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A compute-in-memory chip based on 
resistive random-access memory

   
Weier Wan1,2 ✉, Rajkumar Kubendran2,3, Clemens Schaefer4, Sukru Burc Eryilmaz1, 
Wenqiang Zhang5, Dabin Wu5, Stephen Deiss2, Priyanka Raina1, He Qian5, Bin Gao5 ✉, 
Siddharth Joshi2,4 ✉, Huaqiang Wu5 ✉, H.-S. Philip Wong1 ✉ & Gert Cauwenberghs2 ✉

Realizing increasingly complex artificial intelligence (AI) functionalities directly on 
edge devices calls for unprecedented energy efficiency of edge hardware. 
Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 
promises to meet such demand by storing AI model weights in dense, analogue and 
non-volatile RRAM devices, and by performing AI computation directly within RRAM, 
thus eliminating power-hungry data movement between separate compute and 
memory2–5. Although recent studies have demonstrated in-memory matrix-vector 
multiplication on fully integrated RRAM-CIM hardware6–17, it remains a goal for a 
RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to 
support diverse models and software-comparable accuracy. Although efficiency, 
versatility and accuracy are all indispensable for broad adoption of the technology, 
the inter-related trade-offs among them cannot be addressed by isolated 
improvements on any single abstraction level of the design. Here, by co-optimizing 
across all hierarchies of the design from algorithms and architecture to circuits and 
devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers 
versatility in reconfiguring CIM cores for diverse model architectures, energy 
efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips 
across various computational bit-precisions, and inference accuracy comparable to 
software models quantized to four-bit weights across various AI tasks, including 
accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification,  
84.7-percent accuracy on Google speech command recognition20, and a 70-percent 
reduction in image-reconstruction error on a Bayesian image-recovery task.

Early research in the area of resistive random-access memory (RRAM) 
compute-in-memory (CIM) focused on demonstrating artificial intel-
ligence (AI) functionalities on fabricated RRAM devices while using 
off-chip software and hardware to implement essential functionali-
ties such as analogue-to-digital conversion and neuron activations 
for a complete system2,3,6,20–27. Although these studies proposed vari-
ous techniques to mitigate the impacts of analogue-related hardware 
non-idealities on inference accuracy, the AI benchmark results reported 
were often obtained by performing software emulation based on char-
acterized device data3,5,21,24. Such an approach often overestimates 
accuracies compared with fully hardware-measured results owing to 
incomplete modelling of hardware non-idealities.

More recent studies have demonstrated fully integrated RRAM 
complementary metal–oxide–semiconductor (CMOS) chips capable 
of performing in-memory matrix-vector multiplication (MVM)6–17. 
However, for a RRAM-CIM chip to be broadly adopted in practical 
AI applications, it needs to simultaneously deliver high energy effi-
ciency, the flexibility to support diverse AI model architectures and 
software-comparable inference accuracy. So far, there has not been 

a study aimed at simultaneously improving all these three aspects 
of a design. Moreover, AI application-level benchmarks in previous 
studies have limited diversity and complexity. None of the studies 
have experimentally measured multiple edge AI applications with 
complexity matching those in MLPerf Tiny, a commonly used bench-
mark suite for edge AI hardware28. The challenge arises from the 
inter-related trade-offs between efficiency, flexibility and accuracy. 
The highly-parallel analogue computation within RRAM-CIM archi-
tecture brings superior efficiency, but makes it challenging to realize 
the same level of functional flexibility and computational accuracy 
as in digital circuits. Meanwhile, attaining algorithmic resiliency to 
hardware non-idealities becomes more difficult for more complex AI 
tasks owing to using less over-parameterized models on the edge29,30.

To address these challenges, we present NeuRRAM, a 48-core 
RRAM-CIM hardware encompassing innovations across the full 
stack of the design. (1) At the device level, 3 million RRAM devices 
with high analogue programmability are monolithically integrated 
with CMOS circuits. (2) At the circuit level, a voltage-mode neuron 
circuit supports variable computation bit-precision and activation 
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functions while performing analogue-to-digital conversion at low 
power consumption and compact-area footprint. (3) At the archi-
tecture level, a bidirectional transposable neurosynaptic array 
(TNSA) architecture enables reconfigurability in dataflow direc-
tions with minimal area and energy overheads. (4) At the system 
level, 48 CIM cores can perform inference in parallel and supports 
various weight-mapping strategies. (5) Finally, at the algorithm 
level, various hardware-algorithm co-optimization techniques 
mitigate the impact of hardware non-idealities on inference accu-
racy. We report fully hardware-measured inference results for a 
range of AI tasks including image classifications using CIFAR-1019 
and MNIST18 datasets, Google speech command recognition20 
and MNIST image recovery, implemented with diverse AI models 
including convolutional neural networks (CNNs)31, long short-term 
memory (LSTM)32 and probabilistic graphical models33 (Fig. 1e). 
The chip is measured to achieve an energy-delay product (EDP) 
lower than previous state-of-the-art RRAM-CIM chips, while it oper-
ates over a range of configurations to suit various AI benchmark 
applications (Fig. 1d).

Reconfigurable RRAM-CIM architecture
A NeuRRAM chip consists of 48 CIM cores that can perform computa-
tion in parallel. A core can be selectively turned off through power gat-
ing when not actively used, whereas the model weights are retained by 
the non-volatile RRAM devices. Central to each core is a TNSA consisting 
of 256 × 256 RRAM cells and 256 CMOS neuron circuits that implement 
analogue-to-digital converters (ADCs) and activation functions. Addi-
tional peripheral circuits along the edge provides inference control 
and manages RRAM programming.

The TNSA architecture is designed to offer flexible control of dataflow 
directions, which is crucial for enabling diverse model architectures with 
different dataflow patterns. For instance, in CNNs that are commonly 
applied to vision-related tasks, data flows in a single direction through 
layers to generate data representations at different abstraction levels; in 
LSTMs that are used to process temporal data such as audio signals, data 
travel recurrently through the same layer for multiple time steps; in proba-
bilistic graphical models such as a restricted Boltzmann machine (RBM), 
probabilistic sampling is performed back and forth between layers until 
the network converges to a high-probability state. Besides inference, the 
error back-propagation during gradient-descent training of multiple AI 
models requires reversing the direction of dataflow through the network.

However, conventional RRAM-CIM architectures are limited to per-
form MVM in a single direction by hardwiring rows and columns of the 
RRAM crossbar array to dedicated circuits on the periphery to drive 
inputs and measure outputs. Some studies implement reconfigurable 
dataflow directions by adding extra hardware, which incurs substantial 
energy, latency and area penalties (Extended Data Fig. 2): executing 
bidirectional (forwards and backwards) dataflow requires either dupli-
cating power-hungry and area-hungry ADCs at both ends of the RRAM 
array11,34 or dedicating a large area to routing both rows and columns 
of the array to shared data converters15; the recurrent connections 
require writing the outputs to a buffer memory outside of the RRAM 
array, and reading them back for the next time-step computation35.

The TNSA architecture realizes dynamic dataflow reconfigurability 
with little overhead. Whereas in conventional designs, CMOS peripheral 
circuits such as ADCs connect at only one end of the RRAM array, the 
TNSA architecture physically interleaves the RRAM weights and the 
CMOS neuron circuits, and connects them along the length of both 
rows and columns. As shown in Fig. 2e, a TNSA consists of 16 × 16 of 
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Fig. 1 | Design methodology and main contributions of the NeuRRAM chip. 
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and software-comparable inference accuracy. b, Micrograph of the NeuRRAM 
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recent RRAM-based CIM hardware. e, Fully hardware-measured inference 
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such interleaved corelets that are connected by shared bit-lines (BLs) 
and word-lines (WLs) along the horizontal direction and source-lines 
(SLs) along the vertical direction. Each corelet encloses 16 × 16 RRAM 
devices and one neuron circuit. The neuron connects to 1 BL and 1 SL 
out of the 16 BLs and the 16 SLs that pass through the corelet, and is 
responsible for integrating inputs from all the 256 RRAMs connecting 
to the same BL or SL. Sixteen of these RRAMs are within the same corelet 
as the neuron; and the other 240 are within the other 15 corelets along 

the same row or column. Specifically, Fig. 2f shows that the neuron 
within corelet (i, j) connects to the (16i + j)th BL and the (16j + i)th SL. 
Such a configuration ensures that each BL or SL connects uniquely to 
a neuron, while doing so without duplicating neurons at both ends of 
the array, thus saving area and energy.

Moreover, a neuron uses its BL and SL switches for both its input and 
output: it not only receives the analogue MVM output coming from BL 
or SL through the switches but also sends the converted digital results 

Fig. 2 | Reconfigurable architecture of the NeuRRAM chip. a, Multi-core 
architecture of the NeuRRAM chip, and various ways, labelled (1) to (6), to map 
neural-network layers onto CIM cores. b, Zoomed-in chip micrograph on a 
single CIM core. c, A cross-sectional transmission electron microscopy image 
showing the layer stack of the monolithically integrated RRAM and CMOS.  
d, Block diagram of a CIM core. A core consists of a TNSA, drivers for BLs, WLs, 
and SLs, registers that store MVM inputs and outputs, a LFSR pseudo-random 
number generator (PRNG), and a controller. During the MVM input stage, the 
drivers convert register inputs (REG) and PRNG inputs (PRN) to analogue 
voltages and send them to TNSA; during the MVM output stage, the drivers 
pass digital outputs from neurons back to registers through REG. e, The 

architecture of a TNSA consists of 16 × 16 corelets with interleaving RRAM 
weights and CMOS neurons. Each neuron integrates inputs from 256 RRAMs 
connecting to the same horizontal BL or vertical SL. f, Each corelet contains 
16 × 16 RRAMs and 1 neuron. The neuron connects to 1 of the 16 BLs and 1 of the 
16 SLs that pass through the corelet, and can use a BL and a SL for both its input 
and output. g, The TNSA can be dynamically configured for MVM in forwards, 
backwards or recurrent directions. h, Differential input and differential output 
schemes used to implement real-valued weights during forwards and 
backwards MVMs. Weights are encoded as the differential conductance 
between two RRAM cells on adjacent rows (G+ and G-).
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to peripheral registers through the same switches. By configuring 
which switch to use during the input and output stages of the neuron, 
we can realize various MVM dataflow directions. Figure 2g shows the 
forwards, backwards and recurrent MVMs enabled by the TNSA. To 
implement forwards MVM (BL to SL), during the input stage, input 
pulses are applied to the BLs through the BL drivers, get weighted by the 
RRAMs and enter the neuron through its SL switch; during the output 
stage, the neuron sends the converted digital outputs to SL registers 
through its SL switch; to implement recurrent MVM (BL to BL), the neu-
ron instead receives input through its SL switch and sends the digital 
output back to the BL registers through its BL switch.

