# UC Davis UC Davis Electronic Theses and Dissertations

# Title

Characterization of the Preemergence Herbicide Pyroxasulfone for Use in California Orchard Systems

Permalink https://escholarship.org/uc/item/4jx460k4

Author Contreras Jr, Andres

Publication Date 2023

Peer reviewed|Thesis/dissertation

Characterization of the Preemergence Herbicide Pyroxasulfone

for Use in California Orchard Systems

By

Andres Contreras Jr

### THESIS

Submitted in partial satisfaction of the requirements for the degree of

### MASTER OF SCIENCE

in

Horticulture and Agronomy

in the

### OFFICE OF GRADUATE STUDIES

of the

### UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Bradley D. Hanson, Chair

Kassim Al-Khatib

Matthew E. Gilbert

Committee in Charge

#### Abstract

Identification of potential weed management tools for California tree nut orchard systems is an ongoing endeavor. Proper weed management reduces competition with the crop and facilitates harvest. Many weed control programs include the use of preemergence and postemergence herbicides. However, selection pressure has led to herbicide-resistant weeds which require additional options. A potential tool for orchard weed management is pyroxasulfone, an HRAC/WSSA group 15 herbicide that is an inhibitor of very long-chain fatty acid synthesis. Pyroxasulfone is registered as a preplant incorporated or preemergence herbicide, in corn, soybean, and cotton in some Midwestern states of the United States. However, there is limited published literature on the use of pyroxasulfone in tree nut orchard systems. A series of crop safety and weed control efficacy experiments were carried out for the characterization of pyroxasulfone in California orchard crops. A suspension concentrate (SC) formulation of pyroxasulfone was evaluated in fallow field studies initiated in fall 2020 and carried out into summer 2022 near Davis, CA. Studies were conducted to evaluate the weed control efficacy of pyroxasulfone at 145, 219, and 293 g ha<sup>-1</sup> rates. In addition, an experiment was conducted in the summer of 2021 to evaluate herbicide efficacy in response to two incorporation timings. Single application and sequential applications experiments evaluated the use of a water dispersible granule (WDG) formulation of pyroxasulfone or pyroxasulfone (SC) at multiple rates in comparison to commercially used standards flumioxazin, indaziflam, oxyfluorfen, pendimethalin, penoxsulam + oxyfluorfen, and rimsulfuron. Experiments were conducted in a fallow field, a vineyard and in almond and walnut orchards near Arbuckle, Davis, and Winters, CA in spring 2021 and spring 2022. A two-year crop safety experiment was conducted to evaluate repeated applications of above-label rates including pyroxasulfone at 1,199 g ha<sup>-1</sup> and S-

ii

metolachlor at 14,010 g ha<sup>-1</sup> on 1-2-yrs-old tree nut crops in spring 2021 and spring 2022. Both formulations of pyroxasulfone SC and WDG performed similarly to commercial standards with up to 95% control of broadleaf and grass weeds. No significant differences in weed control were found among treatments in the incorporation timing study. Crop injury was not observed in the vineyard, established orchard, or young orchard studies and there were no treatment effects on tree trunk diameter of almond, pistachio, and walnut in the two-year crop safety study. These results indicate a potential for pyroxasulfone in California tree nut orchard systems which would be a new mode of action and benefit to manage herbicide-resistant weeds in these crops.

Key words: crop safety, pyroxasulfone, tree nut cops, and weed control.

#### Acknowledgments

This work is written in dedication to my parents Andres Contreras and Ascension Contreras. They have instilled in me a motivation that has allowed me to surpass all obstacles faced in life and have supported me in each stage of my academic journey. The cultural values that my upbringing provided will remain at the forefront of it all: to always be proud of my heritage, to be proud of where I grew up, to give back to the community, to respect everyone, and to give thanks to God. ¡Gracias apa y ama!

Thank you to Dr. Brad Hanson for accepting me in to your lab and for being such a great mentor. Thank you to all of my labmates and colleagues for your time and friendship, Guelta, Matt, Steve, Katie, Seth, Guy, Stephen, Tong, Pershang, Deniz, Aaron, and Sarah.

To my brothers Sergio and Arturo Contreras, thank you for always supporting me along the way. The motivation we give each other is unlike any other, no se detengan! To my cousins Francisco and Mayra, si se pudo! To Regina, thank you for always having my back and for supporting me in this journey, lo logramos!

To all my friends in South Georgia and to the Atkinson County Georgia community, thank you! The small-town boy has done it!

A special thank you to the BASF Corporation for funding the majority of this research. ¡Gracias Dios!

## **Table of Contents**

| Abstract        | p. ii   |
|-----------------|---------|
| Acknowledgments | p. iv   |
| List of Tables  | p. vi   |
| List of Figures | p. vii  |
| Appendix List   | p. viii |

| ntroductionp. 1            |
|----------------------------|
| Materials and Methodsp. 4  |
| Results and Discussionp. 7 |
| References p. 15           |
| Fables                     |
| Figuresp. 31               |
| Appendixp. 34              |

## List of Tables

| <b>Table 1</b> . Physiochemical proprieties of three preemergence herbicides used in weed control     |
|-------------------------------------------------------------------------------------------------------|
| experiments                                                                                           |
| <b>Table 2.</b> Source of herbicides used in characterization of pyroxasulfone in California orchard  |
| systemsp. 21                                                                                          |
| <b>Table 3.</b> Application details with pyroxasulfone, indaziflam, and pendimethalin in fall and     |
| spring fallow field experiments and the irrigation incorporation experiment near Davis,               |
| САр. 22                                                                                               |
| Table 4. Application details for weed control experiments evaluating pyroxasulfone in                 |
| comparison to other preemergence herbicides in a fallow field, vineyard, and almond and walnut        |
| orchards near Arbuckle, Davis, and Winters, CA in spring 2021p. 23                                    |
| Table 5. Application details for a crop safety study in young almond, pistachio, and walnut trees     |
| evaluating high rates of pyroxasulfone and S-metolachlor near Davis, CA in spring 2021 and            |
| 2022p. 24                                                                                             |
| <b>Table 6.</b> Overall and dominant weed control with preemergence herbicides in a fall fallow field |
| experiment conducted in 2020 and 2021 near Davis, CAp. 25                                             |
| <b>Table 7.</b> Overall and dominant weed control with preemergence herbicides in a fallow field      |
| experiment conducted in spring 2021 (study 3) near Davis, CAp. 26                                     |
| Table 8. Overall weed and yellow nutsedge control with preemergence herbicides in an                  |
| irrigation incorporation experiment (study 5) near Davis, CA in summer 2021p. 27                      |

| Table 9. Overall and dominant weed control with preemergence herbicides in a sequential       |
|-----------------------------------------------------------------------------------------------|
| application experiment conducted in a fallow field and almond orchard in spring 2021 and 2022 |
| near Arbuckle and Davis, CAp.28                                                               |
| Table 10. Overall and dominant weed control in a single application orchard experiment        |
| conducted in almond and walnut orchards in spring 2022 near Arbuckle and Davis, CAp. 29       |
| Table 11. Overall weed control 120 DAT with preemergence herbicides in an orchard and         |
| vineyard experiment near Davis and Winters, CA in spring 2021p. 30                            |

# List of Figures

| Figure 1. | Young almond tree response to pyroxasulfone and S-metolachlorp.      | 31 |
|-----------|----------------------------------------------------------------------|----|
| Figure 2. | Young walnut tree response to pyroxasulfone and S-metolachlorp.      | 32 |
| Figure 3. | Young pistachio tree response to pyroxasulfone and S-metolachlorp. 3 | 33 |

# **Appendix Tables**

| Appendix table 1. Overall control in a fallow field study with preemergence herbicides near    |
|------------------------------------------------------------------------------------------------|
| Davis, CA. in fall 2020 (study 1)p.35                                                          |
| Appendix table 2. Control of shepherd's purse in a fallow field study with preemergence        |
| herbicides near Davis, CA in fall 2020 (study 1)p.35                                           |
| Appendix table 3. Control of filaree in a fallow field study with preemergence herbicides near |
| Davis, CA in fall 2020 (study 1)p.35                                                           |
| Appendix table 4. Control of annual bluegrass in a fallow field study with preemergence        |
| herbicides near Davis, CA in fall 2020 (study 1)p.36                                           |
| Appendix table 5. Control of henbit in a fallow field study with preemergence herbicides near  |
| Davis, CA in fall 2020 (study 1)p.36                                                           |
| Appendix table 6. Control of square willowherb in a fallow field study with preemergence       |
| herbicides near Davis, CA in fall 2020 (study 1)p.36                                           |
| Appendix table 7. Overall weed control in a fallow field study with preemergence herbicides    |
| near Davis, CA in fall 2021 (study 2)p.37                                                      |
| Appendix table 8. Control of field bindweed in a fallow field study with preemergence          |
| herbicides near Davis, CA in fall 2021 (study 2)p.37                                           |
| Appendix table 9. Control of malva in a fallow field study with preemergence herbicides near   |
| Davis, CA in fall 2021 (study 2)p.37                                                           |
| Appendix table 10. Control of swinecress in a fallow field study with preemergence herbicides  |
| near Davis, CA in fall 2021 (study 2)p.38                                                      |

| Appendix table 11. Overall weed control in a fallow field study with preemergence herbicides |
|----------------------------------------------------------------------------------------------|
| near Davis, CA in spring 2021 (study 3)p.38                                                  |
| Appendix table 12. Control of common lambsquarters in a fallow field study with preemergence |
| herbicides near Davis, CA in spring 2021 (study 3)p.38                                       |
| Appendix table 13. Control of redroot pigweed in a fallow field study with preemergence      |
| herbicides near Davis, CA in spring 2021 (study 3)p.39                                       |
| Appendix table 14. Control of prostrate pigweed in a fallow field study with preemergence    |
| herbicides near Davis, CA in spring 2021 (study 3)p.39                                       |
| Appendix table 15. Control of field bindweed in a fallow field study with preemergence       |
| herbicides near Davis, CA in spring 2021 (study 3)p.39                                       |
| Appendix table 16. Overall weed control in a fallow field study with preemergence herbicides |
| near Davis, CA in spring 2022 (study 4)p.40                                                  |
| Appendix table 17. Control of common lambsquarters in a fallow field study with preemergence |
| herbicides near Davis, CA in spring 2022 (study 4)p.40                                       |
| Appendix table 18. Control of prostrate pigweed in a fallow field study with preemergence    |
| herbicides near Davis, CA in spring 2022 (study 4)p.41                                       |
| Appendix table 19. Control of redroot pigweed in a fallow field study with preemergence      |
| herbicides near Davis, CA in spring 2022 (study 4)                                           |
| Appendix table 20-A. Overall weed control with pyroxasulfone, indaziflam, and pendimethalin  |
| as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5)p.42   |

**Appendix table 20-B**. Overall weed control with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings......p.42

**Appendix table 21-B.** Control of black nightshade with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings......p.43

**Appendix table 22-A.** Control of malva with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5)......p.44

**Appendix table 22-B.** Control of malva with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings......p.44

**Appendix table 24-B.** Control of common lambsquarters with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings......p.46

**Appendix table 26-B.** Control of prostrate pigweed with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings......p.48

**Appendix table 28.** Control of redroot pigweed in a preemergence herbicide sequential application study in a fallow field in spring of 2021 (study 6) near Davis, CA......p.50

**Appendix table 32.** Overall weed control in a preemergence sequential application study in a 2yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA......p.54

**Appendix table 35.** Control of crabgrass in a preemergence sequential application study in a 2yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA......p.57

**Appendix table 38.** Control of annual sowthistle in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA......p.60

**Appendix table 40.** Control of common knotweed in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8)......p.62

**Appendix table 41.** Control of field bindweed in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8)......p.63

**Appendix table 42.** Control of filaree in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle CA in spring 2022 (study 8)......p.64

**Appendix table 43.** Control of Italian ryegrass in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8)......p.65

**Appendix table 44.** Control of annual sowthistle in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8)......p.66

| Appendix table 48. Control of foxtail barley in a walnut orchard study using preemergence     |
|-----------------------------------------------------------------------------------------------|
| herbicides near Davis, CA in spring 2022 (study 9)p.70                                        |
| Appendix table 49. Control of filaree in a walnut orchard study using preemergence herbicides |
| near Davis, CA in spring 2022 (study 9)p.71                                                   |
| Appendix table 50. Control of California burclover in a walnut orchard study using            |
| preemergence herbicides near Davis, CA in spring 2022 (study 9)p.72                           |
| Appendix table 51. Overall weed control with preemergence herbicides in an almond orchard     |
| study in spring 2021 near Davis, CA (study 10)p.73                                            |
| Appendix table 52. Control of ryegrass with preemergence herbicides in an almond orchard      |
| study in spring 2021 near Davis, CA (study 10)p.74                                            |
| Appendix table 53. Control field bindweed with preemergence herbicides in an almond orchard   |
| study in spring 2021 near Davis, CA (study 10)p.75                                            |
| Appendix table 54. Overall weed control with preemergence herbicides in an almond orchard     |
| study in spring 2021 near Winters, CA (study 11)p.76                                          |
| Appendix table 55. Control field bindweed with preemergence herbicides in an almond orchard   |
| study in spring 2021 near Winters, CA (study 11)p.77                                          |
| Appendix table 56. Control of prostrate knotweed with preemergence herbicides in an almond    |
| orchard study in spring 2021 near Winters, CA (study 6)p.78                                   |
| Appendix table 57. Control of prostrate pigweed with preemergence herbicides in an almond     |
| orchard study in spring 2021 near Winters, CA (study 11)p.79                                  |

| Appendix table 58. Control of malva with preemergence herbicides in an almond orchard study   |
|-----------------------------------------------------------------------------------------------|
| in spring 2021 near Winters CA (study 11)p.80                                                 |
| Appendix table 59. Overall weed control with preemergence herbicides in a vineyard study in   |
| spring 2021 near Davis, CA (study 12)p.81                                                     |
| Appendix table 60. Control of filaree with preemergence herbicides in a vineyard study in     |
| spring 2021 near Davis, CA (study 12) p.82                                                    |
| Appendix table 61. Control of hare barley with preemergence herbicides in a vineyard study in |
| spring 2021 near Davis, CA (study 12)p.83                                                     |

## Introduction

| 2  | Orchard crops contribute substantially to the California economy, with almonds (Prunus              |
|----|-----------------------------------------------------------------------------------------------------|
| 3  | dulcis) alone bringing in 5.03 billion dollars; pistachios (Pistacia vera) and walnuts (Juglans     |
| 4  | regia) contribute 2.91 and 1.02 billion dollars, respectively (CDFA, 2021). There are various       |
| 5  | reasons to practice proper weed management in orchard crops, but two of the most important are      |
| 6  | to reduce competition with the crop and to facilitate harvest. Weeds have the ability to rapidly    |
| 7  | develop dense root systems and compete for nutrients and water which can limit young tree           |
| 8  | growth and fruit yield (Goff et al., 1991). Weeds also interfere with cultural practices, as is the |
| 9  | case of almond and walnut harvest, in which the nuts are mechanically shaken from the tree,         |
| 10 | swept into windrows in the orchard alley, and are left to dry for seven to ten days before they are |
| 11 | picked up for processing (Carbo and Connell, 2017). Weed debris can interfere with these            |
| 12 | practices making it slower and more difficult to recover the nuts.                                  |
| 13 | Weed control programs in conventionally-managed orchards in California typically                    |
| 14 | include tree strip applications of preemergence (PRE) herbicides in early winter followed by        |
| 15 | postemergence (POST) herbicides in spring, mowing of the alleyways during spring and                |
| 16 | summer, and a full orchard floor treatment with POST herbicides prior to harvest (Buchner et al.,   |
| 17 | 1998; Connell et al., 1996; Hanson et al., 2017). The use of broad spectrum herbicides with the     |
| 18 | same mode of action consecutively has led to resistance in weed species such as annual bluegrass    |
| 19 | (Poa annua), barnyardgrass (Echinochloa crus-galli), hairy fleabane (Erigeran bonariensis),         |
| 20 | horseweed (Erigeran canadensis), Italian ryegrass (Lolium multiflorum), and junglerice              |
| 21 | (Echinochloa colona) all of which are commonly found in California orchards (Hanson et al.,         |
| 22 | 2014; Heap, 2023). While PRE herbicides usage has risen in orchard and row cropping systems         |
| 23 | where resistance to multiple POST herbicides has developed reliance on the same mode of action      |

POST or PRE herbicides can eventually lead to weed species to develop resistance as a result of
herbicide selection pressure (Gressel and Segel, 1978; Heap, 2023). In efforts to manage
herbicide resistance, new herbicides are being developed or explored for uses in additional
cropping systems.

28 In 2011 pyroxasulfone was introduced into the pesticide market (APVMA, 2011) and 29 later it was registered for use in corn, soybean, and cotton in Midwestern states of the U.S. 30 (Nakatani et al., 2016). Pyroxasulfone is an inhibitor of very long chain fatty acids (VLCFA), 31 belonging to HRAC/WSSA group 15 herbicides (Nakatani et al., 2016; Tanetani et al., 2009, 32 2011). Resistance to VLCFA-inhibitors is limited so far with only thirteen weed species having 33 demonstrated resistance (Kumar et al., 2015; Strom et al., 2019; Heap, 2023). Pyroxasulfone has 34 had experimental uses in PRE and POST (typically early post) weed control programs, however 35 results have demonstrated greater weed control efficacy with PRE applications as compared with 36 other VLCFA-inhibitors (Stephenson et al., 2017; Lee, 2018; McNaughton et al., 2014). 37 VLCFA-inhibitors are most effective in the cotyledon stage of susceptible plants, they 38 inhibit early developments of VLCFA in roots and shoots (Böger et al., 2000, 2003; Tanetani et 39 al., 2011). VLCFA are fatty acid carbon chains that are composed of more than 18 carbon atoms. VLCFA-inhibitors have been found to halt the elongation of C18:0, C20:0, C22:0, C24:0, C26:0, 40 41 and C28:0 as well as the reduction of C18:1, C20:1, and C22:1 VLCFAs (Böger et al., 2000, 42 2003; Tanetani et al., 2011). VLCFA-inhibitors function by inhibiting the VLCFAs synthesizing 43 enzyme VLCFA elongase (VLCFA-E). The presumed target site of VLCFA-E is the thiol bond 44 found on the amino acid cysteine (Böger et al., 2000, 2003; Eckermann et al., 2003). 45 Pyroxasulfone has physicochemical properties that make it a viable tool to use in weed

46 control programs. It has a low affinity for organic matter with a K<sub>oc</sub> of 51-114, and a low water

solubility of 3.94 mg L<sup>-1</sup> (Table 1) (Tanetani et al., 2009; Nakatani et al., 2016; Ney, 1995). 47 Odero and Wright (2013) found that pyroxasulfone at rates of 194-271 g ha<sup>-1</sup> (g ha<sup>-1</sup>) can provide 48 49 up to 90% weed control on soils with 80% organic matter (OM). However, Yamaji et al. (2016) 50 found that soils with up to 3% OM can overcome pyroxasulfone's Koc and suggested a 51 pyroxasulfone rate of 200-300 g ha<sup>-1</sup>. Yamaji et al. (2016) hypothesized that OM does not 52 necessarily influence pyroxasulfone's efficacy. Due to its low water solubility and presumably 53 low affinity for organic matter, concerns for crop damage and leaching arose in regard to 54 pyroxasulfone mobility in soil. Westra et al. (2014) evaluated pyroxasulfone at 280 g ha<sup>-1</sup> on clay 55 loam and sandy loam soil and found that mobility was greater in the sandy loam and that 56 additional water by irrigation or rainfall can cause up to 14.6% of pyroxasulfone to leach into the 57 150-225 mm depth of the soil profile.

58 Previous experiments have evaluated the crop safety and weed control efficacy of 59 pyroxasulfone compared to atrazine, S-metolachlor, and other commonly used PRE herbicides in 60 cotton, corn, field pea, rice, soybean, and wheat production systems (Belfry et al., 2015; Geier et 61 al., 2006, 2009; Godwin et al., 2018; King et al., 2007, 2008; Kleemann et al., 2016; Stephenson 62 et al., 2017; Tidemann et al., 2014; Walsh et al., 2011; Webb, 2015). Given the demonstrated 63 weed control spectrum and broad use in many annual crops, pyroxasulfone could also be useful 64 in orchard crops. Additionally, as a group 15 herbicide pryoxasulfone would provide an 65 alternative mode of action for herbicide-resistant weeds in orchards. Currently napropamide is 66 the only VLFCA-inhibitor registered for use in California vineyards and almond orchards 67 although it is not widely used (CDPR, 2023). Few pyroxasulfone studies have been conducted in 68 tree nut cropping systems; therefore, the objectives of this research were to evaluate the crop

safety and weed control efficacy of pyroxasulfone in irrigated California tree nut orchardproduction systems.

71

#### **Materials and Methods**

72 Weed control experiments. The suspension concentrate (SC) and water dispersible 73 granule (WDG) formulations of pyroxasulfone were evaluated for crop safety and control of 74 broadleaf and grass weeds. A crop safety experiment and six weed control experiments were 75 conducted where pyroxasulfone was compared to commercial preemergence standards 76 flumioxazin, indaziflam, oxyfluorfen, pendimethalin, penoxsulam + oxyfluorfen, rimsulfuron, 77 and S-metolachlor (Table 2). In all experiments, assessments were conducted in reference to 78 nontreated control plots. Crop safety assessments were conducted every 7 days up to 30 days 79 after treatment (DAT) and followed by assessments every 15 days between 30-120 DAT. Visual 80 weed control assessments were conducted every 15 days up to 90 DAT and followed by 81 assessments every 30 days 90-180 DAT. 82 Studies for fall and spring fallow field experiments were conducted at the Plant Sciences 83 Field Facility of the University of California, Davis (UCD) (38.531614, -121.784142). Studies 84 were conducted in fall 2020 (study 1), fall 2021 (study 2), spring 2021 (study 3), and spring 2022 85 (study 4) (Table 3). ). In this region, most annual precipitation occurs during late fall to early 86 spring; during these fall fallow field experiments, study 1 received 101.6 mm of rain and study 2 87 received 190.5 mm of rain during the first thirty days after treatment (CIMIS 2023). 88 Spring fallow field experiment studies were sprinkler irrigated due to complete lack of 89 rainfall; study 3 received 50.8 mm of water 21 DAT, and study 4 received 12.7 mm of water 90 weekly for 8 weeks. In study 2 a maintenance spray with glufosinate at 1.143 g ha<sup>-1</sup> was

91 conducted on January 12, 2022, at 30 DAT to control a heavy population of swinecress

92 (*Lepidium coronopus*). A sprayer problem occurred during the spray treatment application in
93 study 4, which led to inconclusive results.

