some of the interventions generated highly voluble

complaints.

2.6.3 Narrow Interventions

In our first intervention we evaluate how AASs react to the countermeasures from

Section 2.6.1 when they are continuously applied for six weeks to the same subsets of AAS

customers. To define different sets of Instagram accounts that may receive a countermeasure

response, we deterministically partition Instagram accounts into 10 equally-sized bins. We assign

separate bins for each countermeasure response (block and delay) and another for a control.

By partitioning Instagram accounts into 10 bins, each bin contains at least 5% of long-term

customers (for each AAS) that produce actions eligible for a countermeasure (Section 2.6.2).

Throughout a six-week period in 2017, we continuously apply each of the two countermeasure

responses to all eligible AAS actions that go above the daily activity threshold when the Instagram

account is within a particular countermeasure bin. Accounts in the control bin never receive a

countermeasure even when actions go beyond the activity threshold. In total, this experiment

applies countermeasures to at most 20% of the customers in each AAS.

55

Figure 2.5. Median follows per user each day participating in Boostgram. We show the
countermeasure threshold as a dashed line, and the median actions for both users who are
blocked by countermeasures, and in our control (no countermeasures)

When applying the countermeasures to follow actions, all of the AASs react similarly.

Figure 2.5 shows Boostgram activity as a representative example. Each curve shows the median

number of actions per Instagram account in each countermeasure bin and the control bin for

each day of the six-week period of the experiment. The dashed “Follow Threshold” line shows

the threshold above which the countermeasure affects actions in Instagram. The service reacts

immediately to blocking follows, dropping the number of actions below the threshold and

probing it thereafter. Boostgram (and the other services) clearly detect that blocking is taking

place, and the reaction patterns across services strongly suggests that it is an automated process;

indeed, we found an openly available implementation of one of these services with block

56

detection logic. Countermeasures that provide a strong signal to the services unfortunately

enable them to adapt, and adapt quickly.

Even more interesting, though, is that the services do not react to delayed removal of

follows, even though the countermeasure undoes all of the activity one day later. Ironically,

delayed forms of countermeasure satisfy both sides: the services successfully perform follows

and continue on apparently unaware that the countermeasure cleans them up shortly afterwards

as if they never happened. (Customers of the services, though, lose out.) Blocking and delayed

removal both ultimately have the same benefit to Instagram— follow actions are truncated to

the threshold — but blocking provides a signal to services, while delays do not.

Only Hublaagram reacts when we apply the countermeasures to likes, presumably since

likes are its primary source of income. Figure 2.6 shows the proportion of daily likes above

the threshold that the countermeasures can affect. Again, Hublaagram only reacts to blocking

and, because blocking is straightforward to detect, it is able to drop its like activity and discover

the threshold under which blocking does not take place. Hublaagram does take three weeks into

the intervention period to react, perhaps because it had to implement blocked like detection.

2.6.4 Broad Interventions

Our first intervention applied each countermeasure to a narrow 10% of users, perhaps

so narrow that the services did not fully notice or react to countermeasures (delay removal in

particular). Consequently, our second intervention applied the delay and block countermeasures

broadly to 90% of the AAS user accounts, keeping the same 10% bin of control accounts as

before. In this experiment we apply the delayed removal for one week, and then blocking for

another.

The reactions of the AASs to the broad intervention are similar to their reactions for

the narrow intervention. As representative behavior, Figure 2.7 shows the proportion of daily

Boostgram follows above the activity threshold that are subject to countermeasures. The control

bin, with 10% of accounts, appropriately has 10% of the actions above the threshold throughout.

57

Figure 2.6. The proportion of Hublaagram likes each day that are eligible for a countermeasure.
We noticed at around the third week the service makes a strict adjustment significantly reducing
the number of eligible likes.

In the first week we deploy the delay countermeasures to the remaining 90% of accounts, again

with no reaction by Boostgram — even though the countermeasure now applies to actions above

the threshold for nearly all of their users. We then replace delay with the block countermeasure

for the second week. As with the narrow intervention, Boostgram detects that their follows are

being blocked and scales back their actions to the threshold.

Epilogue. The broad intervention remained active, continuing to block likes and delay

follows above the activity threshold for additional months. Since the services immediately

detected blocked actions, all AASs eventually moved their like traffic to different ASNs — one

58

Figure 2.7. Proportion of Boostgram follows eligible for countermeasures each week during the
experiment. On day 6, we switched the countermeasure response from delay to block, shown by
a vertical line.

of them going so far as to use an extensive proxy network to drastically increase IP diversity.

As a result, the like actions from the AAS were subsequently out of reach of the blocking

countermeasure we employed, underscoring the risks of a countermeasure so easily detected.

After a few months, Hublaagram, unable to produce sustainable unblocked actions,

stopped accepting customer payments by listing all offered services as “out of stock”. Insta*, on

the other hand, eventually moved their follow actions back into the original ASN in which we

applied the delayed intervention.

59

2.7 Conclusion

Social networks such as Instagram attract abuse because they provide a mechanism for

attracting and focusing the attention of large groups. Whether for social or economic reasons,

a range of users are interested in artificially inflating their standing in such networks — pay-

ing to acquire thousands of follows, pervasive likes of their photos and so on. Simplistic

approaches to manipulate social standing (i.e., using fake accounts) can be readily detected and

thus sophisticated services have emerged that remotely “drive” the accounts of their customers

to manipulate their social standing in a manner more likely to appear organic. We have identified

two common techniques used to achieve this end on the Instagram network — driving outbound

follows to attract reciprocal follows (reciprocity abuse) and laundering social actions across a

network of customer participants (collusion networks). We’ve shown that services using these

techniques have been successful in attracting and maintaining long-term customers generating

per-service revenues between $200k-900k per month. Finally, we have shown through controlled

experiments that blocking such services, while effective in the short term, quickly drives adapta-

tion and can make it difficult to amortize the cost of developing accurate abuse classification.

Consequently, from the standpoint of protecting non-abusive users from artificial content, a

more effective long-term strategy can be built on deferred interventions (e.g., removing synthetic

actions after at a future point). Such approaches greatly increase the “debug time” for services

seeking to reverse engineer how they are being detected and are less likely to drive the customer

complaints that incentive services to pursue such adaptations.

Acknowledgements

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of the ACM

Internet Measurement Conference (IMC). Louis F. DeKoven, Trevor Pottinger, Stefan Savage,

Geoffrey M. Voelker, Nektarios Leontiadis, 2018. The dissertation author was the primary

investigator and author of this paper.

60

Chapter 3

Measuring Security Practices and How
They Impact Security

Thus far, we have presented systems that disrupt well defined types of compromise (i.e.,

malicious extensions, and underground services) from the vantage point of online social networks.

In our final study, we measure the prevalence of security “best practices” and device behaviors

(e.g., the types of web sites visited), along with how they correlate to device compromise.

In particular, we develop a system to empirically evaluate how recommended security “best

practices” and behaviors relate to device compromise by analyzing the passive network traffic

of over 15,000 laptop and desktop devices using a university’s residential network. Unlike the

vantage point of online social networks which is constrained to social network actions, passive

network traffic contains a broader set of device actions (e.g., software updates, social network

activity, etc.). However, this activity is encoded within network traffic, and fine-grained detail

into the context of each action is commonly obscured by encryption. Consequently, network

traffic requires considerable processing to identify device features. To address these challenges,

we develop network traffic signatures that enable the detection of a range of security practices

and behaviors.

We describe the design and implementation of a system that builds per-device feature

models identifying security practices and behaviors. Next, we present a methodology using

quantitative measurement, network traffic signatures, and HTTP User-Agent strings to isolate

61

laptop and desktop devices on the network. By combining our per-device feature models

with operational security logs used to identify compromised devices, we develop a data-driven

understanding around features that correlate with security outcomes. Lastly, we describe a

logistic model that ranks the features we detect in terms of their ability to predict security

outcomes relative to one another. Analyzing months of longitudinal data we find that a number

of recommended security “best practices” are followed, however, they do not negatively correlate

with device compromise. Most positively correlated with device compromise is the types of

web site devices visit (e.g., adult content, video games, etc.), and the volume of traffic devices

produce. Subsequently, using an interpretable logistic model we find that behavioral features

such as visiting web sites related to gaming and illegal content are relatively more useful for

distinguishing compromised devices.

3.1 Introduction

Ensuring effective computer security is widely understood to require a combination of

both appropriate technological measures and prudent human behaviors; e.g., rapid installation

of security updates to patch vulnerabilities or the use of password managers to ensure login

credentials are distinct and random. Implicit in this status quo is the recognition that security is

not an intrinsic property of today’s systems, but is a byproduct of making appropriate choices —

choices about what security products to employ, choices about how to manage system software,

and choices about how to engage (or not) with third-party services on the Internet. Indeed, the

codifying of good security choices, commonly referred to as policy or “best practice” has been a

part of our lives as long as security has been a concern.

However, establishing the value provided by these security practices is underexamined at

best. First, we have limited empirical data about which security advice is adopted in practice.

Users have a plethora of advice to choose from, highlighted by Reeder et al’s recent study of

expert security advice, whose title — “152 Simple Steps to Stay Safe Online” — underscores

62

the variability in such security lore [78]. Clearly few users are likely to follow all such dicta,

but if user behavior is indeed key to security, it is important to know which practices are widely

followed and which have only limited uptake.

A second, more subtle issue concerns the efficacy of security practices when followed:

Do they work? Here the evidence is scant. Even practices widely agreed upon by Reeder’s

experts (e.g., keep software patched) are not justified beyond a rhetorical argument. In fact,

virtually all the most established security best practices — including “use antivirus software”,

“use HTTPS/TLS”, “update your software regularly”, “use a password manager”, and so on

— have attained this status without empirical evidence quantifying their impact on security

outcomes. Summarizing this state of affairs, Herley writes, “[Security] advice is complex and

growing, but the benefit is largely speculative or moot”, which he argues leads rational users to

reject security advice [36].

To summarize, our existing models of security all rely on end users to follow a range

of best practices. However, we neither understand the extent to which they are following this

advice, nor do we have good information about how much this behavior ultimately impacts their

future security.

This paper seeks to make progress on both issues—the prevalence of popular security

practices and their relationship to security outcomes—via longitudinal empirical measurement of

a large population of computer devices. In particular, we monitor the online behavior of 15,291

independently administered desktop/laptop computers and identify per-device security behaviors,

for instance: what software they are running (e.g., antivirus products, password managers, etc.), is

the software patched, and what is their network usage (e.g., does the machine contact file sharing

sites), as well as as concrete security outcomes (i.e., whether a particular machine becomes

compromised). In the course of this work, we describe three primary contributions:

• Large-scale passive feature collection. Our results are based on passive monitoring which

is what allows large-scale measurement. This has required us to develop and test a large

63

dictionary of classification rules to indirectly infer software state on monitored machines

(e.g., that a machine is running antivirus of a particular brand, or if its OS has been

updated). In addition, to ensure that features are consistently associated with particular

devices, we describe techniques for addressing a range of aliasing challenges due to DHCP

and to DNS caching.

• Outcome-based analysis. We use a combination of operational security logs and network

intrusion detection alerts to identify the subset of machines in our data set that are truly

compromised. This allows us to examine the impact of adopted security practices in terms

of individual security outcomes and with respect to concrete time periods surrounding the

likely time of compromise.