Weights of most AI models take both positive and negative values. We 
encode each weight as difference of conductance between two RRAM 
cells on adjacent rows along the same column (Fig. 2h). The forwards 
MVM is performed using a differential input scheme, where BL drivers 
send input voltage pulses with opposite polarities to adjacent BLs. The 
backwards MVM is performed using a differential output scheme, where 
we digitally subtract outputs from neurons connecting to adjacent BLs 
after neurons finish analogue-to-digital conversions.

To maximize throughput of AI inference on 48 CIM cores, we imple-
ment a broad selection of weight-mapping strategies that allow us to 
exploit both model parallelism and data parallelism (Fig. 2a) through 
multi-core parallel MVMs. Using a CNN as an example, to maximize 
data parallelism, we duplicate the weights of the most computation-
ally intensive layers (early convolutional layers) to multiple cores for 
parallel inference on multiple data; to maximize model parallelism, 
we map different convolutional layers to different cores and perform 
parallel inference in a pipelined fashion. Meanwhile, we divide the lay-
ers whose weight dimensions exceed the RRAM array size into multiple 
segments and assign them to multiple cores for parallel execution.  
A more detailed description of the weight-mapping strategies is pro-
vided in Methods. The intermediate data buffers and partial-sum accu-
mulators are implemented by a field-programmable gate array (FPGA) 
integrated on the same board as the NeuRRAM chip. Although these 
digital peripheral modules are not the focus of this study, they will even-
tually need to be integrated within the same chip in production-ready 
RRAM-CIM hardware.

Efficient voltage-mode neuron circuit
Figure 1d and Extended Data Table 1 show that the NeuRRAM chip 
achieves 1.6-times to 2.3-times lower EDP and 7-times to 13-times 
higher computational density (measured by throughput per million 
of RRAMs) at various MVM input and output bit-precisions than previ-
ous state-of-the-art RRAM-based CIM chips, despite being fabricated 
at an older technology node17–27,36. The reported energy and delay are 
measured for performing an MVM with a 256 × 256 weight matrix. It is 
noted that these numbers and those reported in previous RRAM-CIM 
work represent the peak energy efficiency achieved when the array 
utilization is 100% and does not account for energy spent on interme-
diate data transfer. Network-on-chip and program scheduling need 
to be carefully designed to achieve good end-to-end application-level 
energy efficiency37,38.

Key to the NeuRRAM’s EDP improvement is a novel in-memory MVM 
output-sensing scheme. The conventional approach is to use voltage 
as input, and measure the current as the results based on Ohm’s law 
(Fig. 3a). Such a current-mode-sensing scheme cannot fully exploit 
the high-parallelism nature of CIM. First, simultaneously turning on 
multiple rows leads to a large array current. Sinking the large current 
requires peripheral circuits to use large transistors, whose area needs to 
be amortized by time-multiplexing between multiple columns, which 
limits ‘column parallelism’. Second, MVM results produced by differ-
ent neural-network layers have drastically different dynamic ranges 
(Fig. 3c). Optimizing ADCs across such a wide dynamic range is difficult. 
To equalize the dynamic range, designs typically activate a fraction 

of input wires every cycle to compute a partial sum, and thus require 
multiple cycles to complete an MVM, which limits ‘row parallelism’.

NeuRRAM improves computation parallelism and energy efficiency 
by virtue of a neuron circuit implementing a voltage-mode sensing 
scheme. The neuron performs analogue-to-digital conversion of the 
MVM outputs by directly sensing the settled open-circuit voltage on the 
BL or SL line capacitance39 (Fig. 3b): voltage inputs are driven on the BLs 
whereas the SLs are kept floating, or vice versa, depending on the MVM 
direction. WLs are activated to start the MVM operation. The voltage on 
the output line settles to the weighted average of the voltages driven on 
the input lines, where the weights are the RRAM conductances. Upon 
deactivating the WLs, the output is sampled by transferring the charge 
on the output line to the neuron sampling capacitor (Csample in Fig. 3d). 
The neuron then accumulates this charge onto an integration capacitor 
(Cinteg) for subsequent analogue-to-digital conversion.

Such voltage-mode sensing obviates the need for power-hungry and 
area-hungry peripheral circuits to sink large current while clamping 
voltage, improving energy and area efficiency and eliminating output 
time-multiplexing. Meanwhile, the weight normalization owing to the 
conductance weighting in the voltage output (Fig. 3c) results in an 
automatic output dynamic range normalization for different weight 
matrices. Therefore, MVMs with different weight dimensions can all 
be completed within a single cycle, which significantly improves com-
putational throughput. To eliminate the normalization factor from 
the final results, we pre-compute its value and multiply it back to the 
digital outputs from the ADC.

Our voltage-mode neuron supports MVM with 1-bit to 8-bit inputs 
and 1-bit to 10-bit outputs. The multi-bit input is realized in a bit-serial 
fashion where charge is sampled and integrated onto Cinteg for 2n−1 cycles 
for the nth least significant bit (LSB) (Fig. 3e). For MVM inputs greater 
than 4 bits, we break the bit sequence into two segments, compute 
MVM for each segment separately and digitally perform a shift-and-add 
to obtain the final results (Fig. 3f). Such a two-phase input scheme 
improves energy efficiency and overcomes voltage headroom clipping 
at high-input precisions.

The multi-bit output is generated through a binary search process 
(Fig. 3g). Every cycle, neurons add or subtract CsampleVdecr amount of 
charge from Cinteg, where Vdecr is a bias voltage shared by all neurons. 
Neurons then compare the total charge on Cinteg with a fixed threshold 
voltage Vref to generate a 1-bit output. From the most significant bit (MSB) 
to the least significant bit (LSB), Vdecr is halved every cycle. Compared 
with other ADC architectures that implement a binary search, our ADC 
scheme eliminates the residue amplifier of an algorithmic ADC, and does 
not require an individual DAC for each ADC to generate reference volt-
ages like a successive approximation register (SAR) ADC40. Instead, our 
ADC scheme allows sharing a single digital-to-analogue converter (DAC) 
across all neurons to amortize the DAC area, leading to a more compact 
design. The multi-bit MVM is validated by comparing ideal and measured 
results, as shown in Fig. 3h and Extended Data Fig. 5. More details on the 
multi-bit input and output implementation can be found in Methods.

The neuron can also be reconfigured to directly implement Rectified 
Linear Unit (ReLU)/sigmoid/tanh as activations when needed. In addi-
tion, it supports probabilistic sampling for stochastic activation func-
tions by injecting pseudo-random noise generated by a linear-feedback 
shift register (LFSR) block into the neuron integrator. All the neuron 
circuit operations are performed by dynamically configuring a single 
amplifier in the neuron as either an integrator or a comparator during 
different phases of operations, as detailed in Methods. This results in 
a more compact design than other work that merges ADC and neuron 
activation functions within the same module12,13. Although most exist-
ing CIM designs use time-multiplexed ADCs for multiple rows and col-
umns to amortize the ADC area, the compactness of our neuron circuit 
allows us to dedicate a neuron for each pair of BL and SL, and tightly 
interleave the neuron with RRAM devices within the TNSA architecture, 
as can be seen in Extended Data Fig. 11d.
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Hardware-algorithm co-optimizations
The innovations on the chip architecture and circuit design bring 
superior efficiency and reconfigurability to NeuRRAM. To complete 
the story, we must ensure that AI inference accuracy can be preserved 
under various circuit and device non-idealities3,41. We developed a set of 
hardware-algorithm co-optimization techniques that allow NeuRRAM 
to deliver software-comparable accuracy across diverse AI applications. 
Importantly, all the AI benchmark results presented in this paper are 
obtained entirely from hardware measurements on complete datasets. 
Although most previous efforts (with a few exceptions8,17) have reported 

benchmark results using a mixture of hardware characterization and 
software simulation, for example, emulate the array-level MVM pro-
cess in software using measured device characteristics3,5,21,24, such an 
approach often fails to model the complete set of non-idealities exist-
ing in realistic hardware. As shown in Fig. 4a, these non-idealities may 
include (1) Voltage drop on input wires (Rwire), (2) on RRAM array driv-
ers (Rdriver) and (3) on crossbar wires (e.g. BL resistance RBL), (4) limited 
RRAM programming resolution, (5) RRAM conductance relaxation41, (6) 
capacitive coupling from simultaneously switching array wires, and (7) 
limited ADC resolution and dynamic range. Our experiments show that 
omitting certain non-idealities in simulation leads to over-optimistic 

Fig. 3 | Voltage-mode MVM with multi-bit inputs and outputs. 
 a, Conventional current-mode-sensing scheme needs to activate a small  
fraction of total N rows each cycle to limit total current ISL and time-multiplex 
ADCs across multiple columns to amortize ADC area, thus limiting its 
computational parallelism. b, Voltage-mode sensing employed by NeuRRAM 
can activate all the rows and all the columns in a single cycle, enabling  
higher parallelism. c, MVM output distribution from a CNN layer and from  
an LSTM layer (weights normalized to the same range). Voltage-mode  
sensing intrinsically normalizes wide variation in output dynamic range.  
d, Schematic of the voltage-mode neuron circuit, where BLsel, SLsel, Sample, 
Integ, Reset, Latch, Decr, and WR are digital signals controlling state of the 
switches. e, Sample waveforms to perform MVM and 4-bit signed inputs 

digital-to-analogue conversion. WLs are pulsed once per magnitude-bit; 
sampling and integration are performed 2n−1 times for the nth LSB. f, Two-phase 
MVM: for input precision greater than 4 bits, inputs are divided into a MSB 
segment and a LSB segment. MVMs and ADCs are performed separately for 
each segment, followed by a shift-and-add to obtain final outputs. g, Sample 
waveforms to perform 5-bit signed outputs analogue-to-digital conversion. 
The sign-bit is first generated by a comparison operation. The magnitude-bits 
are generated through a binary search process realized by adding/subtracting 
charge on Cinteg. From MSB to LSB, added/subtracted charge is halved every bit. 
h, Chip-measured 64 × 64 MVM outputs versus ideal outputs under 4-bit input 
and 6-bit output.
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prediction of inference accuracy. For example, the third and the fourth 
bars in Fig. 5a show a 2.32% accuracy difference between simulation 
and measurement for CIFAR-10 classification19, whereas the simulation 
accounts for only non-idealities (5) and (7), which are what previous 
studies most often modelled5,21.