94 An irrigation incorporation experiment (study 5) was conducted at the Plant Sciences 95 Field Facility of the UCD (38.531614, -121.785567) in summer 2021 to evaluate performance 96 differences in herbicide applications made relative to two irrigation incorporation timings (Table 97 3). Each main plot was divided into two subplots; the subplots received the same herbicide 98 treatment but at different application timings relative to the first sprinkler irrigation. Applications 99 "A" and "B" were conducted 18 and 5 days before initial irrigation, respectively. Approximately 100 12.7 mm of water was applied weekly via sprinkler irrigation up to 120 DAT-B (days after 101 treatment B). Due to an abundance of field bindweed (*Convolvulus arvensis*) a maintenance 102 spray was conducted on July 3, 2021, (45 DAT-B) with glyphosate at 1,548 g a.e. ha<sup>-1</sup>. Additional spot spraying with glyphosate at 8.78 g a.e. L<sup>-1</sup> for control of field bindweed was 103 104 conducted twice a month up until 120 DAT-B. 105 Sequential application experiment studies were conducted in a fallow field (study 6) at 106 the Plant Pathology Field Facility of the UCD (38.522144, -121.765781) in spring 2021 and in a 107 two-year-old almond orchard (study 7) at the Nickels Soil Lab of the University of California 108 (UC) near Arbuckle, CA (38.956263, -122.070359) in spring 2022 (Table 4). Single application 109 orchard experiment studies were conducted in a walnut orchard (study 8) at the Plant Sciences

110 Field Facility of the UCD (38.542565, -121.794735), and a two-year-old almond orchard (study

111 9) at the Nickels Soil Lab of the UC near Arbuckle, CA (38.956263, -122.070359) in spring

112 2022. Orchard and vineyard experiment studies were conducted in an established almond

113 orchard at the Plant Sciences Field Facility of the UCD (38.544808, -121.791746) (study 10), in

an established almond orchard at the Wolfskill Experimental Orchards of the UCD (38.504184, -

115 121.978701 ) (study 11), and in a vineyard (study 12) at the Viticulture and Enology Tyree
Vineyard of the UCD (38.525250, -121.788728). Study 6 was sprinkler irrigated with 51.1 mm
of water 21 DAT-B to encourage weed growth. Studies 7, 9, and 12 were drip irrigated while
studies 8, 10, and 11 were microsprinkler irrigated. Irrigation was based on crop need as
determined by the local orchard or vineyard manager.

120 **Crop safety experiment.** A series of crop safety studies were conducted in a young (< 2-121 yrs-old) mixed species orchard which included almond (study 13), pistachio (study 14), and 122 walnut (study 15) trees at the Plant Sciences Field Facility of the UCD (38.538413, -121.794495) 123 (Table 5). The orchard was planted in March of 2020, studies were initiated in February of 2021 and continued for a second application the following year. Pyroxasulfone at 1,199 g ha<sup>-1</sup> and S-124 125 metolachlor at 14,010 g ha<sup>-1</sup> were evaluated for crop safety. Applications were made during spring either before (timing "A") or after (timing "B") blooming and leafing of trees. Visual tree 126 127 injury assessments were conducted in reference to nontreated plots. Assessments were conducted 128 every 7 days up to 45 DAT-A and -B, followed by assessments every 15 days between 30-120 129 DAT-B. Trunk diameter measurements were taken before studies initiation, one year after 130 treatment (2022), and two years after the initial treatment (2023). The orchard was drip irrigated 131 based on crop need as determined by the orchard manager.

132 Study application methods. A randomized complete block design (RCBD) was used for 133 most studies, except study 5 which was conducted as split plot design (SPD). Treatments were 134 applied using a compressed carbon dioxide backpack sprayer. For control of existing weeds, 135 POST herbicide treatments were added to the mixes; various rates of glufosinate (984 – 1,704 g 136 ha<sup>-1</sup>) and glyphosate (1,548 – 3,083 g ha<sup>-1</sup>) were applied in accordance with the size and density 137 of weeds present.

Soil analyses: Soil samples from each field site were collected and oven dried at 40°C.
The soil samples were sieved with a 2 mm mesh screen and 500 g subsamples were sent to the
UCD Analytic Lab for characterization.

Statistical analysis. All data were analyzed using a one-way analysis of variance and means separated using Fisher's Protected LSD test with a confidence interval of 0.05, where applicable. For study 5, data were first analyzed as an SPD; however, statistical calculations demonstrated no significant differences between the two incorporation timings. Therefore, the weed control data within each plot were averaged over both incorporation timings and reanalyzed as a RCBD with a factorial arrangement of herbicide treatments (N = 8).

regression model.

149 Y = A + B(X)

Where "Y" is the trunk diameter measurement, "A" is the y intercept, "B' is the slope of the line,
and "X" is year of measurement (Bevans 2022). All analyses were conducted using R version
4.2.2. (Posit Team 2022).

153

#### **Results and Discussion**

*Fall fallow field experiment.* In study 1, during the first 30 DAT overall weed control
averaged 89% (Table 6). By 75 DAT overall control ranged from pendimethalin at 4,259 g ha<sup>-1</sup>
with 63% to indaziflam at 73 g ha<sup>-1</sup> with 92%. Overall weed control provided by pyroxasulfone
ranged from 65 to 85%. The average control for the dominant weed species filaree (*Erodium*spp.) and shepherd's purse (*Capsella bursa-pastoris*) were 71 and 72%, respectively.
In study 2, 190.5 mm of rainfall were received during the first 10 DAT leading to an
abundance of swinecress growth during the first 30 DAT (Table 6). At 30 DAT, indaziflam at

52 and 73 g ha<sup>-1</sup> provided the best overall control with 70 and 76%, respectively, and the best
control of swinecress with 76 and 93% control, respectively. A maintenance treatment was
applied after the 30 DAT evaluation. At 75 DAT swinecress had begun to regrow with an
average control of 84% and no differences among treatments.

165 Spring fallow field experiment. In study 3, overall weed control at 30 DAT averaged 92% 166 (Table 7). The two most dominant weeds in the study were redroot pigweed (Amaranthus 167 retroflexus) and common lambsquarters (Chenopodium album). At 30 DAT pyroxasulfone 168 provided 75-88% control of redroot pigweed while indaziflam and pendimethalin treatments 169 provided less than 63% control, although there were no statistical differences among treatments. 170 The average control for common lambsquarters was 71%; pyroxasulfone provided 50-100% 171 control. By 60 DAT overall control declined to an average of 54%. No treatment provided control of redroot pigweed with an average control of 13%. Pyroxasulfone at 293 g ha<sup>-1</sup> provided 172 173 the highest control of common lambsquarters with 88%.

174 Our results agree with an experiment conducted by Nurse et al. (2011) where < 80%175 control of common lambsquarters was provided with rates of pyroxasulfone lower than 250 g ha<sup>-</sup> <sup>1</sup>. For redroot pigweed Nurse et al. (2011) observed that pyroxasulfone at 93 g ha<sup>-1</sup> provided 176 90% control at 56 DAT; in contrast to our results where pyroxasulfone at 134 and 268 g ha<sup>-1</sup> 177 178 provided 0-13% control of redroot pigweed at 60 DAT. Pyroxasulfone has been evaluated for control of other pigweed species. Meyer et al. (2016) observed pyroxasulfone at 179 g ha<sup>-1</sup> 179 180 provided 98% control of common waterhemp (Amaranthus tuberculatus) at 21 DAT and 181 provided 96% control of Palmer amaranth (Amaranthus palmeri) at 30 DAT. Results from Houston et al. (2019) demonstrated that pyroxasulfone at 368 g ha<sup>-1</sup> provided up to 79% control 182

| 183 of Palmer amaranth at 35 DAT. Our results agree with Meyer et | ıl. (2016 | 5) and Houston et al |
|-------------------------------------------------------------------|-----------|----------------------|
|-------------------------------------------------------------------|-----------|----------------------|

184 (2019) that during the first 30 DAT pyroxasulfone can suppress pigweed species.

185 Differences in control among pyroxasulfone, pendimethalin, and indaziflam may be 186 caused by chemical and physiochemical proprieties. All three compounds have a relatively low 187 water solubility ( $< 10 \text{ mg L}^{-1}$ ) but there are differences in organic binding (Table 1). A low 188 organic binding affinity can increase soil mobility and when combined with a low water 189 solubility both can lead to a decrease in residual activity. In study 1, indaziflam demonstrated 190 the greatest control at later evaluation dates indicating longer residual activity. Pyroxasulfone 191 and pendimethalin provided similar results to each other in study 1 and 2 despite differences in physiochemical properties. However, study 3 demonstrated that weed species can be affected 192 193 differently despite differences in physiochemical properties of the herbicides. Instead, 194 differences are likely a result of a herbicide's mode of action or a weed's herbicide susceptibility.

195 Irrigation incorporation experiment. In study 5, the weed control efficacy of 196 pyroxasulfone, pendimethalin, and indaziflam were measured as a stability response to two 197 incorporation timings. Overall weed control 90 DAT-B averaged 93% and decreased to 88% by 198 150 DAT-B (Table 8). The most widespread weed in this location was vellow nutsedge (*Cyperus*) esculentus). Pyroxasulfone at 219 and 293 g ha<sup>-1</sup> provided 73% control of yellow nutsedge while 199 200 all other treatments provided less than 65% control. The irrigation incorporation study 201 demonstrated no differences in the tested PRE herbicide residual activity when incorporated 5 or 202 18 days after treatment application. The California Central Valley typically receives rain during 203 the winter November-March. Without rainfall irrigation incorporation may be required (Jordan et 204 al., 1963; Knake et al., 1967; Smith et al., 2016). The longer a PRE herbicide is left on the soil 205 surface without incorporation the higher the probability of dissipation, especially during the

summer months when temperatures can reach up to 38°C (Savage and Barrentine, 1969). Our study did not directly evaluate dissipation of any treatment; however, adequate residual control was observed throughout its entirety when the average air temperature was 33°C regardless of whether it was sprinkler incorporated 5 or 18 days after treatment

210 Previous experiments have been conducted to evaluate the dissipation of pyroxasulfone. Mueller and Steckel (2011) evaluated pyroxasulfone at 1,500 g ha<sup>-1</sup> on loam soils with 1.9% 211 212 OM, with 7-17 mm of rainfall incorporation and with 160-443 mm of total water (rainfall + 213 irrigation) for the experiment; their results suggested a half-life of 8-71 days. Westra et al. (2014) evaluated pyroxasulfone at 280 g ha<sup>-1</sup> on fine clay and sandy loam soils with 1.1-1.5% OM, with 214 215 13 mm irrigation incorporation and 288-731 mm of total water for the study with results 216 suggesting a half-life of 104-134 days. In each experiment, the lower half-life corresponded with 217 the highest amount of water received. However, Yamaji et al. (2016) found that pyroxasulfone at 125 g ha<sup>-1</sup> tested on all soil types has a >88% overall weed control efficacy when there is more 218 219 than 12.5 mm of water incorporation during the first 7 DAT. Treatments in study 5 maintained  $\geq$ 220 88% overall weed control despite having more than 7 days before incorporation with 12.7 mm of 221 water, and 203.2 mm of total irrigation on loam soil with 1.5% OM. This suggests that there may 222 be a range for how much water can be present before in an increase in dissipation occurs. A 223 follow up experiment evaluating dissipation response to an increase in water should be 224 conducted.

Sequential application experiment. Study 6 was conducted on fallow field, at 60 DAT-B
 overall weed control averaged 86% (Table 9). Multiple weeds species were observed in control
 plots but had limited weed pressure with less than 10% ground cover, likely caused by limited

water presence. Treatments provided adequate weed control of all weeds except for fieldbindweed with an average control of 23%.

Study 7 was conducted in an almond orchard with drip irrigation; herbicide injury was
not documented on any trees (data not shown). At 60 DAT-B the overall control averaged 89%
(Table 9) similar to study 6. By 90 DAT-B overall weed control decreased to 70%. This was
largely due to field bindweed which was only controlled 0-33%.

234 The sequential application experiment evaluated pyroxasulfone when used in such 235 programs. Many sequential application programs include the use of two application timings with 236 different mode of action herbicides to increase weed control efficacy and decrease herbicide 237 resistance. Brunharo et al. (2020) evaluated sequential application treatments versus single 238 application treatments in almond orchards. They found that sequential treatments increased weed 239 control during the growing season. This supports results from studies 7 and 8 which had limited 240 weed growth with an average overall weed control  $\geq$  86% at 60 DAT-B despite the different 241 irrigation regimens.

Single application orchard experiment. Study 8 was conducted in an almond orchard, by
60 DAT overall weed control averaged 89% (Table 10). There was limited control of field
bindweed with all treatments providing 0-67% control but due to high spatial variability there
were no differences among treatments.

Study 9 was conducted in a walnut orchard and, across treatments, had an average of
86% overall control during the first 30 DAT (Table 10). The average control for the dominant
weed bermudagrass (*Cynodon dactylon*) was 71%. Pyroxasulfone at 219 and 293 g ha<sup>-1</sup> provided
60 and 48% control of bermudagrass, respectively. By 60 DAT the average overall control was
67% as a result of the limited suppression of bermudagrass and foxtail barley (*Hordeum*)

*jubatum*). The average control for bermudagrass and foxtail barley was 28 and 64%,

respectively. Pendimethalin at 4,259 and 6,389 g ha<sup>-1</sup> provided 93 and 96% control of foxtail
barley, respectively, while all other treatments provided < 77% control, although there were no</li>

statistical differences among treatments.

255 The single application orchard experiment had an additional evaluation on different rates 256 of indaziflam and glufosinate. Many PRE herbicides have limited effects on emerged plants, 257 requiring appropriate burndown treatments to control existing weeds. This experiment evaluated 258 the residual efficacy of pendimethalin and pyroxasulfone each mixed with a standard rate (1,334)g ha<sup>-1</sup>) of glufosinate in comparison to indaziflam when mixed with various rates of glufosinate. 259 260 The different rates of glufosinate provided no differences in burndown control of existing weeds 261 in both studies (data not shown). However, incomplete burndown in study 9 led to regrowth of 262 foxtail barley.

Orchard and vineyard experiment. Studies 10-12: During the spring of 2021 rainfall was limited to 114 mm which likely limited weed pressure. The overall weed control averages for studies 10 (almond orchard), 11 (almond orchard), and 12 (vineyard) by 120 DAT were 91, 91, and 98%, respectively (Table 11). Pyroxasulfone at 150, 225, and 300 g ha<sup>-1</sup> provided an average overall weed control of 95, 95, and 93%, respectively, across all three studies. Herbicide injury was not observed on any trees or vines (data not shown).

The orchard and vineyard experiments were a single application protocol evaluating the WDG formulation of pyroxasulfone against other PRE herbicides including tank mixes and premixed formulations. One of the premixed formulations was flumioxazin + pyroxasulfone. Flumioxazin is a cell membrane disruptor that inhibits the enzyme protoporphyrinogen oxidase (PPO), leading to the disintegration of a cells plasmalemma (plasma membrane) (EPA, 2003;

Price et al., 2004). The co-application of flumioxazin plus pyroxasulfone has been found to
increase control of multiple herbicide-resistant common waterhemp (Ferrier et al., 2022). Ferrier
et al. (2022) observed a longer residual control of common waterhemp with flumioxazin +
pyroxasulfone (134 + 106 g ha<sup>-1</sup>) with up to 95% control vs solo pyroxasulfone (134 g ha<sup>-1</sup>) with
78%, or solo flumioxazin (106 g ha<sup>-1</sup>) with 73% at 84 DAT. Follow up studies should be
conducted to evaluate both formulations of pyroxasulfone as well as the premix of flumioxazin +
pyroxasulfone.

281 **Crop safety studies.** After treatments in the spring the first and second years after 282 transplanting, all treated almond, pistachio, and walnut trees blossomed and leafed out similarly 283 to the untreated trees in the subsequent season (data not shown). Growth was not affected by 284 herbicide treatments of pyroxasulfone at 1,199 g ha<sup>-1</sup> and S-metolachlor at 14,010 g ha<sup>-1</sup> (Figures 285 1, 2, and 3). Almond and walnut trees had an approximately 40- and 25-mm increase in diameter 286 each season, respectively (Figures 1 and 2). Pistachios had an increase of approximately 30-mm 287 at the end of the study (Figure 3); however, these results were affected by significant ground 288 squirrel damage in the young pistachio trees.

These crop safety results support an experiment by Pedroso and Moretti (2022) conducted on transplanted hazelnuts. Pedroso and Moretti (2022) found that pyroxasulfone at 240-950 g ha<sup>-1</sup> and S-metolachlor at 1,390-4,160 g ha<sup>-1</sup> provided no differences among treatments in trunk cross-sectional areas and with negligible (< 3%) node injury. Both crop safety experiments conducted on tree nuts crops did not document any significant injury by any pyroxasulfone or S-metolachlor treatment.

Overall conclusion. Pyroxasulfone SC and WDG have demonstrated potential to be
used as a California orchard systems herbicide, with similar performance to commercially used

297 herbicides. Treatment related injury was not documented on any of the established ( $\geq$  4-yrs-old) 298 or young trees ( $\leq$  2-yrs-old) tested, even when used at an extremely high pyroxasulfone rate of 1,199 g ha<sup>-1</sup>. In the fall fallow field experiment indaziflam provided the greatest weed control 299 300 while pendimethalin and pyroxasulfone provided similar overall weed control results to each 301 other. In the spring fallow field experiment, pyroxasulfone (293 gha<sup>-1</sup>) was the only herbicide to 302 suppress (>70%) common lambsquarters at 60 DAT, this indicates possible differences in weed 303 species susceptibility to the different chemistries tested. However, in the irrigation incorporation 304 experiment all three-herbicides provided similar weed control. These results indicate that despite 305 chemical and mode of action differences proper incorporation ensures optimal herbicide 306 performance.

307 Future experiments should evaluate different incorporation methods including drip 308 irrigation versus sprinkler irrigation and how this can affect PRE herbicide weed control 309 performance and soil dissipation. An analytical component should be used to evaluate herbicide 310 stability with the parent molecule and metabolites analyzed to properly determine dissipation 311 rates under different soil type, organic matter content, and water status conditions common in 312 California orchard production systems.

#### References

- [APVMA] Australian Pesticides and Veterinary Medicines Authority (2011). *Public Release Summary* on the Evaluation of the New Active Pyroxasulfone in the Product Sakura 850 WG Herbicide. https://apvma.gov.au/sites/default/files/publication/13976-prs-pyroxasulfone.pdf. Accessed 2/16/2023
- Bevans, R. (2022). *Multiple Linear Regression A Quick Guide (Examples)*. Scribbr. https://www.scribbr.com/statistics/multiple-linear-regression. Accessed 2/1/2023
- Belfry, K. D., McNaughton, K. E., and Sikkema, P. H. (2015). Weed control in soybean using pyroxasulfone and sulfentrazone. *Canadian Journal of Plant Science*, 95(6), 1199–1204. https://doi.org/10.4141/cjps-2015-114
- Brunharo, C. A., Watkins, S., and Hanson, B. D. (2020). Season-long weed control with sequential herbicide programs in California tree nut crops. *Weed Technology*, *34*(6), 834–842. https://doi.org/10.1017/wet.2020.70
- Böger, P. (2003). Mode of action for chloroacetamides and functionally related compounds. *Journal of Pesticide Science*, 28(3), 324–329. https://doi.org/10.1584/jpestics.28.324
- Böger, P., Matthes, B., and Schmalfuß, J. (2000). Towards the primary target of chloroacetamides-new findings pave the way. *Pest Management Science*, *56*(6), 497–508.
- Buchner, R. P., Elmore, C. L., and Cudney, D. W. (1998) Vegetation Management. ed. Ramos, D. E. Walnut Production Manual. 207-214. University of California Agriculture and Natural Resource Publications. Davis, California. Pub. No. 3373
- Carbo, J. L. E. and Connell, J. H. (2017). Almond Harvesting. eds. Gradziel, T. M., and Company, R. S. i. *Almonds: Botany, Production and Uses*. 402-427. CABI. Boston, Massachusetts
- Connell, J. H., Asai, W. K., and Meith, H. C. (1996) Orchard Floor Management. ed. Micke, W. C. Almond Production Manual. 196-201. University of California Agriculture and Natural Resource Publications. Oakland, California. Pub. No. 3364
- [CDFA] California Department of Food and Agriculture. (2022). *California Agricultural Statistics Review 2021-2022*. https://www.cdfa.ca.gov/Statistics/PDFs/2022\_Ag\_Stats\_Review.pdf. Accessed 4/1/2023.
- [CDPR] California Department of Pesticide Regulation. (2023). *California Pesticide Information Portal*. https://calpip.cdpr.ca.gov/main.cfm. Accessed 5/9/2023
- [CIMIS] California Irrigation Management Information System. (2023). https://cimis.water.ca.gov/Default.aspx. Accessed 1/20/2023

- Eckermann, C., Matthes, B., Nimtz, M., Reiser, V., Lederer, B., Böger, P., and Schröder, J. (2003). Covalent binding of chloroacetamide herbicides to the active site cysteine of Plant Type III polyketide synthases. *Phytochemistry*, 64(6), 1045–1054. https://doi.org/10.1016/s0031-9422(03)00516-8
- [ECA] European Chemical Agency. (2017). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.11: PBT/vPvB assessment. https://echa.europa.eu/documents/10162/13632/information\_requirements\_r11\_en.pdf/a8cce23fa65a-46d2-ac68-92fee1f9e54f. Accessed 2/15/2023
- Ferrier, J., Soltani, N., Hooker, D. C., Robinson, D. E., and Sikkema, P. H. (2022). The interaction of pyroxasulfone and flumioxazin applied preemergence for the control of multiple-herbicideresistant common waterhemp (*Amaranthus tuberculatus*) in soybean. *Weed Technology*, 36(2), 318–323. https://doi.org/10.1017/wet.2022.11
- Geier, P. W., Stahlman, P. W., and Frihauf, J. C. (2006). KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. *Weed Technology*, 20(3), 622–626. https://doi.org/10.1614/wt-05-048r2.1
- Geier, P. W., Stahlman, P. W., Regehr, D. L., and Olson, B. L. (2009). Preemergence herbicide efficacy and phytotoxicity in grain sorghum. *Weed Technology*, *23*(2), 197–201. https://doi.org/10.1614/wt-08-125.1
- Godwin, J., Norsworthy, J. K., and Scott, R. C. (2018). Application timing and rate effects on rice tolerance to very-long-chain fatty acid–inhibiting herbicides. *Agronomy Journal*, 110(5), 1820– 1828. https://doi.org/10.2134/agronj2018.02.0087
- Goff, W. D., Patterson, M. G., and West, M. S. (1991). Orchard floor management practices influence elemental concentrations in young pecan trees. *HortScience*, 26(11), 1379–1381. https://doi.org/10.21273/hortsci.26.11.1379
- Gressel, J., and Segel, L. A. (1978). The paucity of plants evolving genetic resistance to herbicides: Reasons and implications. *Journal of Theoretical Biology*, 75(3), 349–371.
- Hanson, B. D., Wright, S., Sosnoskie, L. M., Fischer, A. J., Jasieniuk, M., Roncoroni, J. A., Hembree, K. J., Orloff, S., Shrestha, A., and Al-Khatib, K. (2014). Herbicide-resistant weeds challenge some signature cropping systems. *California Agriculture*, 68(4), 142–152. https://doi.org/10.3733/ca.v068n04p142.
- Hanson, B. D., Roncoroni, J., Hembree, K. J., Molinar, R., and Elmore, C. L. (2017) Weed Control in Orchards and Vineyards. eds. Thomas, B., Murray, B. G., and Murphy, D. J. Encyclopedia of Applied Plant Sciences (2nd ed., Vol. 3), 479-484. Academic Press. Waltham, Massachusetts
- Heap, I. (2023) The International Herbicide-Resistant Weed Database. http://www.weedscience.org/. Accessed 2/16/2023.

