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Abstract. In recent years, a strong debate has emerged in th& Introduction

hydrologic literature regarding how to properly treat nontra-

ditional error residual distributions and quantify parameter!n @ common inverse problem, we wish to estimate the pa-
and predictive uncertainty. Particularly, there is strong dis-rametersg = {61, ..., 64}, of a model;/, given observations
agreement whether such uncertainty framework should havef the system behavioY, = {y, ..., y»}. The observations or

its roots within a proper statistical (Bayesian) context usingdata are linked to the unknown paramet¢t¢hrough some
Markov chain Monte Carlo (MCMC) simulation techniques, Physical systent:

or whether such a framework should be based on a quite dify,
ferent philosophy and implement informal likelihood func- Y <307 +e, @
tions and simplistic search methods to summarize paramegheree — {e1,...,,) IS an x 1-vector of measurement er-

ter and predictive distrib_utions_. This paper is a follow-up of ;55 Examples of such problems are widespread in many dif-
our previous work published iWrugt and Sadeglf2013 ferent fields of study, including medical imaginaipio et
and demonstrates that approximate Bayesian computatiog 2004, reservoir characterizatiors{enerud et al2009

(_ABC) bridges the_ gap between formal and informal statis- 5,4 cosmologylimenez et al2004. When a model hypoth-
tical model-data flttlng. approgches. The ABC methodolo_gyesiS or simulatory < H(8*, i, Xo), of the physical process
has re_cently emerged in the fields of blolqg_y gnd_ populationg available, one can model the data:

genetics and relaxes the need for an explicit likelihood func-

tion in favor of one or multiple different summary statistics Y < H(6*, 0, Xo) + €, (2)
that measure the distance of each model simulation to the

data. This paper further studies the theoretical and numericaherel = {u1, ..., u,} denotes the forcing dat#g signifies
equivalence of formal and informal Bayesian approaches usthe initial states, and= {e, ..., e, } includes observation er-
ing discharge and forcing data from different watersheds inor (input and calibration data) as well as error due to the
the United States, in particular generalized likelihood uncer-fact that the simulator}{(6*|-) may be systematically dif-
tainty estimation (GLUE). We demonstrate that the limits of ferent from reality,3(6), for the parameterg®. The latter
acceptability approach of GLUE is a special variant of ABC May arise from, e.g., numerical error, spatial discretization

if each discharge observation of the calibration data set i§2nd improper (conceptual) model formulation.
used as a summary diagnostic. Figure 1 provides an overview of possible error sources

that affect our ability to correctly describe the physical sys-
tem,J(6%), of interest. Forcing data, model parameter, model
state, and calibration data error are represented with a proba-
bility density function (pdf), whose statistical properties are
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4832 M. Sadegh and J. A. Vrugt: Approximate Bayesian computation

® During the past 4 decades much research has been devoted
syﬂﬁms) tothe Qevelopment of gomputer based methods for fitting hy-
(Parameter(s) ) drologic models to calibration data (e.g., streamflow, water
® chemistry, groundwater table depth, soil moisture, snow wa-
l" _‘X—lgm ter equivalent). That research has primarily focused on six
®ﬁ--i TN ® New state(s) % different issues: (1) the development of specialized objec-
Forcing Data Yo © _»?«_@ \ tive functions that appropriately represent and summarize the
( Input Variable(s) ) IX‘ :m S i —— errors between model predictions and observations, (2) the
® (Disgroatc varable(s)) | ( Cabreion bera) search for efficient optimization algorithms that can reliably
AN solve the hydrologic model calibration problem, (3) the de-
(Proammete sorioioe)) Estimate termination of the appropriate quantity and most informative

D@00 Cmd© kind of data, (4) the selection of an appropriate numerical

Fig. 1. Explicit recognition of the role of1) parameter(2) forc- solver for the partially structured differential and algebraic
ing data,(3) initial state,(4) model structural(5) output,(6) state,  equation systems of hydrologic models, (5) the representa-
and(7) calibration data uncertainty. The pitchfork symbol illumi- tion of uncertainty, and (6) the development of methods for
nates the difficulty with formulating the likelihood function (and inferring and refining the mathematical structure and process
prior distribytion/parameteri_zation of ind_iv_idual error sour_ces_) _Usedequations of hydrologic models.
to summarlze.the error res!duals. Explicit treatment of |nd_|v!dual Research into error residual distributions had led to the
error sources is required to increase the prospects of explaining tI;?evelopment of a suite of different (hierarchical) likelihood
reasons for model inadequacy and learning from the experiment - .
data. unctions for measuring the closeness between the model
simulations (predictions) and the corresponding dHihitt
and O’Donnel] 1974 Sorooshian and Dracuft98Q Kucz-
typically unknown. Errors in the modeled (5) outputy~,  €ra 1983aBates and CampbeR001 Kavetski et al.2006a
and (6) statex; (-0, dynamics originate from a wide vari- Marshall etal,2007 Schoups and Vrug2010a Smith et al,
ety of different error sources, including (1) inadequate and/or2010. Recent work bySchoups and Vrugt20103 has re-
incomplete knowledge of the model parametéis,(2) er-  sulted in a generalized likelihood function that encapsulates
rors in the input (forcing) datay, and (3) initial statesxg many of the existing likelihood functions in the hydrologic
(4) structural inadequacies in the model equations and/or imliterature, but with additional flexibility to simultaneously ac-
proper dimensionality of the state space; and (7) errors in theount for correlated, heteroscedastic, and nontraditional error
calibration datay; 0. The mathematical operat® (also  residual distributions.
called “likelihood function”) is used to judge the distance be- Research into optimization methods has led to the de-
tween the model predictions and corresponding calibratiorvelopment of a wide variety of different search methods.
data. This function should explicitly recognize the contribu- Whereas initial approaches utilized local search principles
tion and role of each individual error source in determining that seek iterative improvement of the objective function
the error residual, but is very difficult to specify correctly from a single starting point in the parameter spatte (
with very weak prior information, and hence the pitchfork bitt, 1972 Johnston and Pilgrim1976 Sorooshian and
symbol is used. Dracup 198Q Restrepp 1982 Kuczera 19833 b; Gupta
Within the context of hydrologic modeling, measured rain- and Sorooshiarl983 Sorooshian et 311983k Troutman
fall depths and estimates of (potential) evapotranspiratiorl985a b), problems with parameter insensitivity, curved
typically constitute the main forcing data. These two in- ridges, local minima, and multiple different regions of at-
put variables strongly determine the simulated streamflowtraction has stimulated the development of population based
at interior points and the catchment outlet, surface runoff,search algorithms that use multiple different points concur-
soil moisture fluxes and storage of water in the catchmentrently to locate the global optimumiang 1991, Duan et
Examples of model states are soil moisture, groundwategl., 1992 Yapo et al, 1998 Seibert 200Q Khu and Mad-
table depth, and hydraulic heads (amongst others). Theigen 2005 Chu et al, 2010). In this regard, the shuffled com-
knowledge is beneficial to adequately represent the storplex evolution global optimization algorithm @uan et al.
age of water in the variably saturated zone and groundwa{1992 has shown to be effective and efficient in calibrat-
ter, and hence ensure an adequate model calibration. Fing conceptual watershed models. Recent developments in-
nally, calibration data often involves time series of (spatially- clude simple randomized adaptatiovigzi et al, 2004 Tol-
distributed) streamflow observations or time-lapse measureson and Shoemake2007), multimethod ensembleVfugt
ments of tracer concentrations. Inevitably, each of these datand Robinson2007 Vrugt et al, 2009, and filtering based
sources is subject to uncertainty, which severely complicate§Pauwels 2008 parameter estimation methods that further
parameter estimation and quantification of model structuraimprove search efficiency and reliability.
errors. Research into the information content of data has led to the
understanding that it is not the length of the data that matters
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M. Sadegh and J. A. Vrugt: Approximate Bayesian computation 4833