Our hardware-algorithm co-optimization approach includes three 
main techniques: (1) model-driven chip calibration, (2) noise-resilient 
neural-network training and analogue weight programming, and (3) 
chip-in-the-loop progressive model fine-tuning. Model-driven chip 
calibration uses the real model weights and input data to optimize 

Fig. 4 | Hardware-algorithm co-optimization techniques to improve 
NeuRRAM inference accuracy. a, Various device and circuit non-idealities 
(labelled (1) to (7)) of in-memory MVM. b, Model-driven chip calibration 
technique to search for optimal chip operating conditions and record offsets 
for subsequent cancellation. c, Noise-resilient neural-network training 
technique to train the model with noise injection. The noise distribution is 

obtained from hardware characterization. The trained weights are 
programmed to the continuous analogue conductance of RRAMs without 
quantization as shown by the continuous diagonal band at the bottom. d, Chip- 
in-the-loop progressive fine-tuning technique: weights are progressively 
mapped onto the chip one layer at a time. The hardware-measured outputs 
from layer n are used as inputs to fine-tune the remaining layers n + 1 to N.
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chip operating conditions such as input voltage pulse amplitude, and 
records any ADC offsets for subsequent cancellation during inference. 
Ideally, the MVM output voltage dynamic range should fully utilize the 
ADC input swing to minimize discretization error. However, without 
calibration, the MVM output dynamic range varies with network layers 
even with the weight normalization effect of the voltage-mode sensing. 
To calibrate MVM to the optimal dynamic range, for each network layer, 
we use a subset of training-set data as calibration input to search for the 
best operating conditions (Fig. 4b). Extended Data Fig. 6 shows that 
different calibration input distributions lead to different output dis-
tributions. To ensure that the calibration data can closely emulate the 
distribution seen at test time, it is therefore crucial to use training-set 
data as opposed to randomly generated data during calibration. It is 
noted that when performing MVM on multiple cores in parallel, those 
shared bias voltages cannot be optimized for each core separately, 
which might lead to sub-optimal operating conditions and additional 
accuracy loss (detailed in Methods).

Stochastic non-idealities such as RRAM conductance relaxation and 
read noises degrade the signal-to-noise ratio (SNR) of the computation, 
leading to an inference accuracy drop. Some previous work obtained a 
higher SNR by limiting each RRAM cell to store a single bit, and encoding 
higher-precision weights using multiple cells9,10,16. Such an approach 
lowers the weight memory density. Accompanying that approach, the 
neural network is trained with weights quantized to the corresponding 
precision. In contrast, we utilize the intrinsic analogue programmability 
of RRAM42 to directly store high-precision weights and train the neural 
networks to tolerate the lower SNR. Instead of training with quantized 
weights, which is equivalent to injecting uniform noise into weights, 
we train the model with high-precision weights while injecting noise 
with the distribution measured from RRAM devices. RRAMs on NeuR-
RAM are characterized to have a Gaussian-distributed conductance 
spread, caused primarily by conductance relaxation. Therefore, we 
inject a Gaussian noise into weights during training, similar to a previ-
ous study21. Figure 5a shows that the technique significantly improves 
the model’s immunity to noise, from a CIFAR-10 classification accuracy 
of 25.34% without noise injection to 85.99% with noise injection. After 
the training, we program the non-quantized weights to RRAM analogue 
conductances using an iterative write–verify technique, described in 
Methods. This technique enables NeuRRAM to achieve an inference 
accuracy equivalent to models trained with 4-bit weights across vari-
ous applications, while encoding each weight using only two RRAM 
cells, which is two-times denser than previous studies that require 
one RRAM cell per bit.

By applying the above two techniques, we already can measure infer-
ence accuracy comparable to or better than software models with 4-bit 
weights on Google speech command recognition, MNIST image recov-
ery and MNIST classification (Fig. 1e). For deeper neural networks, we 
found that the error caused by those non-idealities that have nonlinear 
effects on MVM outputs, such as voltage drops, can accumulate through 
layers, and become more difficult to mitigate. In addition, multi-core 

parallel MVM leads to large instantaneous current, further exacerbating 
non-idealities such as voltage drop on input wires ((1) in Fig. 4a). As a 
result, when performing multi-core parallel inference on a deep CNN, 
ResNet-2043, the measured accuracy on CIFAR-10 classification (83.67%) 
is still 3.36% lower than that of a 4-bit-weight software model (87.03%).

To bridge this accuracy gap, we introduce a chip-in-the-loop progres-
sive fine-tuning technique. Chip-in-the-loop training mitigates the 
impact of non-idealities by measuring training error directly on the 
chip44. Previous work has shown that fine-tuning the final layers using 
the back-propagated gradients calculated from hardware-measured 
outputs helped improve accuracy5. We find this technique to be of 
limited effectiveness in countering those nonlinear non-idealities. Such 
a technique also requires re-programming RRAM devices, which con-
sumes additional energy. Our chip-in-the-loop progressive fine-tuning 
overcomes nonlinear model errors by exploiting the intrinsic nonlinear 
universal approximation capacity of the deep neural network45, and 
furthermore eliminates the need for weight re-programming. Figure 4d 
illustrates the fine-tuning procedure. We progressively program the 
weights one layer at a time onto the chip. After programming a layer, 
we perform inference using the training-set data on the chip up to that 
layer, and use the measured outputs to fine-tune the remaining layers 
that are still training in software. In the next time step, we program 
and measure the next layer on the chip. We repeat this process until 
all the layers are programmed. During the process, the non-idealities 
of the programmed layers can be progressively compensated by the 
remaining layers through training. Figure 5b shows the efficacy of this 
progressive fine-tuning technique. From left to right, each data point 
represents a new layer programmed onto the chip. The accuracy at each 
layer is evaluated by using the chip-measured outputs from that layer 
as inputs to the remaining layers in software. The cumulative CIFAR-10 
test-set inference accuracy is improved by 1.99% using this technique. 
Extended Data Fig. 8a further illustrates the extent to which fine-tuning 
recovers the training-set accuracy loss at each layer, demonstrating the 
effectiveness of the approach in bridging the accuracy gap between 
software and hardware measurements.

Using the techniques described above, we achieve inference accu-
racy comparable to software models trained with 4-bit weights across 
all the measured AI benchmark tasks. Figure 1e shows that we achieve 
a 0.98% error rate on MNIST handwritten digit recognition using a 
7-layer CNN, a 14.34% error rate on CIFAR-10 object classification using 
ResNet-20, a 15.34% error rate on Google speech command recognition 
using a 4-cell LSTM, and a 70% reduction of L2 image-reconstruction 
error compared with the original noisy images on MNIST image recov-
ery using an RBM. Some of these numbers are not yet to the accuracies 
achieved by full-precision digital implementations. The accuracy gap 
mainly comes from low-precision (≤4-bit) quantization of inputs and 
activations, especially on the most sensitive input and output lay-
ers46. For instance, Extended Data Fig. 8b presents an ablation study 
that shows that quantizing input images to 4-bit alone results in a 
2.7% accuracy drop for CIFAR-10 classification. By contrast, the input 

Table 1 | Summary of AI applications and models demonstrated on NeuRRAM

Application Dataset Model architecture Dataflow 
type

Activation precision Number of 
parameters

Number 
of RRAMs 
used

 Number of 
cores used

Average core 
utilization (%)

Image classification CIFAR-10 ResNet-20 (CNN) Forward 3-bit unsigned, input 
image 4-bit unsigned

274,461 553,524 48 17.6

MNIST 7-layer CNN Forwards 3-bit unsigned 23,170 46,664 16 4.5

Voice recognition Google voice 
command

4 parallel LSTM 
cells

Recurrent + 
forwards

4-bit signed 281,392 570,048 36 24.2

Image recovery MNIST RBM Forwards + 
backwards

Visible: 3-bit 
unsigned. Hidden: 
binary

96,194 200,880 8 38.3
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layer only accounts for 1.08% of compute and 0.16% of weights of a 
ResNet-20 model. Therefore, they can be off-loaded to higher-precision 
digital compute units with little overheads. In addition, applying 
more advanced quantization techniques and optimizing training 
procedures such as data augmentation and regularization should 
further improve the accuracy for both quantized software models 
and hardware-measured results.

Table 1 summarizes the key features of each demonstrated model. 
Most of the essential neural-network layers and operations are imple-
mented on the chip, including all the convolutional, fully connected 
and recurrent layers, neuron activation functions, batch normaliza-
tion and the stochastic sampling process. Other operations such as 
average pooling and element-wise multiplications are implemented 
on an FPGA integrated on the same board as NeuRRAM (Extended 
Data Fig. 11a). Each of the models is implemented by allocating the 
weights to multiple cores on a single NeuRRAM chip. We developed 
a software toolchain to allow easy deployment of AI models on the 
chip47. The implementation details are described in Methods. Funda-
mentally, each of the selected benchmarks represents a general class 
of common edge AI tasks: visual recognition, speech processing and 
image de-noising. These results demonstrate the versatility of the TNSA 
architecture and the wide applicability of the hardware-algorithm 
co-optimization techniques.