• Prevalence and impact of security practices. Using our data we establish the prevalence

of a range of popular security practices as well as how these behaviors relate to security

outcomes. We specifically explore the hypotheses that a range of existing “best practices”

are negatively correlated with host compromise or that “bad practices” are positively

correlated. We consider both behaviors that could directly lead to compromise and those

which may indirectly reflect a user’s attentiveness to security hygiene.

Finally, while we find a number of behaviors that are positively correlated with host

compromise, few “best practices” exhibit the negative correlations that would support their value

in improving end user security.

3.2 Background

This study follows a large body of prior work that empirically relates user activity to

various risk factors, which we highlight in five categories below.

Small scale studies of individuals. In 2008, Carlinet et al. [12] analyzed three hour long

packet traces of ADSL customers (covering between 900 and 200 customers) and correlated

64

hosts that experienced at least one Snort IDS alert with other factors. This revealed a relationship

between those machines raising alerts, and their use of the Windows operating system as well as

heavy web browsing habits. Our study is similarly based on passive network data collection, but

we operate at a significantly larger scale (in number and diversity of hosts as well as duration)

and we also explicitly try to control for a range of confounding factors.

Aggregate studies of user behavior.

Others have studied risk factors in aggregate across large organizations. Notably, Yang et

al. [57] correlated publicly declared data breaches and Web site hacks with external measurements

(e.g., misconfigured DNS or HTTPS certificates). They found that evidence of organizational

failures to police security is predictive of attacks. Xiao et al. [98] similarly showed by user

patterns of security activity can be a predictor of future malware outbreaks in an ISP.

Web access behavior. Other researchers have investigated how a user’s web browsing

habits reveal risk factors. Levesque et al. [53] monitored web browser activity for 50 users over

four months and found that the likelihood of visiting a malware hosting site was correlated with

the other kinds of sites a machine visited (e.g., with peer-to-peer (P2P) and gambling sites)

Canali et al. [11] replicated this study using antivirus telemetry (100,000 users), and Sharif et

al. [82] describe a similar analysis for 20,000 mobile users. Both found that frequent, nighttime,

and weekend browsing activity, are correlated with security risk.

Software Updates. Another vein of research has correlated poor software update habits

with indicators of host compromise. Kahn et al. [51] used passive monitoring of roughly 5,000

hosts to infer software updates and used the Bothunter traffic analysis tool [33] to infer likely

infected hosts based on suspicious traffic patterns (e.g., based on outbound scanning). They

found a positive correlation between infection indicators and a lack of regular updating practice.

At a larger scale, Bilge et al. [6] used antivirus logs and host telemetry from over 600,000

enterprise hosts to retrospectively relate software updates to subsequent infections. They found

that devices that do not patch correlate with those that were at some point infected. Finally,

Sarabi et al. [79] used a similar data set of 400,000 Windows hosts and found that patching faster

65

provides limited benefit if vulnerabilities are frequently added into product code.

Human factors. Finally, there is an extensive literature on the human factors issues

involved in relating security advice to users, the extent to which the advice leads to changes

in behaviors, and how such effects are driven by both individual self-confidence and cultural

norms [30, 80, 89, 75, 76, 77, 91, 92].

3.3 Methodology

We use passive network traffic monitoring to model security and behavioral practices

among tens of thousands of devices that use a university residential network. Passive network

monitoring has a number of advantages, enabling us to remove potential personally-identifiable

information (PII) from the traffic before it is processed, to scale data collection and analysis to

tens of thousands of hosts, and to implement custom network traffic analysis rules to extract

fine-grained features (e.g., whether an application is being updated to the latest version).

In this section, we describe our system that converts network traffic into per-device

models comprised of features associated with security and behavioral practices. We start by

describing the steps we take to ensure the privacy and security of the network data we process.

We then describe in detail the three stages of our data collection and analysis system, as shown

in Figure 3.1.

3.3.1 Protecting User Privacy

Due to the sensitive nature of processing raw network traces, we have taken a number of

steps to ensure the privacy and security of the data we use in this study.

Institutionally, we had extensive discussions with our campus network operations and

security groups about this study, both about the operational mechanics of mirroring network

traffic from the campus switches and about the security and privacy issues of processing raw

packet data. As one of their motivations for engaging, the campus security group in particular

was interested in the outcome of this research as a way to provide more empirical insight into

66

Network Traffic Processing

Bro

DHCP
Syslog

Log
AnonLo

ad
 B

al
an

ce
rs

BroBroBro IDS

Residential
Traffic

DHCP Traffic

D
M

Z
D

M
Z

Logs

Log Decoration

SSL
Labeling

Connection
Labeling

HTTP
Labeling

Feature Extraction (Hadoop)

Device
Models

HDFS
&

Hive

Fe
at

ur
es

Supplemental Data

Figure 3.1. System architecture overview. Network traffic is first processed into logs and
anonymized. The next stage replays the network traffic logs to extract further information and
label each connection with MAC address information. The decorated logs are then stored in
Hive where they are labeled with security incidents, security practice features, and behavioral
features. Lastly, device models are created for analysis.

security risks and outcomes of devices using the campus network.1 We have also engaged

with our campus institutional review board (IRB), and obtained approval from a campus-wide

cybersecurity governance committee.

Operationally, we anonymize and secure the data we process. The raw network traffic

from which features are extracted is the most sensitive data artifact flowing through our system.

To minimize risks, as soon as each connection has been processed, we discard the raw content

and log only metadata from the connection (e.g., a feature indicating that device X is updating

antivirus product Y). To anonymize IP and MAC addresses, we use a keyed format-preserving

encryption scheme [5]. We encrypt campus IP addresses and the identifying last 24-bits of each

MAC address (preserving the organizationally unique identifier (OUI) to derive the network

device manufacturer).2 This encryption transform has the property that it is impossible to

obtain the original address without the encryption key. Only our campus network operations

is in possession of the key, and we remain ignorant of the identities of the particular machines

involved. Yet, the resulting data is in the same format as normal IP and MAC addresses and is

consistent over time, so we can use standard trace processing and analysis tools unchanged. The

1Indeed, during the course of our work we have been able to report a variety of unexpected and suspicious
activity to campus for further action.

2Thus, the IP address 192.168.0.1 may be replaced with 205.4.32.501 and the MAC address
00:26:18:a5:38:24 may become 00:26:18:b5:fe:ba.

67

anonymization takes place on the server that processes the network traffic, thus only anonymized

logs are ever transmitted to our analysis server (across the “DMZ” in Figure 3.1).

Moreover, we use a combination of physical and network security to restrict access to

the server processing raw network traces. The server is physically located in a secure campus

machine room with restricted access, and the server firewall restricts access to a few on-campus

machines using multi-factor authentication. We also instrument the server with a log monitoring

application [52] that reports daily activity. We use the same network security steps for the other

servers that process only anonymized data, but the servers are physically located in our local

machine room.

3.3.2 Network Traffic Processing

The first stage of our system takes as input 4–6 Gbps of raw bi-directional network traffic

from the campus residential network, and outputs anonymized logs of processed network events

at the rate of millions of records per second. To track the contemporaneous mapping of IP

addresses to device MAC addresses, this stage also collects and anonymizes Dynamic Host

Configuration Protocol (DHCP) syslog traffic.

Residential Network Traffic

As shown in the Network Traffic Processing stage of Figure 3.1, our server receives

network traffic mirrored from a campus Arista switch using two 10G fiber optic links. In addition

to load balancing, the switch filters out high-volume traffic from popular Content Delivery

Networks (CDNs) (e.g., Netflix, YouTube, Akamai, etc.) resulting in a load of 4–6 Gbps of

traffic on our server.

To minimize loss while processing traffic, we experimented with a number of network

processing configurations before settling on the following. We use the PF RING ZC (Zero

Copy) framework [68] to move traffic from the network card directly into user-level ring buffers,

bypassing the kernel. We then use the zbalance ipc application from PF RING ZC to locally

68

perform 4-tuple load balancing across many virtual network interfaces. Instances of the Bro

(now Zeek) intrusion detection system (IDS) [69] then read from each virtual network interface,

consuming and processing the network traffic into a custom log format. This configuration results

in an average daily loss of 0.5% of received packets throughout our six-month measurement

period.

While IDSs are typically used for detecting threats and anomalous network behavior, we

use Bro to convert network traffic into logs since it is extensible, discards raw network traffic

as soon as a connection is closed (or after a timeout), and is able to parse numerous network

protocols [99]. We also customize the Bro output logs to record only information needed to

identify security practice and behavioral features.

In total, we use the HTTP, SSL, DNS, and Connection protocol analyzers. The HTTP

analyzer provides a summary of HTTP traffic on the network, including components such as the

HOST and URI fields. The SSL analyzer extracts the Server Name Indication (SNI) field out of

TLS connections. SNI is an extension of the TLS protocol enabled by most modern browsers,

and allows a client to indicate which hostname is being contacted at the start of an encrypted

connection. The SNI field is particularly useful for inferring the destination of connections that

otherwise are encrypted. The DNS analyzer provides a summary of Domain Name System (DNS)

requests and responses. Lastly, the Connection analyzer summarizes information about TCP,

UDP, and ICMP connections.

Every thirty minutes Bro rotates the previous logs through our log anonymization tool

(Section 3.3.1) that encrypts campus IP addresses. At this stage of processing, the logs contain IP

addresses and not MAC addresses since DHCP traffic is not propagated to our network vantage

point. After being anonymized, the logs are rotated across the DMZ to another server for further

processing (Section 3.3.3).

69

DHCP Traffic

The server also runs a syslog collector that receives forwarded DHCP traffic from the

residential network’s DHCP servers. DHCP dynamically provides an IP address to a device

joining the network. The IP address is leased to the device (by MAC address) for a specified

duration, typically 15 minutes. Since we need to track a device’s security and behavioral practices

for long time periods, we utilize this IP-to-MAC mapping in later processing.

Similar to the Bro IDS logs, every thirty minutes we process the previous DHCP traffic

into a (MAC address, IP address, starting time, lease duration) tuple. Then, the entire IP address

and identifying lower 24-bits of the MAC address are encrypted using our anonymization tool

(Section 3.3.1). The anonymized DHCP logs are then rotated across the DMZ to the Log

Decoration server.

3.3.3 Log Decoration

The second stage takes as input the anonymized network event and DHCP logs, and

processes them further to produce a single stream of network events associated with device MAC

addresses and domain names.

Associating Flows to Devices. Our goal is to model device behavior based upon network

activity over long time spans. While we identify unique devices based upon their MAC address,

the network events that we trace are collected with dynamically assigned IP addresses. As a

result, we must track dynamic IP address assignments so that we can map IP-based network

events to specific device MAC addresses.

We use a Redis key-value store [74] to build a DHCP cache by replaying campus DHCP

logs. We use the DHCP cache to assign a MAC address to the inbound and outbound IP of each

connection. We consider an IP-to-MAC mapping valid if a connection takes place during the

time when the IP address was allocated and the lease is still valid. In the event that there is not a

valid mapping (e.g., the IP address is a non-University IP, or a the device uses a static IP), we do

70

not assign a MAC address to the IP.

Associating Flows to Domains. When using network activity to model device behavior,

it useful to know the domain name associated with the end points devices are communicating with

(e.g., categorizing the type of web site being visited). We also extract the registered domain and

top-level domain (TLD) from each fully qualified domain name using the Public Suffix List [64].

Again, since the network events we observe use IP addresses, we must map IP addresses to

domain names. And since the mapping of DNS names to IP addresses also changes over time, we

also dynamically track DNS resolutions as observed in the network so that we can map network

events to the domain names involved.