but the variability of the observed discharge datadzera Mieleitner, 2009 for inference and iterative refinement of
1982 Sorooshian et 3119833 Gupta and Sorooshiah985 the mathematical structure of conceptual hydrologic models.
Yapo et al, 1996. Wet and dry periods are both required to This has led to the understanding that discharge data contain
make sure that all the different components of the watershedufficient information to warrant the identification of a suit-
model are excited and the different parameters can be estable model structure that mimics as closely and consistently
mated from the calibration data. Post-audit simulations pre-as possible the observed watershed behavior at the temporal
sented irvVrugt et al.(2002 using a Bayesian analysis, adap- and spatial scale of measurement.
tive random walk Metropolis resampling, and value of infor-  Most of these developments assume input data and model
mation (VOI) framework has demonstrated that only a few structural errors to be “negligibly small” or to be somehow
(daily) streamflow data measurements are necessary to relfabsorbed” into the output error residuals. The residuals are
ably calibrate a conceptual hydrologic model. The remain-then expected to behave statistically similar to the calibra-
ing data contain redundant information and could be used tdion data measurement error. These assumptions are statis-
evaluate the reliability of the actual model structure. tically convenient but typically not borne out of the actual
Research into numerical solvers has demonstrated that exprobabilistic properties of the residual errors that may show
plicit (Euler based) time-stepping schemes introduce con-changing bias, variance (heteroscedasticity), skewness, and
siderable streamflow simulation errors and spurious localkcorrelation structures under different hydrologic conditions
minima, “pits”, and irregularities in the objective function (and for different parameter sets). This is in part due to the
space Kavetski et al. 2003 2006¢ Kavetski and Clark  presence of model structural and forcing (input) data errors
2010 Schoups et al2010h. These findings provide a deeper whose contribution may, in general, be substantially larger
understanding of the convergence problems of local searckthan the (calibration) data measurement error. These errors
methods and demonstrate a need for implicit solvers that it-do not necessarily have any inherent probabilistic properties
eratively adjust the integration time step based on the statéhat can be exploited in the construction of an explicit like-
dynamics. lihood function. For linear systems it is known that ignoring
Research into the characterization of uncertainty has resuch errors will lead to bias in the estimates of parameter val-
sulted in formal and informal statistical approaches. While ues. The strong and generally difficult to justify assumptions
initial attempts have focused primarily on methods to quan-about the nature of the errors have led Beven and coworkers
tify parameter uncertaintyBeven and Binley1992 Freer  to advocate informal statistical approaches using the general-
et al, 1996 Gupta et al. 1998 Kuczera and Paren1998 ized likelihood uncertainty estimation (GLUE) methodology
Vrugt et al, 2002 Wagener et al.2003 Beven 2006 (Beven and Binley1992 Beven 1993 2006 2009 Beven
Vrugt and Robinson2007), emerging approaches include and Freer2001, Beven et al.2008.
state-space filteringVfugt et al, 2005 Moradkhani et al. The origins of the GLUE method lie in trying to deal with
20053 b; Slater and Clark2006 Reichle 2008 Salamon  uncertainty estimation problems for which simple explicit
and Feyen2009 DeChant and MoradkhanR012 Vrugt (theoretical) likelihood assumptions do not seem appropri-
et al, 2013, multimodel averaging Butts et al, 2004 ate. The GLUE methodology rejects the traditional statistical
Georgakakos et al2004 Ajami et al, 2007, and various  basis for the likelihood function in favor of finding a set of
(non)Bayesian approaches to treat individual error sourcesepresentations (model inputs, model structures, model pa-
and assess predictive uncertainfyloptanari and Brath  rameter sets, model errors) that are behavioral in the sense
2004 Vrugt et al, 2005 Kavetski et al. 2006a b; Kuczera  of being acceptably consistent with the (non-error-free) ob-
et al, 2006 Huard and Mailhaqt2006 Jacquin and Sham- servations. An informal likelihood measure is used to avoid
seldin 2007 Fenicia et al.2007, Marshall et al,2007 Mon- over conditioning and exclude parts of the model (parame-
tanari and GrossR008 Vrugt et al, 2008a b; Reichert and  ter) space that might provide acceptable fits to the data and
Mieleitner, 2009 Solomatine and Shrestha009 Kuczera  be useful in prediction. Since its introduction in 1992, GLUE
et al, 2010 Renard et a).201%, Rings et al. 2012. Much has found widespread application for uncertainty assessment
progress has also been made in the treatment of forcing daia many fields of study, including modeling of the rainfall—
error (Clark and Slater2006 Kavetski et al,2006a b; Vrugt runoff transformation Beven and Binley 1992 Freer et
et al, 20083; development of a formal hierarchical frame- al,, 1996 Lamb et al, 1998, soil erosion Brazier et al.
work to formulate, build and test different watershed models2001), tracer dispersion in a river readHgnkin et al, 2001),
(Clark et al, 2008; and algorithms for efficient sampling of groundwater and well capture zone delineatiBayen et al.
parameter and predictive uncertainty distributiodsdzera 2001 Jensen2003, unsaturated zond/lertens et al.2004),
and Parentl998 Vrugt et al, 2008a Kuczera et al.201Q flood inundation Romanowicz et a).1996 Aronica et al,
Laloy and Vrugi 2012). 2002, land-surface—atmosphere interactioRsafks et al.
Finally, research into structural adequacy has resulted 997, soil freezing and thawingH{anson and Lundir20086),
data-based mechanisti¥qung 2002 2012, data assimi- crop yields and soil organic carbowéng et al. 2005, and
lation (Vrugt et al, 2005 Smith et al, 2008 Bulygina and  ground radar-rainfall estimatiorfddesse and Anagnostou
Guptg 2011, and other stochastic techniqué®({chert and  2005. Applications of GLUE are also found in distributed
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4834 M. Sadegh and J. A. Vrugt: Approximate Bayesian computation

hydrologic modeling McMichael et al, 2006 Muleta and  to the 18th century mathematician and minister, Reverend
Nicklow, 2005. Thomas Bayes (1701-1761), who studied how to compute a

In recent years, a strong debate has emerged in the hydralistribution for the probability parameter of a binomial distri-
logic community between proponents that adhere stronghybution. If we conveniently assume that the model parameters
to the underlying philosophy of GLUE and believe that the are the only source of uncertainty, we can write Bayes'’ rule
method is a useful working methodology for assessing pa-as follows:

rameter and predictive uncertainty in nonideal cases, and re- 20 p(V10)
searchers and practitioners that strongly oppose incorrect ugp(0|Y) = = 3)
age of statistics in favor of coherent probabilistic approaches p(Y)

(Gupta et al. 1998 Beven and Young2003 Gupta et al.  \where p(@) (p(8]Y)) signifies the prior (posterior) param-
2003 Christensen2004 Montanarj 2005 Mantovan and  eter distribution,£(8]Y) = p(Y|) denotes the likelihood
Todini, 2006 Stedinger et al.2008 Beven et al. 2008  fynction, andp(Y) represents the evidence (or normalization
Beven 2009 Vrugt et al, 2008h c). This paper is a follow-  constant).
up of our earlier work{rugt and Sadegl2013 and demon- A key task is now to summarize the posterior distribution,
strates the similarity of likelihood-free inference used in POP- 5,(9|Y), for example, by the mean, the covariance or per-
ulation and evolutionary genetic®iftchard et al. 1999  centiles of individual model parameters. When this task can-
Beaumont et a].2009 and informal statistical approaches not pe carried out by analytical means or analytical approx-
such as GLUE. Likelihood-free inference was introduced inimation, iterative methods are needed to generate a sample
the statistical literature about three decades &gdle and  from the posterior distribution. The desired summary is then
Gratton 1984 for cases where the likelihood is intractable, gptained from this sample. Knowledge of the normalization
too expensive to be evaluated, or an explicit formulation isconstant,p(\?), is not required for sampling of the parame-
not available. This method is also referred to as approximatgers as all our statistical inferences can be made from the un-
Bayesian computation (ABCMarjoram et al. 2003 Sis-  npormalized density. Explicit knowledge pf(Y) is however
son et al. 2007 Del Moral et al, 2008 Joyce and Marjo-  gesired for Bayesian model selection and averaging.
ram 2008 Grelaud et et a]2009 Ratmann et a]2009 and Epistemic uncertainty (model inadequacy due to a lack of
widens the class of models for which statistical inference canknowledge) and forcing data errors can, in principle, be sum-
be performed. This paper follows a different line of reasoningmarized using hyper-parameters (latent variables) and their
and approach thaNott et al.(2012 who demonstrated that  gistribution derived from Bayesian inference. Yet, practical
GLUE corresponds to a certain approximate Bayesian progyperience suggests that it is very difficult, if not impos-
cedure even when the "generalized likelihood" is not a truesjple, to disentangle the effects of individual error sources
likelihood. particularly if a single data typeY, constitutes the only
The remainder of this paper is organized as follows. Secysis for model evaluation. In our previous paperugt
tion 2 briefly summarizes the Bayesian approach to modelnq Sadegh2013 we have demonstrated the ability of
parameter and predictive uncertainty estimation, with partic-jikelinood-free inference methods to significantly enhance
ular emphasis on the choice of the likelihood function used tofhe chances of detecting model structural deficiencies. This
summarize the probabilistic properties of the error residualsapproach marks progress towards improving our perceptual-
In Sect. 3 we subsequently introduce likelihood-free COMpU-conceptual-theoretical view(s) of the world, expressed as
tation and demonstrate the main elements of the ABC procemqde| structural hypotheses (assumptions and conjectures).
dure by application to a simple Nash cascade series of three The scope of the present paper is fundamentally differ-
linear reservoirs. This is followed by Sect. 4 in which the gnt than that of our previous work published\inugt and
conceptual and statistical equivalence of ABC and the "m'Sadegh(2013. We show herein that ABC has many ele-
its of acceptability approach of GLUE is demonstrated. Sec-ments in common with the limits of acceptability approach of
tion 5 then proceeds with a comparison between GLUE ands| UE, but benefits from a much better statistical underpin-
ABC using the Sacramento soil moisture accounting (SAC'ning. To be consistent with GLUE, we map the input-output
SMA) model Burnash et a).1973 and hmodel $choups  yncertainty on the model parameters. Under ideal conditions