The NeuRRAM chip simultaneously improves efficiency, flexibility 
and accuracy over existing RRAM-CIM hardware by innovating across 
the entire hierarchy of the design, from a TNSA architecture enabling 
reconfigurable dataflow direction, to an energy- and area-efficient 
voltage-mode neuron circuit, and to a series of algorithm-hardware 
co-optimization techniques. These techniques can be more generally 
applied to other non-volatile resistive memory technologies such 
as phase-change memory8,17,21,23,24, magnetoresistive RAM48 and fer-
roelectric field-effect transistors49. Going forwards, we expect Neu-
RRAM’s peak energy efficiency (EDP) to improve by another two to 
three orders of magnitude while supporting bigger AI models when 
scaling from 130-nm to 7-nm CMOS and RRAM technologies (detailed 
in Methods). Multi-core architecture design with network-on-chip 
that realizes efficient and versatile data transfers and inter-array 
pipelining is likely to be the next major challenge for RRAM-CIM37,38, 
which needs to be addressed by further cross-layer co-optimization. 
As resistive memory continues to scale towards offering tera-bits of 
on-chip memory50, such a co-optimization approach will equip CIM 
hardware on the edge with sufficient performance, efficiency and 
versatility to perform complex AI tasks that can only be done on the 
cloud today.
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Methods

Core block diagram and operating modes
Figure 2d and Extended Data Fig. 1 show the block diagram of a single 
CIM core. To support versatile MVM directions, most of the design is 
symmetrical in the row (BLs and WLs) and column (SLs) directions. The 
row and column register files store the inputs and outputs of MVMs, and 
can be written externally by either an Serial Peripheral Interface (SPI) or 
a random-access interface that uses an 8-bit address decoder to select 
one register entry, or internally by the neurons. The SL peripheral circuits 
contain an LFSR block used to generate pseudo-random sequences used 
for probabilistic sampling. It is implemented by two LFSR chains propa-
gating in opposite directions. The registers of the two chains are XORed to 
generate spatially uncorrelated random numbers51. The controller block 
receives commands and generates control waveforms to the BL/WL/SL 
peripheral logic and to the neurons. It contains a delay-line-based pulse 
generator with tunable pulse width from 1 ns to 10 ns. It also implements 
clock-gating and power-gating logic used to turn off the core in idle mode. 
Each WL, BL and SL of the TNSA is driven by a driver consisting of multiple 
pass gates that supply different voltages. On the basis of the values stored 
in the register files and the control signals issued by the controller, the 
WL/BL/SL logic decides the state of each pass gate.

The core has three main operating modes: a weight-programming 
mode, a neuron-testing mode and an MVM mode (Extended Data Fig. 1). 
In the weight-programming mode, individual RRAM cells are selected 
for read and write. To select a single cell, the registers at the correspond-
ing row and column are programmed to ‘1’ through random access with 
the help of the row and column decoder, whereas the other registers 
are reset to ‘0’. The WL/BL/SL logic turns on the corresponding driver 
pass gates to apply a set/reset/read voltage on the selected cell. In the 
neuron-testing mode, the WLs are kept at ground voltage (GND). Neu-
rons receive inputs directly from BL or SL drivers through their BL or 
SL switch, bypassing RRAM devices. This allows us to characterize the 
neurons independently from the RRAM array. In the MVM mode, each 
input BL and SL is driven to Vref − Vread, Vref + Vread or Vref depending on 
the registers’ value at that row or column. If the MVM is in the BL-to-SL 
direction, we activate the WLs that are within the input vector length 
while keeping the rest at GND; if the MVM is in the SL-to-BL direction, 
we activate all the WLs. After neurons finish analogue-to-digital con-
version, the pass gates from BLs and SLs to the registers are turned on 
to allow neuron-state readout.

Device fabrication
RRAM arrays in NeuRRAM are in a one-transistor–one-resistor (1T1R) 
configuration, where each RRAM device is stacked on top of and con-
nects in series with a selector NMOS transistor that cuts off the sneak 
path and provides current compliance during RRAM programming 
and reading. The selector n-type metal-oxide-semiconductor (NMOS), 
CMOS peripheral circuits and the bottom four back-end-of-line intercon-
nect metal layers are fabricated in a standard 130-nm foundry process. 
Owing to the higher voltage required for RRAM forming and program-
ming, the selector NMOS and the peripheral circuits that directly inter-
face with RRAM arrays use thick-oxide input/output (I/O) transistors 
rated for 5-V operation. All the other CMOS circuits in neurons, digital 
logic, registers and so on use core transistors rated for 1.8-V operations.

The RRAM device is sandwiched between metal-4 and metal-5 layers 
shown in Fig. 2c. After the foundry completes the fabrication of CMOS 
and the bottom four metal layers, we use a laboratory process to finish 
the fabrication of the RRAM devices and the metal-5 interconnect, and 
the top metal pad and passivation layers. The RRAM device stack con-
sists of a titanium nitride (TiN) bottom-electrode layer, a hafnium oxide 
(HfOx) switching layer, a tantalum oxide (TaOx) thermal-enhancement 
layer52 and a TiN top-electrode layer. They are deposited sequentially, 
followed by a lithography step to pattern the lateral structure of the 
device array.

RRAM write–verify programming and conductance relaxation
Each neural-network weight is encoded by the differential conductance 
between two RRAM cells on adjacent rows along the same column. The 
first RRAM cell encodes positive weight, and is programmed to a low 
conductance state (gmin) if the weight is negative; the second  
cell encodes negative weight, and is programmed to gmin if the weight 
is positive. Mathematically, the conductances of the two cells are 

g gmax( , )W
wmax minmax

 and g gmax( − , )W
wmax minmax

 respectively, where  
gmax and gmin are the maximum and minimum conductance of  
the RRAMs, wmax is the maximum absolute value of weights, and W is 
the unquantized high-precision weight.

To program an RRAM cell to its target conductance, we use an 
incremental-pulse write–verify technique42. Extended Data Fig. 3a,b 
illustrates the procedure. We start by measuring the initial conduct-
ance of the cell. If the value is below the target conductance, we apply a 
weak set pulse aiming to slightly increase the cell conductance. Then we 
read the cell again. If the value is still below the target, we apply another 
set pulse with amplitude incremented by a small amount. We repeat 
such set–read cycles until the cell conductance is within an acceptance 
range to the target value or overshoots to the other side of the target. 
In the latter case, we reverse the pulse polarity to reset, and repeat 
the same procedure as with set. During the set/reset pulse train, the 
cell conductance is likely to bounce up and down multiple times until 
eventually it enters the acceptance range or reaches a time-out limit.

There are a few trade-offs in selecting programming conditions. (1) A 
smaller acceptance range and a higher time-out limit improve program-
ming precision, but require a longer time. (2) A higher gmax improves 
the SNR during inference, but leads to higher energy consumption 
and more programming failures for cells that cannot reach high con-
ductance. In our experiments, we set the initial set pulse voltage to 
be 1.2 V and the reset pulse voltage to be 1.5 V, both with an increment 
of 0.1 V and pulse width of 1 μs. A RRAM read takes 1–10 μs, depend-
ing on its conductance. The acceptance range is ±1 μS to the target 
conductance. The time-out limit is 30 set–reset polarity reversals. 
We used gmin = 1 μS for all the models, and gmax = 40 μS for CNNs and 
gmax = 30 μS for LSTMs and RBMs. With such settings, 99% of the RRAM 
cells can be programmed to the acceptance range within the time-out 
limit. On average each cell requires 8.52 set/reset pulses. In the current 
implementation, the speed of such a write–verify process is limited 
by external control of DAC and ADC. If integrating everything into a 
single chip, such write–verify will take on average 56 μs per cell. Having 
multiple copies of DAC and ADC to perform write–verify on multiple 
cells in parallel will further improve RRAM programming throughput, 
at the cost of more chip area.

Besides the longer programming time, another reason to not use 
an overly small write–verify acceptance range is RRAM conductance 
relaxation. RRAM conductance changes over time after programming. 
Most of the change happens within a short time window (less than 1 s)  
immediately following the programming, after which the change 
becomes much slower, as shown in Extended Data Fig. 3d. The abrupt 
initial change is called ‘conductance relaxation’ in the literature41. Its 
statistics follow a Gaussian distribution at all conductance states except 
when the conductance is close to gmin. Extended Data Fig. 3c,d shows 
the conductance relaxation measured across the whole gmin-to-gmax 
conductance range. We found that the loss of programming precision 
owing to conductance relaxation is much higher than that caused by 
the write–verify acceptance range. The average standard deviation 
across all levels of initial conductance is about 2.8 μS. The maximum 
standard deviation is about 4 μS, which is close to 10% of gmax.

To mitigate the relaxation, we use an iterative programming tech-
nique. We iterate over the RRAM array for multiple times. In each itera-
tion, we measure all the cells and re-program those whose conductance 
has drifted outside the acceptance range. Extended Data Fig. 3e shows 
that the standard deviation becomes smaller with more programming 
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iterations. After 3 iterations, the standard deviation becomes about 
2 μS, a 29% decrease compared with the initial value. We use 3 iterations 
in all our neural-network demonstrations and perform inference at 
least 30 min after the programming such that the measured inference 
accuracy would account for such conductance relaxation effects. 
By combining the iterative programming with our hardware-aware 
model training approach, the impact of relaxation can be largely  
mitigated.

Implementation of MVM with multi-bit inputs and outputs
The neuron and the peripheral circuits support MVM at configurable 
input and output bit-precisions. An MVM operation consists of an ini-
tialization phase, an input phase and an output phase. Extended Data 
Fig. 4 illustrates the neuron circuit operation. During the initialization 
phase (Extended Data Fig. 4a), all BLs and SLs are precharged to Vref. 
The sampling capacitors Csample of the neurons are also precharged to 
Vref, whereas the integration capacitors Cinteg are discharged.

During the input phase, each input wire (either BL or SL depending 
on MVM direction) is driven to one of three voltage levels, Vref − Vread, 
Vref and Vref + Vread, through three pass gates, as shown in Fig. 3b. Dur-
ing forwards MVM, under differential-row weight mapping, each 
input is applied to a pair of adjacent BLs. The two BLs are driven to the 
opposite voltage with respect to Vref. That is, when the input is 0, both 
wires are driven to Vref; when the input is +1, the two wires are driven 
to Vref + Vread and Vref − Vread; and when the input is −1, to Vref − Vread and 
Vref + Vread. During backwards MVM, each input is applied to a single SL. 
The difference operation is performed digitally after neurons finish 
analogue-to-digital conversions.