- Houston, M. M., Norsworthy, J. K., Barber, T., and Brabham, C. (2019). Field evaluation of preemergence and postemergence herbicides for control of protoporphyrinogen oxidase-resistant Palmer amaranth (*Amaranthus palmeri*). Weed Technology, 33(4), 610–615. https://doi.org/10.1017/wet.2019.37
- Jordan, L. S., Day, B. E., and Clerx, W. A. (1963). Effect of incorporation and method of irrigation on preemergence herbicides. *Weeds*, *11*(2), 157. https://doi.org/10.2307/4040711
- King, S. R., and Garcia, J. O. (2008). Annual broadleaf control with KIH-485 in glyphosate-resistant furrow-irrigated corn. *Weed Technology*, 22(3), 420–424. https://doi.org/10.1614/wt-07-169.1
- King, S. R., Ritter, R. L., Hagood, E. S., and Menbere, H. (2007). Control of acetolactate synthase– resistant shattercane (*Sorghum bicolor*) in field corn with KIH-485. *Weed Technology*, 21(3), 578–582. https://doi.org/10.1614/wt-06-155.1
- Kleemann, S. G. L., Boutsalis, P., Gill, G. S., and Preston, C. (2016). Applications of pre-emergent pyroxasulfone, flufenacet, and their mixtures with studylate for the control of *Bromus diandrus* (ripgut brome) in no-till wheat (*Triticum aestivum*) crops of southern Australia. *Crop Protection*, 80, 144–148. https://doi.org/10.1016/j.cropro.2015.11.010
- Knake, E. L., Appleby, A. P., and Furtick, W. R. (1967). Soil incorporation and site of uptake of preemergence herbicides. *Weeds*, *15*(3), 228. https://doi.org/10.2307/4041210
- Kumar, V., and Jha, P. (2015). Effective preemergence and postemergence herbicide programs for kochia control. *Weed Technology*, *29*(1), 24–34. https://doi.org/10.1614/wt-d-14-00026.1
- Lee, C. Z. (2018). Postemergence Efficacy of Pyroxasulfone at Different Rates and Timings in Wheat (Doctoral dissertation, North Dakota State University). ProQuest Dissertations and Theses A and I. https://www.proquest.com/dissertations-theses/postemergence-efficacypyroxasulfone-at-different/docview/2138366751/se-2. Accessed 12/15/2022
- Meyer, C. J., Norsworthy, J. K., Young, B. G., Steckel, L. E., Bradley, K. W., Johnson, W. G., Loux, M. M., Davis, V. M., Kruger, G. R., Bararpour, M. T., Ikley, J. T., Spaunhorst, D. J., and Butts, T. R. (2016). Early-season Palmer amaranth and common waterhemp control from preemergence programs utilizing 4-hydroxyphenylpyruvate dioxygenase–inhibiting and auxinic herbicides in soybean. *Weed Technology*, 30(1), 67–75. https://doi.org/10.1614/wt-d-15-00100.1
- McNaughton, K. E., Shropshire, C., Robinson, D. E., and Sikkema, P. H. (2014). Soybean (*Glycine max*) tolerance to timing applications of pyroxasulfone, flumioxazin, and pyroxasulfone + flumioxazin. *Weed Technology*, 28(3), 494–500. https://doi.org/10.1614/wt-d-14-00016.1
- Mueller, T. C., and Steckel, L. E. (2011). Efficacy and dissipation of pyroxasulfone and three chloroacetamides in a Tennessee field soil. *Weed Science*, *59*(4), 574–579. https://doi.org/10.1614/ws-d-11-00003.1

- Nakatani, M., Yamaji, Y., Honda, H., and Uchida, Y. (2016). Development of the novel pre-emergence herbicide pyroxasulfone. *Japanese Journal of Pesticide Science*, *41*(2), 182–188. https://doi.org/10.1584/jpestics.w16-09
- Ney, R. E. (1995). *Fate and Transport of Organic Chemicals in the Environment: A Practical Guide*. 2<sup>nd</sup> ed. Government Institutes, Inc. Rockville, Maryland
- Nurse, R. E., Sikkema, P. H., and Robinson, D. E. (2011). Weed control and sweet maize (*Zea mays L.*) yield as affected by pyroxasulfone dose. *Crop Protection*, *30*(7), 789–793. https://doi.org/10.1016/j.cropro.2011.03.026
- Odero, D. C., and Wright, A. L. (2013). Response of sweet corn to pyroxasulfone in high-organic-matter soils. *Weed Technology*, 27(2), 341–346. https://doi.org/10.1614/wt-d-12-00133.1
- Price, A. J., Pline, W. A., Wilcut, J. W., Cranmer, J. R., and Danehower, D. (2004). Physiological basis for cotton tolerance to flumioxazin applied postemergence directed. *Weed Science*, *52*(1), 1-7. https://doi.org/10.1614/WS-03-038R
- Pedroso, R. M., and Moretti, M. L. (2022). Tolerance of newly planted hazelnuts to pronamide, pyroxasulfone, and S-metolachlor. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.4054224
- Posit Team (2022). *RStudio: Integrated Development Environment for R*. Posit Software, PBC, Boston, Massachusetts. http://www.posit.co/.
- Savage, K. E., and Barrentine, W. L. (1969). Trifluralin persistence as affected by depth of soil incorporation. *Weed Science*, *17*(3), 349–352. https://doi.org/10.1017/s0043174500054205
- Smith, H. C., Ferrell, J. A., Webster, T. M., Fernandez, J. V., Dittmar, P. J., Munoz, P. R., and MacDonald, G. E. (2016). Impact of irrigation volume on PRE herbicide activity. *Weed Technology*, 30(3), 793–800. https://doi.org/10.1614/wt-d-16-00014.1
- Stephenson, D. O., Bond, J. A., Griffin, J. L., Landry, R. L., Woolam, B. C., Edwards, H. M., and Hardwick, J. M. (2017). Weed management programs with pyroxasulfone in field corn (*Zea mays*). Weed Technology, 31(4), 496–502. https://doi.org/10.1017/wet.2017.39
- Strom, S. A., Gonzini, L. C., Mitsdarfer, C., Davis, A. S., Riechers, D. E., and Hager, A. G. (2019). Characterization of multiple herbicide–resistant common waterhemp (*Amaranthus tuberculatus*) populations from Illinois to VLCFA-inhibiting herbicides. *Weed Science*, 67(4), 369–379. https://doi.org/10.1017/wsc.2019.13
- Tanetani, Y., Fujioka, T., Kaku, K., and Shimizu, T. (2011). Studies on the inhibition of plant very-longchain fatty acid elongase by a novel herbicide, pyroxasulfone. *Journal of Pesticide Science*, 36(2), 221–228. https://doi.org/10.1584/jpestics.g10-81

- Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., and Shimizu, T. (2009). Action mechanism of a novel herbicide, pyroxasulfone. *Pesticide Biochemistry and Physiology*, 95(1), 47–55. https://doi.org/10.1016/j.pestbp.2009.06.003
- Tidemann, B. D., Hall, L. M., Johnson, E. N., Beckie, H. J., Sapsford, K. L., and Raatz, L. L. (2014). Efficacy of fall and spring applied pyroxasulfone for herbicide-resistant weeds in field pea. Weed *Technology*, 28(2), 351–360. https://doi.org/10.1614/wt-d-13-00140.1
- [ARS] U.S. Department of Agriculture, Agriculture Research Service. (1995). ARS pesticide proprieties. Pendimethalin. https://www.ars.usda.gov/ARSUserFiles/0000000/DatabaseFiles/PesticidePropertiesDatabase/I ndividualPesticideFiles/PENDIMETHALIN.TXT. Accessed 2/11/2023.
- [EPA] U.S. Environmental Protection Agency. (2000). OECD Guideline for the Testing of Chemicals. Adsorption - Desorption Using a Batch Equilibrium Method. [106]. https://archive.epa.gov/scipoly/sap/meetings/web/pdf/106\_adsorption\_desorption\_using.pdf. Accessed 2/11/2023
- [EPA] U.S Environmental Protection Agency. (2003). Flumioxazin: Environmental Fate and Ecological Risk Assessment. https://www3.epa.gov/pesticides/chem\_search/cleared\_reviews/csr\_PC-129034\_14-Aug-03\_a.pdf. Accessed 2/11/2023
- [EPA] U.S Environmental Protection Agency. (2010). *Pesticide Fact Sheet. Indaziflam* https://iaspub.epa.gov/apex/pesticides/f?p=chemicalsearch%3A1. Accessed 2/11/2023
- Walsh, M. J., Fowler, T. M., Crowe, B., Ambe, T., and Powles, S. B. (2011). The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (*Lolium rigidum*) biotypes in Australian grain crop production systems. *Weed Technology*, 25(1), 30–37. https://doi.org/10.1614/wt-d-10-00091.1
- Webb, C. J. (2015). Crop Tolerance and Weed Management with Pyroxasulfone in Cotton (Master's Thesis, Texas Tech University). http://hdl.handle.net/2346/63617. Accessed 12/15/2022
- Westra, E. P., Shaner, D. L., Westra, P. H., and Chapman, P. L. (2014). Dissipation and leaching of pyroxasulfone and S-metolachlor. Weed Technology, 28(1), 72–81. https://doi.org/10.1614/wt-d-13-00047.1
- Yamaji, Y., Honda, H., Hanai, R., and Inoue, J. (2016). Soil and environmental factors affecting the efficacy of pyroxasulfone for weed control. *Journal of Pesticide Science*, *41*(1), 1–5. https://doi.org/10.1584/jpestics.d15-047

|                                   | K <sub>oc</sub> | Water solubility at 20°C mg/L | Melting point<br>°C |
|-----------------------------------|-----------------|-------------------------------|---------------------|
| Pyroxasulfone <sup>1</sup>        | 51-114          | 3.94                          | 138                 |
| Indaziflam <sup>2</sup>           | 396-789         | 2.8                           | 184                 |
| Pendimethalin <sup>3</sup>        | 13,400-65,000   | 0.32                          | 56                  |
| <sup>1</sup> Nakatani et al. 2016 |                 |                               |                     |

Table 1. Physiochemical proprieties of three preemergence herbicides used in weed control experiments.

<sup>2</sup>EPA 2010 <sup>3</sup>ARS 1995
|                             |                         | 10                              |                                  | •                             |
|-----------------------------|-------------------------|---------------------------------|----------------------------------|-------------------------------|
| Active ingredient           | Trade name              | Formulation                     | Manufacturer                     | City                          |
| Flumioxazin                 | Chateau®                | 51 % wt                         | Valent U.S.A. LLC                | San Ramon, CA                 |
| Flumioxazin +               | Fierce EZ®              | 14 % +                          | Valent U.S.A. LLC                | San Ramon, CA                 |
| Pyroxasulfone               |                         | 18 % wt                         |                                  |                               |
| Glufosinate                 | Rely 280®               | 280 g a.i. L <sup>-1</sup>      | Bayer Crop Science LP            | Research Triangle<br>Park, NC |
| Glyphosate                  | Roundup<br>Powermax®    | 659 g a.e. L <sup>-1</sup>      | Bayer Crop Science LP            | Research Triangle<br>Park, NC |
| Indaziflam                  | Alion®                  | 200 g a.i. L <sup>-1</sup>      | Bayer Crop Science LP            | Research Triangle<br>Park, NC |
| Pendimethalin               | Prowl H <sub>2</sub> O® | 455 g a.i. L <sup>-1</sup>      | BASF Corporation                 | Research Triangle<br>Park, NC |
| Penoxsulam +<br>Oxyfluorfen | Pindar GT®              | 10 + 471 g a.i. L <sup>-1</sup> | Corteva Agriscience              | Wilmington, DE                |
| Pyroxasulfone (SC)          | Exp-82 <sup>1</sup>     | 500 g a.i. L <sup>-1</sup>      | BASF Corporation                 | Research Triangle<br>Park, NC |
| Pyroxasulfone (WDG)         | Exp-94 <sup>2</sup>     | 85 % wt                         | BASF Corporation                 | Research Triangle<br>Park, NC |
| Oxyfluorfen                 | Goal 2XL®               | 239.65 g a.i. L <sup>-1</sup>   | Nufarm                           | Alsip, IL                     |
| Rimsulfuron                 | Matrix®                 | 25 % wt                         | Corteva Agriscience              | Wilmington, DE                |
| S-metolachlor               | Dual II<br>Magnum®      | 915 g a.i. L <sup>-1</sup>      | Syngenta Crop<br>Protection, LLC | Greensboro, NC                |

Table 2. Source of herbicides used in characterization of pyroxasulfone in California orchard systems.

 ${}^{1}\text{Exp-82} = \text{experimental pyroxasulfone formulation under evaluation}$  ${}^{2}\text{Exp-94} = \text{experimental pyroxasulfone formulation under evaluation}$ 

|                           | Fall 2020         | Fall 2021           | Spring 2021          | Spring 2022    | —— Summe        | r 2021 —         |
|---------------------------|-------------------|---------------------|----------------------|----------------|-----------------|------------------|
|                           | Study 1           | Study 2             | Study 3              | Study 4        | ——— Stud        | y 5              |
| Application               |                   |                     |                      |                | $A^1$           | В                |
| Plot size                 |                   | 1.52                | x 6.1 m              |                | 2.44 x          | 9.14 m           |
| Date                      | December 12, 2020 | December 6,<br>2021 | March 25, 2021       | March 24, 2022 | May 28,<br>2021 | June 10,<br>2021 |
| Time                      | 8:30am            | 12:48pm             | 10:00am              | 12:50pm        | 9:40am          | 4:30pm           |
| Type of sprayer           |                   |                     | CO <sub>2</sub> back | pack sprayer   |                 |                  |
| Boom size                 |                   | 3 nozzles 5         | 08 mm spacing        |                | -4 nozzles 508  | 8 mm spacing-    |
| Type of nozzles           | AIXR11003         | AIXR11003           | AIXR110025           | AIXR11003      | AIXR11003       | AIXR11003        |
| Gallons per acre          | 30                | 25                  | 25                   | 30             | 25              | 25               |
| Cloud cover               | 10                | 100                 | 30                   | 0              | 5%              | 2%               |
| Air temperature           | 14.4°C            | 7.8°C               | 0                    | 19.4°C         | 18.8°C          | 23.8°C           |
| Relative<br>humidity      | 31%               | 99%                 | 70%                  | 58%            | 56%             | 21%              |
| Soil temperature at 2 in. | 8.9°C             | 7.8°C               | 11.1°C               | 13.3°C         | 18.2°C          | 22.1°C           |
| Wind speed kph            | 9.01              | 7.41                | 12.8                 | 6.44           | 6.44            | 11.1             |
| Wind direction            | East              | North               | Northwest            | North          | North           | North            |
| Days before<br>irrigation |                   |                     |                      |                | 18 days         | 5 days           |
| Soil texture              |                   |                     | Lo                   | am             |                 |                  |
| Soil organic matter       |                   |                     | 1.5                  | 5%             |                 |                  |
| Soil pH                   |                   |                     | 6.7                  | /9             |                 |                  |

Table 3. Application details with pyroxasulfone, indaziflam, and pendimethalin in fall and spring fallow field experiments and the irrigation incorporation experiment near Davis, CA.

<sup>1</sup>Application "A" was applied 18 days before initial irrigation. Application "B" was applied 5 days before initial irrigation.

|                      |                             | Sequential applie           | cation experimen            | t                           | — Single applic<br>exper        | cation orchard —<br>riment  | - —— Orcha                            | Orchard and vine experiment           |                             |  |
|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------|-----------------------------|---------------------------------------|---------------------------------------|-----------------------------|--|
|                      | —— Fallo                    | w field ———                 | — Young (2-yı               | almonds ——<br>rs-old)       | Young<br>almonds<br>(2-vrs-old) | Walnuts<br>(8-yrs-old)      | Established<br>almonds<br>(8-vrs-old) | Established<br>almonds<br>(4-vrs-old) | Vineyard<br>(~25-yrs-old)   |  |
|                      | Stu                         | Study 6 Stud                |                             | dy 7                        | y 7 Study 8 S                   |                             | Study 10                              | Study 11                              | Study 12                    |  |
| Tree variety         |                             |                             | Nonj                        | pareil                      | Nonpareil                       | Chandler                    | Aldrich and<br>Nonpareil              | Aldrich and<br>Nonpareil              | Grenache                    |  |
| Location             | Davis                       | Davis                       | Arbuckle                    | Arbuckle                    | Arbuckle                        | Davis                       | Davis                                 | Winters                               | Davis                       |  |
| Plot size            | 2.1 x                       | 6.1 m                       | 3.05 >                      | x 4.88 m                    | 3.05 x 4.88 m                   | 1.52 x 6.10 m               | 3.05 x 4.88 m                         | 2.1 x 6.1 m                           | 2.44 x 3.66 m               |  |
| Application timing   | А                           | В                           | А                           | В                           |                                 |                             |                                       |                                       |                             |  |
| Date                 | February 18, 2021           | March 22,<br>2022           | January 12,<br>2022         | March 3, 2022               | January 12,<br>2022             | February 11,<br>2022        | January<br>21, 2021                   | March<br>1, 2021                      | February<br>5,2021          |  |
| Time                 | 10:00am                     | 11:00am                     | 10:15am                     | 11:10am                     | 10:15am                         | 10:50am                     | 3:30pm                                | 12:00pm                               | 12:30pm                     |  |
| Type of sprayer      |                             |                             |                             | CO                          | 2 back sprayer                  |                             |                                       |                                       |                             |  |
| Boom size            | 4 nozzles 508<br>mm spacing | 4 nozzles 508<br>mm spacing | 3 nozzles 457<br>mm spacing | 3 nozzles 457<br>mm spacing | 3 nozzles 457<br>mm spacing     | 3 nozzles 457<br>mm spacing | 3 nozzles 457<br>mm spacing           | 4 nozzles 508<br>mm spacing           | 2 nozzles 457<br>mm spacing |  |
| Type of nozzles      | AIXR11003                   | AIXR110025                  | AIXR11002                   | AIXR11003                   | AIXR11003                       | AIXR11002                   | AIXR11004                             | AIXR11002                             | AIXR11002                   |  |
| Gallons per<br>acre  | 20                          | 20                          | 25                          | 25                          | 25                              | 25                          | 30                                    | 20                                    | 20                          |  |
| Cloud cover          | 55%                         | 85%                         | 0%                          | 20%                         | 0%                              | 0%                          | 0%                                    | 0%                                    | 0%                          |  |
| Air temperature      | 10.4°C                      | 13.8°C                      | 11.2°C                      | 20.7°C                      | 11.2°C                          | 16.9°C                      | 16.4°C                                | 13.3°C                                | 13.3°C                      |  |
| Relative<br>humidity | 56%                         | 63%                         | 73%                         | 53%                         | 73%                             | 66%                         | 31%                                   | 55%                                   | 55%                         |  |
| Soil<br>temperature  | 9.2°C                       | 11.8°C                      | 7.8°C                       | 11.7°C                      | 7.7°C                           | 10.7°C                      | 10.6°C                                | 9.4°C                                 | 9.4°C                       |  |
| Wind speed kph       | 3.54                        | 14.16                       | 1.61                        | 2.09                        | 1.61                            | 5.79                        | 9.98                                  | 4.02                                  | 4.02                        |  |
| Wind direction       | North                       | North                       | South                       | West                        | South                           | South                       | South                                 | Southeast                             | Southeast                   |  |
| Soil texture         | La                          | oam                         | Sandy                       | loam                        | Sandy loam                      | Sandy loam                  | Sandy loam                            | Loam                                  | Loam                        |  |
| Soil organic matter  | 2.2                         | 73                          | 1                           | .40                         | 1.40                            | 2.97                        | 1.40                                  | 2.74                                  | 3.11                        |  |
| Soil pH              | 6.9                         | 90                          | 6                           | .78                         | 6.78                            | 6.45                        | 6.78                                  | 7.56                                  | 6.93                        |  |

23

Table 4. Application details for weed control experiments evaluating pyroxasulfone in comparison to other preemergence herbicides in a fallow field, vineyard, and almond and walnut orchards near Arbuckle, Davis, and Winters CA in spring 2021.

|                           | Almond <sup>1</sup> , and walnu | pistachio,<br>t | — Almo                  | nd — I           | Pistachio and<br>walnut |
|---------------------------|---------------------------------|-----------------|-------------------------|------------------|-------------------------|
|                           | Study 13-1                      | 15              | Study                   | 13               | Study 14 and 15         |
|                           |                                 | 021 ——          |                         | 2022             | 2                       |
| Application timing        | $A^2$                           | В               | А                       | В                | В                       |
| Plot size                 |                                 |                 | 3.05 x 6.1              | 0 m              |                         |
| Date                      | February 5,2021                 | March 12,2021   | February 25, 2022       | March 2-<br>2022 | 4, April 22,<br>2022    |
| Time                      | 10:30am                         | 1:00pm          | 11:00am                 | 11:40am          | 11:30am                 |
| Type of sprayer           |                                 |                 | CO <sub>2</sub> back sp | prayer           |                         |
| Boom size                 |                                 | 3 n             | ozzles 457.2 1          | nm spacing       | 5                       |
| Type of nozzles           |                                 |                 | AIXR11(                 | )03              |                         |
| Gallons per acre          |                                 |                 | 20-                     |                  |                         |
| Cloud cover               |                                 |                 | 0%                      |                  | 55%                     |
| Air temperature           | 8.5°C                           | 18.8°C          | 11.7°C                  | 25.6°C           | 19.4°C                  |
| Relative<br>humidity      | 79%                             | 24%             | 34%                     | 43%              | 50%                     |
| Soil temperature at 2 in. | 8.2°C                           | 11.3°C          | 8.6°C                   | 15.5°C           | 14.9°C                  |
| Wind speed kph            | 6.9                             | 19.4            | 15.2                    | 0                | 1.6                     |
| Wind direction            | South                           | North           | North                   |                  | West                    |
| Soil texture              |                                 |                 | Sandy lo                | am               |                         |
| Soil organic matter       |                                 |                 | 1.52                    |                  |                         |
| Soil pH                   |                                 |                 | 6.79                    |                  |                         |

Table 5. Application details for a crop safety study in young almond, pistachio, and walnut trees evaluating high rates of pyroxasulfone and S-metolachlor near Davis, CA in spring 2021 and 2022.

<sup>1</sup>The almond variety was Nonpareil. The pistachio variety was Kerman. The walnut variety was Chandler. <sup>2</sup>Application "A" was applied before blooming and leafing. Application "B" was applied after blooming and leafing.

|     |               |                         |         | —————————————————————————————————————— |      |         |        | — — Fall 2021 |       |         |         | (Study 2)  |  |
|-----|---------------|-------------------------|---------|----------------------------------------|------|---------|--------|---------------|-------|---------|---------|------------|--|
| No. | Treatment     | Rate                    | Overall | Ove                                    | rall | Filaree | Ove    | rall          | Swii  | necress | Overall | Swinecress |  |
|     |               |                         |         |                                        |      |         | — DAT  | 2             |       |         |         |            |  |
|     |               |                         | 30      | 75                                     |      | 75      | 30     |               | 30    |         | 75      | 75         |  |
|     |               | g a.i. ha <sup>-1</sup> |         |                                        |      |         | % Cont | rol           |       |         |         |            |  |
| 1   | Pyroxasulfone | 146                     | 81      | 65                                     | b    | 38      | 40     | b             | 2     | b       | 80      | 68         |  |
| 2   | Pyroxasulfone | 219                     | 91      | 85                                     | ab   | 53      | 42     | b             | 30    | b       | 79      | 89         |  |
| 3   | Pyroxasulfone | 293                     | 91      | 81                                     | ab   | 66      | 41     | b             | 18    | b       | 79      | 88         |  |
| 4   | Indaziflam    | 52                      | 93      | 90                                     | а    | 65      | 70     | а             | 76    | а       | 91      | 93         |  |
| 5   | Indaziflam    | 73                      | 95      | 92                                     | а    | 100     | 76     | а             | 93    | a       | 91      | 98         |  |
| 6   | Pendimethalin | 2,130                   | 84      | 63                                     | b    | 70      | 40     | b             | 13    | b       | 83      | 44         |  |
| 7   | Pendimethalin | 4,259                   | 86      | 79                                     | ab   | 63      | 41     | b             | 10    | b       | 85      | 58         |  |
|     | P-value       |                         | 0.158   | 0.03                                   | 6    | 0.422   | < 0.0  | 001           | < 0.0 | 001     | 0.333   | 0.147      |  |

Table 6. Overall and dominant weed control with preemergence herbicides in a fall fallow field experiment conducted in 2020 and 2021 near Davis, CA.