Due to our network vantage point, the DNS traffic our collection server observes generally

has the source IP address of our local DNS resolver, and not the IP address of the host which

will subsequently make a connection to the resolved IP.3 Therefore, one of the steps in this

stage is to build a local DNS cache by replaying the logs in chronological order and labeling the

domain name of observed connections where it is not already provided (i.e., excluding HTTP

and SNI-labeled connections).

We use another Redis key-value store to build a DNS cache by replaying DNS traffic.

The cache tracks the mappings of each IP address to domain name at the time the IP address was

observed. We consider a mapping to be valid as long as it has not expired — the log time falls

between the time at which the DNS request was observed plus the response time to live (TTL) —

and there is one registered domain name mapped to the IP address.

When sites use virtual hosting, it is possible that an IP address has multiple domain

names associated with it. In this case, we first check if the registered domain names match (e.g.,

bar.bar.com and car.bar.com share a registered domain of bar.com). If the registered domains

match, we label the connection using the longest suffix substring match (e.g., ar.bar.com) and

set a flag indicating that the fully qualified domain name has been truncated. In the case where

there is more than one registered domain with a valid mapping to the IP address, we do not use

3The primary exceptions are devices configured to use remote DNS resolvers.

71

bar.bar.com
car.bar.com
bar.com
ar.bar.com

the mapping to label connections until enough of the conflicting mappings expire such that they

share a registered domain, or there is only one mapping.

User Agent. We parse HTTP user agent strings using the open-source ua-parser library.

From the user agent string we extract browser, OS, and device information when present.

3.3.4 Feature Extraction

In the final stage of our system we store the log events in a Hive database [2] and process

them to extract a wide variety of software and network activity features associated with the

devices and their activity as seen on our network. The last critical feature is device outcomes:

knowing when a device has become compromised. We derive device outcomes from a log of

alerts from a campus IDS appliance, and also store that information in our database.

Software Features

To identify features describing application use on devices, we crafted custom network

traffic signatures to identify application use (e.g., a particular peer-to-peer client) as well as

various kinds of application behavior (e.g., a software update). To create our network signatures

we use virtual machines instrumented with Wireshark [97]. We then manually exercise various

applications and monitor the machine’s network behavior for a unique signature. Fortunately

most applications associated with security risk frequently reveal their presence when checking

for updates. In total, we develop network signatures for 69 different applications, including

OSs. For a subset of applications, we are also able to detect the application’s version. Knowing

application versions allows us to compare how fine-grained recommended security practices (i.e.,

updating regularly) correlates with device compromise.

Antivirus Software. Using antivirus software is virtually always recommended. We

created network signatures for 12 popular antivirus products, seven of which are recognized as

offering the “Best Protection” for 2019 [65].

72

Antivirus Software

1. Avast

2. AVG

3. Avira

4. BitDefender

5. ESET

6. Kaspersky

7. McAfee

8. Microsoft Security Essentials

9. Microsoft Windows Defender

10. Norton

11. Sophos

12. Webroot

Operating System. We created six signatures to identify the OSs running on devices.

Since regular OS updating is a popular recommended security practice, we also created signatures

to detect OS updates. While Windows and Mac OS operating system updates are downloaded

over a CDN that is removed from the network traffic before reaching our system (Section 3.3.2),

we can use OS version information from the host header and User-Agent string provided in

HTTP traffic to infer that updates have taken place.

Operating Systems

73

1. CentOS

2. Debian

3. Mac OS

4. Red Hat

5. Ubuntu

6. Windows

Applications. Through a combination of network and User-Agent string signatures we

detect 41 applications, including those commonly perceived as risky such as Adobe Flash Player,

Adobe Reader, Java, Tor, P2P applications, and more. We also detect other popular applications,

including browsers, Spotify, iTunes, Outlook, Adobe AIR, and more.

Applications

1. Adobe AIR

2. Adobe Flash Player

3. Adobe Reader

4. Airmail

5. Android Browser

6. Apple Mail

7. Chrome Browser (desktop and mobile)

8. Chromium Browser

9. Dominant Web Browser (from User-Agent strings)

74

10. Edge Browser (desktop and mobile)

11. Firefox Browser (desktop and mobile)

12. Internet Explorer (IE) Browser(desktop and mobile)

13. Internet Rely Chat

14. Jabber/Google Chat

15. Java

16. MSN Chat

17. Netscape Browser

18. Nokia Browser Browser

19. Opera Browser (desktop and mobile)

20. Outlook

21. P2P Ares

22. P2P Azureus

23. P2P BTwebclient

24. P2P BitTorrent

25. P2P Kazaa

26. P2P Kugoo

27. P2P Soulseek

28. P2P Thundernetwork

75

29. P2P Vuze

30. P2P ed2k

31. P2P edonkey

32. P2P emule

33. P2P libTorrent

34. P2P uTorrent

35. Safari Browser (desktop and mobile)

36. Samsung Internet Browser

37. Skype

38. Spotify

39. Thunderbird

40. Tor

41. iTunes

Password Managers. As password managers are frequently recommended to minimize

collateral damage of leaked passwords, we also crafted network signatures for nine popular

password managers [14].

Password Managers

1. 1Password

2. Dashlane

76

3. Keeper

4. LastPass

5. LogMeOnce

6. Password Boss

7. RoboForm

8. Sticky Password

9. Zoho Vault

Network Activity

We track a wide variety of features on network activity to quantitatively measure how

much of a protocol is used (e.g., HTTP, and HTTPS), the types of content being accessed (e.g.,

Adult content, etc.), and when devices are most active. In doing so, we implement a set of

features similar to those implemented by Canali et al. [11] and Sharif et al. [82] that focused

on web browsing activity. As our data set also includes traffic beyond HTTP, we can measure

additional behaviors (e.g., remote DNS resolver usage, HTTPS traffic usage, etc.).

Content Categorization. We use the IAB Tech Lab Content Taxonomy to categorize

every registered domain in our data set [40]. The domain categorization was generously provided

by WebShrinker [95, 22]. The IAB taxonomy includes 404 distinct domain categories [94]. We

use the domain categorization to measure the fraction of unique domains each device accesses in

a specific category. We also built a list of file hosting sites, and URL shortening services that we

use to identify when a device accesses these types of services.

Usage Patterns. We also develop a number of behavioral features that describe the

quantities of HTTP and HTTPS traffic in each TLDs, and the number of network requests made.

Additionally, we develop features that quantify customized or non-standard behaviors such the

77

use of remote DNS resolvers, and the proportions of HTTP requests made directly to IP addresses

(instead of a domain name).

Network Features

1. Percentage distinct registered domains in IAB categories

2. Total distinct HTTP TLDs

3. Total distinct HTTP registered domains

4. Total distinct HTTP FQNDs

5. Total HTTP URLs

6. Total distinct HTTP URLs

7. Total distinct HTTP URLs with host as IP address

8. Fraction of HTTP connections: in TLDs

9. Fraction of HTTP connections: day of the week

10. Fraction of HTTP connections: hour of day

11. Fraction of HTTP connections: hour of day of week

12. Total distinct HTTPS TLDs

13. Total distinct HTTPS registered domains

14. Total distinct HTTPS FQDNs

15. Fraction of distinct HTTP registered domains in TLDs

16. Fraction of distinct HTTP registered domains in TLDs: com net org

78

17. Fraction of distinct HTTP registered domains not in TLDs: com net org

18. Fraction of distinct HTTPS connections in each TLD

19. Fraction of distinct HTTPS connections in TLDs: com net org

20. Fraction of distinct HTTPS connections not in TLDs: com net org

21. Total distinct HTTP and HTTPS TLDs

22. Total distinct HTTP and HTTPS registered domains

23. Total distinct HTTP and HTTPS FQDNs

24. Organizational Unique Identifier (OUI) vendor

25. Percent TCP connections to local IP

26. Percent TCP connections to remote IPs

27. Percent UDP connections to local IP

28. Percent UDP connections to remote IP

29. Unique /24 networks visited

30. Unique /24 networks visited using TCP

31. Unique /24 networks visited using UDP

32. Uses a remote DNS resolver

33. Number of remote DNS resolvers

34. URL shorteners

35. Email providers

36. File hosting sites

79

Detecting Security Incidents

While previous work has relied on the use of blacklists or Google Safe Browsing to

identify devices that expose users to potential risk, we are able to identify compromised devices

with high-confidence as a result of post-infection behavior typically in the form of command

and control (CNC) communication. To identify compromised devices (i.e., ones with a security

incident) we use alerts generated by a campus network appliance running the Suricata IDS [85].

The campus security system uses deep packet inspection with an industry-standard malware rule

set to flag devices exhibiting post-compromise behavior [72].

The IDS rules also detect network activity that might occur before a device becomes

compromised (e.g., possible phishing attempts, exploit kit landing pages, etc.). Since we focus

on compromised devices, we reduce the rules we consider to ones that explicitly detect post-

infection behavior. We then manually remove rules that are frequently triggered, but do not

indicate that a device has been compromised.

3.4 Data Set

We analyze six months of data from our passive network traffic processing system from

June 2018 to December 2018. In this section we describe our approach for identifying the laptop

and desktop devices for use in analyzing security risk factors, and determining the dominant OS

of devices used in our analysis. In the end, our data set consists of 15,291 devices. In Table 3.1,

we characterize our data set in terms of connections processed, and inbound and outbound bytes.

3.4.1 Device Filtering

The university allows heterogeneous devices on its network, including personal comput-

ers, mobile phones, printers, IoT devices, and more. Recommended security practices, however,

are commonly offered for laptop and desktop computers, and we focus our analysis solely on

such devices. As a result, we develop techniques to identify laptop and desktop computers among

80

Table 3.1. Data set characterization. Our network vantage point provides DNS request from the
local resolver which includes DNS traffic from devices in this paper as well as other devices
using the university’s networks.

Name Value

Date Range June 2018 – December 2018
Total Filtered Devices 15,291

DNS Connections 17.1 B
Non-DNS Connections 1.92 B
Total Connections 19 B

Outbound Bytes 38.4 TB
Inbound Bytes 720 TB
Total Bytes 758 TB

the many other devices on the network. We remove devices that are easily identifiable, and then

develop heuristics to filter remaining devices.

We first remove devices that are not active for a minimum of 14 days, and ones that

never provide a major web browser’s User-Agent string (removing 13.1% of all devices). For

studying security practices, devices need to have a modicum degree of network activity to be

able to model behavior, and devices without any web browser activity are a strong indication that

they are not laptops or desktops.

Next, we use User-Agent strings to identify a device’s OS [32]. Since applications are

not required to provide accurate User-Agent string information, to identify a device’s OS we

consider User-Agent strings from major browsers, and require that a device’s OS is consistent on

95% of all requests. We filter 40.8% of the total devices that we identify as having mobile or IoT

OS. For the fraction of devices that fall below the 95% requirement, we remove ones that contact

domains which are not regularly accessed by laptop or desktop devices4 (4.1% of all devices).

We also compile a list of network hardware vendors used within devices other than

laptops and desktops (e.g., Vizio, etc.), and remove devices with a matching OUI vendor (2.2%

of devices).
4We manually label domains that are contacted by TVs, printers, game consoles, and iPhones. We also exclude

devices that never make a single connection to any university web site.

81

Lastly, we filter some of the remaining IoT devices using network traffic-based heuristics.