After biasing the input wires, we then pulse those WLs that have 
inputs for 10 ns, while keeping output wires floating. As voltages of the 
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RRAM at the i-th row and the j-th column, we turn off the WLs to stop 
all current flow. We then sample the charge remaining on the output 
wire parasitic capacitance to Csample located within neurons, followed 
by integrating the charge onto Cinteg, as shown in Extended Data Fig. 4b. 
The sampling pulse is 10 ns (limited by the 100-MHz external clock 
from the FPGA); the integration pulse is 240 ns, limited by large integra-
tion capacitor (104 fF), which was chosen conservatively to ensure 
function correctness and testing different neuron operating condi-
tions.

The multi-bit input digital-to-analogue conversion is performed 
in a bit-serial fashion. For the nth LSB, we apply a single pulse to the 
input wires, followed by sampling and integrating charge from output 
wires onto Cinteg for 2n−1 cycles. At the end of multi-bit input phase, 
the complete analogue MVM output is stored as charge on Cinteg. For 
example, as shown in Fig. 3e, when the input vectors are 4-bit signed 
integers with 1 sign-bit and 3 magnitude-bits, we first send pulses 
corresponding to the first (least significant) magnitude-bit to input 
wires, followed by sampling and integrating for one cycle. For the 
second and the third magnitude-bits, we again apply one pulse to 
input wires for each bit, followed by sampling and integrating for 
two cycles and four cycles, respectively. In general, for n-bit signed 
integer inputs, we need a total of n − 1 input pulses and 2n−1 − 1 sampling 
and integration cycles.

Such a multi-bit input scheme becomes inefficient for high-input 
bit-precision owing to the exponentially increasing sampling and 
integration cycles. Moreover, headroom clipping becomes an issue 
as charge integrated at Cinteg saturates with more integration cycles. The 
headroom clipping can be overcome by using lower Vread, but at the cost 
of a lower SNR, so the overall MVM accuracy might not improve when 
using higher-precision inputs. For instance, Extended Data Fig. 5a,c 
shows the measured root-mean-square error (r.m.s.e.) of the MVM 
results. Quantizing inputs to 6-bit (r.m.s.e. = 0.581) does not improve 
the MVM accuracy compared with 4-bit (r.m.s.e. = 0.582), owing to 
the lower SNR.

To solve both the issues, we use a 2-phase input scheme for input 
greater than 4-bits. Figure 3f illustrates the process. To perform MVM 
with 6-bit inputs and 8-bit outputs, we divide inputs into two segments, 
the first containing the three MSBs and the second containing the three 
LSBs. We then perform MVM including the output analogue-to-digital 
conversion for each segment separately. For the MSBs, neurons (ADCs) 
are configured to output 8-bits; for the LSBs, neurons output 5-bits. The 
final results are obtained by shifting and adding the two outputs in digi-
tal domain. Extended Data Fig. 5d shows that the scheme lowers MVM 
r.m.s.e. from 0.581 to 0.519. Extended Data Fig. 12c–e further shows that 
such a two-phase scheme both extends the input bit-precision range 
and improves the energy efficiency.

Finally, during the output phase, the analogue-to-digital conver-
sion is again performed in a bit-serial fashion through a binary search 
process. First, to generate the sign-bit of outputs, we disconnect the 
feedback loop of the amplifier to turn the integrator into a compara-
tor (Extended Data Fig. 4c). We drive the right side of Cinteg to Vref. If the 
integrated charge is positive, the comparator output will be GND, and 
supply voltage VDD otherwise. The comparator output is then inverted, 
latched and readout to the BL or SL via the neuron BL or SL switch before 
being written into the peripheral BL or SL registers.

To generate k magnitude-bits, we add or subtract charge from Cinteg 
(Extended Data Fig. 4d), followed by comparison and readout for k 
cycles. From MSB to LSB, the amount of charge added or subtracted 
is halved every cycle. Whether to add or to subtract is automatically 
determined by the comparison result stored in the latch from the pre-
vious cycle. Figure 3g illustrates such a process. A sign-bit of ‘1’ is first 
generated and latched in the first cycle, representing a positive out-
put. To generate the most significant magnitude-bit, the latch turns 
on the path from Vdecr− = Vref − Vdecr to Csample. The charge sampled by 
Csample is then integrated on Cinteg by turning on the negative feedback 
loop of the amplifier, resulting in CsampleVdecr amount of charge being 
subtracted from Cinteg. In this example, CsampleVdecr is greater than the 
original amount of charge on Cinteg, so the total charge becomes nega-
tive, and the comparator generates a ‘0’ output. To generate the second 
magnitude-bit, Vdecr is reduced by half. This time, the latch turns on the 
path from Vdecr+ = Vref + 1/2Vdecr to Csample. As the total charge on Cinteg after 
integration is still negative, the comparator outputs a ‘0’ again in this 
cycle. We repeat this process until the least significant magnitude-bit 
is generated. It is noted that if the initial sign-bit is ‘0’, all subsequent 
magnitude-bits are inverted before readout.

Such an output conversion scheme is similar to an algorithmic ADC 
or a SAR ADC in the sense that a binary search is performed for n cycles 
for a n-bit output. The difference is that an algorithmic ADC uses a resi-
due amplifier, and a SAR ADC requires a multi-bit DAC for each ADC, 
whereas our scheme does not need a residue amplifier, and uses a single 
DAC that outputs 2 × (n − 1) different Vdecr+ and Vdecr− levels, shared by all 
neurons (ADCs). As a result, our scheme enables a more compact design 
by time-multiplexing an amplifier for integration and comparison, 
eliminating the residual amplifier, and amortizing the DAC area across 
all neurons in a CIM core. For CIM designs that use a dense memory 
array, such a compact design allows each ADC to be time-multiplexed 
by a fewer number of rows and columns, thus improving throughput.

To summarize, both the configurable MVM input and output 
bit-precisions and various neuron activation functions are imple-
mented using different combinations of the four basic operations: 
sampling, integration, comparison and charge decrement. Importantly, 
all the four operations are realized by a single amplifier configured in 
different feedback modes. As a result, the design realizes versatility 
and compactness at the same time.

Multi-core parallel MVM
NeuRRAM supports performing MVMs in parallel on multiple CIM 
cores. Multi-core MVM brings additional challenges to computational 
accuracy, because certain hardware non-idealities that do not manifest 



in single-core MVM become more severe with more cores. They include 
voltage drop on input wires, core-to-core variation and supply voltage 
instability. voltage drop on input wires (non-ideality (1) in Fig. 4a) is 
caused by large current drawn from a shared voltage source simul-
taneously by multiple cores. It makes equivalent weights stored in 
each core vary with applied inputs, and therefore have a nonlinear 
input-dependent effect on MVM outputs. Moreover, as different cores 
have a different distance from the shared voltage source, they expe-
rience a different amounts of voltage drops. Therefore, we cannot 
optimize read-voltage amplitude separately for each core to make 
its MVM output occupy exactly the full neuron input dynamic range.

These non-idealities together degrade the multi-core MVM accuracy. 
Extended Data Fig. 5e,f shows that when performing convolution in 
parallel on the 3 cores, outputs of convolutional layer 15 are measured 
to have a higher r.m.s.e. of 0.383 compared with 0.318 obtained by 
performing convolution sequentially on the 3 cores. In our ResNet-20 
experiment, we performed 2-core parallel MVMs for convolutions 
within block 1 (Extended Data Fig. 9a), and 3-core parallel MVMs for 
convolutions within blocks 2 and 3.

The voltage-drop issue can be partially alleviated by making the 
wires that carry large instantaneous current as low resistance as pos-
sible, and by employing a power delivery network with more optimized 
topology. But the issue will persist and become worse as more cores 
are used. Therefore, our experiments aim to study the efficacy of 
algorithm-hardware co-optimization techniques in mitigating the 
issue. Also, it is noted that for a full-chip implementation, additional 
modules such as intermediate result buffers, partial-sum accumulators 
and network-on-chip will need to be integrated to manage inter-core 
data transfers. Program scheduling should also be carefully optimized 
to minimize buffer size and energy spent at intermediate data move-
ment. Although there are studies on such full-chip architecture and 
scheduling37,38,53, they are outside the scope of this study.

Noise-resilient neural-network training
During noise-resilient neural-network training, we inject noise into 
weights of all fully connected and convolutional layers during the 
forwards pass of neural-network training to emulate the effects of 
RRAM conductance relaxation and read noises. The distribution of 
the injected noise is obtained by RRAM characterization. We used the 
iterative write–verify technique to program RRAM cells into different 
initial conductance states and measure their conductance relaxation 
after 30 min. Extended Data Fig. 3d shows that measured conductance 
relaxation has an absolute value of mean <1 μS (gmin) at all conductance 
states. The highest standard deviation is 3.87 μS, about 10% of the gmax 
40 μS, found at about 12 μS initial conductance state. Therefore, to 
simulate such conductance relaxation behaviour during inference, 
we inject a Gaussian noise with a zero mean and a standard deviation 
equal to 10% of the maximum weights of a layer.

We train models with different levels of noise injection from 0% to 
40%, and select the model that achieves the highest inference accu-
racy at 10% noise level for on-chip deployment. We find that injecting 
a higher noise during training than testing improves models’ noise 
resiliency. Extended Data Fig. 7a–c shows that the best test-time 
accuracy in the presence of 10% weight noise is obtained with 20% 
training-time noise injection for CIFAR-10 image classification, 15% 
for Google voice command classification and 35% for RBM-based 
image reconstruction.

For CIFAR-10, the better initial accuracy obtained by the model 
trained with 5% noise is most likely due to the regularization effect 
of noise injection. A similar phenomenon has been reported in 
neural-network quantization literature where a model trained with 
quantization occasionally outperforms a full-precision model54,55. In 
our experiments, we did not apply additional regularization on top of 
noise injection for models trained without noise, which might result 
in sub-optimal accuracy.