and Vrugt 20104, and discharge data form two contrasting yith an adequate model and perfect forcing data, the error

results and discuss the main findings. n 1
LOY.0.%) =]
=1 Zﬂ&é
2 Bayesian Inference 1
N2~ ~ o \\2
eXp[_EU? ()’t — (0, U,XO)) ] ; (4)

Bayes theorem is a simple rule for how to update the prior
probability of a certain hypothesis when new, relevant infor-andé should converge t6* whered; is an estimate of the
mation (data) becomes available. The term “Bayesian” referstandard deviation of the measurement error. The value of
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6y can be specified a priori based on knowledge of the meaavoid explicit evaluation of the likelihood function in favor
surements errors, or alternatively its value can be inferredf (a set of) summary variables that better extract the in-
simultaneously with the values & (Vrugt et al, 2008h formation from the available data. The premise behind ABC
Bikowski et al, 2012 Laloy and Vrugt 2012. It is worth is thatd" should be a sample from the posterior distribution
noting that the data often come from only a single experi-as long as the distance between the observed and simulated
ment. So while it is possible to quantify numerical errors, data, hereafter referred to aﬁ(, Y(o/)), is less than some
such as those due to discretization (8&épio et al, 2004 small value,e. For sufficiently complex models and large
Nissinen et al.2009, there is no opportunity to control the data sets the probability of happening upon a simulation run
boundary conditions of (large-scale) natural systems to obthat yields precisely the same data set as the one observed
tain data from additional experiments in which some con-will be very small, often unacceptably so. So rather than con-
trollable inputs have been varied. sidering the datdy, itself we consider a summary statistic of
The likelihood function£(-), in Eq. @) is useful for sim-  the data,S(Y), and use a distance functiokl&rjoram et al,
ple regression problems, but the assumption of independerz003 Sisson et a).2007)
identically distributed Gaussian error residuals cannot be - ,
justified in environmental modeling. The presence of inputP(S(Y)’ S(Y(@)) <e ®)
data and model structural errors introduces complex error ) ,
residual distributions whose probabilistic properties are dif- {0 decide whether to accept the parameter vaiesr not.
ficult to describe accurately with classical likelihood func- A PSeudo-code of the generic ABC approach is given below.
tions. The choice of an adequate likelihood functiseg|Y), _ —
has therefore been the subject of considerable debate ift/9°ithm 1 Rejection sampler (ABC-REJ)
the hydrologic and statistical literature. In response to this, for;=1,.... N do

Schoups and Vrugf20104 have introduced a generalized repeat
likelihood function that better extends the applicability of generat®’ from the prior distributionp (6)
commonly likelihood functions to situations where residual simulateY from the modelY <« H(@'|-)

errors are correlated, heteroscedastic, and non-Gaussian with — until p(S(Y), S(Y(8))) <e
varying degrees of kurtosis and skewness. Application to  set§; = 6’

daily rainfall-runoff data from a dry and humid basin showed end for

that (1) residual errors are much better described by a het-

eroscedastic, first-order, auto-correlated error model with an words, the ABC algorithm proceeds as follows. First we
Laplacian distribution function characterized by heavier tailssample a candidate poirtt;, from some prior distribution,
than a Gaussian distribution; and (2) compared to a standargl9). We then use this proposal to simulate the output of
least-squares approach, proper representation of the statisthe model,Y < H(6'|-), and use thisz-vector to calcu-
cal distribution of residual errors yleldS tlghter prediCtive un- |ate one or mu|t|p|e summary metrics. A distance function,
certainty bands and different parameter uncertainty estimateg(g(\?), S(Y(()/))), is then used to decide whether to accept
that are less sensitive to the particular time period used fop’ o oy | this distance function is smaller than some prede-
inference, (3) multiplicative bias factors improve the predic- iy tolerance value, then the simulation is close enough
tion of peak flow, and (4) near zero-flows are better describeq, iha observations that the candidate poit, has some

with a skewed error distribution. nonzero probability of being in the approximate posterior

The generalized likelihood function improves the statisti- . . .~ ~ . .
cal description of the error residuals, yet it does not separatg'smbunon’p (0|p(S(Y)’ S(Y)) = E)' This algorithm con-

out the effect of individual error sources. Another, from the verges to the true posterigr(d|Y) whene — 0, provided
viewpoint of this paper, less important deficiency is that thethat the summary statistic(s§,(-), is (are) near sufficient
use of a single performance metri€, no matter how care- (Pritchard et al.1999 Beaumont et a].2002 Ratmann et
fully chosen, is inadequate to extract all information from the al., 2009 Turner and van Zand012).
available calibration data. The use of such “insufficient statis- The choice of summary metrics is obviously an important
tic” promotes equifinality, making it unnecessarily difficult to consideration in the application of ABC. These criteria (sig-
find the preferred parameter values. This is not desirable andatures) should be chosen so that the loss of information from
explains why calibration of highly-parameterized models isthe original data is minimized. Information theory can help
often found to be very time consuming and difficult. to determine such (set of) sufficient statistic@fnes et aJ.

2011, but this is beyond the scope of the present study (as

will soon become evident) and will therefore be a main focus
3 Approximate Bayesian computation in future publications.

Another issue that deserves careful attention is that ABC

Whereas traditional Bayesian approaches require us to specan only be used with a stochastic model operator. Other-
ify an explicit likelihood function £(8|Y), ABC approaches wise, the posterior parameter distribution will continue to

www.hydrol-earth-syst-sci.net/17/4831/2013/ Hydrol. Earth Syst. Sci., 17, 483185Q 2013
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Fig. 3. Posterior distribution of the recession parameter derived
from (A) ABC using the mean of the data as summary metric,

Fig. 2. Synthetic discharge time series (blue line) simulated with (B) DREAM using a heteroscedastic measurement error,(@jd
the Nash cascade model, and the corrupted observations (red point8BC using the mean and standard deviation of the data as summary

used in the GLUE and ABC analysis.

shrink in the limit ofe going to zero and eventually con-
verge to a Dirac delta function (single point) if the model
is sufficiently adequate. In theory, we should therefore cor
rupt the output of the deterministic mod¥l,«— H(6|-), with

statistics. The true parameter value is indicated with the red symbol.