Our intuition is that most of these devices5 will either make close to the same number of

connections each day, a small number of daily connections, or connections within a limited

number of /24 network subnets. We pick each threshold by manually inspecting the three network

traffic distributions, and select the value corresponding to the first peak of the distribution. We

remove devices that make the same number of connections each day ±7, on-average 40 daily

connections, or contact on-median 31 distinct /24 networks each week (4.2% of all devices).

To validate our device filtering heuristics in practice, we manually label a sample of 100

devices (50 laptop and desktop, and 50 that are removed). We find our filtering methodology to be

sufficiently accurate: one laptop is incorrectly removed, and four mobile phones are incorrectly

included.

3.4.2 Identifying Dominant OSes

Since different OSs have different risk profiles, identifying the OS used by a device is

an important step. Being able to observe device network traffic makes OS identification an

interesting task. The majority of devices are straightforward: using signatures of OS update

events, we can immediately identify a single unambiguous OS for 79.1% of devices.

The remaining devices either have no OS update signatures, or have more than one.6

For these devices, we use a combination of OS update signatures, OS User-Agent strings, and

OUI vendor name information to identify the dominant OS of a device (e.g., the host OS with

virtual machines, Windows if tethering an iPhone, etc.). We assume that devices with an Apple

OUI vendor name will be using Mac OS (7.2%). We then use the dominant OS extracted from

User-Agent strings to assign an OS (11.5%). The remaining 340 devices (2.1%) have both

Windows and Mac OS updates. We choose to assign Windows as the dominant OS in these cases

because of strong evidence of tethering, in which iTunes allows users to update their other Apple

5With the exception of user-directed IoT devices (e.g., Chromecasts, etc.)
6There are a number of legitimate reasons why a device can have more than one OS detected, including

dual-booting between different OSes, using virtual machines, device tethering, etc.

82

 Total

Incidents

Operating System Incidents Total Devices

Windows 538 (7.0%) 7,668
Mac OS 140 (1.9%) 7,339
ChromeOS 1 (0.5%) 205
Linux Variant 3 (3.8%) 79

Figure 3.2. Device OS classification after removing IoT and mobile devices, including the total
number of devices with each OS and the number with a security incident.

devices (e.g.iPhone, iPad, etc.) using the network connection of their computer [3].7 For each of

these heuristics, we confirmed the labeling by manually checking the traffic profile of a random

sample of devices.

3.5 Recommended Practices

There are a variety of security practices widely recommended by experts to help users

become safer online. Prior work has explored some of these practices in terms of users being

exposed to risky Web sites. Since our data includes actual security outcomes, we start our

evaluation by exploring the correlation of various security practices to actual device compromises

in our user population: operating system choice, keeping software up to date, Web sites visited,

using HTTPS, and using antivirus software.

3.5.1 Operating System

Different operating systems have different security reputations, and as a result it is not

surprising that experts have recommendations of the form “Use an uncommon OS” [78]. Part of

the underlying reasoning is that attackers will spend their efforts targeting the devices with most

7We measure the baseline of iTunes installs across devices with only Windows to be 11.9%, whereas the install
rate for these 340 devices is 67%.

83

common systems, so using an uncommon operating system makes that device less of a target.

In terms of device compromise, as with previous work and experience, such advice holds

for our user population as well. Using the OS classification method described in Section 3.4.2,

Table 3.2 shows the number of devices using major operating systems and the number of each

that were compromised during our measurement period. Most devices use Windows and Mac

OS, split nearly equally between the two. The baseline compromise rate among devices is 4.5%,

but Windows devices are 3.9 times more likely to be compromised than Mac OS devices. The

Chrome OS population is small, but only one such device was compromised.

Of course, modulo dual-booting or using virtual machines, this kind of advice is only

actionable to users when they are choosing which device to use, and is no help once a user is

already using a system.

3.5.2 Update Software

Among hundreds of security experts surveyed, by far the most popular advice is to “Keep

systems and software up to date” [78]. In this part we explore the operating system, browser, and

Flash update characteristics of the devices in our population, and how they correlate with device

compromise.

Operating System

Mac OS. We start by analyzing the update behavior of devices running Mac OS. Our

system labels each HTTP connection of a device with the type of operating system and its current

version number, both extracted from the User Agent string. However, if a device leaves the

network and returns with an updated version number in the UA string, then we cannot accurately

tell when the device was updated. Thus, we only utilize devices that are absent for less than four

days to bound the error on update times.

We see 7,268 (47.5%) devices that identify as Mac according to the User Agent string.

Of these devices, we see at least one update for 2,113 (29.1% of all Mac OS devices). Figure 3.3

84

10
.1

4 4 8 12 16 20 24 28 32
10

.1
4.

1 4 8 12 16 20 24 28 32
10

.1
4.

2 4 8

Days taken to update

0

50

100

150

N
um

be
r o

f d
ev

ic
es

Figure 3.3. Number of days a Mac OS X device takes to update to a specific version. The
version number on the x-axis denotes the day that the specified version update was published.

Table 3.2. Windows device updates deltas. We compute the average, median, P90, P95, P99,
and variance of the number of days between when the update was released, and when we observe
each device download the update. The devices are partitioned by those with and without a
security incident.

Incident? # Devices µ Median P90 P95 P99 σ2

No 5,976 2.5 0 6 15 42 59
Yes 483 2.6 0 6 14 49 62

shows the update pattern of Mac OS devices over time, anchored around the three OS updates

released by Apple during our measurement period. In general, Mac OS users are relatively slow

to update, anecdotally because of the interruptions and risks Mac OS updates entail.

Of these devices, 57 (2.7%) of them were compromised. Compromised devices have a

mean and median update rate of 16.21 and 14 days, respectively, while their clean counterparts

have a mean and median update rate of 17.96 and 16 days. However, this difference is not

statistically significant according to the Mann-Whitney U test (p = 0.13).

Windows. For Windows we developed a signature to extract the knowledge base (KB)

85

number of “Other Software” updates (e.g., Adobe Flash Player, etc.).8 Our signature detects

when a device downloads the update. While we cannot verify that the update was applied, it

does indicate whether the device is using the default Windows Update settings. Since it is

possible to miss an update (e.g., a device may download the update while connected to a different

network), we only compare devices that we see updating. We also restrict the updates considered

to ones released during our measurement period since there is nothing preventing an unpatched

device from joining the network.9 We identify the update’s release day using Microsoft’s Update

Catalog service [62].

Across devices running Windows, we see at least one update for 6,459 of them (84% of

all Windows devices). Table 3.2 shows the average, median, P90, P95, P99, and variance of the

number of days between when an update is downloaded and when it is released. Based upon

the averages and medians, devices update with similar deltas (2.5 days and 0 days, respectively)

regardless of whether they have a security incident. We confirm our hypothesis using the Mann-

Whitney U test (p = 0.052). We also find the fraction of compromised devices that update (7.5%)

to be similar in magnitude to the baseline fraction of incidents across all Windows devices (7.0%).

In short, the update behavior of compromised Windows devices is little different than that of

clean devices.

Web Browser

Updating the browser may be as important as updating the operating system. Browsers

are also large, complex pieces of software used on a daily basis and, as with most software,

these large programs have vulnerabilities. Updating is viewed as such an important process that

Chrome and Firefox employ auto-updating by default [87, 28], with UI features to encourage

timely updating.

As such, we explore the relationship between compromised and clean devices and browser

updating behaviors. Similar to the Mac OS devices, we are able to detect the current browser
8An example update is https://support.microsoft.com/en-us/help/4462930
9We exclude updates released multiple times with the same KB number.

86

https://support.microsoft.com/en-us/help/4462930

Table 3.3. Number of days between when an update is published and when devices update.
Compromised devices update faster than their clean counterparts.

Browser Mean, Median, # (Cmp) Mean, Median, # (Cln)

Chrome 14.4, 15.0 (421) 15.4, 15.0 (7883)
Firefox 5.64, 3.00 (24) 9.65, 5.00 (424)

version number from the User Agent string of a device. Since browser vendors publish the dates

when they make updates available,10 we can check whether the browser on a device is out of date

each time we see the device on the network. Across the measurement period, we then calculate

how quickly devices update. Also similarly to the Mac OS analysis, we exclude devices that are

absent from the network for more than three days.

Moreover, we only analyze the dominant browser for each device. Many devices have

User Agent strings naming different browsers. While users may use different browsers for

different use cases, we identify a dominant browser to remove the noise from user applications

that spoof a browser in their User Agent string. Thus, we determine which browser connects to

the largest number of distinct registered domains from a device and label the device with that

dominant browser. We choose unique registered domains as our metric over number of HTTP

connections because there are web sites and applications that “spam” the network, making the

device appear to use one browser dominantly when the natural user behavior is actually coming

from a different browser.

We analyzed updates for devices that dominantly use Chrome, Edge, Firefox, and Safari.

Of the total devices, 10,831 (70.8%) devices use Chrome, 719 (4.7%) devices use Edge, 561

(3.7%) devices use Firefox, and 2993 (19.6%) devices use Safari. However, only 8,304 (76.7%)

of the Chrome devices, 132 (18.4%) of the Edge devices, 448 (80.0%) of the Firefox devices,

and 1592 (53.2%) of the Safari devices are on the network continuously (absent for less than

three days). Table 3.3 shows the browsers with statistically significant differences in update

time between clean and compromised devices (Mann Whitney U: Chrome p = 4.2×10−4 and

10During our measurement period each popular browser had at least three major updates.

87

0 10 20 30 40
Days taken to update

0

5

10

15

20

25

30
N

um
be

r o
f d

ev
ic

es
Before Compromise
After Compromise

Figure 3.4. Distribution of days a device takes to update Chrome before compromise and after
compromise.

Firefox p = 0.03).

Clean devices appear to spend more time out of date than their compromised counterparts.

Examining this phenomenon in more detail, we examine the update behavior of compromised

devices before and after their compromise date. We focus on devices using Chrome that have two

updates spanning the compromise event (other browsers do not have a sufficiently large sample

size). Figure 3.4 shows the distribution of times devices were out of date with respect to when a

browser update was released for updates before and after the device was compromised. The shift

in distributions illustrates that devices update faster after compromise. In more detail, devices

that use Chrome have a before-compromise mean update rate of 18.9 days (18.0 median days)

and an after-compromise mean update rate of 14.2 days (15.0 days median). This difference is

significant, with p = 4.8×10−12 using the Wilcoxon signed-rank test.

88

Table 3.4. Flash Player updates on Windows devices.

Incident? # Devices µ Median P90 P95 P99 σ2

No 1,702 4.2 1 16 20 30 53
Yes 149 3.7 1 16 21 26 47

Flash Player

The Adobe Flash player has long been associated with security risk and device compro-

mise. The typical recommendation is to not use Flash at all, but if you do, to keep it up to date.

We created a signature to detect Adobe Flash Player on Windows devices.11 We focus on the

desktop version of Flash as major browser vendors issue Flash plugin updates directly. Adobe

released six updates within our measurement period, and we use Adobe’s web site to identify the

version and release date for each update.

Somewhat surprisingly, desktop Flash is still quite prevalent on devices. Fortunately,

though, update patterns and compromise rates do not indicate that the use of Flash puts devices

at greater risk of compromise. A total of 2,167 devices (28% of Windows devices) check for

a Flash Player update, of which 1,851 are seen downloading an update. Table 3.4 shows the

average, median, P90, P95, P99, and variance of the number of days between when an update

is downloaded and when it is released. Curiously, compromised devices updated Flash slightly

faster than clean devices (Mann-Whitney U test p = 0.025). However, the rate of compromise

across devices that update Flash is 8.1%, only slightly higher than the rate across of Windows

devices (7.9%) (Chi-Square p = 0.057). Among the 316 devices that we detect Flash Player

on, but do not see updates, only 15 are compromised (4.8%). We interpret these results as a

community success story. A combination of widespread awareness, aggressive updates, and

focused attention have mitigated it as a significant risk factor.