For RBM, Extended Data Fig. 7d further shows how reconstruction 
errors reduce with the number of Gibbs sampling steps for models 
trained with different noises. In general, models trained with higher 
noises converge faster during inference. The model trained with 20% 
noise reaches the lowest error at the end of 100 Gibbs sampling steps.

Extended Data Fig. 7e shows the effect of noise injection on weight 
distribution. Without noise injection, the weights have a Gaussian dis-
tribution. The neural-network outputs heavily depend on a small frac-
tion of large weights, and thus become vulnerable to noise injection. 
With noise injection, the weights distribute more uniformly, making 
the model more noise resilient.

To efficiently implement the models on NeuRRAM, inputs to all con-
volutional and fully connected layers are quantized to 4-bit or below. 
The input bit-precisions of all the models are summarized in Table 1. 
We perform the quantized training using the parameterized clipping 
activation technique46. The accuracies of some of our quantized models 
are lower than that of the state-of-the-art quantized model because 
we apply <4-bit quantization to the most sensitive input and output 
layers of the neural networks, which have been reported to cause large 
accuracy degradation and are thus often excluded from low-precision 
quantization46,54. To obtain better accuracy for quantized models, one 
can use higher precision for sensitive input and output layers, apply 
more advanced quantization techniques, and use more optimized data 
preprocessing, data augmentation and regularization techniques dur-
ing training. However, the focus of this work is to achieve comparable 
inference accuracy on hardware and on software while keeping all these 
variables the same, rather than to obtain state-of-the-art inference 
accuracy on all the tasks. The aforementioned quantization and training 
techniques will be equally beneficial for both our software baselines 
and hardware measurements.

Chip-in-the-loop progressive fine-tuning
During the progressive chip-in-the-loop fine-tuning, we use the 
chip-measured intermediate outputs from a layer to fine-tune the 
weights of the remaining layers. Importantly, to fairly evaluate the effi-
cacy of the technique, we do not use the test-set data (for either training 
or selecting checkpoint) during the entire process of fine-tuning. To 
avoid over-fitting to a small fraction of data, measurements should be 
performed on the entire training-set data. We reduce the learning rate 
to 1/100 of the initial learning rate used for training the baseline model, 
and fine-tune for 30 epochs, although we observed that the accuracy 
generally plateaus within the first 10 epochs. The same weight noise 
injection and input quantization are applied during the fine-tuning.

Implementations of CNNs, LSTMs and RBMs
We use CNN models for the CIFAR-10 and MNIST image classification 
tasks. The CIFAR-10 dataset consists of 50,000 training images and 
10,000 testing images belonging to 10 object classes. We perform image 
classification using the ResNet-2043, which contains 21 convolutional 
layers and 1 fully connected layer (Extended Data Fig. 9a), with batch 
normalizations and ReLU activations between the layers. The model 
is trained using the Keras framework. We quantize the input of all con-
volutional and fully connected layers to a 3-bit unsigned fixed-point 
format except for the first convolutional layer, where we quantize the 
input image to 4-bit because the inference accuracy is more sensitive 
to the input quantization. For the MNIST handwritten digits classifica-
tion, we use a seven-layer CNN consisting of six convolutional layers 
and one fully connected layer, and use max-pooling between layers to 
down-sample feature map sizes. The inputs to all the layers, including 
the input image, are quantized to a 3-bit unsigned fixed-point format.

All the parameters of the CNNs are implemented on a single NeuR-
RAM chip including those of the convolutional layers, the fully con-
nected layers and the batch normalization. Other operations such as 
partial-sum accumulation and average pooling are implemented on an 
FPGA integrated on the same board as the NeuRRAM. These operations 
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amount to only a small fraction of the total computation and integrating 
their implementation in digital CMOS would incur negligible overhead; 
the FPGA implementation was chosen to provide greater flexibility 
during test and development.

Extended Data Fig. 9a–c illustrates the process to map a convolutional 
layer on a chip. To implement the weights of a four-dimensional convo-
lutional layer with dimension H (height), W (width), I (number of input 
channels), O (number of output channels) on two-dimensional RRAM 
arrays, we flatten the first three dimensions into a one-dimensional 
vector, and append the bias term of each output channel to each vec-
tor. If the range of the bias values is B times of the weight range, we 
evenly divide the bias values and implement them using B rows. Fur-
thermore, we merge the batch normalization parameters into convo-
lutional weights and biases after training (Extended Data Fig. 9b), and 
program the merged Wʹ and bʹ onto RRAM arrays such that no explicit 
batch normalization needs to be performed during inference.

Under the differential-row weight-mapping scheme, the parameters 
of a convolutional layer are converted into a conductance matrix of 
size (2(HWI + B), O). If the conductance matrix fits into a single core, 
an input vector is applied to 2(HWI + B) rows and broadcast to O col-
umns in a single cycle. HWIO multiply–accumulate (MAC) operations 
are performed in parallel. Most ResNet-20 convolutional layers have a 
conductance matrix height of 2(HWI + B) that is greater than the RRAM 
array length of 256. We therefore split them vertically into multiple 
segments, and map the segments either onto different cores that are 
accessed in parallel, or onto different columns within a core that are 
accessed sequentially. The details of the weight-mapping strategies 
are described in the next section.

The Google speech command dataset consists of 65,000 1-s-long audio 
recordings of voice commands, such as ‘yes’, ‘up’, ‘on’, ‘stop’ and so on, 
spoken by thousands of different people. The commands are categorized 
into 12 classes. Extended Data Fig. 9d illustrates the model architecture. 
We use the Mel-frequency cepstral coefficient encoding approach to 
encode every 40-ms piece of audio into a length-40 vector. With a hop 
length of 20 ms, we have a time series of 50 steps for each 1-s recording.

We build a model that contains four parallel LSTM cells. Each cell has 
a hidden state of length 112. The final classification is based on summa-
tion of outputs from the four cells. Compared with a single-cell model, 
the 4-cell model reduces the classification error (of an unquantized 
model) from 10.13% to 9.28% by leveraging additional cores on the 
NeuRRAM chip. Within a cell, in each time step, we compute the values 
of four LSTM gates (input, activation, forget and output) based on the 
inputs from the current step and hidden states from the previous step. 
We then perform element-wise operations between the four gates to 
compute the new hidden-state value. The final logit outputs are calcu-
lated based on the hidden states of the final time step.

Each LSTM cell has 3 weight matrices that are implemented on the 
chip: an input-to-hidden-state matrix with size 40 × 448, a hidden- 
state-to-hidden-state matrix with size 112 × 448 and a hidden-state- 
to-logits matrix with size 112 × 12. The element-wise operations are 
implemented on the FPGA. The model is trained using the PyTorch 
framework. The inputs to all the MVMs are quantized to 4-bit signed 
fixed-point formats. All the remaining operations are quantized to 8-bit.

An RBM is a type of generative probabilistic graphical model. Instead 
of being trained to perform discriminative tasks such as classification, 
it learns the statistical structure of the data itself. Extended Data Fig. 9e 
shows the architecture of our image-recovery RBM. The model consists 
of 794 fully connected visible neurons, corresponding to 784 image 
pixels plus 10 one-hot encoded class labels and 120 hidden neurons. 
We train the RBM using the contrastive divergence learning procedure 
in software.

During inference, we send 3-bit images with partially corrupted or 
blocked pixels to the model running on a NeuRRAM chip. The model 
then performs back-and-forth MVMs and Gibbs sampling between 
visible and hidden neurons for ten cycles. In each cycle, neurons  

sample binary states h and v from the MVM outputs based on the  
probability distributions: v∣ ∑p h σ b v w( = 1 ) = ( + )j j i i ij  and p h( = 1 )=j v∣  

∑σ b v w( + )j i i ij , where σ is the sigmoid function, ai is a bias for hidden 
neurons (h) and bj is a bias for visible neurons (v). After sampling, we 
reset the uncorrupted pixels (visible neurons) to the original pixel 
values. The final inference performance is evaluated by computing the 
average L2-reconstruction error between the original image and the 
recovered image. Extended Data Fig. 10 shows some examples of the 
measured image recovery.

When mapping the 794 × 120 weight matrix to multiple cores of the 
chip, we try to make the MVM output dynamic range of each core rela-
tively consistent such that the recovery performance will not overly 
rely on the computational accuracy of any single core. To achieve this, 
we assign adjacent pixels (visible neurons) to different cores such that 
every core sees a down-sampled version of the whole image, as shown 
in Extended Data Fig. 9f). Utilizing the bidirectional MVM functionality 
of the TNSA, the visible-to-hidden neuron MVM is performed from the 
SL-to-BL direction in each core; the hidden-to-visible neuron MVM is 
performed from the BL-to-SL direction.

Weight-mapping strategy onto multiple CIM cores
To implement an AI model on a NeuRRAM chip, we convert the weights, 
biases and other relevant parameters (for example, batch normaliza-
tion) of each model layer into a single two-dimensional conductance 
matrix as described in the previous section. If the height or the width 
of a matrix exceed the RRAM array size of a single CIM core (256 × 256), 
we split the matrix into multiple smaller conductance matrices, each 
with maximum height and width of 256.

We consider three factors when mapping these conductance 
matrices onto the 48 cores: resource utilization, computational load 
balancing and voltage drop. The top priority is to ensure that all con-
ductance matrices of a model are mapped onto a single chip such that 
no re-programming is needed during inference. If the total number of 
conductance matrices does not exceed 48, we can map each matrix 
onto a single core (case (1) in Fig. 2a) or multiple cores. There are two 
scenarios when we map a single matrix onto multiple cores. (1) When a 
model has different computational intensities, defined as the amount 
of computation per weights, for different layers, for example, CNNs 
often have higher computational intensity for earlier layers owing to 
larger feature map dimensions, we duplicate the more computation-
ally intensive matrices to multiple cores and operate them in parallel 
to increase throughput and balance the computational loads across 
the layers (case (2) in Fig. 2a). (2) Some models have ‘wide’ conduct-
ance matrices (output dimension >128), such as our image-recovery 
RBM. If mapping the entire matrix onto a single core, each input driver 
needs to supply large current for its connecting RRAMs, resulting in a 
significant voltage drop on the driver, deteriorating inference accuracy. 
Therefore, when there are spare cores, we can split the matrix vertically 
into multiple segments and map them onto different cores to mitigate 
the voltage drop (case (6) in Fig. 2a).