A uniform prior with r € [0, 4] was used in all our cal-
culations. To increase computational efficiency, we used an

a random (measurement) error, but this is deemed unnece@mproved variant of the ABC population Monte Carlo (PMC)

sary within the present context. We will revisit this important

scheme offurner and van Zand2012), the details of which

issue in the penultimate paragraph of this paper. The ABCappear in Appendix A. In short, the PMC sampler starts

findings presented in Tabl&s6 and Figs.3—14 thus pertain
to deterministic model output only.

out as ABC-REJ during the first iteratior,= 1, but us-
ing a much larger initial value foe. During each succes-

To illustrate the ABC methodology, we consider a Nash sive next stepj = {2,..., J}, the value of is decreased and
cascade instantaneous unit hydrograph. This model routege proposal distributiomj(o,{_l, ) :Nd(oi_lv Zj)(j>l)

inflow (rainfall) through a series of linear reservoirs that all
have the same recession coefficient. Mathematically, this ca
cade ofmn linear reservoirs with recession coefficierdan be
written as follows Nash 1960:

£\ =D
() el
r

wheret (days) denotes timd;(-) signifies the gamma func-
tion, andh, () is the modeled response at timeA 365-day
period with synthetic daily streamflow data (ir?8T1) was
generated by driving the Nash cascade model of &qvith
an artificial precipitation record. We assume= 3 reservoirs
and a recession constantrof 2 days. This artificial data set
is subsequently perturbed with a heteroscedastic error (no
constant variance) with standard deviation equal to 20
the original simulated discharge values. Fig@relots the
original simulated discharge time series (blue line) and th
corrupted observations (red circles) used in the ABC analysi
to derive the posterior distribution of the recession constant
We are now left with a selection of the summary statistic,

t

)

hl(rvm) = - (6)

rI"(m)

S(-) to decide whether a candidate point (model simulation)

is behavioral or not. For illustrative purposes we start with
the mean of the actual data,

s

p(S(Y), S(Y(6))) = |mearY) — mear(Y (6))

(7)

2

% of

e

Sqdapted usinng =C0v(0’1‘71,...,'0{;,71) with 6; drawn
from a multinomial distribution%(oi

;V1|W£_;Vl), Wherewﬁ,1
denote the posterior weightsv;(_1 >0, YV, wl’_l =1).
Through a sequence of successive (multi)normal proposal
distributions, the prior sample is thus iteratively refined until
a sample of the posterior distribution is obtained. This ap-
proach, similar in spirit to the adaptive Metropolis sampler
of Haario et al.(1999 2001, receives a much higher sam-
pling efficiency than ABC-REJ, particularly for cases where
the prior sampling distributiop (@) is a poor approximation

of the actual posterior distribution.

The PMC sampler offurner and van Zand2012 as-
sumes that the sequenceco¥alues is specified by the user.
his does not necessarily lead to the most efficient search.
Our sampler therefore adaptively determines the next value
of €;; j > 1 from the cumulative distribution function of the

(-) values of theV most recent accepted samples. Details of
his procedure are given in Appendix B. For the present case
study, an initial value of = 1 is used, and this value is adap-
tively decreased until a value ef= 0.05 is reached. Lower
values ofe provide similar posterior estimates, yet unneces-
sarily increase the computational burden of the ABC analysis
(Vrugt and Sadegi2013.

Figure 3a presents a histogram of the posterior marginal
distribution ofr derived from the ABC-PMC analysis using

to estimate the posterior distribution of the recession CONthe mean observed flow as summary statistic. The red square
straint. This metric is rather weak and cannot be COﬂSidere@enotes the true parameter value used to create the Synthetic
sufficient, but for now it helps to illustrate the main elements data. For Comp|eteness we also present in the middle pane|
of the ABC methodology. the results of DREAMYrugt et al, 2008a 20093 using the
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N
=3

constant appears much better defined, but the width of the
(marginal) posterior distribution is still considerably larger
than what can be expected from a classical likelihood func-
tion using MCMC simulation with DREAM (Fig3b). This
simply conveys that our two summary metrics are jointly
insufficient and that, if so desired, more powerful metrics
should be used.

The ABC methodology allows the use of a wide arsenal
of summary metrics and distance functions to judge the dis-
tance between the model simulation and observations. Com-
mon examples in genetics include the Canberra, Euclidean,
and Manhattan distance. Those are readily applied in hydrol-
ogy as well, including summary statistics such as the Nash—

, ‘ ‘ , , ‘ Sutcliffe efficiency (NSE) Nlash and Sutcliffe1970, mean
’ * Y e, ™ square error (MSE), and others listed in Table 1CGafpta
et al.(1998. Temporal disaggregation of the data and model
Fig. 4. 95% streamflow uncertainty ranges (dark region) derived gjmulations would preserve the statistical momenté sfich
from GLUE (top panel) and ABC (bottom panel). The red points o \he mean, median, standard deviation, kurtosis, and skew-
mark the actual discharge observations. The prediction uncertaint)ﬁess_ The us’e of f|0V\; duration curves co’uld be béneficial in

ranges derived with both methods appear virtually identical andth. d h teristic of th tershed ¢
nicely capture the desired percentage of streamflow observations. '_S regard as characterisc of the watersheds response 1o
rainfall (Vrugt and Sadegt?013.
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g & 8
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likelihood function of Eg. 4) with a heteroscedastic mea-
surement erroig ; = 0.2Y.

Perhaps not surprisingly, the ABC-derived posterior distri- Now that the basic principles of ABC have been discussed in
bution is poorly defined by calibration against the mean ob-gome detail using the simple one-parameter unit hydrograph

served discharge value. The behavioral recession constanfgy problem, it is not difficult to see the many similarities of
extend a larger portion of its prior distribution. This suggestsg| Ug and ABC:

that the observed (synthetic) discharge data do not contain

information about the recession constant of the three reser- 1. The distance function specified in E§) fas many el-
voirs. This finding is perhaps not surprising. Many different ements in common with the informal threshold used in
values of the recession constantcan be found with mean the classical GLUE approach to differentiate between
simulated discharge value similar to that of the observed data behavioral and nonbehavioral samples. This is perhaps
but with poor accuracy of the simulated streamflow dynam- more obvious if we use the following notation

ics. Indeed, if a classical likelihood function is used (FBig),

the recession constant is much better defined with maximum
a posteriori density equal to= 2 and 95 % posterior param-
eter uncertainty ranges that vary between 1.95 and 2.05.

4 Statistical equivalence of ABC and GLUE

p(SOY), SCY(0) =D 115 =y (O] <),  (9)
=1

Fortunately, nothing prevents us from using more than one
summary statistic in the ABC analysis to measure different
and complementary parts of model behavior. To be meaning-
ful in practice, such statistics should preferably measure hy-
drologically relevant signatures of watershed behavior. Such
an approach was introduced in our previous wiftugt and
Sadegh2013, and for simplicity we now augment the first
metric (mean of the data) with another simple statistic (stan-
dard deviation of data)

p(SCY), S(Y(8))) = max(|meam?) — mear(Y 9))|,
[st¥) — sta(v @) ). 8)

to decide whether the model simulation can be considered
behavioral or not. The results of this analysis are shown in
Fig. 3c using a minimum value of = 0.05. The recession

www.hydrol-earth-syst-sci.net/17/4831/2013/

where [A) is a simple indicator function that is “1” if

A is true and “0” otherwise, and}; r = {1, ...,n} con-
stitutes the effective observation error that takes into
account multiple sources of errddgven 2006. This
value is defined a priori by the user. The ABC approach
can thus be made mathematically equivalent to the lim-
its of acceptability approach of GLUE if each observa-
tion is used as summary statistic.

. The ABC-REJ sampler is similar to the Latin hyper-

cube sampling strategy used in GLUE to find behav-
ioral solutions. Both methods use a fixed proposal dis-
tribution to sample from the prior parameter distribu-
tion. If the corresponding simulation falls within the

bounds specified by the effective observation error,
then the parameter combination will be classified as
behavioral; otherwise, the proposal will be rejected.
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Sampling continues untiN behavioral solutions are with uncertainty intervals that appear relatively narrow and
found. encompass about 90 % of the data. The upper panel plots the
results for GLUE using the same limits of acceptability. Latin
Following the first proposition, a solution is deemed behav-pypercube sampling was used to create 1000 behavioral solu-
ioral with ABC if its simulated discharge time series falls tjons ate = 0.10 using an algorithm virtually identical to that
within the interval[y; — &, 3: + ;] for 1 ={1.....n}. This ot ABC-REJ. Perhaps not surprising, the results are identical
is similar to the limits of acceptability approach of GLUE g those presented for ABC. Although the numerical results
if a simple discrete (0/1) membership function is used. Forare jdentical, the computational efficiency of both methods
the synthetic toy example used herein, we define the effecis nhot. The ABC-PMC sampler exhibits an acceptance rate
tive observation error to be=« x 65 with @ =2. Thisis  f apout 53.5% whereas for GLUE (and hence ABC-REJ)