<sup>1</sup>There was no single dominant species at 30 DAT in Study 1. <sup>2</sup>DAT = days after treatment

| No. | Treatment     | Rate                    | Overall | Redroot   | Common           | Overall | Redroot | Common        |
|-----|---------------|-------------------------|---------|-----------|------------------|---------|---------|---------------|
|     |               |                         |         | pigweed   | lambsquarters    |         | pigweed | lambsquarters |
|     |               |                         |         |           | DAT <sup>1</sup> |         |         |               |
|     |               |                         | 30      | 30        | 30               | 60      | 60      | 60            |
|     |               | g a.i. ha <sup>-1</sup> |         | % Control |                  |         |         |               |
| 1   | Pyroxasulfone | 146                     | 91      | 88        | 50               | 59      | 13      | 38 abc        |
| 2   | Pyroxasulfone | 219                     | 90      | 75        | 63               | 42      | 13      | 63 ab         |
| 3   | Pyroxasulfone | 293                     | 91      | 75        | 100              | 58      | 0       | 88 a          |
| 4   | Indaziflam    | 52                      | 92      | 25        | 63               | 41      | 25      | 25 bc         |
| 5   | Indaziflam    | 73                      | 95      | 38        | 88               | 56      | 13      | 38 abc        |
| 6   | Pendimethalin | 4,259                   | 92      | 50        | 88               | 59      | 25      | 0 c           |
| 7   | Pendimethalin | 6,389                   | 94      | 63        | 50               | 59      | 0       | 25 bc         |
|     | P-value       |                         | 0.487   | 0.223     | 0.429            | 0.324   | 0.757   | 0.059         |

 Table 7. Overall and dominant weed control with preemergence herbicides in a fallow field experiment conducted in spring (study 3) 2021 near Davis, CA.

| No. | Treatment     | Rate                    | Overall | Yellow<br>nutsedge | Overall               | Yellow<br>nutsedge |
|-----|---------------|-------------------------|---------|--------------------|-----------------------|--------------------|
|     |               |                         |         | DAT-I              | <b>3</b> <sup>2</sup> |                    |
|     |               |                         | 90      | 90                 | 150                   | 150                |
|     |               | g a.i. ha <sup>-1</sup> |         | % Co               | ntrol                 |                    |
| 1   | Pyroxasulfone | 146                     | 93      | 65                 | 87                    | 70                 |
| 2   | Pyroxasulfone | 219                     | 95      | 73                 | 87                    | 76                 |
| 3   | Pyroxasulfone | 293                     | 95      | 73                 | 89                    | 68                 |
| 4   | Indaziflam    | 52                      | 92      | 40                 | 89                    | 64                 |
| 5   | Indaziflam    | 73                      | 94      | 66                 | 92                    | 68                 |
| 6   | Pendimethalin | 4,259                   | 91      | 67                 | 86                    | 73                 |
| 7   | Pendimethalin | 6,389                   | 91      | 54                 | 84                    | 40                 |
|     | P-value       |                         | 0.095   | 0.523              | 0.085                 | 0.772              |

Table 8. Overall weed and yellow nutsedge control with preemergence herbicides in an irrigation incorporation experiment (study 5)<sup>1</sup> near Davis, CA in summer 2021.

<sup>1</sup>Analyzed as a randomized complete block design averaged over two irrigation incorporation timings (N =8).  $^{2}$ DAT-B = days after treatment "B" (five days before initial irrigation)

|     |               |                     | -           | — Fallow field (study 6)— ——— |                   | —Young almonds (study 7)— |                                         |         |                   |
|-----|---------------|---------------------|-------------|-------------------------------|-------------------|---------------------------|-----------------------------------------|---------|-------------------|
| No. | Treatments    | Timing <sup>1</sup> | Rate        | Overall                       | Field<br>bindweed | Overall                   | Field<br>bindweed<br>DAT-B <sup>2</sup> | Overall | Field<br>bindweed |
|     |               |                     |             | 60                            | 60                | 60                        | 60                                      | 90      | 90                |
|     |               |                     | σai ha⁻¹    |                               |                   |                           | Control                                 |         |                   |
| 1   | Indaziflam    | А                   | 52          | 88                            | 0                 | 84                        | 67                                      | 68      | 0                 |
| 1   | Pendimethalin | B                   | 4 259       | 00                            | 0                 | 01                        | 07                                      | 00      | 0                 |
| 2   | Indaziflam    | Δ                   | +,237<br>52 | 80                            | 23                | 88                        | 33                                      | 72      | 0                 |
| 2   | Pendimethalin | R                   | 52<br>6 389 | 00                            | 23                | 00                        | 55                                      | 12      | 0                 |
| 3   | Indaziflam    | A                   | 52          | 88                            | 23                | 85                        | 17                                      | 68      | 0                 |
| 5   | Pyroxasulfone | B                   | 146         | 00                            | 23                | 05                        | 17                                      | 00      | 0                 |
| 4   | Indaziflam    | Δ                   | 52          | 82                            | 10                | 87                        | 33                                      | 62      | 0                 |
| т   | Pyroxasulfone | R                   | 293         | 02                            | 10                | 07                        | 55                                      | 02      | 0                 |
| 5   | Pyroxasulfone | Δ                   | 146         | 87                            | 50                | 87                        | 33                                      | 52      | 0                 |
| 5   | Pendimethalin | R                   | 4 259       | 07                            | 50                | 07                        | 55                                      | 52      | 0                 |
| 6   | Pyroxasulfone | Δ                   | 146         | 90                            | 40                | 87                        | 67                                      | 62      | 33                |
| 0   | Pendimethalin | B                   | 6 389       | 20                            | 10                | 07                        | 07                                      | 02      | 55                |
| 7   | Pyroxasulfone | A                   | 293         | 87                            | 23                | 95                        | 33                                      | 82      | 33                |
| ,   | Pendimethalin | B                   | 4 259       | 01                            | 25                | 20                        | 55                                      | 02      | 55                |
| 8   | Pyroxasulfone | A                   | 293         | 77                            | 10                | 93                        | 67                                      | 82      | 0                 |
| Ũ   | Pendimethalin | В                   | 6.389       |                               | 10                | 20                        | 0,                                      |         | Ū                 |
| 9   | Penoxsulam +  | A                   | 29 +        | 80                            | 0                 | 88                        | 33                                      | 70      | 0                 |
| -   | Oxyfluorfen   |                     | 1.379       | 00                            | Ū.                | 00                        |                                         | , 0     | Ū                 |
|     | Pendimethalin | В                   | 4.259       |                               |                   |                           |                                         |         |                   |
| 10  | Penoxsulam +  | A                   | 29 +        | 91                            | 27                | 91                        | 33                                      | 73      | 33                |
|     | Oxyfluorfen   |                     | 1.379       |                               | _,                | <u>, -</u>                |                                         |         |                   |
|     | Pendimethalin | В                   | 6.389       |                               |                   |                           |                                         |         |                   |
| 11  | Flumioxazin   | А                   | 358         | 95                            | 68                | 87                        | 93                                      | 70      | 33                |
| -   | Pendimethalin | В                   | 4,259       |                               |                   |                           |                                         |         | -                 |
| 12  | Flumioxazin   | A                   | 358         | 87                            | 0                 | 90                        | 0                                       | 82      | 33                |
|     | Pendimethalin | B                   | 6,389       |                               | -                 |                           | -                                       |         |                   |
|     | P-value       |                     | ,           | 0.637                         | 0.252             | 0.893                     | 0.172                                   | 0.732   | 0.781             |

## Table 9. Overall and dominant weed control with preemergence herbicides in a sequential application experiment conducted in a fallow field and almond orchard in spring 2021 and spring 2022 near Arbuckle and Davis, CA.

<sup>1</sup>Treatment timing "A" was applied on February 18, 202. Treatment timing "B" was applied on March 22, 2021. <sup>2</sup>DAT-B = Days after treatment "B" timing

|     |                              |                         | — Young | g almond orcha | rd (study 8) <sup>1</sup> |         | Wa           | alnut orchard (s | tudy 9) ———  |                |
|-----|------------------------------|-------------------------|---------|----------------|---------------------------|---------|--------------|------------------|--------------|----------------|
| No. | Treatment                    | Rate                    | Overall | Overall        | Field<br>bindweed         | Overall | Bermudagrass | Overall          | Bermudagrass | Foxtail barely |
|     |                              |                         | 30      | 60             | 60                        | 30      | $- DAT^2$    | 60               | 60           | 60             |
|     |                              | g a.i. ha <sup>-1</sup> |         |                |                           |         | % Control    |                  |              |                |
| 1   | Indaziflam<br>Glufosinate    | 29<br>984               | 98      | 90             | 67                        | 84      | 75           | 50               | 25           | 50             |
| 2   | Indaziflam<br>Glufosinate    | 39<br>1,334             | 99      | 92             | 67                        | 88      | 70           | 70               | 25           | 28             |
| 3   | Indaziflam<br>Glufosinate    | 49<br>1.704             | 100     | 91             | 0                         | 88      | 73           | 82               | 25           | 77             |
| 4   | Indaziflam<br>Glufosinate    | 73<br>1.334             | 99      | 91             | 63                        | 88      | 75           | 63               | 50           | 75             |
| 5   | Pyroxasulfone<br>Glufosinate | 219<br>1,704            | 100     | 84             | 33                        | 83      | 60           | 51               | 25           | 48             |
| 6   | Pyroxasulfone<br>Glufosinate | 293<br>1.704            | 99      | 85             | 0                         | 83      | 48           | 81               | 25           | 45             |
| 7   | Pendimethalin<br>Glufosinate | 4,259<br>1,704          | 98      | 94             | 67                        | 87      | 70           | 73               | 25           | 93             |
| 8   | Pendimethalin<br>Glufosinate | 6,389<br>1,704          | 99      | 86             | 33                        | 85      | 95           | 63               | 25           | 96             |
|     | P-value                      |                         | 0.678   | 0.415          | 0.445                     | 0.975   | 0.921        | 0.670            | 0.996        | 0.607          |

| Fable 10. Overall and dominant weed control in a single application orchard experiment conducted in almond and walnut orchards in spring 2022 | near |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Arbuckle and Davis, CA.                                                                                                                       |      |

<sup>1</sup>There was no single dominant species at 30 DAT in study 8. <sup>2</sup>DAT = days after treatment

| No. | Treatment     | Rate                    | Almond     | Almond                 | Vineyard   |
|-----|---------------|-------------------------|------------|------------------------|------------|
|     |               |                         | orchard    | orchard                | (study 12) |
|     |               |                         | (study 10) | (study 11)             |            |
|     |               |                         |            | - 120 DAT <sup>1</sup> |            |
|     |               | g a.i. ha <sup>-1</sup> |            | % Control-             |            |
| 1   | Indaziflam    | 56                      | 85         | 88                     | 96         |
| 2   | Rimsulfuron   | 70                      | 92         | 86                     | 99         |
| 3   | Flumioxazin   | 882                     | 87         | 96                     | 98         |
| 4   | Pendimethalin | 4,259                   | 93         | 96                     | 97         |
| 5   | Pyroxasulfone | 150                     | 92         | 94                     | 99         |
| 6   | Pyroxasulfone | 225                     | 88         | 93                     | 99         |
| 7   | Pyroxasulfone | 300                     | 89         | 91                     | 98         |
| 8   | Pyroxasulfone | 150                     | 90         | 73                     | 98         |
|     | Pendimethalin | 4,259                   |            |                        |            |
| 9   | Pyroxasulfone | 225                     | 96         | 94                     | 96         |
|     | Pendimethalin | 4,259                   |            |                        |            |
| 10  | Flumioxazin   | 118                     | 93         | 94                     | 99         |
|     | Pyroxasulfone | 150                     |            |                        |            |
| 11  | Flumioxazin   | 178                     | 96         | 91                     | 98         |
|     | Pyroxasulfone | 225                     |            |                        |            |
| 12  | Pyroxasulfone | 150                     | 92         | 93                     | 99         |
|     | Rimsulfuron   | 70                      |            |                        |            |
| 13  | Pyroxasulfone | 225                     | 90         | 93                     | 99         |
|     | Rimsulfuron   | 70                      |            |                        |            |
| 14  | Oxyfluorfen   | 2,018                   | 85         | 93                     | 98         |
|     | Penoxsulam    | 4,261                   |            |                        |            |
|     | P-value       |                         | 0.672      | 0.580                  | 0.937      |

Table 11. Overall weed control 120 DAT with preemergence herbicides in an orchard and vineyard experiment near Davis and Winters, CA in spring 2021.





Diameter measurements of almond trees before study initation, one year after treatment (2022), and two years after initial treatment (2023). No differences were found among treatments compared to the control. Application rates were pyroxasulfone at 1,199 g a.i. ha<sup>-1</sup> and S-metolachlor at 14,010 g a.i. ha<sup>-1</sup>. Timing "A" was before flowering and leafing, and timing "B" was after flowering and leafing.



Figure 2. Young walnut tree response to pyroxasulfone and S-metolachlor.

Diameter measurements of walnut trees before study initation, one year after treatment (2022), and two years after initial treatment (2023). No differences were found among treatments compared to the control. Application rates were pyroxasulfone at 1,199 g a.i.. ha<sup>-1</sup> and S-metolachlor at 14,010 g a.i. ha<sup>-1</sup>. Timing "A" was before flowering and leafing, and timing "B" was after flowering and leafing.



Figure 3. Young pistachio tree response to pyroxasulfone and S-metolachlor.

Diameter measurements of pistachio trees before study initation, one year after treatment (2022), and two years after initial treatment (2023). No differences were found among treatments compared to the control. Application rates were pyroxasulfone at 1,199 g a.i.  $ha^{-1}$  and S-metolachlor at 14,010 g a.i.  $ha^{-1}$ . Timing "A" was before flowering and leafing, and timing "B" was after flowering and leafing.

## Appendix

## Weeds observed:

annual bluegrass (Poa annua) annual sowthistle (Sonchus oleraceus) black nightshade (Solanum nigrum) bermudagrass (*Cynodon dactylon*) California burclover (*Medicago polymorpha*) common lambsquarters (*Chenopodium album*) common knotweed (*Polygonum arenastrum*) crabgrass (*Digitaria sanguinalis*) field bindweed (Convolvulus arvensis) filaree (*Erodium cicutarium*) foxtail barley (Hordeum jubatum) hare barley (Hordeum murinum) hairy fleabane (Erigeran bonariensis), henbit (*Lamium amplexicaule*) Italian ryegrass (Lolium multiflorum) knotweed (*Polygonum arenastrum*) malva (*Malva parviflora*) prostrate pigweed (*Amaranthus blitoides*) shepherd's purse (Capsella bursa-pastoris) spotted spurge (*Euphorbia maculata*) square willowherb (*Epilobium tetragonum*) swinecress (Lepidium coronopus) redroot pigweed (Amaranthus retroflexus) ryegrass (Lolium spp.) yellow nutsedge (Cyperus esculentus) wild parsley (Pastinaca sativa)

| No. | Treatment     | Rate                    |       |       | - DAT <sup>1</sup> - |       |       |
|-----|---------------|-------------------------|-------|-------|----------------------|-------|-------|
|     |               |                         | 30    | 60    | 75                   | 90    | 105   |
|     |               | g a.i. ha <sup>-1</sup> |       | Ç     | % Control            |       |       |
| 1   | Pyroxasulfone | 146                     | 81    | 75    | 65 b                 | 68    | 56    |
| 2   | Pyroxasulfone | 219                     | 91    | 88    | 85 ab                | 83    | 78    |
| 3   | Pyroxasulfone | 293                     | 91    | 91    | 81 ab                | 78    | 71    |
| 4   | Indaziflam    | 52                      | 93    | 94    | 90 a                 | 90    | 83    |
| 5   | Indaziflam    | 73                      | 95    | 92    | 92 a                 | 90    | 87    |
| 6   | Pendimethalin | 2,130                   | 84    | 83    | 63 b                 | 74    | 64    |
| 7   | Pendimethalin | 4,259                   | 86    | 90    | 79 ab                | 80    | 75    |
|     | P-value       |                         | 0.158 | 0.376 | 0.036                | 0.508 | 0.572 |

Appendix table 1. Overall control in a fallow field study with preemergence herbicides near Davis, CA in fall 2020 (study 1).

Appendix table 2. Control of shepherd's purse in a fallow field study with preemergence herbicides near Davis, CA in fall 2020 (study 1).

| No. | Treatment     | Rate -                  | DAT <sup>1</sup> |       |         |       |  |
|-----|---------------|-------------------------|------------------|-------|---------|-------|--|
|     |               |                         | 60               | 75    | 90      | 105   |  |
|     |               | g a.i. ha <sup>-1</sup> |                  | % (   | Control |       |  |
| 1   | Pyroxasulfone | 146                     | 73               | 38    | 46      | 43    |  |
| 2   | Pyroxasulfone | 219                     | 84               | 74    | 78      | 73    |  |
| 3   | Pyroxasulfone | 293                     | 85               | 73    | 75      | 73    |  |
| 4   | Indaziflam    | 52                      | 93               | 85    | 93      | 88    |  |
| 5   | Indaziflam    | 73                      | 94               | 100   | 100     | 100   |  |
| 6   | Pendimethalin | 2,130                   | 75               | 68    | 55      | 63    |  |
| 7   | Pendimethalin | 4,259                   | 84               | 63    | 69      | 65    |  |
|     | P-value       |                         | 0.709            | 0.166 | 0.194   | 0.127 |  |

<sup>1</sup>DAT= days after treatment

Appendix table 3. Control of filaree in a fallow field study with preemergence herbicides near Davis, CA in fall 2020 (study 1).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |       |        |       |  |
|-----|---------------|-------------------------|------------------|-------|--------|-------|--|
|     |               |                         | 60               | 75    | 90     | 105   |  |
|     |               | g a.i. ha <sup>-1</sup> |                  | % C   | ontrol |       |  |
| 1   | Pyroxasulfone | 146                     | 80               | 38    | 58     | 44    |  |
| 2   | Pyroxasulfone | 219                     | 93               | 53    | 73     | 59    |  |
| 3   | Pyroxasulfone | 293                     | 91               | 66    | 63     | 55    |  |
| 4   | Indaziflam    | 52                      | 95               | 65    | 95     | 81    |  |
| 5   | Indaziflam    | 73                      | 100              | 100   | 90     | 85    |  |
| 6   | Pendimethalin | 2,130                   | 85               | 70    | 68     | 38    |  |
| 7   | Pendimethalin | 4,259                   | 94               | 63    | 73     | 60    |  |
|     | P-value       |                         | 0.709            | 0.166 | 0.194  | 0.127 |  |

| No. | Treatment     | Rate                    |       | - DAT <sup>1</sup> |       |
|-----|---------------|-------------------------|-------|--------------------|-------|
|     |               |                         | 75    | 90                 | 105   |
|     |               | g a.i. ha <sup>-1</sup> |       | -% Control         |       |
| 1   | Pyroxasulfone | 146                     | 38    | 58                 | 44    |
| 2   | Pyroxasulfone | 219                     | 53    | 73                 | 59    |
| 3   | Pyroxasulfone | 293                     | 66    | 63                 | 55    |
| 4   | Indaziflam    | 52                      | 65    | 95                 | 81    |
| 5   | Indaziflam    | 73                      | 100   | 90                 | 85    |
| 6   | Pendimethalin | 2,130                   | 70    | 68                 | 38    |
| 7   | Pendimethalin | 4,259                   | 63    | 73                 | 60    |
|     | P-value       |                         | 0.166 | 0.194              | 0.127 |

Appendix table 4. Control of annual bluegrass in a fallow field study with preemergence herbicides near Davis, CA in fall 2020 (study 1).

Appendix table 5. Control of henbit in a fallow field study with preemergence herbicides near Davis, CA in fall 2020 (study 1).

| No.     | Treatment     | Rate                    |       | D     | AT <sup>1</sup> — |       |
|---------|---------------|-------------------------|-------|-------|-------------------|-------|
|         |               |                         | 60    | 75    | 90                | 105   |
|         |               | g a.i. ha <sup>-1</sup> |       | % (   | Control           |       |
| 1       | Pyroxasulfone | 146                     | 84    | 38    | 70                | 90    |
| 2       | Pyroxasulfone | 219                     | 84    | 65    | 70                | 55    |
| 3       | Pyroxasulfone | 293                     | 90    | 79    | 70                | 50    |
| 4       | Indaziflam    | 52                      | 94    | 78    | 83                | 40    |
| 5       | Indaziflam    | 73                      | 96    | 75    | 60                | 60    |
| 6       | Pendimethalin | 2,130                   | 75    | 68    | 90                | 100   |
| 7       | Pendimethalin | 4,259                   | 91    | 50    | 100               | 100   |
|         | P-value       |                         | 0.836 | 0.777 | 0.584             | 0.375 |
| 100.000 | 1 0           |                         |       |       |                   |       |

<sup>1</sup>DAT= days after treatment

Appendix table 6. Control of square willowherb in a fallow field study with preemergence herbicides near Davis, CA in fall 2020 (study 1).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |       |         |       |  |
|-----|---------------|-------------------------|------------------|-------|---------|-------|--|
|     |               |                         | 60               | 75    | 90      | 105   |  |
|     |               | g a.i. ha <sup>-1</sup> |                  | %     | Control |       |  |
| 1   | Pyroxasulfone | 146                     | 65               | 60    | 68      | 75    |  |
| 2   | Pyroxasulfone | 219                     | 90               | 85    | 38      | 33    |  |
| 3   | Pyroxasulfone | 293                     | 98               | 75    | 75      | 80    |  |
| 4   | Indaziflam    | 52                      | 96               | 79    | 90      | 88    |  |
| 5   | Indaziflam    | 73                      | 78               | 100   | 100     | 100   |  |
| 6   | Pendimethalin | 2,130                   | 95               | 75    | 73      | 60    |  |
| 7   | Pendimethalin | 4,259                   | 90               | 67    | 75      | 80    |  |
|     | P-value       |                         | 0.456            | 0.466 | 0.442   | 0.378 |  |

| pree | mergenee ner stela |                         | , en m num | IoII (Braa             | <b>j =</b> )• |
|------|--------------------|-------------------------|------------|------------------------|---------------|
| No.  | Treatment          | Rate                    |            | - DAT <sup>1</sup> $-$ |               |
|      |                    |                         | 30         | 60                     | 75            |
|      |                    | g a.i. ha <sup>-1</sup> |            | -% Control-            |               |
| 1    | Pyroxasulfone      | 146                     | 40 b       | 89                     | 80            |
| 2    | Pyroxasulfone      | 219                     | 42 b       | 88                     | 79            |
| 3    | Pyroxasulfone      | 293                     | 41 b       | 89                     | 79            |
| 4    | Indaziflam         | 52                      | 70 a       | 97                     | 91            |
| 5    | Indaziflam         | 73                      | 76 a       | 98                     | 91            |
| 6    | Pendimethalin      | 2,130                   | 40 b       | 86                     | 83            |
| 7    | Pendimethalin      | 4,259                   | 41 b       | 90                     | 85            |
|      | P-value            |                         | < 0.0001   | 0.278                  | 0.333         |

Appendix table 7. Overall weed control in a fallow field study with preemergence herbicides near Davis, CA in fall 2021 (study 2).