We next explore why compromised devices update Flash Player more quickly. We

hypothesize that a compromised device’s update behavior will change after being compromised.

11Flash Player updates on Mac OS are downloaded over HTTPS, preventing us from crafting an effective
signature.

89

To evaluate this claim, we compare the update patterns for compromised devices before and after

becoming compromised. Out of the 149 compromised devices that update Flash, there are 60

devices (40.3%) with updates before and after their first incident. The median and average days

compromised devices take to update before an incident are 6.5 and 9.9 respectively, and 0 and 1

days after becoming compromised (Wilcoxon signed-rank test p = 1.73×10−7). These results

suggest that shortly after a security incident devices exhibit better Flash update hygiene.

3.5.3 Visit Reputable Web Sites

Experts recommend users to be careful in the web sites that they visit (“Visit reputable

web sites” [78]), and indeed prior work has found that the category of web site users visit can be

indicative of exposure to risky sites [11, 82]. We perform a similar analysis for devices that are

actually compromised, and for the most part confirm that the types of sites that lead to exposure

to risky sites also correlate with actual compromise.

To categorize the content devices access we use the IAB domain taxonomy (Section 3.3.4).

We use the KS test with Bonferroni correction to compare the ECDFs of the fraction of distinct

registered domains in each category that clean and compromised devices access, and confirm

that they are statistically significant (i.e., p< 0.001).

Table 3.5 shows the most substantial differences between the types of content accessed,

e.g., with clean devices accessing more business, advertising, and marketing content, while

compromised devices accessed more gaming, hobby, uncategorized, and illegal. We note that,

while previous work found that exposed devices visit more advertising domains [82], our finding

of the opposite behavior can be explained by differences in methodology. The previous finding

used solely HTTP requests generated by static content, while our network traces include all

HTTP requests (including those generated by JavaScript) as well as HTTPS traffic.

90

Table 3.5. Types of content accessed more by clean or compromised devices. We show the
median fraction of registered domains accessed in the category for clean (Cln.) and compromised
(Cmp.) devices, and delta in median.

Clean Devices Access More

Feature Cln. Median Cmp. Median Delta

Business 22.36 20.14 2.22
Advertising 22.65 20.88 1.77
Marketing 12.96 11.66 1.3
Education 3.98 3.53 0.45
Content Server 6.96 6.58 0.38
Television & Video 2.18 1.89 0.29
Arts & Entertainment 2.54 2.27 0.27
Business Software 2.69 2.49 0.2
Web Design/HTML 1.39 1.24 0.15

Compromised Devices Access More

Feature Cln. Median Cmp. Median Delta

Computer Games 1.3 2.84 -1.54
Hobbies & Interests 2.61 3.78 -1.17
Uncategorized 26.25 26.97 -0.72
Technology 17.65 18.08 -0.43
Under Construction 5.33 5.65 -0.32
Network Security 1.43 1.65 -0.22
File Sharing 2.28 2.51 -0.23
News/Weather 2.44 2.64 -0.2
Illegal Content 0.15 0.33 -0.18
Cell Phones 0.0 0.17 -0.17
Comic Books 0.11 0.27 -0.16
Adult Content 0.36 0.51 -0.15

3.5.4 Use HTTPS

Another recommended browsing behavior is to use HTTPS when available. Of course, it

is the web site itself that ultimately determines whether HTTPS can be used: if a site does not

support it, users have to use HTTP. However, since prior studies on device security behavior

were not able to trace HTTPS traffic, we next examine HTTPS use and network activity more

generally, and then examine how it correlates with device compromise.

91

For each device, we count the total number of distinct fully qualified domains it contacted

using HTTPS and HTTP (approximating distinct sites visited). We then consider the number of

distinct FQDNs contacted just using HTTPS divided by the total (HTTPS + HTTP) as the ratio

of its HTTPS use. Since a recent study of HTTPS adoption on Chrome and Firefox showed that

it depends on both browser and operating system [26], we similarly categorize first by dominant

browser on the device (Section 3.5.2) and then OS. Table 3.6 shows the mean and median HTTPS

use across all devices, browsers, and operating systems. As a point of comparison, HTTPS use

among the devices in our population is roughly consistent with the results from [26]: devices

contact sites via HTTPS 78% of the time on average, and HTTPS use is lower on Windows (74–

76%) compared to Mac OS (79–80%). In terms of browsers, though, in our device population

Chrome does not have a distinctly higher use of HTTPS for our metric.

Table 3.6. HTTPS use among devices.

Browser OS Mean (Median)

Chrome Mac OS 78.6% (79.2%)
Linux 78.5% (79.0%)

ChromeOS 78.1% (78.3%)
Windows 76.2% (76.2%)

Firefox Linux 80.8% (80.3%)
Mac OS 80.5% (80.7%)
Windows 78.2% (79.0%)

Safari Mac OS 80.5% (80.7&)

Edge Windows 73.6% (74.0%)

All Devices 77.6% (78.5%)

Turning to security outcomes, we separate the activity of devices between HTTP and

HTTPS traffic and calculate their distributions for compromised and clean devices at various

aggregations: number of connections to all and unique URLs (for HTTP), unique fully-qualified

domain names (FQDNs), unique registered domains (RDs), and unique top-level domains

(TLDs), unique /24 “subnets” (also separated into TCP and UDP traffic). To identify significant

92

Table 3.7. Differences in network usage for clean (Cln.) and compromised (Cmp.) devices. We
use the KS test with Bonferroni correction to compare the ECDF of usage for each device type,
and present the p-value along with median values for each population.

Feature P-value Cln. Median Cmp. Median

Unique HTTP FQDNs < 0.001 705 1137
Unique HTTP RDs < 0.001 375 522
Unique HTTP TLDs < 0.001 27 36
Unique HTTP IP URLs < 0.001 4 57
Unique HTTPS FQDNs < 0.001 2.5k 3.1k
Unique HTTPS RDs < 0.001 1k 1.2k
Unique HTTPS TLDs 0.001 49.0 57.0
Unique /24 Nets. < 0.001 3.8k 5.3k
Unique TCP /24 Nets. < 0.001 3.6k 4.4k
Unique UDP /24 Nets. < 0.001 20 300

differences in device behavior we use the KS test of statistical significance with Bonferroni

correction. For each aggregation, Table 3.7 shows the p-value and the median values of the

distributions for clean and compromised devices.

Overall, the ratio of HTTPS use is not strongly correlated with security outcomes.The

connections made by compromised have similar usage of HTTPS and HTTP compared to clean

devices that make similar number of connections. However, these results do show that devices

that make more connections use HTTPS more than HTTP.

Across the board both kinds of devices generate more HTTPS traffic than HTTP, but that

the prominent trend is simply that compromised devices generate more web traffic than clean

devices. To illustrate this point in more detail, Figure 3.5 shows the distributions of average

weekly device web activity for clean and compromised devices. For every device, we count

the number of fully qualified domains the device visits via HTTP and HTTPS combined per

week, and normalize by averaging across all weeks that the device was active. Each bar in the

histogram counts the number of devices that visit a given number of FQDNs per week, with

100-domain bins. The distribution for compromised devices is clearly shifted towards visiting

more sites per week (and other traffic granularities show similar behavior). We interpret this

93

0 500 1000 1500 2000 2500 3000 3500 4000
HTTP+HTTPS avg weekly distinct FQDNs

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

1e 3

Clean
Compromised

Figure 3.5. Distributions of average weekly device web activity for clean and compromised
devices.

result as just reflecting that more activity correlates to higher exposure and risk (much like

automobile accidents).

3.5.5 Use Antivirus

Using antivirus software is a nearly universal recommendation. In fact, residential

students on our campus are nominally required to have antivirus software installed on their

devices to use the network. We crafted signatures to detect network activity (e.g., updates to

software or the signature database, callbacks when scanning, etc.) for over a dozen antivirus

products, and Table 3.6 shows the distribution of popular products among our device population.

If a device matched multiple signatures (e.g., Windows Defender and a third-party product), we

counted the device in each category (hence the devices in the table sum to more than the unique

device count). Avast, Windows Defender, and Avira are free, explaining their popularity among

student devices.

Notably, while student devices technically need to have AV installed, regulations are not

94

AV Name # Devices %

Avast 6,704 33.2%
Windows 5,752 28.5%
McAfee 3,659 18.1%
Avira 1,837 9.1%
Norton 866 4.3%
Other 1,383 6.8%

Figure 3.6. Five most prevalent antivirus products observed, with all others aggregated as
“Other”.

always followed. We verified that students can still access the residential network with antivirus

installed by repeatedly using a mechanism for visitors, or lying about their device type (e.g.,

claiming a MacBook is an iPad), and 7.5% of our devices fall into this category.

Using AV is strongly recommended to reduce risk. When focusing on Windows devices,

interestingly a larger percentage (7%) of devices with antivirus are compromised compared

to devices that do not have it (4%). By definition, though, most compromised devices in our

population are those that were compromised by malware that antivirus did not catch.

3.5.6 Software Use

As discussed in Section 3.3.4, we extract a wide variety of features about the software

used on devices observed on the network. We now explore how these software features correlate

with a device being compromised. Since compromise depends on the operating system used

(Windows devices are compromised more often than Mac OS devices), we also explore software

features not only in the context of all devices but also individual operating systems.

For each correlated software feature, Table 3.8 shows the device population, fraction

of compromised devices with the feature, and fraction of compromised devices without the

feature. These results provide direct comparisons on compromise rates between devices with a

particular software feature and without: e.g., devices using Tor are compromised 2–3.5× more

95

Table 3.8. Software features across device populations correlated with compromise. For each
feature we show the number of devices with the feature, p-value from the Chi-Square test,
fraction of compromised devices with and without the feature. Compromise rates: All devices
4.5%, Windows devices 7%, and Mac OS devices 1.9%.

Group Feature # Dev P-value w/ Feat. w/o Feat.

All Adobe AIR 826 < 0.001 10% 4%
All P2P 2,237 < 0.001 13% 3%
All Thunderbird 69 < 0.001 33% 4%
All Uses Tor 321 < 0.001 12% 4%
All Password Mgr. 434 < 0.001 8% 4%
All Remote DNS 8,631 < 0.001 6% 2%

Win Adobe AIR 490 < 0.001 13% 7%
Win P2P 1,676 < 0.001 15% 5%
Win Thunderbird 28 < 0.001 43% 7%
Win Uses Tor 188 < 0.001 15% 7%
Win Password Mgr. 262 0.001 12% 7%
Win Remote DNS 5,249 < 0.001 8% 5%

Mac Adobe AIR 336 < 0.001 6% 2%
Mac P2P 541 < 0.001 7% 2%
Mac Thunderbird 29 < 0.001 34% 2%
Mac Uses Tor 123 < 0.001 7% 2%
Mac Password Mgr 159 0.755 1% 2%
Mac Remote DNS 3,212 < 0.001 3% 1%

often than devices that do not. To ensure that the comparisons are statistically significant, we use

the Chi-Square test with Bonferroni correction since these are binary categorical features, and

the very low p-values shown in Table 3.8 confirm significance.