equivalent ta5; = 0.45;. this is about 17.0 %.
The goal of the ABC analysis now becomes finding all
those parameter combinations that consistently fall within
the effective observation error of the discharge data and Case studies: hydrologic modeling
hence receive a perfect score of Ef) équal ton. This
constitutes a maximization problem, differing from a typical Now that the ABC method has been discussed in some detail
implementation of ABC where the distance to the summaryand the theoretical connection of this approach with GLUE
statistics and value efis being minimized. In our numerical has been demonstrated, we proceed with numerical simula-
implementation with the PMC sampler, we therefore adapttion using five years of daily streamflow data from the French
Eqg. ©) and calculate Broad river basin at Asheville, North Carolina (1 Januar 1962
to 30 December 1966) and the Leaf River (1 October 1952
- 1 n to 30 September 1957) north of Collins, Mississippi. These
P(S(Y). S(Y(9))) = p (”‘Z'(Wt - (@0) < 3:)) (10)  watersheds have been studied extensively in the literature
=1 and details of the data can be found in related publications.
Two lumped conceptual hydrologic models are used to de-

to decide whether a simulation is behavioral or not. For a ibe the rainfall p ¢ . his includes th
perfect simulationp(-) will be zero. However, in most prac- scribe the rainfall—runoff transformation. This includes the

tical applications it is not possible to find a simulation that 7-parameter hmodel described in detaBishoups and Vrugt
satisfiese = 0. For instance, for the present Nash cascade(ZOloa and the 13-parameter SA_C'SMA modBignash et .
toy example withe = 2 and thus, = 0.45,,7 = {1, ..., n}, ‘_al.,_197a. Inputs to these_models mclude_ mean areal precip-
a minimum value ofp(«) of about 005 is to be expected. itation (MAP) and potentlal evapotrans.pwe.ltlon (PET) whlle.
This follows directly from statistical theory (about 95 % of the outputs are estimated evapotransplratlon and chaqnel In
the observations are included in the interval of 2 times theﬂOW' Numerical, conceptua}, and (?omputat'longl details of
standard deviation). both models can be found in the cited publications, and so
The adaptive updating strategy efin PMC not only will not be repeated herein. Tablésand 2 summarize the

guarantees a more efficient search strategy than ABC-RERarameters of both models and their upper and lower bound

(GLUE), but also automatically determines the maximum at-Values-

tainable coverage of the discharge observations within the I_mplementatlon of the limits ,Of acceptabl_llty approach re-
limits of acceptability. In the first iteration, we set=0.75  duires knowledge of the effective observation error. This er-

and thus define a behavioral solution as one that contains aP' Vares dynamlcally with flow level and constitutes _the

least 25% of the observed discharge data within the imer_combmed effect of input data, model structural and calibra-

val, [y, — 8. v +8;l¢—(1...n)). During each successive next tion data measurement error. In practice, the user defines the
H ’ =\4,...,1n4)"

iteration, the value of is sequentially reduced and the PMC limits of acceptability for each individual observation, but

sampler terminates when the difference between two subségr convenience we follow a different approach and set the
quente values is less than 0.02, or in mathematical nota_ef“fective observation error as a multiple of the actual dis-

tione; —e;_1 < 0.02. In all our simulations presented herein Charge measurement error. We folidugt et al.(2009 and
we request PMC to creafé — 1000 behavioral solutions at use consecutive differences of the calibration observations to

each different value (iteration). We report our results for Calculate the measurement data error (€.g., 7 in Fig. 1):
€ <0.10.

Figure4A presents the results of the ABC-PMC analysis » (21)_1 =2

. - . oy = (Aly)4,

and plots the 95 % streamflow simulation uncertainty ranges [
(dark grey region) using the ABC-PMC sampler. This re-
sult is derived from theV = 1000 posterior solutions using where A’ denotes the difference operator appliedubse-
the 2.5 and 97.5 percentile of the simulated discharge valgquent timesRice 1984 Hall et al, 199Q Seifert et al.1993
ues. The artificial discharge observations are indicated witlDette et al.1998. This estimator was introduced Yfrugt et
red circles. The simulations nicely track the observed dataal. (2005 and was shown to work well for daily and hourly

(11)
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Table 1. Prior uncertainty ranges of hmodel parameters.

Parameter Symbol  Minimum  Maximum Units
Maximum interception Imax 0 10 mm
Soil water storage capacity  Smax 10 1000 mm
Maximum percolation rate  Omax 0 100 mmd!?
Evaporation parameter aF 0 100 -
Runoff parameter af -10 10 -
Time constant, fast reservoir Kg 0 10 days
Time constant, slow reservoir Kg 0 150 days

Table 2. Description of the SAC-SMA model parameters and their (uniform) prior uncertainty ranges.

4839

Parameter Symbol Minimum  Maximum  Units
Upper zone tension water maximum storage UzTwWwMm 1.0 150.0 mm
Upper zone free water maximum storage UZFWM 1.0 150.0 mm
Lower zone tension water maximum storage LZTWM 1.0 500.0 mm
Lower zone free water primary maximum storage LZFPM 1.0 1000.0 mm
Lower zone free water supplemental maximum storage LZFSM 1.0 1000.0 mm
Additional impervious area ADIMP 0.0 0.40 -
Upper zone free water lateral depletion rate UzK 0.1 0.5 day
Lower zone primary free water depletion rate LZPK 0.0001 0.025 —day
Lower zone supplemental free water depletion rate LZSK 0.01 0.25 ~Yday
Maximum percolation rate ZPERC 1.0 250.0 -
Exponent of the percolation equation REXP 1.0 5.0 -
Impervious fraction of the watershed area PCTIM 0.0 0.1 -
Fraction percolating from upper to lower zone free water storage = PFREE 0.0 0.6 -
Table 3. Computational efficiency of GLUE and ABC for the 2050 ® (C)GLUE ©) ©®
French Broad river basin data set: Acceptance rate (AR, %) and ég;’
total number of SAC-SMA and hmodel function evaluations (FE) Sz III
required to sampl&/ = 1000 behavioral solutions. g™ _..||||I||]
SAC-SMA hmodel g (G ©) (H)ABC 0) @)
ABC GLUE ABC GLUE 5
o)
AR, % 041 0.016 0.50 0.06 g™
FE,—~ 242004 6110640 201192 1608810 B e VA A 77 1S VR S VA 17

* Derived from linear scaling of FE needed to sample 300 (SAC-SMA) and 100

(hmodel) behavioral solutions. Fig. 5. Posterior distribution of five randomly chosen SAC-SMA

model parameters derived frofA) GLUE and(B) ABC using his-
torical streamflow data from the French Broad river basin.

discharge data. Heteroscedasticity is easily identified by ap-
plying the nonparametric estimator locally in the calibration ability) and the bottom panel shows the corresponding coun-
data time series. This provides arvector of measurement terparts for ABC. To limit the computational burden, GLUE
errors, hereafter referred to &g = {55,,...,55,}. The lim-  was terminated after 300 behavioral solutions were found.
its of acceptability in Eq.9) are now defined to bé; = This is sufficient for comparative purposes. The marginal
axay, forr ={1,...,n} usinga = 2. We now summarize the distribution of the lower zone primary free water depletion
results of GLUE and ABC for both models and watersheds. rate (LZPK) follows a normal distribution, whereas the his-
Figure5 plots histograms of the behavioral solutions of an tograms of the other parameters deviate considerably from
illustrative set of five SAC-SMA model parameters for the normality and tend to assign the highest probability mass
French Broad watershed. The PMC sampler terminated itat the lower (PCTIM, ADIMP and LZFSM) or upper bound
search withe < 0.06, corresponding to a coverage of 94% of (LZFPM). The posterior parameter uncertainty ranges appear
the discharge data within the effective observation error. Thaather large and essentially cover the entire prior distribution
top panel presents the results for GLUE (limits of accept-defined previously in Tabl@. This uncertainty is perhaps
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Table 4. Statistics of the GLUE, ABC and DREAM (formal likelihood function) derived posterior parameter distribution for the calibration
and evaluation period of the French Broad river basin: root mean square error (RMSE) of the posterior mean SAC-SMA simulation and
coverage of the associated 95 % streamflow simulation uncertainty ranges.

ABC DREAM GLUE
Calibration  Evaluation Calibration  Evaluation Calibration  Evaluation
RMSE, ms~1 5.44 4.76 4.79 4.85 5.33 4.63
Coverage, % 73.89 69.89 17.35 11.59 76.74 71.08

Table 5. Statistics of the GLUE, ABC and DREAM (formal likelihood function) derived posterior parameter distribution for the calibration
and evaluation period of the French Broad river basin: root mean square error (RMSE) of the posterior mean hmodel simulation and coverage
(%) of the associated 95 % streamflow simulation uncertainty ranges.