Appendix table 8. Control of field bindweed in a fallow field study with preemergence herbicides near Davis, CA in fall 2021 (study 2).

|     | -             |                         |       |           |
|-----|---------------|-------------------------|-------|-----------|
| No. | Treatment     | Rate                    | — DA  | $T^{1}$ — |
|     |               |                         | 60    | 75        |
|     |               | g a.i. ha <sup>-1</sup> | % Co  | ontrol    |
| 1   | Pyroxasulfone | 146                     | 0     | 0 b       |
| 2   | Pyroxasulfone | 219                     | 50    | 0 b       |
| 3   | Pyroxasulfone | 293                     | 25    | 0 b       |
| 4   | Indaziflam    | 52                      | 50    | 25 ab     |
| 5   | Indaziflam    | 73                      | 50    | 0 b       |
| 6   | Pendimethalin | 2,130                   | 75    | 68 a      |
| 7   | Pendimethalin | 4,259                   | 75    | 65 a      |
|     | P-value       |                         | 0.373 | 0.007     |
|     | 1 0           |                         |       |           |

<sup>1</sup>DAT= days after treatment

Appendix table 9. Control of malva in a fallow field study with preemergence herbicides near Davis, CA in fall 2021 (study 2).

| No. | Treatment     | Rate                    | ——— DAT <sup>1</sup> ——— |            |       |
|-----|---------------|-------------------------|--------------------------|------------|-------|
|     |               |                         | 30                       | 60         | 75    |
|     |               | g a.i. ha <sup>-1</sup> |                          | % Control- |       |
| 1   | Pyroxasulfone | 146                     | 65                       | 73         | 78    |
| 2   | Pyroxasulfone | 219                     | 23                       | 75         | 46    |
| 3   | Pyroxasulfone | 293                     | 43                       | 90         | 50    |
| 4   | Indaziflam    | 52                      | 83                       | 100        | 100   |
| 5   | Indaziflam    | 73                      | 78                       | 100        | 100   |
| 6   | Pendimethalin | 2,130                   | 55                       | 100        | 100   |
| 7   | Pendimethalin | 4,259                   | 55                       | 75         | 100   |
|     | P-value       |                         | 0.348                    | 0.720      | 0.072 |

| No   | Treatment     | Rate                    | , CII I | in ian | - DAT <sup>1</sup> - | .j 2). |
|------|---------------|-------------------------|---------|--------|----------------------|--------|
| 110. | Treatment     | Kate                    | 30      |        | 60                   | 75     |
|      |               | g a.i. ha <sup>-1</sup> |         |        | -% Control           |        |
| 1    | Pyroxasulfone | 146                     | 20      | b      | 50                   | 68     |
| 2    | Pyroxasulfone | 219                     | 30      | b      | 60                   | 89     |
| 3    | Pyroxasulfone | 293                     | 18      | b      | 63                   | 88     |
| 4    | Indaziflam    | 52                      | 76      | а      | 73                   | 93     |
| 5    | Indaziflam    | 73                      | 93      | а      | 100                  | 98     |
| 6    | Pendimethalin | 2,130                   | 13      | b      | 25                   | 44     |
| 7    | Pendimethalin | 4,259                   | 10      | b      | 60                   | 58     |
|      | P-value       |                         | < 0.0   | 001    | 0.406                | 0.147  |

Appendix table 10. Control of swinecress in a fallow field study with preemergence herbicides near Davis, CA in fall 2021 (study 2).

Appendix table 11. Overall weed control in a fallow field study with preemergence herbicides near Davis, CA in spring 2021 (study 3).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |           |       |  |  |
|-----|---------------|-------------------------|------------------|-----------|-------|--|--|
|     |               |                         | 30               | 45        | 60    |  |  |
|     |               | g a.i. ha <sup>-1</sup> |                  | % Control |       |  |  |
| 1   | Pyroxasulfone | 146                     | 91               | 88        | 59    |  |  |
| 2   | Pyroxasulfone | 219                     | 90               | 78        | 42    |  |  |
| 3   | Pyroxasulfone | 293                     | 91               | 81        | 58    |  |  |
| 4   | Indaziflam    | 52                      | 92               | 80        | 41    |  |  |
| 5   | Indaziflam    | 73                      | 95               | 85        | 56    |  |  |
| 6   | Pendimethalin | 4,259                   | 92               | 85        | 59    |  |  |
| 7   | Pendimethalin | 6,389                   | 94               | 88        | 59    |  |  |
|     | P-value       |                         | 0.487            | 0.230     | 0.324 |  |  |

<sup>1</sup>DAT= days after treatment

Appendix table 12. Control of common lambsquarters in a fallow field study with preemergence herbicides near Davis, CA in spring 2021 (study 3).

| (   | -5 - ).       |                         |       |                        |        |
|-----|---------------|-------------------------|-------|------------------------|--------|
| No. | Treatment     | Rate                    |       | - DAT <sup>1</sup> $-$ |        |
|     |               |                         | 30    | 45                     | 60     |
|     |               | g a.i. ha <sup>-1</sup> |       | -% Control             |        |
| 1   | Pyroxasulfone | 146                     | 50    | 38                     | 38 abc |
| 2   | Pyroxasulfone | 219                     | 63    | 63                     | 63 ab  |
| 3   | Pyroxasulfone | 293                     | 100   | 100                    | 88 a   |
| 4   | Indaziflam    | 52                      | 63    | 25                     | 25 bc  |
| 5   | Indaziflam    | 73                      | 88    | 63                     | 38 abc |
| 6   | Pendimethalin | 4,259                   | 88    | 25                     | 0 c    |
| 7   | Pendimethalin | 6,389                   | 50    | 25                     | 25 bc  |
|     | P-value       |                         | 0.429 | 0.063                  | 0.059  |

| (   | -5 - ) -      |                         |       |           |       |
|-----|---------------|-------------------------|-------|-----------|-------|
| No. | Treatment     | Rate                    |       | $- DAT^1$ |       |
|     |               |                         | 30    |           |       |
|     |               | g a.i. ha <sup>-1</sup> |       | % Control |       |
| 1   | Pyroxasulfone | 146                     | 88    | 63        | 13    |
| 2   | Pyroxasulfone | 219                     | 75    | 28        | 13    |
| 3   | Pyroxasulfone | 293                     | 75    | 0         | 0     |
| 4   | Indaziflam    | 52                      | 25    | 13        | 25    |
| 5   | Indaziflam    | 73                      | 38    | 13        | 13    |
| 6   | Pendimethalin | 4,259                   | 50    | 13        | 25    |
| 7   | Pendimethalin | 6,389                   | 63    | 13        | 0     |
|     | P-value       |                         | 0.223 | 0.190     | 0.757 |

Appendix table 13. Control of redroot pigweed in a fallow field study with preemergence herbicides near Davis, CA in spring 2021 (study 3).

Appendix table 14. Control of prostrate pigweed in a fallow field study with preemergence herbicides near Davis, CA in spring 2021 (study 3).

| (stut | iy 3).        |                         |           |                    |       |  |
|-------|---------------|-------------------------|-----------|--------------------|-------|--|
| No.   | Treatment     | Rate                    |           | DAT <sup>1</sup> - |       |  |
|       |               |                         | 30        | 45                 | 60    |  |
|       |               | g a.i. ha <sup>-1</sup> | % Control |                    |       |  |
| 1     | Pyroxasulfone | 146                     | 55        | 38                 | 43    |  |
| 2     | Pyroxasulfone | 219                     | 63        | 25                 | 13    |  |
| 3     | Pyroxasulfone | 293                     | 50        | 25                 | 25    |  |
| 4     | Indaziflam    | 52                      | 38        | 13                 | 13    |  |
| 5     | Indaziflam    | 73                      | 63        | 50                 | 25    |  |
| 6     | Pendimethalin | 4,259                   | 63        | 37                 | 25    |  |
| 7     | Pendimethalin | 6,389                   | 75        | 75                 | 50    |  |
|       | P-value       |                         | 0.960     | 0.419              | 0.850 |  |

<sup>1</sup>DAT= days after treatment

Appendix table 15. Control of field bindweed in a fallow field study with preemergence herbicides near Davis, CA in spring 2021 (study 3).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |           |       |  |  |
|-----|---------------|-------------------------|------------------|-----------|-------|--|--|
|     |               |                         | 30               | 45        | 60    |  |  |
|     |               | g a.i. ha <sup>-1</sup> |                  | % Control |       |  |  |
| 1   | Pyroxasulfone | 146                     | 88               | 30        | 25    |  |  |
| 2   | Pyroxasulfone | 219                     | 75               | 0.0       | 0     |  |  |
| 3   | Pyroxasulfone | 293                     | 75               | 43        | 25    |  |  |
| 4   | Indaziflam    | 52                      | 25               | 35        | 0     |  |  |
| 5   | Indaziflam    | 73                      | 38               | 35        | 0     |  |  |
| 6   | Pendimethalin | 4,259                   | 50               | 17        | 0     |  |  |
| 7   | Pendimethalin | 6,389                   | 63               | 13        | 0     |  |  |
|     | P-value       |                         | 0.598            | 0.624     | 0.558 |  |  |

| P-00 | <b>F</b> • • • • • • • • • • • • • • • • • • • |                         |                  |       |          |  |  |  |  |  |  |
|------|------------------------------------------------|-------------------------|------------------|-------|----------|--|--|--|--|--|--|
| No.  | Treatment                                      | Rate                    | DAT <sup>2</sup> |       |          |  |  |  |  |  |  |
|      |                                                |                         | 30               | 45    | 60       |  |  |  |  |  |  |
|      |                                                | g a.i. ha <sup>-1</sup> | % Control        |       |          |  |  |  |  |  |  |
| 1    | Pyroxasulfone                                  | 146                     | 86               | 59 ab | 10 c     |  |  |  |  |  |  |
| 2    | Pyroxasulfone                                  | 219                     | 79               | 59 ab | 21 bc    |  |  |  |  |  |  |
| 3    | Pyroxasulfone                                  | 293                     | 84               | 50 bc | 3 c      |  |  |  |  |  |  |
| 4    | Indaziflam                                     | 52                      | 83               | 34 c  | 10 c     |  |  |  |  |  |  |
| 5    | Indaziflam                                     | 73                      | 84               | 44 bc | 10 c     |  |  |  |  |  |  |
| 6    | Pendimethalin                                  | 4,259                   | 90               | 71 a  | 40 ab    |  |  |  |  |  |  |
| 7    | Pendimethalin                                  | 6,389                   | 91               | 78 a  | 55 a     |  |  |  |  |  |  |
|      | P-value                                        |                         | 0.402            | 0.004 | < 0.0001 |  |  |  |  |  |  |

Appendix table 16. Overall weed control in a fallow field study with preemergence herbicides near Davis, CA. in spring 2022<sup>1</sup> (study 4).

<sup>1</sup>During the spray application, a spray pressure problem occurred during application of treatments with pyroxasulfone at 293 g ha<sup>-1</sup>, indaziflam at 52 and 53 g ha<sup>-1</sup>.

<sup>2</sup>DAT= days after treatment

| (stut | ·y -).        |                         |                  |          |          |  |  |
|-------|---------------|-------------------------|------------------|----------|----------|--|--|
| No.   | Treatment     | Rate                    | DAT <sup>2</sup> |          |          |  |  |
|       |               |                         | 30               | 45       | 60       |  |  |
|       |               | g a.i. ha <sup>-1</sup> | % Control        |          |          |  |  |
| 1     | Pyroxasulfone | 146                     | 60 ab            | 43 b     | 33 b     |  |  |
| 2     | Pyroxasulfone | 219                     | 55 abc           | 53 b     | 25 b     |  |  |
| 3     | Pyroxasulfone | 293                     | 53 abc           | 40 b     | 23 b     |  |  |
| 4     | Indaziflam    | 52                      | 20 c             | 5 c      | 5 b      |  |  |
| 5     | Indaziflam    | 73                      | 54 abc           | 63 ab    | 10 b     |  |  |
| 6     | Pendimethalin | 4,259                   | 89 ab            | 65 ab    | 70 a     |  |  |
| 7     | Pendimethalin | 6,389                   | 90 a             | 80 a     | 73 a     |  |  |
|       | P-value       |                         | 0.013            | < 0.0001 | < 0.0001 |  |  |

Appendix table 17. Control of common lambsquarters in a fallow field study with preemergence herbicides near Davis, CA. in spring 2022<sup>1</sup> (study 4).

<sup>1</sup>During the spray application, a spray pressure problem occurred during application of treatments with pyroxasulfone at 293 g ha<sup>-1</sup>, indaziflam at 52 and 53 g ha<sup>-1</sup>. <sup>2</sup>DAT= days after treatment

|     | I solar s | i i j i i j j i         |           |       |         |       |     |
|-----|-----------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-------|---------|-------|-----|
| No. | Treatment                                                                                                       | Rate                    |           | — I   | $DAT^2$ |       |     |
|     |                                                                                                                 |                         | 30        | 45    |         | 60    |     |
|     |                                                                                                                 | g a.i. ha <sup>-1</sup> | % Control |       |         |       |     |
| 1   | Pyroxasulfone                                                                                                   | 146                     | 70        | 20    | c       | 0     | b   |
| 2   | Pyroxasulfone                                                                                                   | 219                     | 66        | 50    | bc      | 28    | b   |
| 3   | Pyroxasulfone                                                                                                   | 293                     | 59        | 18    | с       | 13    | b   |
| 4   | Indaziflam                                                                                                      | 52                      | 81        | 50    | bc      | 18    | b   |
| 5   | Indaziflam                                                                                                      | 73                      | 79        | 28    | с       | 20    | b   |
| 6   | Pendimethalin                                                                                                   | 4,259                   | 99        | 85    | ab      | 83    | а   |
| 7   | Pendimethalin                                                                                                   | 6,389                   | 99        | 98    | а       | 83    | а   |
|     | P-value                                                                                                         |                         | 0.154     | < 0.0 | 001     | < 0.0 | 001 |

Appendix table 18. Control of prostrate pigweed in a fallow field study with preemergence herbicides near Davis, CA. in spring 2022<sup>1</sup> (study 4).

<sup>1</sup>During the spray application, a spray pressure problem occurred during application of treatments with pyroxasulfone at 293 g ha<sup>-1</sup>, indaziflam at 52 and 53 g ha<sup>-1</sup>.

<sup>2</sup>DAT= days after treatment

|     | 1 0           |                         |           | /  |     | 0                |       |
|-----|---------------|-------------------------|-----------|----|-----|------------------|-------|
| No. | Treatment     | Rate                    |           |    |     | DAT <sup>2</sup> |       |
|     |               |                         | 30        |    | 45  |                  | 60    |
|     |               | g a.i. ha <sup>-1</sup> | % Control |    |     |                  |       |
| 1   | Pyroxasulfone | 146                     | 38        | ab | 28  | bc               | 10    |
| 2   | Pyroxasulfone | 219                     | 60        | а  | 33  | abc              | 23    |
| 3   | Pyroxasulfone | 293                     | 58        | а  | 50  | ab               | 33    |
| 4   | Indaziflam    | 52                      | 0         | b  | 3   | с                | 0     |
| 5   | Indaziflam    | 73                      | 0         | b  | 8   | с                | 0     |
| 6   | Pendimethalin | 4,259                   | 35        | ab | 40  | abc              | 8     |
| 7   | Pendimethalin | 6,389                   | 51        | а  | 70  | а                | 45    |
|     | P-value       |                         | 0.0       | 47 | 0.0 | 17               | 0.081 |

Appendix table 19. Control of redroot pigweed in a fallow field study with preemergence herbicides near Davis, CA. in spring 2022<sup>1</sup> (study 4).

<sup>1</sup>During the spray application, a spray pressure problem occurred during application of treatments with pyroxasulfone at 293 g ha<sup>-1</sup>, indaziflam at 52 and 53 g ha<sup>-1</sup>. <sup>2</sup>DAT= days after treatment

| No. | Treatment           | Rate                    | Application         |     |       | •     | - DAT-l  | $B^2$ — |       |       |
|-----|---------------------|-------------------------|---------------------|-----|-------|-------|----------|---------|-------|-------|
|     |                     |                         | Timing <sup>1</sup> | 30  | 45    | 75    | 90       | 120     | 150   | 180   |
|     |                     | g a.i. ha <sup>-1</sup> |                     |     |       |       | - % Cont | rol     |       |       |
| 1   | Pyroxasulfone       | 146                     | А                   | 100 | 98    | 94    | 92       | 91      | 86    | 82    |
| 2   | Pyroxasulfone       | 146                     | В                   | 100 | 96    | 96    | 94       | 91      | 88    | 85    |
| 3   | Pyroxasulfone       | 219                     | А                   | 100 | 96    | 95    | 95       | 95      | 84    | 95    |
| 4   | Pyroxasulfone       | 219                     | В                   | 100 | 97    | 96    | 95       | 94      | 89    | 79    |
| 5   | Pyroxasulfone       | 293                     | А                   | 100 | 98    | 96    | 95       | 94      | 90    | 86    |
| 6   | Pyroxasulfone       | 293                     | В                   | 100 | 100   | 97    | 95       | 98      | 88    | 88    |
| 7   | Indaziflam          | 52                      | А                   | 100 | 99    | 95    | 92       | 91      | 86    | 92    |
| 8   | Indaziflam          | 52                      | В                   | 100 | 95    | 92    | 92       | 81      | 91    | 87    |
| 9   | Indaziflam          | 73                      | А                   | 100 | 97    | 95    | 92       | 93      | 93    | 95    |
| 10  | Indaziflam          | 73                      | В                   | 100 | 100   | 99    | 96       | 94      | 91    | 93    |
| 11  | Pendimethalin       | 4,259                   | А                   | 100 | 97    | 93    | 90       | 90      | 85    | 83    |
| 12  | Pendimethalin       | 4,259                   | В                   | 100 | 96    | 92    | 93       | 91      | 86    | 80    |
| 13  | Pendimethalin       | 6,389                   | А                   | 100 | 97    | 91    | 90       | 89      | 86    | 80    |
| 14  | Pendimethalin       | 6,389                   | В                   | 100 | 100   | 93    | 91       | 87      | 83    | 80    |
|     | Interaction p-value |                         |                     | 1   | 0.077 | 0.275 | 0.836    | 0.062   | 0.050 | 0.875 |
|     | Irrigation p-value  |                         |                     | 1   | 0.855 | 0.305 | 0.209    | 0.271   | 0.672 | 0.482 |

Appendix table 20-A. Overall weed control with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation (timing B).

 $^{2}DAT-B = days after treatment B$ 

| Appendix table 20-B. Overall weed control with pyroxasulfone, indaziflam, and pendimethalin in a study |
|--------------------------------------------------------------------------------------------------------|
| near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged       |
| over two irrigation incorporation timings <sup>1</sup> .                                               |

| No. | Treatment         | Rate                    | DAT-B <sup>2</sup> |       |       |       |         |    |       |      |     |
|-----|-------------------|-------------------------|--------------------|-------|-------|-------|---------|----|-------|------|-----|
|     |                   |                         | 30                 | 45    | 75    | 90    | 120     |    | 150   | 180  |     |
|     |                   | g a.i. ha <sup>-1</sup> |                    |       |       | % Cor | ntrol - |    |       |      |     |
| 1   | Pyroxasulfone     | 146                     | 100                | 97    | 95    | 93    | 91      | ab | 87    | 83   | bcd |
| 2   | Pyroxasulfone     | 219                     | 100                | 96    | 95    | 95    | 94      | а  | 87    | 82   | cd  |
| 3   | Pyroxasulfone     | 293                     | 100                | 99    | 96    | 95    | 95      | а  | 89    | 87   | abc |
| 4   | Indaziflam        | 52                      | 100                | 97    | 93    | 92    | 86      | b  | 89    | 90   | ab  |
| 5   | Indaziflam        | 73                      | 100                | 99    | 97    | 94    | 93      | а  | 92    | 94   | а   |
| 6   | Pendimethalin     | 4,259                   | 100                | 97    | 92    | 91    | 91      | ab | 86    | 81   | cd  |
| 7   | Pendimethalin     | 6,389                   | 100                | 98    | 92    | 91    | 88      | b  | 84    | 80   | d   |
|     | Herbicide p-value |                         | 1                  | 0.353 | 0.095 | 0.095 | 0.01    | 3  | 0.085 | 0.00 | )1  |

<sup>1</sup>Analysis of herbicide main effects was done as randomized complete block design averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment           | Rate                    | Application         |       | — DA  | $T-B^3 -$ |       |
|-----|---------------------|-------------------------|---------------------|-------|-------|-----------|-------|
|     |                     |                         | Timing <sup>2</sup> | 75    | 90    | 120       | 150   |
|     |                     | g a.i. ha <sup>-1</sup> |                     |       | % Co  | ntrol     |       |
| 1   | Pyroxasulfone       | 146                     | А                   | 88    | 100   | 100       | 100   |
| 2   | Pyroxasulfone       | 146                     | В                   | 100   | 100   | 78        | 93    |
| 3   | Pyroxasulfone       | 219                     | А                   | 88    | 93    | 100       | 100   |
| 4   | Pyroxasulfone       | 219                     | В                   | 100   | 100   | 100       | 100   |
| 5   | Pyroxasulfone       | 293                     | А                   | 100   | 100   | 100       | 100   |
| 6   | Pyroxasulfone       | 293                     | В                   | 100   | 100   | 100       | 83    |
| 7   | Indaziflam          | 52                      | А                   | 88    | 93    | 93        | 100   |
| 8   | Indaziflam          | 52                      | В                   | 93    | 93    | 93        | 100   |
| 9   | Indaziflam          | 73                      | А                   | 83    | 88    | 93        | 93    |
| 10  | Indaziflam          | 73                      | В                   | 100   | 100   | 100       | 75    |
| 11  | Pendimethalin       | 4,259                   | А                   | 64    | 63    | 50        | 75    |
| 12  | Pendimethalin       | 4,259                   | В                   | 75    | 75    | 93        | 93    |
| 13  | Pendimethalin       | 6,389                   | А                   | 73    | 73    | 87        | 100   |
| 14  | Pendimethalin       | 6,389                   | В                   | 95    | 93    | 100       | 83    |
|     | Interaction p-value |                         |                     | 0.999 | 0.616 | 0.040     | 0.669 |
|     | Irrigation p-value  |                         |                     | 0.362 | 0.207 | 0.283     | 0.386 |

Appendix table 21-A. Control of black nightshade<sup>1</sup> with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>Black nightshade began to senesce approximately 180DAT-B.

<sup>2</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation (timing B). <sup>3</sup>DAT-B = days after treatment B

Appendix table 21-B. Control of black nightshade<sup>1</sup> with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings<sup>2</sup>.

|     |                   | -                       |                            |           |       |       |  |  |
|-----|-------------------|-------------------------|----------------------------|-----------|-------|-------|--|--|
| No. | Treatment         | Rate                    | ——— DAT-B <sup>3</sup> ——— |           |       |       |  |  |
|     |                   | g a.i. ha <sup>-1</sup> | 75                         | 75 90 120 |       | 150   |  |  |
|     |                   |                         | % Control                  |           |       |       |  |  |
| 1   | Pyroxasulfone     | 146                     | 95                         | 93        | 91 ab | 87    |  |  |
| 2   | Pyroxasulfone     | 219                     | 95                         | 95        | 94 a  | 87    |  |  |
| 3   | Pyroxasulfone     | 293                     | 96                         | 95        | 95 a  | 89    |  |  |
| 4   | Indaziflam        | 52                      | 93                         | 92        | 86 b  | 89    |  |  |
| 5   | Indaziflam        | 73                      | 97                         | 94        | 93 a  | 92    |  |  |
| 6   | Pendimethalin     | 4,259                   | 92                         | 91        | 91 ab | 86    |  |  |
| 7   | Pendimethalin     | 6,389                   | 92                         | 91        | 88 b  | 84    |  |  |
|     | Herbicide p-value |                         | 0.095                      | 0.095     | 0.013 | 0.085 |  |  |
|     |                   |                         |                            |           |       |       |  |  |

<sup>1</sup>Black nightshade began to senesce approximately 180DAT-B.