Devices using some specific applications correlate very strongly with compromise,

independent of operating system and network activity. Devices using Adobe AIR, P2P file

sharing networks, Thunderbird, and Tor on average are much more likely to be compromised

than devices that do not use such applications. Using these applications does indeed put devices

at significantly more risk. The Thunderbird email client is particularly ironic since one reason

why people use Thunderbird is because of its PGP integration [24]; yet, Thunderbird is rife with

reported vulnerabilities (420 code execution vulnerabilities reported in CVE Details [17]).

96

Some of these software features do not directly lead to compromise, but instead indirectly

reflect how attentive users are with respect to security. For instance, devices are not compromised

due to using password managers or not, or whether they are kept updated, but the use of password

managers does suggest that users are more security aware. We find the use of password managers

to be correlated with compromise among the All and Windows device groupings. Similarly, users

who explicitly configure their device to use a remote DNS server, instead of the DHCP default,

reflect a certain degree of sophistication and confidence — for better or worse, considering that

devices using remote DNS servers for resolution have a 1.6–3× higher rate of compromise.

3.6 Ranking Feature Importance

Our analyses so far have focused on individual security practices. As a final step, we

explore the relative importance of all the features we extract using statistical modeling, as well

as the relative importance of features exhibited during the hour before a device is compromised.

Our goal is not to train a general security incident classifier. Rather, it is to generate a logistic

model that produces interpretable results for ranking the relative importance of our features.

3.6.1 Experimental Setup

Logistic regression is a statistical technique for predicting a binary response variable

using explanatory variables [38]. We set the response variable to be whether or not a device is

compromised, and use all of the device features we extract from the network as the explanatory

variables. We first split the data into training (50%) and test (50%), and normalize the explanatory

variables to have zero mean and unit variance.

To find the important explanatory variables we use a specialized type of logistic regression

called least absolute shrinkage and selection operataor (LASSO), or L1 logistic regression, since

we have a high number of explanatory variables. L1 logistic regression can be regularized to

correct for overfitting, thereby preventing a model from becoming too closely tied to the data

that it is built from. Regularization restricts the number of explanatory variables the model

97

will use proportionally to how regularized the model is. The regularization parameter itself is

configurable in the Scikit-learn machine learning framework we use [70].

To find the optimal regularization parameter we implement hyperparameter tuning: we

build 200 models, each with a different regularization parameter, and identify the model that

performs best. To identify the best model while avoiding selection bias, for each model, we

perform 10-fold cross validation. We track the average area under curve (AUC) from the receiver

operating characteristic (ROC) curves produced when predicting on the ten different validation

data sets. We then select the regularization parameter from the model that provides the maximum

average validation AUC. After identifying the optimal regularization parameter we search for

multicollinearity by computing the variance inflation factor (VIF) across features used in the

model, and do not find features with a VIF greater than ten [48].

To compare the importance of each feature we implement a greedy deletion algorithm [35].

Our algorithm works in the following way: We start with the N important features used to

predict security incidents identified by the best model (previous paragraph). For N −1 feature

combinations we train regularized models with hyperparameter tuning. From the resulting

models, we identify the model that has the maximum AUC (when predicting on validation data),

and exclude the unused feature in the next iteration of the algorithm. We exclude the unused

feature since it contributes least to the overall AUC compared to the other feature combinations.

We repeat this process until we have a model that uses a single feature (N = 1); the remaining

feature contributes the most to the AUC by itself and in the presence of other features. Finally,

we interpret the results in terms of the changes to the test AUC when features are added to the

final model.

3.6.2 All Features

We run the greedy deletion algorithm (Section 3.6.1) multiple times with different device

groupings: all devices, Windows devices, Mac OS devices, and devices with on-median more

HTTP traffic. We consider devices that produce on-median more HTTP traffic based on our

98

Table 3.9. AUC gains from the top four features used to detect devices with security incidents.
For each feature we also provide the ratio of median (continuous) or mean (categorical) values.
Ratios > 1 (green) indicate that compromised devices exhibit more of the feature.

Group Feature Val AUC Test AUC Ratio

All IAB Computer Games +68.3% +69.7% 2.2x
All HTTP Reg Domains +7.0% +5.2% 1.6x
All HTTP in TLD .cn +2.3% +3.7% 3.5x
All Windows Antivirus +1.9% +1.1% 1.7x

Win HTTP FQ Domains +71.9% +71.1% 1.6x
Win IAB Computer Games +4.2% +2.9% 1.7x
Win UA Str Safari +2.2% +2.5% 3x
Win UA Str IE +1.4% +1.3% 1.1x

Mac HTTP in TLD .cn +76% +76% ∞

Mac UA Str IE +5.3% +4.3% 6.2x
Mac HTTP Traffic at 2AM +3.8% -1.3% 0.9x
Mac HTTP in TLD co.kr +1.5% +3.7% 1x

HTTP IAB Shareware +66.3% +60% ∞

HTTP UA Str IE +7.2% +7.9% 1.9x
HTTP UA Str Android +3.4% +1.3% 2.2x
HTTP Uses P2P +1.0% +2.7% 1.3x

observations in Section 3.5.4. Table 3.9 shows the top four features for each grouping, the

feature’s AUC contribution when predicting on validation and test data, and the ratio of the

feature’s median (continuous) or mean (categorical) value for compromised and clean devices.

Since we select the feature combination with the highest validation AUC it is possible that adding

in an extra feature will result in a small negative contribution to the test AUC (e.g., the “HTTP

Traffic at 2AM” feature for Mac OS devices).

Our results indicate that behavioral features, regardless of device grouping, are most

correlated with device compromise. In all cases, the first feature in each grouping relates to how

much a device accesses Web content or the type of content being accessed. Having Windows

antivirus products (a proxy for using Windows, which has a significantly higher compromise

rate), or using P2P applications are the only two software features in the top four of any grouping.

Having the IE User-Agent feature highly ranked highlights the challenge of cursory feature

99

Table 3.10. AUC gains for the top eight features used to detect devices with security incidents
one hour before being compromised.

Feature Val AUC Test AUC

IAB Computer Games +71.9% +74.2%
IAB Web Search +4.0% +3.6%

IAB Illegal Content +2.2% +3.6%
IAB JavaScript +1.0% +0.1%

IAB Computer Networking +0.7% +0.1%
IAB Adult Content +0.7% +0.7%

IAB Shareware/Freeware +0.7% +0.4%
IAB Internet Technology +0.5% +1.5%

extraction. Applications can make use of embedded browsers, and examining traffic with an IE

User-Agent string shows many of the detections are from the QQ chat application and Qihoo 360

security product. We also find that compromised devices, in the majority of cases (except for two

features within the Mac OS grouping), exhibit more of each feature compared to clean devices.

3.6.3 One Hour Before Compromise

Lastly, we use our statistical model to examine the relative importance of security

features focusing on the hour leading up to device compromise: Compared to devices that are

not compromised, how are compromised devices behaving differently leading up to becoming

compromised? For each compromised device, we extract their features from the hour before their

first incident. To compare differences in behavior, we construct a synthetic control by taking a

pseudorandom sample of clean devices. Specifically, for each compromised device we randomly

select up to 300 clean devices that are (1) active in the same hour window, and (2) visit at least

50 distinct registered domains.12

Table 3.10 shows the most important features (relative to one another) for identifying

compromised devices an hour before they are compromised. For our devices, the type of Web

sites visited (Section 3.5.3) are the most distinguishing features. On-average, compromised

12On average compromised devices visit 50 distinct registered domains the hour before being compromised.

100

devices visit more Web sites in each of the eight categories in Table 3.10 than clean devices. The

most popular domains our devices visit in these categories do correspond well to the category

domains. For some of the very generic labels, “Computer Games” are gaming sites; “Computer

Networking” include ISPs and IP geolocation services; “Internet Technology” include SSL

certificate sites and registrars, etc.

3.7 Conclusion

The practice of cybersecurity implicitly relies on the assumptions that users act “securely”

and that our security advice to them is well-founded. In this paper, we seek to ground both

assumptions empirically – measuring both the prevalence of key security “best practices” as

well as the extent to which these behaviors (and others) relate to eventual security outcomes.

We believe that this kind of analysis is key to advancing security decision making from the

“gut instinct” practice it is today, to one informed and improved by the collection on concrete

evidence.

Acknowledgements

Chapter 3, in part, has been submitted for publication of the material as it may appear in

Proceedings of the ACM Internet Measurement Conference (IMC). Louis F. DeKoven, Audrey

Randall, Ariana Mirian, Gautam Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman,

Geoffrey M. Voelker, Stefan Savage, 2019. The dissertation author was the primary investigator

and author of this paper.

101

Chapter 4

Conclusion

Addressing compromised devices is a problem for virtually all large organizations. In

most cases, large organizations must address device compromise using limited observational

vantage points, differences in intervention capabilities, and evolving adversaries with varying

incentives. In this dissertation, we have demonstrated multiple approaches to develop empirically-

grounded systems that address device compromise within different organizations, thereby placing

us on a stronger footing to devise better interventions. We presented solutions that take advantage

of analytic data to determine: what can be measured under the limitations in each organization’s

vantage point, as well as the trade-offs across different types of intervention.

The first system detects and remediates malicious browser extensions impacting Facebook.

From the perspective of an online social network browser extensions themselves are not directly

accessible. Moreover, how or why a extension is installed may be unknown. We described our

methodology whereby users exhibiting suspicious online behaviors are scanned (with permission)

to identify the set of extensions in their browsers, and those extensions are in turn labeled based

on the threat indicators they contain. Employing this methodology at Facebook over six weeks,

we identified more than 1,700 new lexically distinct malicious extensions. Comparing our

findings with both contemporaneous anti-malware detections (as reflected in VirusTotal) and

takedowns from the Chrome Web Store, reveals a considerable detection gap in the existing

abuse ecosystem. We hope that by highlighting this issue and sharing our data we can encourage

102

a broader and more collaborative focus on this under-addressed attack vector.

Next, we presented a system to disrupt for-profit underground services offering to artifi-

cially manipulate a user’s social standing on Instagram. Unlike browser extensions the malicious

software used by these services is not required to run directly on each device making the use of a

malware scanner-like approach impractical. We identified techniques used by these services to

evade straightforward detection, and characterized the dynamics of their customer bases using

a honeypot account framework that we developed for Instagram. We found that underground

services are able to attract a large clientele, and generate over $1M in monthly revenue. Lastly,

we have shown through controlled experiments that blocking underground services, while effec-

tive in the short term, quickly drives adaptation and can make it difficult to amortize the cost

of developing accurate abuse classification. For example, underground service quickly reacted

to synchronous blocking applied to their abusive actions. Consequently, from the standpoint of

protecting non-abusive users from artificial content, a more effective long-term strategy can be

built on deferred interventions (e.g., removing synthetic actions after at a future point). Such

approaches greatly increase the “debug time” for services seeking to reverse engineer how they

are being detected and are less likely to drive the customer complaints that incentive services to

pursue such adaptations.