ABC DREAM GLUE
Calibration  Evaluation Calibration  Evaluation Calibration  Evaluation
RMSE, mPs~1 6.14 5.80 5.23 5.08 6.15 5.76
Coverage, % 67.38 61.86 7.33 10.58 68.14 60.86

Simulated
Streamflow [mgls]

009 017 025
LZsK

Simulated
Streamflow [m3ls]

‘ ‘ ‘ ‘ ‘ Fig. 7. Bivariate scatter plots of the behavioral (posterior) sam-
0 50 100 150 200 250 300 350 . . .
Time[d] ples of three different (randomly selected) parameter pairs using
GLUE (top panels) and ABC (bottom panel§}) LZSK-LZPK,

Fig. 6. SAC-SMA derived 95 % streamflow simulation uncertainty (B) PFREE-ADIMP, andC) ZPERC-LZPK. The scatter plots de-
ranges (grey region) of the calibration period of the French Broadrived with both methods are in close agreement but demonstrate an
river basin usindA) GLUE and(B) ABC. The observed discharge important difference in sampling density. The computational bud-
data are indicated with the solid red dots. We limit our display to get of GLUE was limited to approximately 2 days, and within this
the first 365-days of the calibration data set to simplify graphical time frame the Latin hypercube sampling method located only 300
interpretation. The simulation uncertainty ranges appear very simiqhehavioral solutions.

lar and nicely cover the observed discharge data.

Now that the posterior parameter uncertainty has been de-
unrealistically large and much larger than what can be exfined, we focus our attention on the actual discharge simu-
pected from an explicit likelihood function, but not surprising lations. Figure6 presents the outcome of this analysis and
given the size of the effective observation error used to depresents the 95% streamflow uncertainty ranges (gray re-
fine the limits of acceptability. What is most important, how- gion) of the GLUE (top panel) and ABC (bottom panel) de-
ever, is the finding that the GLUE and ABC derived posterior rived posterior parameter distribution. The simulation uncer-
parameter distributions are essentially similar. This providestainty ranges appear rather large but nicely cover approxi-
further support for our claim that the limits of acceptability mately 74 % of the discharge observations. The simulation
approach of GLUE can be interpreted as a special case afesults of GLUE and ABC are in strong agreement, which is
formal Bayes. We will further elaborate on this equivalenceto be expected given the strong similarity of the behavioral
in the final section of this paper. samples derived with both methods.
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Fio. 8. SAC-SMA derived 95 % st " imulati aint LZSK-LZPK, (B) PFREE-ADIMP, and (C) ZPERC-LZPK
'9. ©. ~oVIA derive o streamtiow simuliation uncer a'n.yasubspaces are virtually empty and thus deemed nonbehav-
ranges (grey region) for a three-year portion of the evaluation perio

of the French Broad river basin using th%) GLUE and(B) ABC loral. This ;uggests at least some level of correlatign betwgen
derived posterior parameter distribution. The observed dischargéhe ppsterlor parameter Samplles.. The difference |.n SarT‘P"”g
data are indicated with the solid red dots. density between both panels is simply due to an insufficient
computational budget for GLUE to create= 1000 behav-
ioral solutions. GLUE was terminated after 300 posterior
Although the numerical results of GLUE and ABC are samples were found.
very similar, the PMC sampler requires only 1/30 (1/8) ofthe We now proceed with out-of-sample prediction and plot
simulations of GLUE to locat& = 1000 posterior solutions in Fig. 8 the streamflow uncertainty ranges (gray region) of
for the SAC-SMA (hmodel) (see TabB. The advantage of the SAC-SMA model for a three-year portion of the eval-
PMC is more and more apparent with increasing dimension-uation data set of the French Broad watershed. This period
ality of the parameter space. If the search space is relativelgommences immediately after the last day of the calibration
low-dimensional (hmodel) and the space of behavioral so-data set, with the initial state at=0 having been derived
lutions relatively large in comparison to the prior parameterfrom the calibration ensemble. The top panel presents the re-
space, both sampling methods will rapidly sample- 1000  sults of GLUE and the bottom panel plots the corresponding
behavioral solutions. If, on the contrary, the search space isesults of ABC. Perhaps not surprisingly, both methods ex-
of higher dimensions (SAC-SMA), or the behavioral solu- hibit similar results and provide a discharge ensemble that
tion space is made up of a small portion of the prior parame-envelops about 70 % of the observed discharge data (red cir-
ter space, Latin hypercube sampling (and ABC-REJ) will becles). The strong similarity between the simulation results of
rather inefficient, needing many thousands of draws from thethe calibration and evaluation sample inspires confidence in
prior distribution to find just a handful of good (behavioral) the ability of the behavioral parameter set to accurately de-
solutions. The PMC sampler achieves a higher sampling effiscribe the rainfall-runoff transformation of the French Broad
ciency by iteratively reducing the value ©fiuring the search  river basin.
and adaptively updating the scale and orientation of the pro- Table 4 summarizes the results of GLUE and ABC for
posal distribution. Note that the PMC and Latin hypercubethe SAC-SMA model and French Broad watershed, present-
sampling strategies used herein vary all parameters at a timéng the root mean squared error (RMSE) of the posterior
and hence further efficiency improvements are to be expectethean discharge simulation and associated coverage of the
in high-dimensional parameter spaces with the usage of ged5 % prediction intervals for the calibration and evaluation
netic operators such as crossover and mutation. period. For completeness, we also list the results of the SAC-
To provide more insights into the sampled parameter spac&MA model with a formal likelihood function, Eg4], us-
of the French Broad river basin, please consider Figthich ing the heteroscedastic measurement eftoderived from
presents two-dimensional scatter plots of the posterior samthe nonparametric difference operator. The listed statistics
ples derived with GLUE (top panel) and ABC-PMC (bottom summarize our main findings thus far. The results of GLUE
panel) for three selected parameter pairs. The bivariate samand ABC are virtually identical and show a consistent per-
ple plots appear very similar and confirm our previous find-formance during the calibration and evaluation period. The
ings in Fig.5 and demonstrate significant scatter with behav-95 % uncertainty ranges derived with both methods encom-
ioral samples that extend their entire uniform prior ranges.pass about 70 % of the discharge observations. This coverage
But this does not necessarily mean that the posterior paramsf the parameter uncertainty is significantly larger than the
eter space is badly defined. Instead, large portions of the (Appproximately 12—-17 % derived from a classical likelihood
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Fig. 10.Bivariate scatter plots of the behavioral (posterior) samples 5 = 0 = 0 0 0 0
of three different (randomly selected) hmodel parameter pairs us- Time [d]

ing GLUE (top panels) and ABC (bottom panel§)) ar — Omax

(B) K — Ks, and(C) Smax— K. The scatter plots derived with
both methods are in close agreement but demonstrate an importal
difference in sampling density. The computational budget of GLUE
was limited to about 3 days, which has resulted in 100 behaviora
solutions.

Fig. 11. Hmodel derived 95 % streamflow simulation uncertainty
ranges (grey region) of the calibration period of the French Broad
river basin usingdA) GLUE and(B) ABC. The observed discharge
Idata are indicated with the solid red dots. We limit our display to
the first 365 days of the calibration data set to facilitate graphical in-
terpretation. The uncertainty ranges appear very similar and nicely
cover the observed discharge data.