<sup>2</sup>Analysis of herbicide main effects was done as randomized complete block design averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment           | Rate                    | Application         |       | DAT-B <sup>2</sup> |       |
|-----|---------------------|-------------------------|---------------------|-------|--------------------|-------|
|     |                     |                         | Timing <sup>1</sup> | 120   | 150                | 180   |
|     |                     | g a.i. ha <sup>-1</sup> |                     |       | -% Contro          | ol    |
| 1   | Pyroxasulfone       | 146                     | А                   | 88    | 100                | 100   |
| 2   | Pyroxasulfone       | 146                     | В                   | 100   | 100                | 78    |
| 3   | Pyroxasulfone       | 219                     | А                   | 88    | 93                 | 100   |
| 4   | Pyroxasulfone       | 219                     | В                   | 100   | 100                | 100   |
| 5   | Pyroxasulfone       | 293                     | А                   | 100   | 100                | 100   |
| 6   | Pyroxasulfone       | 293                     | В                   | 100   | 100                | 100   |
| 7   | Indaziflam          | 52                      | А                   | 88    | 93                 | 93    |
| 8   | Indaziflam          | 52                      | В                   | 93    | 93                 | 93    |
| 9   | Indaziflam          | 73                      | А                   | 83    | 88                 | 93    |
| 10  | Indaziflam          | 73                      | В                   | 100   | 100                | 100   |
| 11  | Pendimethalin       | 4,259                   | А                   | 64    | 63                 | 50    |
| 12  | Pendimethalin       | 4,259                   | В                   | 75    | 75                 | 93    |
| 13  | Pendimethalin       | 6,389                   | А                   | 73    | 73                 | 87    |
| 14  | Pendimethalin       | 6,389                   | В                   | 95    | 93                 | 100   |
|     | Interaction p-value |                         |                     | 0.999 | 0.616              | 0.040 |
|     | Irrigation p-value  |                         |                     | 0.362 | 0.207              | 0.283 |

Appendix table 22-A. Control of malva with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation

(timing B).

 $^{2}DAT-B = days$  after treatment B

Appendix table 22-B. Control of malva with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings<sup>1</sup>.

|     |                   |                         | -     |                        |       |
|-----|-------------------|-------------------------|-------|------------------------|-------|
| No. | Treatment         | Rate                    |       | - DAT-B <sup>2</sup> - |       |
|     |                   |                         | 75    | 90                     | 105   |
|     |                   | g a.i. ha <sup>-1</sup> |       | -% Control-            |       |
| 1   | Pyroxasulfone     | 146                     | 94    | 83 c                   | 89    |
| 2   | Pyroxasulfone     | 219                     | 100   | 93 ab                  | 85    |
| 3   | Pyroxasulfone     | 293                     | 100   | 96 ab                  | 73    |
| 4   | Indaziflam        | 52                      | 100   | 100 a                  | 98    |
| 5   | Indaziflam        | 73                      | 100   | 98 ab                  | 100   |
| 6   | Pendimethalin     | 4,259                   | 94    | 91 b                   | 60    |
| 7   | Pendimethalin     | 6,389                   | 100   | 95 ab                  | 74    |
|     | Herbicide n-value |                         | 0.550 | 0.001                  | 0.087 |

<sup>1</sup>Analysis of herbicide main effects was done as randomized complete block design averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment           | Rate                    | Application         |     |       |       | DAT-B <sup>2</sup> |       |       |       |
|-----|---------------------|-------------------------|---------------------|-----|-------|-------|--------------------|-------|-------|-------|
|     |                     |                         | Timing <sup>1</sup> | 30  | 45    | 75    | 90                 | 120   | 150   | 180   |
|     |                     | g a.i. ha <sup>-1</sup> |                     |     |       | ģ     | % Contro           | 1     |       |       |
| 1   | Pyroxasulfone       | 146                     | А                   | 100 | 75    | 75    | 65                 | 65    | 63    | 75    |
| 2   | Pyroxasulfone       | 146                     | В                   | 100 | 75    | 68    | 65                 | 65    | 78    | 68    |
| 3   | Pyroxasulfone       | 219                     | А                   | 100 | 100   | 80    | 78                 | 93    | 75    | 75    |
| 4   | Pyroxasulfone       | 219                     | В                   | 100 | 100   | 68    | 68                 | 68    | 78    | 75    |
| 5   | Pyroxasulfone       | 293                     | А                   | 100 | 100   | 63    | 70                 | 50    | 80    | 75    |
| 6   | Pyroxasulfone       | 293                     | В                   | 100 | 100   | 78    | 75                 | 88    | 55    | 55    |
| 7   | Indaziflam          | 52                      | А                   | 100 | 75    | 58    | 55                 | 38    | 53    | 88    |
| 8   | Indaziflam          | 52                      | В                   | 100 | 100   | 50    | 25                 | 32    | 75    | 75    |
| 9   | Indaziflam          | 73                      | А                   | 100 | 100   | 58    | 58                 | 55    | 60    | 100   |
| 10  | Indaziflam          | 73                      | В                   | 100 | 100   | 83    | 75                 | 68    | 75    | 75    |
| 11  | Pendimethalin       | 4,259                   | А                   | 100 | 100   | 83    | 73                 | 55    | 65    | 75    |
| 12  | Pendimethalin       | 4,259                   | В                   | 100 | 100   | 58    | 63                 | 45    | 80    | 75    |
| 13  | Pendimethalin       | 6,389                   | А                   | 100 | 100   | 38    | 59                 | 38    | 30    | 100   |
| 14  | Pendimethalin       | 6,389                   | В                   | 100 | 100   | 43    | 50                 | 38    | 50    | 50    |
|     | Interaction p-value |                         |                     | 1   | 0.885 | 0.941 | 0.826              | 0.577 | 0.659 | 0.909 |
|     | Irrigation p-value  |                         |                     | 1   | 0.718 | 0.930 | 0.574              | 0.880 | 0.301 | 0.247 |

Appendix table 23-A. Control of yellow nutsedge with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation (timing B).  $^{2}DAT-B = days$  after treatment B

Appendix table 23-B. Control of yellow nutsedge with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings<sup>1</sup>.

| No. | Treatment         | Rate                    | DAT-B <sup>2</sup> |           |       |       |       |       |       |
|-----|-------------------|-------------------------|--------------------|-----------|-------|-------|-------|-------|-------|
|     |                   |                         | 30                 | 45        | 75    | 90    | 120   | 150   | 180   |
|     |                   | g a.i. ha <sup>-1</sup> |                    | % Control |       |       |       |       |       |
| 1   | Pyroxasulfone     | 146                     | 100                | 75        | 81    | 65    | 65    | 70    | 71    |
| 2   | Pyroxasulfone     | 219                     | 100                | 100       | 84    | 73    | 80    | 76    | 75    |
| 3   | Pyroxasulfone     | 293                     | 100                | 100       | 80    | 73    | 69    | 68    | 65    |
| 4   | Indaziflam        | 52                      | 100                | 88        | 54    | 40    | 35    | 64    | 81    |
| 5   | Indaziflam        | 73                      | 100                | 100       | 70    | 66    | 61    | 68    | 88    |
| 6   | Pendimethalin     | 4,259                   | 100                | 100       | 70    | 67    | 50    | 73    | 75    |
| 7   | Pendimethalin     | 6,389                   | 100                | 100       | 40    | 54    | 38    | 40    | 75    |
|     | Herbicide p-value |                         | 1                  | 0.168     | 0.641 | 0.523 | 0.257 | 0.772 | 0.970 |

<sup>1</sup>Analysis of herbicide main effects was done as randomized complete block design averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment           | Rate                    | Application         | DAT-B <sup>2</sup> |       |       |       |       |
|-----|---------------------|-------------------------|---------------------|--------------------|-------|-------|-------|-------|
|     |                     |                         | Timing <sup>1</sup> | 30                 | 45    | 75    | 90    | 120   |
|     |                     | g a.i. ha <sup>-1</sup> |                     |                    |       | % Con | trol  |       |
| 1   | Pyroxasulfone       | 146                     | А                   | 100                | 100   | 88    | 88    | 100   |
| 2   | Pyroxasulfone       | 146                     | В                   | 100                | 75    | 100   | 100   | 93    |
| 3   | Pyroxasulfone       | 219                     | А                   | 100                | 75    | 100   | 100   | 100   |
| 4   | Pyroxasulfone       | 219                     | В                   | 100                | 100   | 100   | 100   | 100   |
| 5   | Pyroxasulfone       | 293                     | А                   | 100                | 100   | 100   | 100   | 100   |
| 6   | Pyroxasulfone       | 293                     | В                   | 100                | 100   | 100   | 100   | 93    |
| 7   | Indaziflam          | 52                      | А                   | 100                | 100   | 100   | 100   | 100   |
| 8   | Indaziflam          | 52                      | В                   | 100                | 100   | 100   | 100   | 100   |
| 9   | Indaziflam          | 73                      | А                   | 100                | 75    | 100   | 100   | 100   |
| 10  | Indaziflam          | 73                      | В                   | 100                | 100   | 100   | 100   | 100   |
| 11  | Pendimethalin       | 4,259                   | А                   | 100                | 100   | 88    | 100   | 85    |
| 12  | Pendimethalin       | 4,259                   | В                   | 100                | 100   | 88    | 80    | 93    |
| 13  | Pendimethalin       | 6,389                   | А                   | 100                | 100   | 88    | 100   | 93    |
| 14  | Pendimethalin       | 6,389                   | В                   | 100                | 100   | 100   | 100   | 88    |
|     | Interaction p-value |                         |                     | 1                  | 0.384 | 0.994 | 0.080 | 0.234 |
|     | Irrigation p-value  |                         |                     | 1                  | 0.601 | 0.592 | 0.753 | 0.633 |

Appendix table 24-A. Control of common lambsquarters with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation (timing B). <sup>2</sup>DAT-B = days after treatment B

| Appendix table 24-B. Control of common lambsquarters with pyroxasulfone,                 |
|------------------------------------------------------------------------------------------|
| indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5);        |
| analyzed as a randomized complete block design <sup>2</sup> averaged over two irrigation |
| incorporation timings <sup>1</sup> .                                                     |

| No. | Treatment         | Rate                    | DAT-B <sup>2</sup> |       |           |       |       |  |
|-----|-------------------|-------------------------|--------------------|-------|-----------|-------|-------|--|
|     |                   |                         | 30                 | 45    | 75        | 90    | 120   |  |
|     |                   | g a.i. ha <sup>-1</sup> |                    |       | % Control |       |       |  |
| 1   | Pyroxasulfone     | 146                     | 100                | 88    | 94        | 94    | 96    |  |
| 2   | Pyroxasulfone     | 219                     | 100                | 88    | 100       | 100   | 100   |  |
| 3   | Pyroxasulfone     | 293                     | 100                | 100   | 100       | 100   | 96    |  |
| 4   | Indaziflam        | 52                      | 100                | 100   | 100       | 100   | 100   |  |
| 5   | Indaziflam        | 73                      | 100                | 88    | 100       | 100   | 100   |  |
| 6   | Pendimethalin     | 4,259                   | 100                | 100   | 88        | 90    | 89    |  |
| 7   | Pendimethalin     | 6,389                   | 100                | 100   | 94        | 100   | 90    |  |
|     | Herbicide p-value |                         | 1                  | 0.677 | 0.339     | 0.240 | 0.191 |  |

<sup>1</sup>Analysis of herbicide main effects was done as randomized complete block design averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment           | Rate                    | Application         |     | DAT-B <sup>3</sup> |       |
|-----|---------------------|-------------------------|---------------------|-----|--------------------|-------|
|     |                     |                         | Timing <sup>2</sup> | 30  | 45                 | 75    |
|     |                     | g a.i. ha <sup>-1</sup> |                     |     | % Contro           | ol    |
| 1   | Pyroxasulfone       | 146                     | А                   | 100 | 50                 | 100   |
| 2   | Pyroxasulfone       | 146                     | В                   | 100 | 50                 | 100   |
| 3   | Pyroxasulfone       | 219                     | А                   | 100 | 25                 | 88    |
| 4   | Pyroxasulfone       | 219                     | В                   | 100 | 75                 | 100   |
| 5   | Pyroxasulfone       | 293                     | А                   | 100 | 75                 | 88    |
| 6   | Pyroxasulfone       | 293                     | В                   | 100 | 75                 | 100   |
| 7   | Indaziflam          | 52                      | А                   | 100 | 75                 | 100   |
| 8   | Indaziflam          | 52                      | В                   | 100 | 25                 | 100   |
| 9   | Indaziflam          | 73                      | А                   | 100 | 50                 | 100   |
| 10  | Indaziflam          | 73                      | В                   | 100 | 100                | 100   |
| 11  | Pendimethalin       | 4,259                   | А                   | 100 | 75                 | 100   |
| 12  | Pendimethalin       | 4,259                   | В                   | 100 | 50                 | 100   |
| 13  | Pendimethalin       | 6,389                   | А                   | 100 | 50                 | 88    |
| 14  | Pendimethalin       | 6,389                   | В                   | 100 | 75                 | 100   |
|     | Interaction p-value |                         |                     | 1   | 0.290              | 0.980 |
|     | Irrigation p-value  |                         |                     | 1   | 0.731              | 0.357 |

Appendix table 25-A. Control of redroot pigweed<sup>1</sup> with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>Redroot pigweed began to senesce approximately 90DAT.

<sup>2</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation (timing B).

 $^{3}DAT-B = days after treatment B$ 

Appendix table 25-B. Control of redroot pigweed<sup>1</sup> with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings<sup>2</sup>.

| No. | Treatment         | Rate                    |     | DAT-B <sup>3</sup> |       |
|-----|-------------------|-------------------------|-----|--------------------|-------|
|     |                   |                         | 75  | 90                 | 105   |
|     |                   | g a.i. ha <sup>-1</sup> |     | -% Control         |       |
| 1   | Pyroxasulfone     | 146                     | 100 | 50                 | 100   |
| 2   | Pyroxasulfone     | 219                     | 100 | 50                 | 94    |
| 3   | Pyroxasulfone     | 293                     | 100 | 75                 | 94    |
| 4   | Indaziflam        | 52                      | 100 | 50                 | 100   |
| 5   | Indaziflam        | 73                      | 100 | 75                 | 100   |
| 6   | Pendimethalin     | 4,259                   | 100 | 63                 | 100   |
| 7   | Pendimethalin     | 6,389                   | 100 | 63                 | 94    |
|     | Herbicide p-value |                         | 1   | 0.88               | 0.677 |

<sup>1</sup>Redroot pigweed began to senesce approximately 90DAT.

<sup>2</sup>Analysis of herbicide main effects was done as randomized complete block design (RCBD) averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment           | Rate                    | Application         |     |     | DAT-I | $B^2$ — |       |
|-----|---------------------|-------------------------|---------------------|-----|-----|-------|---------|-------|
|     |                     |                         | Timing <sup>1</sup> | 30  | 45  | 75    | 90      | 120   |
|     |                     | g a.i. ha <sup>-1</sup> |                     |     |     | % Con | trol    |       |
| 1   | Pyroxasulfone       | 146                     | А                   | 100 | 100 | 100   | 88      | 100   |
| 2   | Pyroxasulfone       | 146                     | В                   | 100 | 100 | 100   | 100     | 100   |
| 3   | Pyroxasulfone       | 219                     | А                   | 100 | 100 | 100   | 100     | 88    |
| 4   | Pyroxasulfone       | 219                     | В                   | 100 | 100 | 100   | 100     | 100   |
| 5   | Pyroxasulfone       | 293                     | А                   | 100 | 100 | 100   | 100     | 88    |
| 6   | Pyroxasulfone       | 293                     | В                   | 100 | 100 | 100   | 100     | 100   |
| 7   | Indaziflam          | 52                      | А                   | 100 | 100 | 100   | 100     | 88    |
| 8   | Indaziflam          | 52                      | В                   | 100 | 100 | 100   | 100     | 75    |
| 9   | Indaziflam          | 73                      | А                   | 100 | 100 | 100   | 100     | 100   |
| 10  | Indaziflam          | 73                      | В                   | 100 | 100 | 100   | 100     | 100   |
| 11  | Pendimethalin       | 4,259                   | А                   | 100 | 100 | 100   | 100     | 100   |
| 12  | Pendimethalin       | 4,259                   | В                   | 100 | 100 | 100   | 100     | 100   |
| 13  | Pendimethalin       | 6,389                   | А                   | 100 | 100 | 100   | 100     | 90    |
| 14  | Pendimethalin       | 6,389                   | В                   | 100 | 100 | 100   | 100     | 100   |
|     | Interaction p-value |                         |                     | 1   | 1   | 1     | 0.455   | 0.427 |
|     | Irrigation p-value  |                         |                     | 1   | 1   | 1     | 0.391   | 0.450 |

Appendix table 26-A. Control of prostrate pigweed<sup>1</sup> with pyroxasulfone, indaziflam, and pendimethalin as affected by incorporation timing in a study near Davis, CA in summer 2021 (study 5).

<sup>1</sup>Prostrate pigweed began to senesce approximately 150DAT-B.

<sup>2</sup>The two applications timings were 18 days before irrigation (timing A) and 5 days before irrigation (timing B).

 $^{3}DAT-B = days after treatment B$ 

Appendix table 26-B. Control of prostrate pigweed<sup>1</sup> with pyroxasulfone, indaziflam, and pendimethalin in a study near Davis, CA in summer 2021 (study 5); analyzed as a randomized complete block design averaged over two irrigation incorporation timings<sup>2</sup>.

| No. | Treatment         | Rate                    | ———— DAT-B <sup>3</sup> ———— |       |       |       |       |  |
|-----|-------------------|-------------------------|------------------------------|-------|-------|-------|-------|--|
|     |                   |                         | 30                           | 45    | 75    | 90    | 120   |  |
|     |                   | g a.i. ha <sup>-1</sup> | % Control%                   |       |       |       |       |  |
| 1   | Pyroxasulfone     | 146                     | 100                          | 88    | 94    | 94    | 96    |  |
| 2   | Pyroxasulfone     | 219                     | 100                          | 88    | 100   | 100   | 100   |  |
| 3   | Pyroxasulfone     | 293                     | 100                          | 100   | 100   | 100   | 96    |  |
| 4   | Indaziflam        | 52                      | 100                          | 100   | 100   | 100   | 100   |  |
| 5   | Indaziflam        | 73                      | 100                          | 88    | 100   | 100   | 100   |  |
| 6   | Pendimethalin     | 4,259                   | 100                          | 100   | 88    | 90    | 89    |  |
| 7   | Pendimethalin     | 6,389                   | 100                          | 100   | 94    | 100   | 90    |  |
|     | Herbicide p-value |                         | 1                            | 0.677 | 0.339 | 0.240 | 0.191 |  |

<sup>1</sup>Prostrate pigweed began to senesce approximately 150DAT-B.

<sup>2</sup>Analysis of herbicide main effects was done as randomized complete block design (RCBD) averaged over incorporation timing (N=8) to identify differences among herbicide treatments.

| No. | Treatment     | Rate                    | Application | DAT-A <sup>1</sup> |       | – DAT-E | 3 ——  |
|-----|---------------|-------------------------|-------------|--------------------|-------|---------|-------|
|     |               |                         | Timing      | 30                 | 30    | 45      | 60    |
|     |               | g a.i. ha <sup>-1</sup> |             |                    | % C   | ontrol  |       |
| 1   | Indaziflam    | 52                      | А           | 88                 | 92    | 90      | 88    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 2   | Indaziflam    | 52                      | А           | 97                 | 91    | 88      | 80    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 3   | Indaziflam    | 52                      | А           | 87                 | 95    | 93      | 88    |
|     | Pyroxasulfone | 146                     | В           |                    |       |         |       |
| 4   | Indaziflam    | 52                      | А           | 88                 | 93    | 90      | 82    |
|     | Pyroxasulfone | 293                     | В           |                    |       |         |       |
| 5   | Pyroxasulfone | 146                     | А           | 75                 | 94    | 90      | 87    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 6   | Pyroxasulfone | 146                     | А           | 89                 | 95    | 93      | 90    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 7   | Pyroxasulfone | 293                     | А           | 89                 | 95    | 95      | 87    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 8   | Pyroxasulfone | 293                     | А           | 93                 | 92    | 92      | 77    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 9   | Penoxsulam +  | 29 +                    | А           |                    |       |         |       |
|     | Oxyfluorfen   | 1,379                   |             | 94                 | 92    | 87      | 80    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 10  | Penoxsulam +  | 29 +                    | А           |                    |       |         |       |
|     | Oxyfluorfen   | 1,379                   |             | 99                 | 92    | 91      | 91    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 11  | Flumioxazin   | 358                     | А           | 90                 | 95    | 95      | 95    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 12  | Flumioxazin   | 358                     | А           | 93                 | 92    | 90      | 87    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
|     | P-value       |                         |             | 0.095              | 0.787 | 0.500   | 0.637 |

Appendix table 27. Overall weed control in a preemergence herbicide sequential application study in a fallow field in spring of 2021 (study 6) near Davis, CA.

| No. | Treatment                                    | Rate                    | Application | ——— DAT-B <sup>1</sup> ——— |           |       |
|-----|----------------------------------------------|-------------------------|-------------|----------------------------|-----------|-------|
|     |                                              |                         | Timing      | 30                         | 45        | 60    |
|     |                                              | g a.i. ha <sup>-1</sup> |             |                            | % Control |       |
| 1   | Indaziflam<br>Pendimethalin                  | 52<br>4,259             | A<br>B      | 67                         | 67        | 33    |
| 2   | Indaziflam<br>Pendimethalin                  | 52<br>6,389             | A<br>B      | 100                        | 67        | 67    |
| 3   | Indaziflam<br>Pyroxasulfone                  | 52<br>146               | A<br>B      | 100                        | 67        | 67    |
| 4   | Indaziflam<br>Pyroxasulfone                  | 52<br>293               | A<br>B      | 100                        | 100       | 100   |
| 5   | Pyroxasulfone<br>Pendimethalin               | 146<br>4,259            | A<br>B      | 100                        | 100       | 67    |
| 6   | Pyroxasulfone<br>Pendimethalin               | 146<br>6,389            | A<br>B      | 100                        | 67        | 100   |
| 7   | Pyroxasulfone<br>Pendimethalin               | 293<br>4,259            | A<br>B      | 100                        | 100       | 100   |
| 8   | Pyroxasulfone<br>Pendimethalin               | 293<br>6,389            | A<br>B      | 100                        | 100       | 100   |
| 9   | Penoxsulam +<br>Oxyfluorfen<br>Pendimethalin | 29 +<br>1,379<br>4,259  | A<br>B      | 100                        | 100       | 100   |
| 10  | Penoxsulam +<br>Oxyfluorfen<br>Pendimethalin | 29 +<br>1,379<br>6,389  | A<br>B      | 100                        | 100       | 100   |
| 11  | Flumioxazin<br>Pendimethalin                 | 358<br>4,259            | A<br>B      | 100                        | 100       | 100   |
| 12  | Flumioxazin<br>Pendimethalin                 | 358<br>6,389            | A<br>B      | 100                        | 67        | 67    |
|     | P-value                                      |                         |             | 0.474                      | 0.781     | 0.408 |

Appendix table 28. Control of redroot pigweed in a preemergence herbicide sequential application study in a fallow field in spring of 2021 (study 6) near Davis, CA.

| No   | Traatmant     | Poto                    | Application |       |       |         |       |
|------|---------------|-------------------------|-------------|-------|-------|---------|-------|
| INU. | Treatment     | Kate                    | Application | DAI-A | •     | - DAI-D |       |
|      |               |                         | Timing      | 30    | 30    | 45      | 60    |
|      |               | g a.i. ha <sup>-1</sup> |             |       | % Co  | ontrol  |       |
| 1    | Indaziflam    | 52                      | А           | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 4,259                   | В           |       |       |         |       |
| 2    | Indaziflam    | 52                      | А           | 100   | 67    | 67      | 37    |
|      | Pendimethalin | 6,389                   | В           |       |       |         |       |
| 3    | Indaziflam    | 52                      | А           | 100   | 100   | 67      | 67    |
|      | Pyroxasulfone | 146                     | В           |       |       |         |       |
| 4    | Indaziflam    | 52                      | А           | 67    | 100   | 100     | 100   |
|      | Pyroxasulfone | 293                     | В           |       |       |         |       |
| 5    | Pyroxasulfone | 146                     | А           | 67    | 67    | 33      | 33    |
|      | Pendimethalin | 4,259                   | В           |       |       |         |       |
| 6    | Pyroxasulfone | 146                     | А           | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 6,389                   | В           |       |       |         |       |
| 7    | Pyroxasulfone | 293                     | А           | 100   | 100   | 67      | 67    |
|      | Pendimethalin | 4,259                   | В           |       |       |         |       |
| 8    | Pyroxasulfone | 293                     | А           | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 6,389                   | В           |       |       |         |       |
| 9    | Penoxsulam +  | 29 +                    | А           |       |       |         |       |
|      | Oxyfluorfen   | 1,379                   |             | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 4,259                   | В           |       |       |         |       |
| 10   | Penoxsulam +  | 29 +                    | А           |       |       |         |       |
|      | Oxyfluorfen   | 1,379                   |             | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 6,389                   | В           |       |       |         |       |
| 11   | Flumioxazin   | 358                     | А           | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 4,259                   | В           |       |       |         |       |
| 12   | Flumioxazin   | 358                     | А           | 100   | 100   | 100     | 100   |
|      | Pendimethalin | 6,389                   | В           |       |       |         |       |
|      | P-value       |                         |             | 0.547 | 0.623 | 0.263   | 0.096 |

Appendix table 29. Control of malva in a preemergence herbicide sequential application study in a fallow field in spring of 2021 (study 6) near Davis, CA.