By contrast, if a model has more than 48 conductance matrices, we 
need to merge some matrices so that they can fit onto a single chip. 
The smaller matrices are merged diagonally such that they can be 
accessed in parallel (case (3) in Fig. 2a). The bigger matrices are merged 
horizontally and accessed by time-multiplexing input rows (case (4) in 
Fig. 2a). When selecting the matrices to merge, we want to avoid the 
matrices that belong to the same two categories described in the previ-
ous paragraph: (1) those that have high computational intensity (for 
example, early layers of ResNet-20) to minimize impact on throughput; 
and (2) those with ‘wide’ output dimension (for example, late layers 
of ResNet-20 have large number of output channels) to avoid a large 
voltage drop. For instance, in our ResNet-20 implementation, among 
a total of 61 conductance matrices (Extended Data Fig. 9a: 1 from input 
layer, 12 from block 1, 17 from block 2, 28 from block 3, 2 from shortcut 
layers and 1 from final dense layer), we map each of the conductance 



matrices in blocks 1 and 3 onto a single core, and merge the remaining 
matrices to occupy the 8 remaining cores.

Table 1 summarizes core usage for all the models. It is noted that 
for partially occupied cores, unused RRAM cells are either unformed 
or programmed to high resistance state; WLs of unused rows are not 
activated during inference. Therefore, they do not consume additional 
energy during inference.

Test-system implementation
Extended Data Fig. 11a shows the hardware test system for the NeuR-
RAM chip. The NeuRRAM chip is configured by, receives inputs from 
and sends outputs to a Xilinx Spartan-6 FPGA that sits on an Opal Kelly 
integrated FPGA board. The FPGA communicates with the PC via a 
USB 3.0 module. The test board also houses voltage DACs that provide 
various bias voltages required by RRAM programming and MVM, and 
ADCs to measure RRAM conductance during the write–verify program-
ming. The power of the entire board is supplied by a standard ‘cannon 
style’ d.c. power connector and integrated switching regulators on 
the Opal Kelly board such that no external lab equipment is needed 
for the chip operation.

To enable fast implementation of various machine-learning applica-
tions on the NeuRRAM chip, we developed a software toolchain that 
provides Python-based application programming interfaces (APIs) 
at various levels. The low-level APIs provide access to basic opera-
tions of each chip module such as RRAM read and write and neuron 
analogue-to-digital conversion; the middle-level APIs include essen-
tial operations required for implementing neural-network layers such 
as the multi-core parallel MVMs with configurable bit-precision and 
RRAM write–verify programming; the high-level APIs integrate vari-
ous middle-level modules to provide complete implementations of 
neural-network layers, such as weight mapping and batch inference of 
convolutional and fully connected layers. The software toolchain aims to 
allow software developers who are not familiar with the NeuRRAM chip 
design to deploy their machine-learning models on the NeuRRAM chip.

Power and throughput measurements
To characterize MVM energy efficiency at various input and output 
bit-precisions, we measure the power consumption and latency of the 
MVM input and output stages separately. The total energy consump-
tion and the total time are the sum of input and output stages because 
the two stages are performed independently as described in the above 
sections. As a result, we can easily obtain the energy efficiency of any 
combinations of input and output bit-precisions.

To measure the input-stage energy efficiency, we generate a 256 × 256 
random weight matrix with Gaussian distribution, split it into 2 seg-
ments, each with dimension 128 × 256, and program the two segments 
to two cores using the differential-row weight mapping. We measure 
the power consumption and latency for performing 10 million MVMs, 
or equivalently 655 billion MAC operations. The comparison with pre-
vious work shown in Fig. 1d uses the same workload as benchmark.

Extended Data Fig. 12a shows the energy per operation consumed 
during the input and the output stages of MVMs under various 
bit-precisions. The inputs are in the signed integer format, where the 
first bit represents the sign, and the other bits represent the magnitude. 
One-bit (binary) and two-bit (ternary) show similar energy because each 
input wire is driven to one of three voltage levels. Binary input is there-
fore just a special case for ternary input. It is noted that the curve shown 
in Extended Data Fig. 12a is obtained without the two-phase operation. 
As a result, we see a super-linear increase of energy as input bit-precision 
increases. Similar to the inputs, the outputs are also represented in the 
signed integer format. The output-stage energy consumption grows 
linearly with output bit-precision because one additional binary search 
cycle is needed for every additional bit. The output stage consumes less 
energy than the input stage because it does not involve toggling highly 
capacitive WLs that are driven at a higher voltage, as we discuss b el ow.

For the MVM measurements shown in Extended Data Fig. 12b–e, 
the MVM output stage is assumed to use 2-bit-higher precision 
than inputs to account for the additional bit-precision required for 
partial-sum accumulations. The required partial-sum bit-precision 
for the voltage-mode sensing implemented by NeuRRAM is much 
lower than that required by the conventional current-mode sens-
ing. As explained before, conventional current-sensing designs can 
only activate a fraction of rows each cycle, and therefore need many 
partial-sum accumulation steps to complete an MVM. In contrast, the 
proposed voltage-sensing scheme can activate all the 256 input wires 
in a single cycle, and therefore requires less partial-sum accumulation 
steps and lower partial-sum precisions.

Extended Data Fig. 12b shows the energy consumption breakdown.  
A large fraction of energy is spent in switching on and off the WLs that 
connect to gates of select transistors of RRAM devices. These transistors 
use thick-oxide I/O transistors to withstand high-voltage during RRAM 
forming and programming. They are sized large enough (width 1 μm  
and length 500 nm) to provide sufficient current for RRAM program-
ming. As a result, they require high operating voltages and add large 
capacitance to the WLs, both contributing to high power consumption 
(P = fCV2, where f is the frequency at which the capacitance is charged 
and discharged). Simulation shows that each of the 256 access transis-
tors contributes about 1.5 fF to a WL; WL drivers combined contribute 
about 48 fF to each WL; additional WL capacitance is mostly from the 
inter-wire capacitance from neighbouring BLs and WLs. The WL energy 
is expected to decrease significantly if RRAMs can be written by a lower 
voltage and have a lower conductance state, and if a smaller transistor 
with better drivability can be used.

For applications that require probabilistic sampling, the two 
counter-propagating LFSR chains generate random Bernoulli noises 
and inject the noises as voltage pulses into neurons. We measure each 
noise-injection step to consume on average 121 fJ per neuron, or 0.95 fJ 
per weight, which is small compared with other sources of energy con-
sumption shown in Extended Data Fig. 12b.

Extended Data Fig. 12c–e shows the measured latency, peak through-
put and throughput-power efficiency for performing the 256 × 256 
MVMs. It is noted that we used EDP as a figure of merit for comparing 
designs rather than throughput-power efficiency as tera-operations 
per second per watt (TOPS W−1, reciprocal of energy per operation), 
because it captures the time-to-solution aspect in addition to energy 
consumption. Similar to previous work in this field, the reported 
throughput and energy efficiency represent their peak values when 
the CIM array utilization is 100%, and does not include time and energy 
spent at buffering and moving intermediate data. Future work that 
integrates intermediate data buffers, partial-sum accumulators and 
so on within a single complete CIM chip should show energy efficiency 
measured on end-to-end AI applications.

Projection of NeuRRAM energy efficiency with technology 
scaling
The current NeuRRAM chip is fabricated using a 130-nm CMOS technol-
ogy. We expect the energy efficiency to improve with the technology 
scaling. Importantly, isolated scaling of CMOS transistors and intercon-
nects is not sufficient for the overall energy-efficiency improvement. 
RRAM device characteristics must be optimized jointly with CMOS. The 
current RRAM array density under a 1T1R configuration is limited not 
by the fabrication process but by the RRAM write current and voltage. 
The current NeuRRAM chip uses large thick-oxide I/O transistors as 
the ‘T’ to withstand >4-V RRAM forming voltage and provide enough 
write current. Only if we lower both the forming voltage and the write 
current can we obtain higher density and therefore lower parasitic 
capacitance for improved energy efficiency.

Assuming that RRAM devices at a newer technology node can be 
programmed at a logic-compatible voltage level, and the required write 
current can be reduced such that the size of the connecting transistor 
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keeps shrinking, the EDP improvements will come from (1) lower oper-
ating voltage and (2) smaller wire and transistor capacitance, that is, 
Energy ∝ CV2 and Delay ∝ CV/I. At 7 nm, for instance, we expect the 
WL switching energy (Extended Data Fig. 12b) to reduce by about 22.4 
times, including 2.6 times from WL voltage scaling (1.3 V → 0.8 V), and 
8.5 times from capacitance scaling (capacitance from select transistors, 
WL drivers and wires are all assumed to scale with minimum metal pitch 
340 nm → 40 nm). Peripheral circuit energy (dominated by the neuron 
readout process) is projected to reduce by 42 times, including 5 times 
from VDD scaling (1.8 V → 0.8 V) and 8.5 times from smaller parasitic 
capacitance. The energy consumed by the MVM pulses and charge 
transfer process is independent of the range of RRAM conductance, as 
power consumption and settling time of the RRAM array scale with the 
same conductance factor that cancels in their product. Specifically the 
energy per RRAM MAC is EMAC = Cpar var(Vin), limited only by the parasitic 
capacitance per unit RRAM cell Cpar, and the variance in the driven input 
voltage var(Vin). Therefore, the MVM energy consumption will reduce 
by approximately 34 times, including 4 times from read-voltage scal-
ing (0.5 V → 0.25 V), and 8.5 times from smaller parasitic capacitance. 
Overall, we expect an energy consumption reduction of about 34 times 
when scaling the design from 130 nm to 7 nm.