In our final study, we developed a system that passively monitors a university’s residential

network to measure the prevalence of numerous security “ best practices” and behaviors, and

how they correlate to device compromise. Unlike the vantage point of online social networks

which is constrained to social network actions, passive network traffic contains a broader set

of device actions. However, this activity is encoded within network traffic, and fine-grained

detail into the context of each action is commonly obscured by encryption. We described the

implementation of a large-scale passive monitoring system that produces per-device models

describing security practices and behaviors. Analyzing months of longitudinal data we have

shown that a number of recommended security “best practices” are followed by devices, however,

they are not negatively correlated with device compromise–e.g., compromised devices using

103

the Chrome or Firefox web browser tend to update faster than clean devices. Most positively

correlated with device compromise is the types of web site devices visit–e.g., web content related

to video games. Lastly, we developed a logistic model to compare the relative importance of the

features we measure and device compromise. Our model shows that behavioral features such are

more useful for distinguishing compromised devices. We believe that this kind of analysis is key

to advancing security decision making from the “gut instinct” practice it is today, to one informed

and improved by the collection on concrete evidence.

104

Bibliography

[1] Anupama Aggarwal and Ponnurangam Kumaraguru. What They Do in Shadows: Twitter
Underground Follower Market. In Proceedings of the 13th Conference on Privacy, Security
and Trust (PST), Izmir, Turkey, July 2015.

[2] Apache Software Foundation. Apache Hive Website. https://hive.apache.org/, 2019.

[3] Apple. Update your iPhone, iPad, or iPod touch. https://support.apple.com/en-us/
HT204204, 2018.

[4] S. Bandhakavi, S. T. King, M. Parthasarathy, and M. Winslett. Vetting Browser Extensions
for Security Vulnerabilities with VEX. In Proc. of USENIX Security, 2010.

[5] Mihir Bellare and Phillip Rogaway. The FFX Mode of Operation for Format-Preserving
Encryption. Manuscript (standards proposal) submitted to NIST, January 2010.

[6] Leyla Bilge, Yufei Han, and Matteo Dell’Amico. RiskTeller: Predicting the Risk of
Cyber Incidents. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Dallas, Texas, USA, November 2017.

[7] Blognife. PopAds CPM Rates 2018. http://blognife.com/2017/06/22/
popads-cpm-rates-2017/, 2017.

[8] Boostgram. Boostgram Web site. https://boostgram.com, 2017.

[9] Brian Krebs. Nasty Twitter Worm Outbreak. https://krebsonsecurity.com/2010/09/
nasty-twitter-worm-outbreak/, 2010.

[10] Brian Krebs. Buying Battles in the War on Twitter Spam. https://krebsonsecurity.com/
2013/08/buying-battles-in-the-war-on-twitter-spam/, 2013.

[11] Davide Canali, Leyla Bilge, and Davide Balzarotti. On the effectiveness of risk predic-
tion based on users browsing behavior. In Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security (CCS), Kyoto, Japan, June 2014.

[12] Yannick Carlinet, Ludovic Mé, Hervé Debar, and Yvon Gourhant. Analysis of Computer
Infection Risk Factors Based on Customer Network Usage. In 2008 Second International
Conference on Emerging Security Information, Systems and Technologies, Cap Esterel,
France, August 2008.

105

https://hive.apache.org/
 https://support.apple.com/en-us/HT204204
 https://support.apple.com/en-us/HT204204
http://blognife.com/2017/06/22/popads-cpm-rates-2017/
http://blognife.com/2017/06/22/popads-cpm-rates-2017/
https://boostgram.com
https://krebsonsecurity.com/2010/09/nasty-twitter-worm-outbreak/
https://krebsonsecurity.com/2010/09/nasty-twitter-worm-outbreak/
https://krebsonsecurity.com/2013/08/buying-battles-in-the-war-on-twitter-spam/
https://krebsonsecurity.com/2013/08/buying-battles-in-the-war-on-twitter-spam/

[13] N. Carlini, A. P. Felt, and D. Wagner. An Evaluation of the Google Chrome Extension
Security Architecture. In Proc. of USENIX Security, 2012.

[14] Carrie Marshall and Cat Ellis. The best free password manager 2019. https://www.techradar.
com/news/software/applications/the-best-password-manager-1325845, 2018.

[15] CERT. Ransomware. https://www.us-cert.gov/security-publications/Ransomware, 2018.

[16] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM, pages 84–88, February 1981.

[17] CVE Details. Mozilla Thunderbird Vulnerability Statistics. https://www.cvedetails.com/
product/3678/?q=Thunderbird, 2019.

[18] Danny Palmer. Facebook Messenger user? Watch out for fake
messages rigged with malware. https://www.zdnet.com/article/
facebook-messenger-user-watch-out-for-fake-messages-rigged-with-malware/, 2017.

[19] Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon, Mohamed Ali Kaafar, and
M. Zubair Shafiq. Paying for Likes? Understanding Facebook Like Fraud Using Honeypots.
In Proceedings of the ACM Internet Measurement Conference (IMC), pages 129–136,
Vancouver, BC, Canada, November 2014.

[20] M. Dhawan and V. Ganapathy. Analyzing Information Flow in JavaScript-based Browser
Extensions. In Proc. of ACSAC, 2009.

[21] V. Djeric and A. Goel. Securing Script-Based Extensibility in Web Browsers. In Proc. of
USENIX Security, 2010.

[22] DNSFilter. DNSFilter Website. https://www.dnsfilter.com/, 2019.

[23] Earning Guys. PopAds Review: A Pop-under Ad Network. http://www.earningguys.com/
advertisement/popads-review/, 2017.

[24] The Enigmail Project. Enigmail — OpenPGP encryption for Thunderbird. https://www.
enigmail.net/index.php/en/home, 2019.

[25] Shehroze Farooqi, Fareed Zaffar, Nektarios Leontiadis, and Zubair Shafiq. Measuring and
Mitigating Oauth Access Token Abuse by Collusion Networks. In Proceedings of the ACM
Internet Measurement Conference (IMC), pages 355–368, London, UK, November 2017.

[26] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel1, and Parisa
Tabriz. Measuring HTTPS Adoption on the Web. In Proceedings of the 26th USENIX
Security Symposium, Vancouver, BC, Canada, August 2017.

[27] M. Finifter, J. Weinberger, and A. Barth. Preventing Capability Leaks in Secure JavaScript
Subsets. In Proc. of NDSS, 2010.

106

https://www.techradar.com/news/software/applications/the-best-password-manager-1325845
https://www.techradar.com/news/software/applications/the-best-password-manager-1325845
https://www.us-cert.gov/security-publications/Ransomware
https://www.cvedetails.com/product/3678/?q=Thunderbird
https://www.cvedetails.com/product/3678/?q=Thunderbird
https://www.zdnet.com/article/facebook-messenger-user-watch-out-for-fake-messages-rigged-with-malware/
https://www.zdnet.com/article/facebook-messenger-user-watch-out-for-fake-messages-rigged-with-malware/
https://www.dnsfilter.com/
http://www.earningguys.com/advertisement/popads-review/
http://www.earningguys.com/advertisement/popads-review/
https://www.enigmail.net/index.php/en/home
https://www.enigmail.net/index.php/en/home

[28] Firefox. How to stop Firefox from making automatic connections. https://support.mozilla.
org/en-US/kb/how-stop-firefox-making-automatic-connections, 2019.

[29] Followersgratis. Followersgratis Web site. http://followersgratis.org, 2017.

[30] Alain Forget, Sarah Pearman, Jeremy Thomas, Alessandro Acquisti, Nicolas Christin,
Lorrie Faith Cranor, Serge Egelman, Marian Harbach, and Rahul Telang. Do or Do Not,
There Is No Try: User Engagement May Not Improve Security Outcomes. In Procedings
of the Twelfth Symposium on Usable Privacy and Security (SOUPS), Denver, CO, USA,
June 2016.

[31] Fstoppers. Mass Planner Shut Down by Instagram: The End of the Bot Era. https:
//fstoppers.com/social-media/mass-planner-shut-down-instagram-end- bot-era-176654,
2017.

[32] Aaron Gember, Ashok Anand, and Aditya Akella. A Comparative Study of Handheld and
Non-handheld Traffic in Campus Wi-Fi Networks. In Proceedings of the 12th International
Conference on Passive and Active Measurement, Atlanta, GA, USA, March 2011.

[33] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee. BotHunter:
Detecting Malware Infection Through IDS-driven Dialog Correlation. In Proceedings of
16th USENIX Security Symposium on USENIX Security Symposium, Boston, MA, USA,
August 2007.

[34] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified Security for Browser
Extensions. In Proc. of IEEE S&P, 2011.

[35] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer New York Inc., 2001.

[36] Cormac Herley. So Long, and No Thanks for the Externalities: The Rational Rejection
of Security Advice by Users. In Proceedings of the 2009 Workshop on New Security
Paradigms Workshop, Oxford, United Kingdom, September 2009.

[37] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos.
FRAUDAR: Bounding Graph Fraud in the Face of Camouflage. In Proceedings of the 22nd
ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages
895–904, San Francisco, CA, USA, August 2016.

[38] David W Hosmer Jr and Stanley Lemeshow. Applied Logistic Regression. John Wiley &
Sons, 2nd edition, 2000.

[39] Hublaagram. Hublaagram Web site. http://hublaagram.me, 2017.

[40] IAB. IAB Tech Lab Content Taxonomy. https://www.iab.com/guidelines/
iab-tech-lab-content-taxonomy/, 2019.

107

https://support.mozilla.org/en-US/kb/how-stop-firefox-making-automatic-connections
https://support.mozilla.org/en-US/kb/how-stop-firefox-making-automatic-connections
http://followersgratis.org
https://fstoppers.com/social-media/mass-planner-shut-down-instagram-end-
https://fstoppers.com/social-media/mass-planner-shut-down-instagram-end-
bot-era-176654
http://hublaagram.me
https://www.iab.com/guidelines/iab-tech-lab-content-taxonomy/
https://www.iab.com/guidelines/iab-tech-lab-content-taxonomy/

[41] Instagram. Strengthening Our Commitment to Safety and Kindness for 800 Million.
http://blog.instagram.com/post/165759350412/170926-news, 2017.

[42] Instagram. Terms of Use. https://help.instagram.com/581066165581870, 2018.

[43] Instalex. Instalex Web site. https://instalex.ru, 2017.

[44] Instalex Franchise. Instalex Franchise Web site. https://instalex.pro/franchise, 2017.

[45] Instazood. What is a Good Engagement Rate on Instagram. https://instazood.com/
what-is-a-good-engagement-rate-on-instagram/, 2017.

[46] Instzood. Instzood Web site. https://instazood.com, 2017.

[47] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and K. Thomas.
Trends and Lessons from Three Years Fighting Malicious Extensions. In Proc. of USENIX
Security, 2015.

[48] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated,
2014.

[49] Mobin Javed, Cormac Herley, Marcus Peinado, and Vern Paxson. Measurement and
Analysis of Traffic Exchange Services. In Proceedings of the ACM Internet Measurement
Conference (IMC), pages 1–12, Tokyo, Japan, October 2015.

[50] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk: Eliciting
Malicious Behavior in Browser Extensions. In Proc. of USENIX Security, 2014.

[51] Moazzam Khan, Zehui Bi, and John A. Copeland. Software updates as a security metric:
Passive identification of update trends and effect on machine infection. In Proceedings of
IEEE Military Communications Conference (MILCOM), Orlando, Florida, USA, October
2012.

[52] Kirk Bauer. Logwatch. http://www.logwatch.org, 2011.

[53] Fanny Lalonde Lévesque, Jude Nsiempba, José M. Fernandez, Sonia Chiasson, and Anil
Somayaji. A Clinical Study of Risk Factors Related to Malware Infections. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS),
Berlin, Germany, November 2013.