<sup>1</sup>DAT-A = days after treatment A, DAT-B = days after treatment B

| No. | Treatment     | Rate                    | Application | DAT-A <sup>1</sup> |       | - DAT-B |       |
|-----|---------------|-------------------------|-------------|--------------------|-------|---------|-------|
|     |               |                         | Timing      | 30                 | 30    | 45      | 60    |
|     |               | g a.i. ha <sup>-1</sup> |             |                    | % Co  | ontrol  |       |
| 1   | Indaziflam    | 52                      | А           | 0                  | 33    | 23      | 0     |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 2   | Indaziflam    | 52                      | А           | 0                  | 17    | 10      | 23    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 3   | Indaziflam    | 52                      | А           | 33                 | 43    | 17      | 23    |
|     | Pyroxasulfone | 146                     | В           |                    |       |         |       |
| 4   | Indaziflam    | 52                      | А           | 0                  | 20    | 17      | 10    |
|     | Pyroxasulfone | 293                     | В           |                    |       |         |       |
| 5   | Pyroxasulfone | 146                     | А           | 0                  | 80    | 50      | 50    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 6   | Pyroxasulfone | 146                     | А           | 0                  | 67    | 40      | 40    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 7   | Pyroxasulfone | 293                     | А           | 0                  | 67    | 33      | 23    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 8   | Pyroxasulfone | 293                     | А           | 0                  | 30    | 0       | 10    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 9   | Penoxsulam +  | 29 +                    | А           |                    |       |         |       |
|     | Oxyfluorfen   | 1,379                   |             | 33                 | 0     | 0       | 0     |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 10  | Penoxsulam +  | 29 +                    | А           |                    |       |         |       |
|     | Oxyfluorfen   | 1,379                   |             | 67                 | 23    | 27      | 27    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 11  | Flumioxazin   | 358                     | А           | 33                 | 90    | 53      | 68    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 12  | Flumioxazin   | 358                     | А           | 33                 | 93    | 0       | 0     |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
|     | P-value       |                         |             | 0.559              | 0.370 | 0.484   | 0.252 |

Appendix table 30. Control of field bindweed in a preemergence herbicide sequential application study in a fallow field in spring of 2021 (study 6) near Davis, CA.

| No. | Treatment     | Rate                    | Application | DAT-A <sup>1</sup> |       | - DAT-B |       |
|-----|---------------|-------------------------|-------------|--------------------|-------|---------|-------|
|     |               |                         | Timing      | 30                 | 30    | 45      | 60    |
|     |               | g a.i. ha <sup>-1</sup> |             |                    | % Co  | ntrol   |       |
| 1   | Indaziflam    | 52                      | А           | 100                | 100   | 100     | 100   |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 2   | Indaziflam    | 52                      | А           | 100                | 100   | 100     | 100   |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 3   | Indaziflam    | 52                      | А           | 100                | 100   | 67      | 67    |
|     | Pyroxasulfone | 146                     | В           |                    |       |         |       |
| 4   | Indaziflam    | 52                      | А           | 67                 | 100   | 100     | 100   |
|     | Pyroxasulfone | 293                     | В           |                    |       |         |       |
| 5   | Pyroxasulfone | 146                     | А           | 33                 | 100   | 0       | 0     |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 6   | Pyroxasulfone | 146                     | А           | 100                | 100   | 67      | 67    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 7   | Pyroxasulfone | 293                     | А           | 100                | 67    | 67      | 67    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 8   | Pyroxasulfone | 293                     | А           | 67                 | 33    | 33      | 33    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 9   | Penoxsulam +  | 29 +                    | А           |                    |       |         |       |
|     | Oxyfluorfen   | 1,379                   |             | 100                | 100   | 67      | 67    |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 10  | Penoxsulam +  | 29 +                    | А           |                    |       |         |       |
|     | Oxyfluorfen   | 1,379                   |             | 100                | 100   | 67      | 67    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
| 11  | Flumioxazin   | 358                     | А           | 100                | 50    | 100     | 100   |
|     | Pendimethalin | 4,259                   | В           |                    |       |         |       |
| 12  | Flumioxazin   | 358                     | А           | 100                | 33    | 33      | 33    |
|     | Pendimethalin | 6,389                   | В           |                    |       |         |       |
|     | P-value       |                         |             | 0.135              | 0.135 | 0.175   | 0.175 |

Appendix table 31. Control of filaree in a preemergence herbicide sequential application study in a fallow field in spring of 2021 (study 6) near Davis, CA.

| No. | Treatment     | Rate                    | Application | — DA' | Г-А <sup>1</sup> —— |           |       | — DA  | $T-B^2$ — |       |       |
|-----|---------------|-------------------------|-------------|-------|---------------------|-----------|-------|-------|-----------|-------|-------|
|     |               |                         | timing      | 30    | 45                  | 30        | 45    | 60    | 75        | 90    | 105   |
|     |               | g a.i. ha <sup>-1</sup> |             |       |                     | % Control |       |       |           |       |       |
| 1   | Indaziflam    | 52                      | А           | 97    | 96                  | 90        | 90    | 84    | 70        | 68    | 55    |
|     | Pendimethalin | 4,259                   | В           |       |                     |           |       |       |           |       |       |
| 2   | Indaziflam    | 52                      | А           | 100   | 98                  | 92        | 90    | 88    | 80        | 72    | 62    |
|     | Pendimethalin | 6,389                   | В           |       |                     |           |       |       |           |       |       |
| 3   | Indaziflam    | 52                      | А           | 96    | 96                  | 93        | 90    | 85    | 72        | 68    | 37    |
|     | Pyroxasulfone | 293                     | В           |       |                     |           |       |       |           |       |       |
| 4   | Indaziflam    | 52                      | А           | 99    | 98                  | 93        | 93    | 87    | 71        | 62    | 50    |
|     | Pyroxasulfone | 293                     | В           |       |                     |           |       |       |           |       |       |
| 5   | Pyroxasulfone | 146                     | А           | 99    | 97                  | 93        | 90    | 87    | 76        | 52    | 42    |
|     | Pendimethalin | 4,259                   | В           |       |                     |           |       |       |           |       |       |
| 6   | Pyroxasulfone | 146                     | А           | 99    | 97                  | 88        | 88    | 87    | 75        | 62    | 53    |
|     | Pendimethalin | 6,389                   | В           |       |                     |           |       |       |           |       |       |
| 7   | Pyroxasulfone | 293                     | А           | 96    | 97                  | 95        | 94    | 95    | 81        | 82    | 75    |
|     | Pendimethalin | 4,259                   | В           |       |                     |           |       |       |           |       |       |
| 8   | Pyroxasulfone | 293                     | А           | 100   | 98                  | 98        | 95    | 93    | 86        | 82    | 70    |
|     | Pendimethalin | 6,389                   | В           |       |                     |           |       |       |           |       |       |
| 9   | Penoxsulam +  | 29 +                    | А           | 98    | 99                  | 93        | 92    | 88    | 76        | 70    | 48    |
|     | Oxyfluron     | 1,379                   |             |       |                     |           |       |       |           |       |       |
|     | Pendimethalin | 4,259                   | В           |       |                     |           |       |       |           |       |       |
| 10  | Penoxsulam +  | 25 +                    | А           | 99    | 99                  | 93        | 94    | 91    | 81        | 73    | 52    |
|     | Oxyfluron     | 1,379                   |             |       |                     |           |       |       |           |       |       |
|     | Pendimethalin | 6,389                   | В           |       |                     |           |       |       |           |       |       |
| 11  | Flumioxazin   | 358                     | А           | 98    | 98                  | 90        | 90    | 87    | 76        | 70    | 58    |
|     | Pendimethalin | 4,259                   | В           |       |                     |           |       |       |           |       |       |
| 12  | Flumioxazin   | 356                     | А           | 97    | 98                  | 97        | 96    | 90    | 85        | 82    | 67    |
|     | Pendimethalin | 6,389                   | В           |       |                     |           |       |       |           |       |       |
|     | P-value       |                         |             | 0.185 | 0.275               | 0.325     | 0.583 | 0.893 | 0.941     | 0.732 | 0.546 |

Appendix table 32. Overall weed control in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA.

| No. | Treatment     | Rate                    | Application |          |          | — DA7 | $\Gamma - B^1 - \dots$ |       |       |
|-----|---------------|-------------------------|-------------|----------|----------|-------|------------------------|-------|-------|
|     |               |                         | timing      | 30       | 45       | 60    | 75                     | 90    | 105   |
|     |               | g a.i. ha <sup>-1</sup> |             |          |          | % C   | ontrol                 |       |       |
| 1   | Indaziflam    | 52                      | А           | 67       | 33       | 67    | 0                      | 0     | 0     |
|     | Pendimethalin | 4,259                   | В           |          |          |       |                        |       |       |
| 2   | Indaziflam    | 52                      | А           | 22       | 22       | 22    | 0                      | 0     | 0     |
|     | Pendimethalin | 6,389                   | В           | 33       | 33       | 33    | 0                      | 0     | 0     |
| 3   | Indaziflam    | 52                      | А           | 100      | 16       | 17    | 0                      | 0     | 0     |
|     | Pyroxasulfone | 146                     | В           |          |          |       |                        |       |       |
| 4   | Indaziflam    | 52                      | А           | 100      | <b>7</b> | 22    | 0                      | 0     | 0     |
|     | Pyroxasulfone | 293                     | В           | 100      | 67       | 33    | 0                      | 0     | 0     |
| 5   | Pyroxasulfone | 146                     | А           | 100      | 33       | 33    | 0                      | 0     | 0     |
|     | Pendimethalin | 4,259                   | В           |          |          |       |                        |       |       |
| 6   | Pyroxasulfone | 146                     | А           |          |          |       | 22                     | 22    | 22    |
|     | Pendimethalin | 6,389                   | В           | 6/       | 6/       | 6/    | 33                     | 33    | 33    |
| 7   | Pyroxasulfone | 293                     | А           | 67       | 33       | 33    | 0                      | 33    | 0     |
|     | Pendimethalin | 4,259                   | В           |          |          |       |                        |       |       |
| 8   | Pyroxasulfone | 293                     | А           | 100      |          |       | 22                     | 0     | 0     |
|     | Pendimethalin | 6,389                   | В           | 100      | 6/       | 6/    | 23                     | 0     | 0     |
| 9   | Penoxsulam +  | 29 +                    | А           |          |          |       |                        |       |       |
|     | Oxyfluron     | 1,379                   |             | 33       | 33       | 33    | 0                      | 0     | 0     |
|     | Pendimethalin | 4,259                   | В           |          |          |       |                        |       |       |
| 10  | Penoxsulam +  | 29 +                    | А           |          |          |       |                        |       |       |
|     | Oxyfluron     | 1,379                   |             | 67       | 33       | 33    | 0                      | 33    | 33    |
|     | Pendimethalin | 6,389                   | В           |          |          |       |                        |       |       |
| 11  | Flumioxazin   | 358                     | А           | 100      | 100      | 93    | 67                     | 33    | 0     |
|     | Pendimethalin | 4,259                   | В           |          |          |       |                        |       |       |
| 12  | Flumioxazin   | 358                     | А           | <b>7</b> | <b>7</b> | 0     | 2                      | 22    | 0     |
|     | Pendimethalin | 6,389                   | В           | 0/       | 0/       | U     | 3                      | 33    | U     |
|     | P-value       |                         |             | 0.494    | 0.802    | 0.663 | 0.172                  | 0.781 | 0.704 |

Appendix table 33. Control of field bindweed in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA.

| No. | Treatment     | Rate                    | Application — DAT-B <sup>1</sup> — — |       |       |       |         |       |       |  |
|-----|---------------|-------------------------|--------------------------------------|-------|-------|-------|---------|-------|-------|--|
|     |               |                         | timing                               | 30    | 45    | 60    | 75      | 90    | 105   |  |
|     |               | g a.i. ha <sup>-1</sup> |                                      |       |       | % C   | Control |       |       |  |
| 1   | Indaziflam    | 52                      | А                                    | 68    | 33    | 33    | 27      | 26    | 25    |  |
|     | Pendimethalin | 4,259                   | В                                    |       |       |       |         |       |       |  |
| 2   | Indaziflam    | 52                      | А                                    | 100   | 100   | 100   | 67      | 100   | 67    |  |
|     | Pendimethalin | 6,389                   | В                                    | 100   | 100   | 100   | 07      | 100   | 07    |  |
| 3   | Indaziflam    | 52                      | А                                    | 100   | 100   | 83    | 67      | 40    | 33    |  |
|     | Pyroxasulfone | 146                     | В                                    |       |       |       |         |       |       |  |
| 4   | Indaziflam    | 52                      | А                                    | 100   | 100   | 100   | 67      | 33    | 33    |  |
|     | Pyroxasulfone | 293                     | В                                    | 100   | 100   | 100   | 07      | 55    | 55    |  |
| 5   | Pyroxasulfone | 146                     | А                                    | 33    | 0     | 0     | 0       | 0     | 0     |  |
|     | Pendimethalin | 4,259                   | В                                    | 55    | 0     | 0     | 0       | 0     | 0     |  |
| 6   | Pyroxasulfone | 146                     | А                                    | 100   | 100   | 100   | 67      | 67    | 33    |  |
|     | Pendimethalin | 6,389                   | В                                    | 100   | 100   | 100   | 07      | 07    | 55    |  |
| 7   | Pyroxasulfone | 293                     | А                                    | 33    | 7     | 0     | 17      | 17    | 17    |  |
|     | Pendimethalin | 4,259                   | В                                    |       |       |       |         |       |       |  |
| 8   | Pyroxasulfone | 293                     | А                                    | 100   | 100   | 100   | 100     | 100   | 100   |  |
|     | Pendimethalin | 6,389                   | В                                    | 100   | 100   | 100   | 100     | 100   | 100   |  |
| 9   | Penoxsulam +  | 29 +                    | А                                    |       |       |       |         |       |       |  |
|     | Oxyfluron     | 1,379                   |                                      | 33    | 33    | 50    | 0       | 0     | 0     |  |
|     | Pendimethalin | 4,259                   | В                                    |       |       |       |         |       |       |  |
| 10  | Penoxsulam +  | 29 +                    | А                                    |       |       |       |         |       |       |  |
|     | Oxyfluron     | 1,379                   | _                                    | 100   | 100   | 100   | 100     | 100   | 100   |  |
|     | Pendimethalin | 6,389                   | В                                    |       |       |       |         |       |       |  |
| 11  | Flumioxazin   | 358                     | A                                    | 33    | 33    | 33    | 33      | 0     | 0     |  |
|     | Pendimethalin | 4,259                   | В                                    | 55    | 55    | 55    | 55      | U     | U     |  |
| 12  | Flumioxazin   | 358                     | А                                    | 100   | 100   | 100   | 100     | 100   | 100   |  |
|     | Pendimethalin | 6,389                   | В                                    | 100   | 100   | 100   | 100     | 100   | 100   |  |
|     | P-value       |                         |                                      | 0.213 | 0.153 | 0.565 | 0.686   | 0.513 | 0.707 |  |

Appendix table 34. Control of hairy fleabane in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA.
| No. | Treatment     | Rate                    | Application | DA    | $T-B^1$ — |
|-----|---------------|-------------------------|-------------|-------|-----------|
|     |               |                         | timing      | 90    | 105       |
|     |               | g a.i. ha <sup>-1</sup> |             | % Con | trol      |
| 1   | Indaziflam    | 52                      | А           | 100   | 0         |
|     | Pendimethalin | 4,259                   | В           |       |           |
| 2   | Indaziflam    | 52                      | А           | 100   | (7        |
|     | Pendimethalin | 6,389                   | В           | 100   | 0/        |
| 3   | Indaziflam    | 52                      | А           | 100   | 100       |
|     | Pyroxasulfone | 146                     | В           |       |           |
| 4   | Indaziflam    | 52                      | А           | 22    | 22        |
|     | Pyroxasulfone | 293                     | В           | 33    | 33        |
| 5   | Pyroxasulfone | 146                     | А           | 100   | 67        |
|     | Pendimethalin | 4,259                   | В           |       |           |
| 6   | Pyroxasulfone | 146                     | А           |       | 22        |
|     | Pendimethalin | 6,389                   | В           | 6/    | 33        |
| 7   | Pyroxasulfone | 293                     | А           | 100   | 0         |
|     | Pendimethalin | 4,259                   | В           |       |           |
| 8   | Pyroxasulfone | 293                     | А           | 100   | 100       |
|     | Pendimethalin | 6,389                   | В           | 100   | 100       |
| 9   | Penoxsulam +  | 29 +                    | А           |       |           |
|     | Oxyfluron     | 1,379                   |             | 100   | 0         |
|     | Pendimethalin | 4,259                   | В           |       |           |
| 10  | Penoxsulam +  | 29 +                    | А           |       |           |
|     | Oxyfluron     | 1,379                   |             | 100   | 100       |
|     | Pendimethalin | 6,389                   | В           |       |           |
| 11  | Flumioxazin   | 358                     | А           | 100   | 67        |
|     | Pendimethalin | 4,259                   | В           |       |           |
| 12  | Flumioxazin   | 358                     | А           | 100   | 100       |
|     | Pendimethalin | 6,389                   | В           | 100   | 100       |
|     | P-value       |                         |             | 0.624 | 0.134     |

Appendix table 35. Control of crabgrass in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA.

| No. | Io. Treatment Rate Application |                         | - DAT-B <sup>1</sup> |       |       |
|-----|--------------------------------|-------------------------|----------------------|-------|-------|
|     |                                |                         | timing               | 90    | 105   |
|     |                                | g a.i. ha <sup>-1</sup> |                      | % Coi | ntrol |
| 1   | Indaziflam                     | 52                      | А                    | 67    | 20    |
|     | Pendimethalin                  | 4,259                   | В                    |       |       |
| 2   | Indaziflam                     | 52                      | А                    | 67    | 56    |
|     | Pendimethalin                  | 6,389                   | В                    | 07    | 30    |
| 3   | Indaziflam                     | 52                      | А                    | 33    | 0     |
|     | Pyroxasulfone                  | 146                     | В                    |       |       |
| 4   | Indaziflam                     | 52                      | А                    | 67    | 20    |
|     | Pyroxasulfone                  | 293                     | В                    | 07    | 20    |
| 5   | Pyroxasulfone                  | 146                     | А                    | 67    | 33    |
|     | Pendimethalin                  | 4,259                   | В                    |       |       |
| 6   | Pyroxasulfone                  | 146                     | А                    | 67    | 22    |
|     | Pendimethalin                  | 6,389                   | В                    | 07    | 33    |
| 7   | Pyroxasulfone                  | 293                     | А                    | 67    | 23    |
|     | Pendimethalin                  | 4,259                   | В                    |       |       |
| 8   | Pyroxasulfone                  | 293                     | А                    | (7    | (7    |
|     | Pendimethalin                  | 6,389                   | В                    | 0/    | 0/    |
| 9   | Penoxsulam +                   | 29 +                    | А                    |       |       |
|     | Oxyfluron                      | 1,379                   |                      | 67    | 67    |
|     | Pendimethalin                  | 4,259                   | В                    |       |       |
| 10  | Penoxsulam +                   | 29 +                    | А                    |       |       |
|     | Oxyfluron                      | 1,379                   |                      | 100   | 67    |
|     | Pendimethalin                  | 6,389                   | В                    |       |       |
| 11  | Flumioxazin                    | 358                     | А                    | 100   | 25    |
|     | Pendimethalin                  | 4,259                   | В                    |       |       |
| 12  | Flumioxazin                    | 358                     | А                    | 100   | 67    |
|     | Pendimethalin                  | 6,389                   | В                    | 100   | 07    |
|     | P-value                        |                         |                      | 0.827 | 0.745 |

Appendix table 36. Control of spotted spurge in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA.

| No. | Treatment                                  | Rate                    | Application | ion DAT-B <sup>1</sup> |     |     |         |       |       |
|-----|--------------------------------------------|-------------------------|-------------|------------------------|-----|-----|---------|-------|-------|
|     |                                            |                         | timing      | 30                     | 45  | 60  | 75      | 90    | 105   |
|     |                                            | g a.i. ha <sup>-1</sup> |             |                        |     | %   | Control |       |       |
| 1   | Indaziflam<br>Pendimethalin                | 52<br>4,259             | A<br>B      | 100                    | 100 | 100 | 67      | 67    | 67    |
| 2   | Indaziflam<br>Pendimethalin                | 52<br>6,389             | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 100   |
| 3   | Indaziflam<br>Pyroxasulfone                | 52<br>146               | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 67    |
| 4   | Indaziflam<br>Pyroxasulfone                | 52<br>293               | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 100   |
| 5   | Pyroxasulfone<br>Pendimethalin             | 146<br>4,259            | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 67    |
| 6   | Pyroxasulfone<br>Pendimethalin             | 146<br>6,389            | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 67    |
| 7   | Pyroxasulfone<br>Pendimethalin             | 293<br>4,259            | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 100   |
| 8   | Pyroxasulfone<br>Pendimethalin             | 293<br>6,389            | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 100   |
| 9   | Penoxsulam +<br>Oxyfluron<br>Pendimethalin | 29 +<br>1,379<br>4,259  | A<br>B      | 100                    | 100 | 100 | 100     | 100   | 100   |
| 10  | Penoxsulam +<br>Oxyfluron<br>Pendimethalin | 29 +<br>1,379<br>6 389  | A           | 100                    | 100 | 100 | 100     | 100   | 100   |
| 11  | Flumioxazin<br>Pendimethalin               | 358<br>4,259            | A<br>B      | 100                    | 100 | 100 | 67      | 67    | 67    |
| 12  | Flumioxazin<br>Pendimethalin               | 358<br>6,389            | A<br>B      | 100                    | 100 | 100 | 67      | 67    | 67    |
|     | P-value                                    |                         |             | 1                      | 1   | 1   | 0.623   | 0.624 | 0.781 |