function. This finding has important practical utility, for in-
stance within the context of flood forecasting. The behavioral
parameter distribution derived with ABC and GLUE pro-
vides a reasonable initial estimate of the total out-of-samplégoral solution. Because of sampling inefficiency, the GLUE
prediction uncertainty. On the contrary, the posterior param-calculations were terminated after 100 behavioral samples
eter uncertainty derived from a classical likelihood function were identified. This explains the apparent differences in
only envelops a small percentage of the streamflow obsersampling density. Nevertheless, the bivariate plots of the pos-
vations. It is worth noting that this coverage will be inflated terior samples derived with both methods are in strong agree-
if other sources of uncertainty are considered in the formalment with each other, with behavioral solutions that occupy
Bayesian analysis. Nevertheless, this requires a better undeonly a relatively small part of the prior parameter space. This
standing of precipitation and model structural errors. is particularly true for theer — Omax subspace. The sampled
Our main focus thus far has been on the SAC-SMA model,parameter pairs appear rather uncorrelated, which suggests
without recourse to the simulation results of the hmodel. Fig-that the different hmodel parameters each control a differ-
ure 9 shows posterior histograms of five of the hmodel pa- ent part of the simulated watershed response. This simpli-
rameters derived with GLUE (top panel) and ABC (bottom fies posterior inference, favoring a hierarchical sampling ap-
panel) using the French Broad calibration data set. The PMQroach in which parameters are estimated sequentially.
sampler determined a maximum possible coverage of 95% We now demonstrate how the hmodel parameter uncer-
of the discharge data within the uniform hypercube definedtainty translates into streamflow simulation uncertainty. We
by the effective observation error. The results in Figsll separately depict the results for the calibration (Eib.and
thus pertain to this coverage level. The marginal posteriorevaluation (Figl2) period. As expected, the simulation re-
parameter distributions derived with GLUE and ABC again sults derived with GLUE and ABC are in close agreement.
demonstrate a strong agreement. Most of the hmodel paranFhe 95% simulation uncertainty ranges encompass about
eters, with the exception df,ax anda g, are reasonably well 67 % of the calibration data observations (see Tapld his
defined by calibration against the observed discharge datas much higher than the 7 % coverage derived with a classical
The paramete©Qmax is particularly well resolved and favors likelihood function using MCMC simulation with DREAM.
values close to zero — something that is physically rather un¥et between days 205 and 270 the posterior ensemble sys-
realistic and likely due to errors in the model formulation and tematically over predicts the actual discharge observations.
precipitation data. This positive bias is likely caused by an error in the measured
Figure 10 presents two-dimensional scatter plots of the rainfall data around day 205. This rainfall error accumulates
posterior samples of three selected parameter pairs. The tap the simulated state variables and continues to persist un-
panel corresponds to GLUE and the bottom panel illustratedil the next significant rainfall event around day 270. Rain-
the same results for ABC. Each plus symbol depicts a behavfall data correction would seem appropriaiayetski et al.
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Table 6. Statistics of the GLUE, ABC and DREAM (formal likelihood function) derived posterior parameter distribution for the calibration

and evaluation period of the Leaf River watershed: root mean square error (RMSE) of the posterior mean SAC-SMA simulation and coverage

(%) of the associated 95 % streamflow simulation uncertainty ranges.

ABC DREAM GLUE
Calibration  Evaluation Calibration  Evaluation Calibration  Evaluation
RMSE, ms1 20.95 20.76 16.39 19.23 20.73 20.62
Coverage, % 80.02 64.78 22.11 21.90 82.54 68.25
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Fig. 13. Posterior distribution of five randomly chosen SAC-SMA
model parameters derived from GLUE (top panels), and ABC (bot-
tom panels) using historical streamflow data from the Leaf River
watershed in Mississippi.

Simulated
Streamflow [m3/s]
8 3

0 I I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Time[d]

Fig. 12. Hmodel derived 95 % streamflow simulation uncertainty Pottom panel shows the corresponding counterparts derived
ranges (grey region) for a three-year portion of the evaluation pewith ABC. The histograms derived with both methods are
riod of the French Broad river basin using t%) GLUE and(B) again strikingly similar, yet the PMC sampler used in ABC is
ABC derived posterior parameter distribution. The observed dis-about 30 times more efficient (not tabulated) in sampling the
charge data are indicated with the solid red dots. N = 1000 behavioral solutions. Note that SAC-SMA param-

eters are not particularly well defined by calibration against

the limits of acceptability. The marginal posterior uncertainty
20064 b; Vrugt et al, 20083 Beven 2009 but is beyond the  ranges are rather large, with the exception of the parameter
scope of the present paper. LZPK, which tends to favor values close to zero.

The evaluation data period again highlights the strong op- Finally, Fig. 14 illustrates the performance of the GLUE
erational similarity of GLUE and ABC, but the average width and ABC derived posterior parameter distributions for an
of the 95% streamflow simulation uncertainty ranges ap-independent evaluation period. The GLUE (top panel) and
pears somewhat smaller. Indeed, the coverage has reduc@BC (bottom panel) derived 95 % posterior streamflow un-
to approximately 61 %. Note that the posterior ensemble syseertainty ranges and again appear nearly equivalent (ex-
tematically underestimates the peak flow events. This can beected), containing about 65 % of the observed discharge val-
the effect of an increased rainfall intensity during the eval-ues. This is somewhat smaller than the 80 % coverage ob-
uation period or some sort of epistemic errBegen 2006 tained during the calibration data period (not shown herein).
2009 Beven et al.2011). For practical application it would
seem most productive to extend the length of the calibration
data period to include a number of larger storm events. Thiss Discussion and conclusions
would certainly improve the fitting of the peak flow events
but not affect the main conclusions of this paper. In the past two decades, the GLUE methodologyBefren

We now turn our attention on the Leaf River data set andand Binley(1992; Beven and Free(2001); Beven (2006
present in Figl3 histograms of the marginal posterior dis- has found widespread application and use for model pa-
tributions of a representative group of five SAC-SMA pa- rameter and predictive uncertainty analysis. This method re-
rameters. The PMC sampler determined a maximum covjects the formal Bayesian paradigm in favor of finding a
erage of about 56 % of the discharge data within the effec-set of of behavioral solutions that are acceptably close to
tive observation error used herein. The top panel displaygshe non-error-free observations. This avoids over condition-
the results for GLUE for this coverage level, whereas theing of the posterior parameter space in nonideal cases with
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Fig. 14.SAC-SMA derived 95 % streamflow simulation uncertainty Fig. 15. lllustration of the effect of measurement data uncertainty
ranges (grey region) for a three-year portion of the evaluation periotbn the ABC-derived posterior parameter and streamflow uncer-
of the Leaf River watershed using ti&) GLUE and(B) ABC de- tainty for a representative 250-day portion of the French Broad cal-
rived posterior parameter distribution. The observed discharge datiration data set(A) 95 % simulation uncertainty assuming a de-
are indicated with the solid red dots. terministic,Y < H(#|-), and(D) stochastic model operatoy, <
H(6]) + N(0,65) with discharge measurement error derived from
the nonparametric estimator in Ed.1j. The observed discharge
data are indicated with solid red dots. The histograms at the right-
nontraditional error residual distributions. Indeed, Talles  hand side of each individual panel plot the corresponding marginal