In terms of the latency, the current design is limited by the long 
integration time of neuron, caused primarily by the relatively large 
integration capacitor size (104 fF), which was chosen conservatively 
to ensure function correctness and testing different neuron operat-
ing conditions. At more advanced technology nodes, one could use a 
much smaller capacitor size to achieve a higher speed. The main con-
cern for scaling-down capacitor size is that the fabrication-induced 
capacitor size mismatch will take up a higher fraction of total capaci-
tance, resulting in a lower SNR. However, previous ADC designs have 
used a unit capacitor size as small as 50 aF (ref. 56; 340 times smaller 
than our Csample). For a more conservative design, a study has shown 
that in a 32-nm process, a 0.45-fF unit capacitor has only 1.2% average 
standard deviation57. Besides, the integration time also depends on the 
drive current of the transistors. Assuming that the transistor current 
density (μA μm−1) stays relatively unchanged after VDD scaling, and 
that the transistor width in the neuron scales with the contact gate 
pitch (310 nm → 57 nm), the total transistor drive current will reduce 
by 5.4 times. As a result, when scaling Csample from 17 fF to 0.2 fF and 
Cinteg proportionally from 104 fF to 1.22 fF, the latency will improve 
by 15.7 times. Therefore, conservatively, we expect the overall EDP to 
improve by at least 535 times when scaling the design from 130-nm to 
7-nm technology. Extended Data Table 2 shows that such scaling will 
enable NeuRRAM to deliver higher energy and area efficiency than 
today’s state-of-the-art edge inference accelerators58–61.

Data availability
The datasets used for benchmarks are publicly available18–20. Other 
data that support the findings of this study are available in a public 
repository47.

Code availability
The software toolchain used to test and deploy AI tasks on the NeuR-
RAM chip, and the codes used to perform noise-resilient model training 
and chip-in-the-loop progressive model fine-tuning are available in a 
public repository47.
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Extended Data Fig. 1 | Peripheral driver circuits for TNSA and chip operating 
modes. a, driver circuits’ configuration under the weight-programming mode. 
b, under the neuron-testing mode. c, under the MVM mode. d, circuit diagram of 

the two counter-propagating LFSR chains XORed to generate pseudo-random 
sequences for probabilistic sampling.
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Extended Data Fig. 2 | Various MVM dataflow directions and their CIM 
implementations. Left, various MVM dataflow directions commonly seen in 
different AI models. Middle, conventional CIM implementation of various 
dataflow directions. Conventional designs typically locate all peripheral 
circuits such as ADCs outside of RRAM array. The resulting implementations of 

bidirectional and recurrent MVMs incur overheads in area, latency, and energy. 
Right, the Transposable Neurosynaptic Array (TNSA) interleaves RRAM 
weights and CMOS neurons across the array and supports diverse MVM 
directions with minimal overhead.



Extended Data Fig. 3 | Iterative write–verify RRAM programming.  
a, Flowchart of the incremental-pulse write–verify technique to program 
RRAMs into target analogue conductance range. b, An example sequence of 
the write–verify programming. c, RRAM conductance distribution measured 
during and after the write–verify programming. Each blue dot represents one 
RRAM cell measured during write–verify. The grey shades show that the RRAM 
conductance relaxation cause the distribution to spread out from the target 
values. The darker shade shows that the iterative programming helps narrow 

the distribution. d, Standard deviation of conductance change measured at 
different initial conductance states and different time duration after the initial 
programming. The initial conductance relaxation happens at a faster rate than 
longer term retention degradation. e, Standard deviation of conductance 
relaxation decreases with increasing iterative programming cycles.  
f, Distribution of the number of SET/RESET pulses needed to reach 
conductance acceptance range.
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Extended Data Fig. 4 | 4 basic neuron operations that enable MVM with 
multi-bit inputs and outputs. a, Initialization, precharge sampling capacitor 
Csample and output wires (SLs), and discharge integration capacitor Cinteg.  
b, Sampling and integration, sample SL voltage onto Csample, followed by 
integrating the charge onto Cinteg. c, Comparison and readout. The amplifier is 

turned into comparator mode to determine the polarity of the integrated 
voltage. Comparator outputs are written out of the neuron through the outer 
feedback loop. d, Charge decrement, charge is added or subtracted on Cinteg 
through the outer feedback loop, depending on value stored in the latch.



Extended Data Fig. 5 | Scatter plots of measured MVMs vs. ideal MVMs. 
Results in a-d are generated using the same 64×64 normally distributed 
random matrix and 1000 uniformed distributed floating-point vectors ϵ [-1, 1]. 
a, Forward MVM using differential input scheme with inputs quantized to 4-bit 
and outputs 6-bit. b, Backward MVM using differential output scheme. The 
higher RMSE is caused by more voltage drop on each SL driver that needs to 
drive 128 RRAM cells, compared to 64 cells driven by each BL driver during 
forward MVM. c, MVM root-mean-square error (RMSE) does not reduce when 

increasing input from 4-bit (a) to 6-bit. This is caused by using a lower input 
voltage that leads to worse signal-to-noise-ratio. d, 2-phase operation reduces 
MVM RMSE with 6-bit input by breaking inputs into 2 segments and performing 
MVMs separately, such that input voltage does not need to be reduced. e–f, 
Outputs from conv15 layer of ResNet-20. Weights of conv15 are divided to 3 CIM 
cores. Layer outputs show a higher RMSE when performing MVM in parallel on 
the 3 cores (f) than sequentially on the 3 cores (e).
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Extended Data Fig. 6 | Data distribution with and without model-driven 
chip calibration. Left, Distribution of inputs to the final fully connected layer 
of ResNet-20 when the inputs are generated from (top-to-bottom) CIFAR-10 
test-set data, training-set data, and random uniform data. Right, Distribution 
of outputs from the final fully connected layer of ResNet-20. The test-set and 

training-set have similar distributions while random uniform data produces a 
markedly different output distribution. To ensure that the MVM output voltage 
dynamic range during testing is calibrated to occupy the full ADC input swing, 
the calibration data should come from training-set data that closely resembles 
the test-set data.



Extended Data Fig. 7 | Noise-resilient training of CNNs, LSTMs and RBMs.  
a, Change in CIFAR-10 test-set classification accuracy under different weight 
noise levels during inference. Noise is represented as fraction of the maximum 
absolute value of weights. Different curves represent models trained at 
different levels of noise injection. b, Change in voice command recognition 

accuracy with weight noise levels. c, Change in MNIST image-reconstruction 
error with weight noise levels. d, Decreasing of image-reconstruction error 
with Gibbs sampling steps during RBM inference. e, Differences in weight 
distributions when trained without and with noise injection.
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Extended Data Fig. 8 | Measured chip inference performance. a, CIFAR-10 
training-set accuracy loss due to hardware non-idealities, and accuracy 
recovery at each step of the chip-in-the-loop progressive fine-tuning. From left 
to right, each data point represents a new layer programmed onto the chip.  
The blue solid lines represent the accuracy loss measured when performing 

inference of that layer on-chip. The red dotted lines represent the measured 
recovery in accuracy by fine-tuning subsequent layers. b, Ablation study 
showing the impacts of input, activation, and weight quantizations, and weight 
noise injection on inference errors.



Extended Data Fig. 9 | Implementation of various AI models. a, Architecture 
of ResNet-20 for CIFAR-10 classification. b, The batch normalization 
parameters are merged into convolutional weights and biases before mapping 
on-chip. c, Illustration of the process to map 4-dimensional weights of a 
convolutional layer to NeuRRAM CIM cores. d, Architecture of the LSTM model 
used for Google speech command recognition. The model contains 4 parallel 

LSTM cells and makes predictions based on the sum of outputs from the 4 cells. 
e, Architecture of the RBM model used for MNIST image recovery. During 
inference, MVMs and Gibbs sampling are performed back and-forth between 
visible and hidden neurons. f, Process to map RBM on NeuRRAM CIM cores. 
Adjacent pixels are assigned to different cores to equalize the MVM output 
dynamic range at different cores.
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Extended Data Fig. 10 | Chip-measured image recovery using RBM. Top: Recovery of MNIST test-set images with randomly selected 20% of pixels flipped to 
complementary intensity. Bottom: Recovery of MNIST test-set images with bottom 1/3 of pixels occluded.



Extended Data Fig. 11 | NeuRRAM test system and chip micrographs at 
various scales. a, A NeuRRAM chip wire-bonded to a package. b, Measurement 
board that connects a packaged NeuRRAM chip (left) to a field-programmable 
gate array (FPGA, right). The board houses all the components necessary to 
power, operate and measure the chip. No external lab equipment is needed for 

the chip operations. c, Micrograph of a 48-core NeuRRAM chip. d, Zoomed-in 
micrograph of a single CIM core. e, Zoomed-in micrograph of 2×2 corelets 
within the TNSA. One neuron circuit occupies 1270 μm2, which is >100× smaller 
than most ADC designs in 130-nm summarized in an ADC survey62. f, Chip area 
breakdown.
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Extended Data Fig. 12 | Energy consumption, latency, and throughput 
measurement results. a, Measured energy consumption per operation during 
the MVM input stage (without 2-phase operation) and output stage, where one 
multiply–accumulate (MAC) counts as two operations. b, Energy consumption 
breakdown at various MVM input and output bit-precisions. Outputs are 2-bit 

higher than inputs during a MVM to account for additional precision requirements 
from partial-sum accumulation. c, Latency for performing one MVM with 256×256 
weight matrix. d, Peak computational throughput (in giga-operations per second). 
e, Throughput-power efficiency (in tera-operations per watt).



Extended Data Table 1 | Comparison of fully integrated RRAM-based CIM hardware

Notes: 
1. The table does not include studies that do not report detailed performance metrics. 
2. All the reported metrics are measured for performing 256×256 matrix-vector multiplications. 
3. All reported numbers represent peak throughput/efficiency when array utilization is 100%.
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Extended Data Table 2 | Comparison with digital CMOS AI inference accelerators

Notes: 
1. The method to project NeuRRAM efficiency to 7 nm is explained in Methods. 
2. The energy-efficiency projection of digital accelerators is based on CV2 scaling, where C scales with minimum metal pitch and V is adjusted to nominal VDD of 7 nm. 
3. The area-efficiency projection of digital accelerators is based on minimum metal pitch scaling along both horizontal and vertical directions.
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