[54] Kyumin Lee, James Caverlee, and Steve Webb. Uncovering Social Spammers: Social
Honeypots + Machine Learning. In Proceedings of the 33rd ACM Conference on Research
and Development in Information Retrieval (SIGIR), pages 435–442, Geneva, Switzerland,
July 2010.

[55] Lindsey O’Donnell. New Facebook-Spread Malware Triggers
Credential Theft, Cryptomining. https://www.zdnet.com/article/
cryptocurrency-mining-malware-is-number-one-malware-menace-again/, 2018.

108

http://blog.instagram.com/post/165759350412/170926-news
https://help.instagram.com/581066165581870
https://instalex.ru
https://instalex.pro/franchise
https://instazood.com/what-is-a-good-engagement-rate-on-instagram/
https://instazood.com/what-is-a-good-engagement-rate-on-instagram/
https://instazood.com
http://www.logwatch.org
https://www.zdnet.com/article/cryptocurrency-mining-malware-is-number-one-malware-menace-again/
https://www.zdnet.com/article/cryptocurrency-mining-malware-is-number-one-malware-menace-again/

[56] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome Extensions: Threat Analysis and Counter-
measures. In Proc. of NDSS, 2012.

[57] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir, Michael Bailey,
and Mingyan Liu. Cloudy with a Chance of Breach: Forecasting Cyber Security Incidents.
In Proceedings of the 24th USENIX Conference on Security Symposium, Washington, DC,
USA, August 2015.

[58] M. T. Louw, J. S. Lim, and V.N Venkatakrishnan. Enhancing web browser security against
malware extensions. Journal in Computer Virology, 2008.

[59] McAfee. McAfee Labs Threats Report, 2018.

[60] Medium. Instag-RAMPAGE: the WAR on Automation. https://medium.com/
@mountainbeard/instag-rampage-and-the- war-on-automation-3a7362b08112, 2017.

[61] Medium, Shane Barker. How to Become an Instagram Influencer and
Start Earning Money Now. https://medium.com/swlh/how-to-become-an-
instagram-influencer-and-start-earning-money-now-a8ef3169e96d, 2018.

[62] Microsoft. Microsoft Update Catalog. https://www.catalog.update.microsoft.com/Home.
aspx, 2019.

[63] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and Analysis of Online Social Networks. In Proceedings of
the ACM Internet Measurement Conference (IMC), pages 29–42, San Diego, CA, USA,
October 2007.

[64] Mozilla Foundation. Public Suffix List Website. https://publicsuffix.org/, 2019.

[65] Neil J. Rubenking. The Best Antivirus Protection for 2019. https://www.pcmag.com/
article2/0,2817,2372364,00.asp, 2019.

[66] New York Times. How Bots Are Inflating Instagram Egos. https://www.nytimes.com/2017/
06/06/business/media/instagram-bots.html, 2017.

[67] New York Times. The Follower Factory. https://www.nytimes.com/interactive/2018/01/27/
technology/social-media-bots.html, 2018.

[68] ntop. PF RING ZC (Zero Copy) Website. https://www.ntop.org/products/packet-capture/
pf ring/pf ring-zc-zero-copy/, 2018.

[69] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Computer
Networks, 31(23-24):2435–2463, 1999.

[70] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

109

https://medium.com/
@mountainbeard/instag-rampage-and-the-
war-on-automation-3a7362b08112
https://medium.com/swlh/how-to-become-an-
instagram-influencer-and-start-earning-money-now-a8ef3169e96d
https://www.catalog.update.microsoft.com/Home.aspx
https://www.catalog.update.microsoft.com/Home.aspx
https://publicsuffix.org/
https://www.pcmag.com/article2/0,2817,2372364,00.asp
https://www.pcmag.com/article2/0,2817,2372364,00.asp
https://www.nytimes.com/2017/06/06/business/media/instagram-bots.html
https://www.nytimes.com/2017/06/06/business/media/instagram-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.nytimes.com/interactive/2018/01/27/technology/social-media-bots.html
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/

[71] Pop Ads. PopAds Web site. https://www.popads.net, 2017.

[72] ProofPoint. ET Pro Ruleset. https://www.proofpoint.com/us/threat-insight/et-pro-ruleset,
2019.

[73] Rachel Wolfson. Cryptojacking On The Rise: WebCobra Malware Uses Victims’ Comput-
ers To Mine Cryptocurrency. https://bit.ly/2vVfdZC, 2018.

[74] Redislabs. Redis Website. https://redis.io/, 2019.

[75] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. How I Learned to Be Secure:
A Census-Representative Survey of Security Advice Sources and Behavior. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 2016.

[76] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. Where is the Digital Divide?:
A Survey of Security, Privacy, and Socioeconomics. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, Denver, Colorado, USA, May 2017.

[77] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. How Well Do My Results
Generalize? Comparing Security and Privacy Survey Results from MTurk, Web, and
Telephone Samples. In Proceedings of the 2019 IEEE Symposium on Security and Privacy,
San Fransisco, CA, USA, May 2019.

[78] Robert Reeder, Iulia Ion, and Sunny Consolvo. 152 Simple Steps to Stay Safe Online:
Security Advice for Non-tech-savvy Users. IEEE Security and Privacy, 15(5):55–64, June
2017.

[79] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu, and Tudor Dumitras. Patch Me If
You Can: A Study on the Effects of Individual User Behavior on the End-Host Vulnerability
State. In Proceedings of the 18th Passive and Active Measurement PAM, Sydney, Australia,
March 2017.

[80] Yukiko Sawaya, Mahmood Sharif, Nicolas Christin, Ayumu Kubota, Akihiro Nakarai, and
Akira Yamada. Self-Confidence Trumps Knowledge: A Cross-Cultural Study of Security
Behavior. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, Denver, Colorado, USA, May 2017.

[81] H. Shahriar, K. Weldemariam, T. Lutellier, and M. Zulkernine. A Model-Based Detection
of Vulnerable and Malicious Browser Extensions. In Proc. of SERE, 2013.

[82] Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu Kubota, and Akira Yamada.
Predicting Impending Exposure to Malicious Content from User Behavior. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS),
Toronto, Canada, October 2018.

110

https://www.popads.net
https://www.proofpoint.com/us/threat-insight/et-pro-ruleset
https://bit.ly/2vVfdZC
https://redis.io/

[83] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Detecting Spammers on
Social Networks. In Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC), Austin, TX, USA, 2010.

[84] Gianluca Stringhini, Gang Wang, Manuel Egele, Cristopher Kruegel, Giovanni Vigna,
Haitao Zheng, and Ben Y. Zhao. Follow the Green: Growth and Dynamics in Twitter
Follower Markets. In Proceedings of the ACM Internet Measurement Conference (IMC),
pages 163–176, Barcelona, Spain, October 2013.

[85] Suricata. Suricata IDS Website. https://suricata-ids.org/, 2019.

[86] The Verge. Popular Instagram bot site Instagress has been shut down. https://www.theverge.
com/2017/4/20/15374080/instagram-bot-site-instagress-dead, 2017.

[87] Update Google Chrome. Update Google Chrome. https://support.google.com/chrome/
answer/95414?co=GENIE.Platform%3DDesktop&hl=en, 2019.

[88] Bimal Viswanath, M. Ahmad Bashir, Mark Crovella, Saikat Guha, Krishna P. Gummadi,
Balachander Krishnamurthy, and Alan Mislove. Towards Detecting Anomalous User Be-
havior in Online Social Networks. In Proceedings of the 23rd USENIX Security Symposium,
pages 223–238, San Diego, CA, USA, August 2014.

[89] Francesco Vitale, Joanna McGrenere, Aurélien Tabard, Michel Beaudouin-Lafon, and
Wendy E. Mackay. High Costs and Small Benefits: A Field Study of How Users Experience
Operating System Upgrades. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, Denver, Colorado, USA, May 2017.

[90] J. Wang, X. Li, X. Liu, X. Dong, J. Wang, Z. Liang, and Z. Feng. An Empirical Study of
Dangerous Behaviors in Firefox Extensions. In Proc. of ICISC, 2012.

[91] Rick Wash. Folk Models of Home Computer Security. In Proceedings of the Sixth
Symposium on Usable Privacy and Security, Redmond, Washington, USA, July 2010.

[92] Rick Wash and Emilee Rader. Too Much Knowledge? Security Beliefs and Protective
Behaviors Among United States Internet Users. In Proceedings of the Eleventh USENIX
Conference on Usable Privacy and Security, Ottawa, Canada, July 2015.

[93] Steve Webb, James Caverlee, and Calton Pu. Social Honeypots: Making Friends With
A Spammer Near You. In Proceedings of the Fifth Conference on Email and Anti-Spam
(CEAS), Mountain View, CA, USA, August 2008.

[94] WebShrinker. IAB Categories. https://docs.webshrinker.com/v3/iab-website-categories.
html#iab-categories, 2018.

[95] WebShrinker. WebShrinker Website. https://www.webshrinker.com/, 2019.

[96] M. West, A. Barth, and D. Veditz. Content Security Policy Level 3. W3C, 2016.

111

https://suricata-ids.org/
https://www.theverge.com/2017/4/20/15374080/instagram-bot-site-instagress-dead
https://www.theverge.com/2017/4/20/15374080/instagram-bot-site-instagress-dead
https://support.google.com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://docs.webshrinker.com/v3/iab-website-categories.html#iab-categories
https://www.webshrinker.com/

[97] The Wireshark Team. Wireshark Website. https://www.wireshark.org/, 2019.

[98] Chaowei Xiao, Armin Sarabi, Yang Liu, Bo Li, Mingyan Liu, and Tudor Dumitras. From
Patching Delays to Infection Symptoms: Using Risk Profiles for an Early Discovery
of Vulnerabilities Exploited in the Wild. In Procedings of the 27th USENIX Security
Symposium (USENIX Security), Baltimore, MD, USA, August 2018.

[99] Zeek. Zeek Protocol Analyzers Website. https://docs.zeek.org/en/stable/script-reference/
proto-analyzers.html, 2019.

112

https://www.wireshark.org/
https://docs.zeek.org/en/stable/script-reference/proto-analyzers.html
https://docs.zeek.org/en/stable/script-reference/proto-analyzers.html

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Malicious Browser Extensions at Scale
	Introduction
	Background
	Collecting Browser Malware
	Detecting Compromised User Accounts
	Malware Scanner and Cleanup
	Static Analysis

	Browser Extension Labeling
	Automated Extension Labeling
	Manual Labeling
	A Real World Example

	System Evaluation
	Extensions Collected
	Malicious Extensions Detected

	Evaluating Alternatives
	VirusTotal
	Chrome Web Store

	Conclusions

	Following Their Footsteps
	Introduction
	Background
	Account Automation Services
	Reciprocity Abuse
	Collusion Networks
	Studied services

	User Experience
	Methodology
	How Accounts Are Used
	Quantifying Reciprocation

	Business Perspective
	Customer Base
	Revenue
	Activity Generated

	Interventions
	Countermeasures
	Identifying Eligible Actions
	Narrow Interventions
	Broad Interventions

	Conclusion

	Security Practices
	Introduction
	Background
	Methodology
	Protecting User Privacy
	Network Traffic Processing
	Log Decoration
	Feature Extraction

	Data Set
	Device Filtering
	Identifying Dominant OSes

	Recommended Practices
	Operating System
	Update Software
	Visit Reputable Web Sites
	Use HTTPS
	Use Antivirus
	Software Use

	Ranking Feature Importance
	Experimental Setup
	All Features
	One Hour Before Compromise

	Conclusion

	Conclusion
	Bibliography