6 demonstrate that the GLUE derived 95 % simulation un-posterior distributions of the SAC-SMA model parameters ADIMP
certainty ranges encompass a much higher percentage of tred PCTIM.
discharge observations than the posterior parameter predic-
tive uncertainty intervals derived from a classical likelihood
function. Formal likelihood functions that do not adequately standard deviation are rather weak summary metrics, which
describe the probabilistic properties of the error residualsexplains why the marginal posterior distribution of the reces-
tend to overestimate the actual information content of thesion constant was too wide (see F3g) and did not converge
data, providing estimates of the posterior parameter uncerto its expected distribution (Figb). Thus, there is a clear
tainty that are overly optimistic. need for meaningful summary statistics with a compelling
Many have criticized the GLUE methodology for being diagnostic power. Examples include the annual runoff and
subjective and lacking an appropriate mathematical underbaseflow coefficient and the flow duration curve as used in
pinning. To help bridge the gap between informal and for- Vrugt and Sadegk2013. Note that the ABC approach dif-
mal Bayesian approaches, this paper introduced likelihoodfers from multiple objective calibration methods in that the
free inference to hydrologic modeling and uncertainty anal-distance between the observed and simulated summary met-
ysis. This approach was introduced in the statistical litera-rics is jointly minimized.
ture about three decades adidgle and Gratton1984) for Numerical simulations presented in Figs14have shown
cases when an explicit likelihood (objective) function can- that, if each observation is treated as a summary variable,
not be justified. Such approaches, also referred to as ABCthen the ABC approach obtains very similar results to the
use one or multiple (sufficient) statistics to estimate the posdimits of acceptability approach of GLUE. A similar conclu-
terior parameter distribution. The premise behind ABC is sion was drawn in previous work kyott et al. (2012 but
that 6’ should be a sample from the posterior distribution following a different line of reasoning and within the con-
as long as the distance between the observed and simulatéeixt of the more traditional GLUE methodology presented
summary statistics is smaller than some small vaduein by Beven and Binley(1992. One issue deserves special at-
example of this was given in Sect. 3 by calibration of the tention, which is that within the limit of acceptability frame-
Nash cascade model against the mean and standard deviaork, the value ofe needs to be taken much larger than
tion of the discharge data. In the limit efgoing to zero, what is deemed statistically adequate. Standard applications
the behavioral solution space should converge to the actualf likelihood free inference define a solution to be behavioral
posterior distribution, pending the assumption that the cho-if the chosen summary statistics are within a small distance of
sen summary statistic(s) is (are) near sufficiéhitChard et  their observed counterparts. Yet for hydrologic systems with
al., 1999 Vrugt and Sadegh?013. But this was certainly many calibration observations, the probability of happening
not the case for the Nash cascade example. The mean angbon a simulation run that yields exactly the same data set as
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the one observed will be extremely small. The effective ob-analysis and help aid in detection of model malfunctioning
servation error remedies this problem, but the magnitude ofVrugt and Sadegh2013, (c) exploring ways to determine
this value is typically much larger than the theoretical valuethe temporal/spatial variability of individual summary met-
of € to guarantee converge to the “true” posterior param-rics for stochastic (Bayesian) analysis, (d) new approaches
eter distribution. Thus, although the limits of acceptability to diagnostic model selection using stochastic minimization
approach of GLUE is a special variant of the more genericof the mutual information, (e) improving the computational
ABC approach, one should be careful with interpretation ofefficiency of ABC sampling$adegh and Vrug2013, and
the posterior parameter distribution. (f) practical applications. Challenges lie in the proper selec-
The results in Tableg6 demonstrate that the RMSE tion of summary metrics that properly extract the information
of the posterior mean ABC (GLUE) simulation is substan- from the calibration data, how to deal with input data un-
tially larger than its counterpart derived with DREAM using certainty, and how to detect epistemic errors (lack of knowl-
a formal likelihood function. This finding is not surprising. edge). Our current research efforts are devoted to these dif-
The likelihood function used in DREAM is specifically de- ferent topics.
signed to minimize the squared distance between the model
simulation and corresponding data. This metric poses much .
stronger constraints on the parameter values than the limit§PPendix A
of acceptability used in GLUE or ABC, and hence results in ~ ~ ~
4 . . Suppose some measurement ditas {y1,...,y,} and a
a better compliance of the simulated and observed discharge . )
X . - “model that predicty <« H(0|-) with parameter valueg
data. The performance of the posterior mean ABC simulation P ' ; S
. o ; . 0 € R*. We define a prior distributiorp(#) and a vec-
can be enhanced if the limits of acceptabilitgre tightened . :
. : . or with decreasing tolerance values= {¢1,...,€;} SO
and/or additional summary metrics are used during mode , ;
- R S hate; 11 <¢€;,Vje(2,...,J}. The ABC population Monte
fitting. Ideally, the chosen summary statis§ic) is sufficient
. . . Carlo method pproceeds as followBu¢ner and van Zangdt
for 6 and thus provides as much information for the param—zom
eters as the original data sétitself. However, if the exact '
(perfect) likelihood function is unknown, it will be difficult
to determine a sufficient statistic. One could then use mul
tiple different summary statistics that each capture different Atiterationj =1,
aspects/signatures/patterns of the input-output respBase ( fori=1,..., N do

Algorithm 2 ABC-PMC

mann et al.2009 Vrugt and Sadegt2013. while p(S(Y), S(Y)) > e do,

The findings presented thus far are derived by compar- Sampled from the prior§ ~ p(@)
ing the SAC-SMA and hmodel simulated streamflow time Simulate dat&’ usingé , Y < H(® |-)
series with the observed data. This deterministic approach Calculatep(S(Y), S(Y (8 )))

does not generate a random sample at each time step, and €nd Vl"h”e ,
therefore violates a basic requirement of ABC. Neverthe- Seto;” <0
less, the use of a deterministic model is adequate within Setwi1<— %
the current context because the limits of acceptability used €nd f<2)r .
herein are substantially larger (four times) than the measure- ifit{'elra‘ti_oﬁc?i\’(fl
ment error of the streamflow data. To illustrate this, please for j =2 J 7 d’o
consider Fig.15 that plots the ABC-derived parameter and for i _ 1N do

95 % posterior simulation uncertainty ranges for the French while p(S(¥), S(Y)) > ¢; do
Broad river basin using deterministic (top panel) and stochas-
tic (bottom panel) SAC-SMA modeling. We limit our display

to a 250-day portion of the calibration data period and the

:N)’

Sampleo/ from the previous iterationo/ ~ 01N, -1
. S B |
with probabilityw;. ,;

marginal posterior distribution of two selected SAC-SMA Perturby’ by samplingd” ~ N(8',0?_,)
model parameters (right-hand side). The stochastic simula- Simulate data usingd”, Y < H(®"|-)
tion is simply derived by adding a random measurement er- Calculatep(S(\?), S(Y(()”)))

ror to the daily modeled SAC-SMA discharge values. As ex- end while

pected, the posterior streamflow uncertainty ranges and pos- Seto! <0

p®)
_ PO
Yilawl q®] 18] .02 )

terior histograms appear very similar. This concludes our nu-
merical simulations.

The ABC methodology opens an entire new field of re- end for
search with infinite scope for (amongst others) (a) inventing Setojz < 2Cou@1.y)
new summary metrics that are self-sufficient and properly _end for
rooted in hydrologic and information theory, (b) developing
methods and guidelines to interpret the outcome of the ABC

Setwij <«
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This concludes the pseudo-code of the population MonteBarnes, C., Filippi, S., Stumpf, M. P. H., and Thorne, T.: Consid-

Carlo sampler. erate approaches to achieving sufficiency for ABC model selec-
tion, available athttp://arxiv.org/pdf/1106.6281v2.pdfast ac-
cess: 1 December 2013), 2011.

Appendix B Bates, B. C. and Campbell, E. P.: A Markov chain Monte Carlo
scheme for parameter estimation and inference in conceptual

The PMC sampler oTurner and van Zand2012 assumes rainfall-runoff modeling, Water Resour. Res., 37, 937-947, 2001.

that the sequence efvalues is specified by the user. Practical Beaumont, M. A., Zhang, W., and Balding, D. J.: Approximate

experience suggests that a poor selectionsf{es, ..., e;} Bayesian computation in population genetics, Genetics, 162,

can lead to very low acceptance rates or even premature con- 2025-2035, 2002. .

vergence ife has been taken too small. We therefore imple- Beven, K. J. and Binley, A. M.: The future of distributed models:

ment an arguably more advanced strategy and let the sampler Model calibration and uncertainty prediction, Hydrol. Process.,

. . 6, 279-298, 1992.
adaptively select the values of(j > 1).

. . . Beven, K. J.: Prophecy, reality and uncertainty in distributed hydro-
This strategy is implemented as follows. The user defines logical modeling, Adv. Water Resour., 16, 41-51, 1993.

€1. In practice, a large value will typically suffice. At the pgeyen, K. and Freer, J.: Equifinality, data assimilation, and uncer-
end of the first iteration (just after? has been calculated),  tainty estimation in mechanistic modeling of complex environ-
the algorithm computes the cumulative distribution function  mental systems using the GLUE methodology, J. Hydrol., 249,
(cdf) of theN acceptecb(S(\?), S(Y)) values. This function 11-29, 2001.

ranges between 0 and 1 and describes the probability that Beven, K. and Young, P.. Comment on “Bayesian recursive parame-

random variableX ( in this casep(') ) will be found at a ter estimation for hydrologic quels" by M. Thiemann, M. Tros-
to be that value op(-) at which the cdf is equal to.0. The doi:10.1029/2001WR001182003.

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320,

PMC sampler proceeds with the next iteratign= 2, and 18-36, 2006.

thls_ recipe is continued during each successive next iteratio even, K., Smith, P. J., and Freer, J. E. So why would a modeller
until €; reaches some lower default valug defined by the user ., 5ose to be incoherent?, J. Hydrol., 354, 15-32, 2008.
(Sect. 3) or when the successive reductior inas become  pgeyen, k.: Comment on “Equifinality of formal.(DREAM) and in-
smaller than 0.02¢; —€;-1 < 0.02) (Sect. 4). formal.(GLUE) Bayesian approaches in hydrologic modeling?”
Numerical simulation has shown that this adaptive updat- by Vrugt, J. A, ter Braak, C. J. F., Gupta, H. V., and Robin-
ing strategy ok significantly enhances the search efficiency son, B. A., Stoch. Environ. Res. Risk As., 23, 1059-1060,
of the PMC sampler. Moreover, this implementation does not  doi:10.1007/s00477-008-0283-009.
require the user to specify= {es, ..., €;}, which is an im-  Beven, K., Smith, P. J., and Wood, A.: On the colour and spin
portant practical advantage. of epistemic error (and what we might do about it), Hy-
drol. Earth Syst. Sci., 15, 3123-3133, df:5194/hess-15-3123-
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