Appendix table 37. Control of malva in a preemergence sequential application study in a 2-yr-old almond orchard in spring of 2022 (study 7) near Arbuckle, CA.

| No. | Treatment     | Rate                    | Application | $DAT-B^1$ — — — — — — — — — — — — — — — — — — — |     |     |         |       |       |
|-----|---------------|-------------------------|-------------|-------------------------------------------------|-----|-----|---------|-------|-------|
|     |               |                         | timing      | 30                                              | 45  | 60  | 75      | 90    | 105   |
|     |               | g a.i. ha <sup>-1</sup> |             |                                                 |     | %   | Control |       |       |
| 1   | Indaziflam    | 52                      | А           | 100                                             | 100 | 100 | 67      | 67    | 33    |
|     | Pendimethalin | 4,259                   | В           |                                                 |     |     |         |       |       |
| 2   | Indaziflam    | 52                      | А           | 100                                             | 100 | 100 | 67      | 100   | 67    |
|     | Pendimethalin | 6,389                   | В           |                                                 |     |     |         |       |       |
| 3   | Indaziflam    | 52                      | А           | 100                                             | 100 | 100 | 67      | 67    | 67    |
|     | Pyroxasulfone | 146                     | В           |                                                 |     |     |         |       |       |
| 4   | Indaziflam    | 52                      | А           | 100                                             | 100 | 100 | 67      | 33    | 33    |
|     | Pyroxasulfone | 293                     | В           |                                                 |     |     |         |       |       |
| 5   | Pyroxasulfone | 146                     | А           | 100                                             | 100 | 100 | 67      | 67    | 67    |
|     | Pendimethalin | 4,259                   | В           |                                                 |     |     |         |       |       |
| 6   | Pyroxasulfone | 146                     | А           | 100                                             | 100 | 100 | 67      | 67    | 33    |
|     | Pendimethalin | 6,389                   | В           |                                                 |     |     |         |       |       |
| 7   | Pyroxasulfone | 293                     | А           | 100                                             | 100 | 100 | 67      | 67    | 67    |
|     | Pendimethalin | 4,259                   | В           |                                                 |     |     |         |       |       |
| 8   | Pyroxasulfone | 293                     | А           | 100                                             | 100 | 100 | 100     | 100   | 100   |
|     | Pendimethalin | 6,389                   | В           |                                                 |     |     |         |       |       |
| 9   | Penoxsulam +  | 29 +                    | А           |                                                 |     |     |         |       |       |
|     | Oxyfluron     | 1,379                   |             | 100                                             | 100 | 100 | 100     | 100   | 100   |
|     | Pendimethalin | 4,259                   | В           |                                                 |     |     |         |       |       |
| 10  | Penoxsulam +  | 29 +                    | А           |                                                 |     |     |         |       |       |
|     | Oxyfluron     | 1,379                   |             | 100                                             | 100 | 100 | 100     | 100   | 100   |
|     | Pendimethalin | 6,389                   | В           |                                                 |     |     |         |       |       |
| 11  | Flumioxazin   | 358                     | А           | 100                                             | 100 | 100 | 100     | 67    | 67    |
|     | Pendimethalin | 4,259                   | В           |                                                 |     |     |         |       |       |
| 12  | Flumioxazin   | 358                     | А           | 100                                             | 100 | 100 | 100     | 100   | 100   |
|     | Pendimethalin | 6,389                   | В           |                                                 |     |     |         |       |       |
|     | P-value       |                         |             | 1                                               | 1   | 1   | 0.913   | 0.827 | 0.512 |

Appendix table 38. Control of annual sowthistle in a preemergence sequential application study in a 2-yrold almond orchard in spring of 2022 (study 7) near Arbuckle, CA.

| No. | Treatment     | Rate                    |       |       | — DAT <sup>1</sup> — |       |                 |
|-----|---------------|-------------------------|-------|-------|----------------------|-------|-----------------|
|     |               |                         | 30    | 45    | 60                   | 75    | 90 <sup>2</sup> |
|     |               | g a.i. ha <sup>-1</sup> |       |       | % Control            |       |                 |
| 1   | Indaziflam    | 29                      | 98    | 98    | 90                   | 83    | 68              |
|     | Glufosinate   | 984                     |       |       |                      |       |                 |
| 2   | Indaziflam    | 39                      | 99    | 99    | 92                   | 73    | 68              |
|     | Glufosinate   | 1,334                   |       |       |                      |       |                 |
| 3   | Indaziflam    | 49                      | 100   | 100   | 91                   | 77    | 68              |
|     | Glufosinate   | 1,704                   |       |       |                      |       |                 |
| 4   | Indaziflam    | 73                      | 99    | 99    | 91                   | 78    | 68              |
|     | Glufosinate   | 1,334                   |       |       |                      |       |                 |
| 5   | Pyroxasulfone | 219                     | 100   | 100   | 84                   | 73    | 55              |
|     | Glufosinate   | 1,704                   |       |       |                      |       |                 |
| 6   | Pyroxasulfone | 293                     | 99    | 99    | 85                   | 78    | 70              |
|     | Glufosinate   | 1,704                   |       |       |                      |       |                 |
| 7   | Pendimethalin | 4,259                   | 98    | 98    | 94                   | 78    | 68              |
|     | Glufosinate   | 1,704                   |       |       |                      |       |                 |
| 8   | Pendimethalin | 6,389                   | 99    | 99    | 86                   | 83    | 73              |
|     | Glufosinate   | 1,704                   |       |       |                      |       |                 |
|     | P-value       |                         | 0.678 | 0.678 | 0.415                | 0.802 | 0.893           |

Appendix table 39. Overall weed control in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle CA in spring 2022 (study 8).

<sup>1</sup>DAT = days after treatment <sup>2</sup>90 DAT (N=2); replication 3 was over sprayed with contact herbicide during orchard maintenance.

| No. | Treatment     | Rate                    | ——— DAT <sup>1</sup> ——— |            |                 |  |
|-----|---------------|-------------------------|--------------------------|------------|-----------------|--|
|     |               |                         | 60                       | 75         | 90 <sup>2</sup> |  |
|     |               | g a.i. ha <sup>-1</sup> |                          | % Control- |                 |  |
| 1   | Indaziflam    | 29                      | 50                       | 40 ab      | 35 ab           |  |
|     | Glufosinate   | 984                     |                          |            |                 |  |
| 2   | Indaziflam    | 39                      | 22                       | 33 b       | 0 b             |  |
|     | Glufosinate   | 1,334                   |                          |            |                 |  |
| 3   | Indaziflam    | 49                      | 67                       | 53 ab      | 15 b            |  |
|     | Glufosinate   | 1,704                   |                          |            |                 |  |
| 4   | Indaziflam    | 73                      | 33                       | 33 b       | 100 a           |  |
|     | Glufosinate   | 1,334                   |                          |            |                 |  |
| 5   | Pyroxasulfone | 219                     | 33                       | 0 b        | 0 b             |  |
|     | Glufosinate   | 1,704                   |                          |            |                 |  |
| 6   | Pyroxasulfone | 293                     | 33                       | 46 ab      | 50 ab           |  |
|     | Glufosinate   | 1,704                   |                          |            |                 |  |
| 7   | Pendimethalin | 4,259                   | 100                      | 100 a      | 100 a           |  |
|     | Glufosinate   | 1,704                   |                          |            |                 |  |
| 8   | Pendimethalin | 6,389                   | 100                      | 100 a      | 100 a           |  |
|     | Glufosinate   | 1,704                   |                          |            |                 |  |
|     | P-value       |                         | 0.412                    | 0.056      | 0.034           |  |

Appendix table 40. Control of common knotweed in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8).

<sup>1</sup>DAT = days after treatment <sup>2</sup>90 DAT (N=2); replication 3 was over sprayed with contact herbicide during orchard maintenance.

| No. | Treatment     | Rate                    | ——— DAT <sup>1</sup> ——— |           |                 |
|-----|---------------|-------------------------|--------------------------|-----------|-----------------|
|     |               |                         | 60                       | 75        | 90 <sup>2</sup> |
|     |               | g a.i. ha <sup>-1</sup> |                          | % Control | l               |
| 1   | Indaziflam    | 29                      | 67                       | 23        | 75              |
|     | Glufosinate   | 984                     |                          |           |                 |
| 2   | Indaziflam    | 39                      | 67                       | 0         | 0               |
|     | Glufosinate   | 1,334                   |                          |           |                 |
| 3   | Indaziflam    | 49                      | 0                        | 13        | 0               |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 4   | Indaziflam    | 73                      | 63                       | 0         | 50              |
|     | Glufosinate   | 1,334                   |                          |           |                 |
| 5   | Pyroxasulfone | 219                     | 33                       | 33        | 0               |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 6   | Pyroxasulfone | 293                     | 0                        | 0         | 0               |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 7   | Pendimethalin | 4,259                   | 67                       | 67        | 50              |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 8   | Pendimethalin | 6,389                   | 33                       | 23        | 0               |
|     | Glufosinate   | 1,704                   |                          |           |                 |
|     | P-value       |                         | 0.412                    | 0.056     | 0.034           |

Appendix table 41. Control of field bindweed in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8).

 $^{1}$ DAT = days after treatment  $^{2}$ 90 DAT (N=2); replication 3 was over sprayed with contact herbicide during orchard maintenance.

| No. | Treatment     | Rate                    | ——— DAT <sup>1</sup> ——— |          |                 |
|-----|---------------|-------------------------|--------------------------|----------|-----------------|
|     |               |                         | 60                       | 75       | 90 <sup>2</sup> |
|     |               | g a.i. ha <sup>-1</sup> |                          | % Contro | l               |
| 1   | Indaziflam    | 29                      | 0                        | 0        | 63              |
|     | Glufosinate   | 984                     |                          |          |                 |
| 2   | Indaziflam    | 39                      | 67                       | 67       | 100             |
|     | Glufosinate   | 1,334                   |                          |          |                 |
| 3   | Indaziflam    | 49                      | 67                       | 67       | 50              |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 4   | Indaziflam    | 73                      | 100                      | 100      | 50              |
|     | Glufosinate   | 1,334                   |                          |          |                 |
| 5   | Pyroxasulfone | 219                     | 67                       | 33       | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 6   | Pyroxasulfone | 293                     | 67                       | 67       | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 7   | Pendimethalin | 4,259                   | 100                      | 100      | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 8   | Pendimethalin | 6,389                   | 100                      | 100      | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
|     | P-value       |                         | 0.125                    | 0.125    | 0.660           |

Appendix table 42. Control of filaree in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8).

<sup>2</sup>90 DAT (N=2); replication 3 was over sprayed with contact herbicide during orchard maintenance.

| No. | Treatment     | Rate                    | ——— DAT <sup>1</sup> ——— |          |                 |
|-----|---------------|-------------------------|--------------------------|----------|-----------------|
|     |               |                         | 60                       | 75       | 90 <sup>2</sup> |
|     |               | g a.i. ha <sup>-1</sup> |                          | % Contro | l               |
| 1   | Indaziflam    | 29                      | 90                       | 67       | 85              |
|     | Glufosinate   | 984                     |                          |          |                 |
| 2   | Indaziflam    | 39                      | 67                       | 67       | 100             |
|     | Glufosinate   | 1,334                   |                          |          |                 |
| 3   | Indaziflam    | 49                      | 100                      | 100      | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 4   | Indaziflam    | 73                      | 33                       | 33       | 100             |
|     | Glufosinate   | 1,334                   |                          |          |                 |
| 5   | Pyroxasulfone | 219                     | 33                       | 40       | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 6   | Pyroxasulfone | 293                     | 100                      | 100      | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 7   | Pendimethalin | 4,259                   | 100                      | 67       | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
| 8   | Pendimethalin | 6,389                   | 57                       | 60       | 100             |
|     | Glufosinate   | 1,704                   |                          |          |                 |
|     | P-value       |                         | 0.214                    | 0.642    | 0.493           |

Appendix table 43. Control of Italian ryegrass in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8).

<sup>2</sup>90 DAT (N=2); replication 3 was over sprayed with contact herbicide during orchard maintenance.

| No. | Treatment     | Rate                    | ——— DAT <sup>1</sup> ——— |           |                 |
|-----|---------------|-------------------------|--------------------------|-----------|-----------------|
|     |               |                         | 60                       | 75        | 90 <sup>2</sup> |
|     |               | g a.i. ha <sup>-1</sup> |                          | % Control |                 |
| 1   | Indaziflam    | 29                      | 33                       | 33        | 35              |
|     | Glufosinate   | 984                     |                          |           |                 |
| 2   | Indaziflam    | 39                      | 17                       | 23        | 0               |
|     | Glufosinate   | 1,334                   |                          |           |                 |
| 3   | Indaziflam    | 49                      | 50                       | 50        | 50              |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 4   | Indaziflam    | 73                      | 33                       | 33        | 50              |
|     | Glufosinate   | 1,334                   |                          |           |                 |
| 5   | Pyroxasulfone | 219                     | 0                        | 7         | 0               |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 6   | Pyroxasulfone | 293                     | 33                       | 40        | 25              |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 7   | Pendimethalin | 4,259                   | 33                       | 30        | 50              |
|     | Glufosinate   | 1,704                   |                          |           |                 |
| 8   | Pendimethalin | 6,389                   | 50                       | 50        | 0               |
|     | Glufosinate   | 1,704                   |                          |           |                 |
|     | P-value       |                         | 0.923                    | 0.946     | 0.833           |

Appendix table 44. Control of annual sowthistle in a 2-yr-old almond orchard using a single application of preemergence herbicides near Arbuckle, CA in spring 2022 (study 8).

 $^{1}$ DAT = days after treatment  $^{2}$ 90 DAT (N=2); replication 3 was over sprayed with contact herbicide during orchard maintenance.

| No. | Treatment     | Rate                    | $DAT^1$   |       |       |       |
|-----|---------------|-------------------------|-----------|-------|-------|-------|
|     |               |                         | 30        | 45    | 60    | 75    |
|     |               | g a.i. ha <sup>-1</sup> | % Control |       |       |       |
| 1   | Indaziflam    | 29                      | 84        | 72    | 50    | 51    |
|     | Glufosinate   | 984                     |           |       |       |       |
| 2   | Indaziflam    | 39                      | 88        | 87    | 70    | 71    |
|     | Glufosinate   | 1,334                   |           |       |       |       |
| 3   | Indaziflam    | 49                      | 88        | 89    | 82    | 84    |
|     | Glufosinate   | 1,704                   |           |       |       |       |
| 4   | Indaziflam    | 73                      | 88        | 85    | 63    | 61    |
|     | Glufosinate   | 1,334                   |           |       |       |       |
| 5   | Pyroxasulfone | 219                     | 83        | 78    | 51    | 60    |
|     | Glufosinate   | 1,704                   |           |       |       |       |
| 6   | Pyroxasulfone | 293                     | 83        | 89    | 81    | 74    |
|     | Glufosinate   | 1,704                   |           |       |       |       |
| 7   | Pendimethalin | 4,259                   | 87        | 87    | 73    | 61    |
|     | Glufosinate   | 1,704                   |           |       |       |       |
| 8   | Pendimethalin | 6,389                   | 85        | 82    | 63    | 63    |
|     | Glufosinate   | 1,704                   |           |       |       |       |
|     | P-value       |                         | 0.975     | 0.664 | 0.670 | 0.901 |

Appendix table 45. Overall weed control in a walnut orchard study using preemergence herbicides near Davis, CA in spring 2022 (study 9).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |       |         |       |
|-----|---------------|-------------------------|------------------|-------|---------|-------|
|     |               |                         | 30               | 45    | 60      | 75    |
|     |               | g a.i. ha <sup>-1</sup> |                  | %     | Control |       |
| 1   | Indaziflam    | 29                      | 75               | 75    | 25      | 25    |
|     | Glufosinate   | 984                     |                  |       |         |       |
| 2   | Indaziflam    | 39                      | 70               | 75    | 25      | 25    |
|     | Glufosinate   | 1,334                   |                  |       |         |       |
| 3   | Indaziflam    | 49                      | 73               | 50    | 25      | 25    |
|     | Glufosinate   | 1,704                   |                  |       |         |       |
| 4   | Indaziflam    | 73                      | 75               | 75    | 50      | 48    |
|     | Glufosinate   | 1,334                   |                  |       |         |       |
| 5   | Pyroxasulfone | 219                     | 60               | 75    | 25      | 25    |
|     | Glufosinate   | 1,704                   |                  |       |         |       |
| 6   | Pyroxasulfone | 293                     | 48               | 50    | 25      | 25    |
|     | Glufosinate   | 1,704                   |                  |       |         |       |
| 7   | Pendimethalin | 4,259                   | 70               | 25    | 25      | 25    |
|     | Glufosinate   | 1,704                   |                  |       |         |       |
| 8   | Pendimethalin | 6,389                   | 95               | 25    | 25      | 25    |
|     | Glufosinate   | 1,704                   |                  |       |         |       |
|     | P-value       |                         | 0.921            | 0.652 | 0.996   | 0.998 |

Appendix table 46. Control of bermudagrass in a walnut orchard study using preemergence herbicides near Davis, CA in spring 2022 (study 9).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |       |       |       |
|-----|---------------|-------------------------|------------------|-------|-------|-------|
|     |               |                         | 30               | 45    | 60    | 75    |
|     |               | g a.i. ha <sup>-1</sup> | % Control        |       |       |       |
| 1   | Indaziflam    | 29                      | 100              | 100   | 100   | 100   |
|     | Glufosinate   | 984                     |                  |       |       |       |
| 2   | Indaziflam    | 39                      | 75               | 75    | 50    | 50    |
|     | Glufosinate   | 1,334                   |                  |       |       |       |
| 3   | Indaziflam    | 49                      | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 4   | Indaziflam    | 73                      | 100              | 75    | 75    | 50    |
|     | Glufosinate   | 1,334                   |                  |       |       |       |
| 5   | Pyroxasulfone | 219                     | 50               | 50    | 50    | 50    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 6   | Pyroxasulfone | 293                     | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 7   | Pendimethalin | 4,259                   | 75               | 75    | 75    | 50    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 8   | Pendimethalin | 6,389                   | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
|     | P-value       |                         | 0.811            | 0.942 | 0.625 | 0.802 |

Appendix table 47. Control of malva in a walnut orchard study using preemergence herbicides near Davis, CA in spring 2022 (study 9).

| No   | Treatment     | Rate                    |       | - DAT <sup>1</sup> $-$ |       |
|------|---------------|-------------------------|-------|------------------------|-------|
| 110. | Treatment     | Rute                    | 45    | 60                     | 75    |
|      |               | g a.i. ha <sup>-1</sup> |       | % Control-             |       |
| 1    | Indaziflam    | 29                      | 100   | 100                    | 100   |
|      | Glufosinate   | 984                     |       |                        |       |
| 2    | Indaziflam    | 39                      | 75    | 50                     | 50    |
|      | Glufosinate   | 1,334                   |       |                        |       |
| 3    | Indaziflam    | 49                      | 75    | 75                     | 75    |
|      | Glufosinate   | 1,704                   |       |                        |       |
| 4    | Indaziflam    | 73                      | 75    | 75                     | 50    |
|      | Glufosinate   | 1,334                   |       |                        |       |
| 5    | Pyroxasulfone | 219                     | 50    | 50                     | 50    |
|      | Glufosinate   | 1,704                   |       |                        |       |
| 6    | Pyroxasulfone | 293                     | 75    | 75                     | 75    |
|      | Glufosinate   | 1,704                   |       |                        |       |
| 7    | Pendimethalin | 4,259                   | 75    | 75                     | 50    |
|      | Glufosinate   | 1,704                   |       |                        |       |
| 8    | Pendimethalin | 6,389                   | 75    | 75                     | 75    |
|      | Glufosinate   | 1,704                   |       |                        |       |
|      | P-value       |                         | 0.942 | 0.625                  | 0.802 |

| Appendix table 48. Control of foxtail barley in a walnut orchard study usin | ng |
|-----------------------------------------------------------------------------|----|
| preemergence herbicides near Davis, CA in spring 2022 (study 9).            |    |

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |       |       |       |
|-----|---------------|-------------------------|------------------|-------|-------|-------|
|     |               |                         | 30               | 45    | 60    | 75    |
|     |               | g a.i. ha <sup>-1</sup> | % Control        |       |       |       |
| 1   | Indaziflam    | 29                      | 100              | 100   | 100   | 100   |
|     | Glufosinate   | 984                     |                  |       |       |       |
| 2   | Indaziflam    | 39                      | 100              | 100   | 100   | 100   |
|     | Glufosinate   | 1,334                   |                  |       |       |       |
| 3   | Indaziflam    | 49                      | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 4   | Indaziflam    | 73                      | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,334                   |                  |       |       |       |
| 5   | Pyroxasulfone | 219                     | 50               | 50    | 50    | 50    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 6   | Pyroxasulfone | 293                     | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 7   | Pendimethalin | 4,259                   | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 8   | Pendimethalin | 6,389                   | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
|     | P-value       |                         | 0.811            | 0.683 | 0.811 | 0.811 |

Appendix table 49. Control of filaree in a walnut orchard study using preemergence herbicides near Davis, CA in spring 2022 (study 9).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |       |       |       |
|-----|---------------|-------------------------|------------------|-------|-------|-------|
|     |               |                         | 30               | 45    | 60    | 75    |
|     |               | g a.i. ha <sup>-1</sup> | % Control%       |       |       |       |
| 1   | Indaziflam    | 29                      | 75               | 100   | 100   | 100   |
|     | Glufosinate   | 984                     |                  |       |       |       |
| 2   | Indaziflam    | 39                      | 100              | 100   | 50    | 50    |
|     | Glufosinate   | 1,334                   |                  |       |       |       |
| 3   | Indaziflam    | 49                      | 100              | 100   | 100   | 100   |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 4   | Indaziflam    | 73                      | 100              | 100   | 100   | 75    |
|     | Glufosinate   | 1,334                   |                  |       |       |       |
| 5   | Pyroxasulfone | 219                     | 100              | 100   | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 6   | Pyroxasulfone | 293                     | 75               | 75    | 75    | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 7   | Pendimethalin | 4,259                   | 100              | 100   | 100   | 100   |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
| 8   | Pendimethalin | 6,389                   | 100              | 100   | 100   | 75    |
|     | Glufosinate   | 1,704                   |                  |       |       |       |
|     | P-value       |                         | 0.553            | 0.455 | 0.262 | 0.901 |

| Appendix table 50. Control of California burclover in a walnut orchard st | tudy ı | using |
|---------------------------------------------------------------------------|--------|-------|
| preemergence herbicides near Davis. CA in spring 2022 (study 9).          |        |       |

| No. | Treatment     | Rate                    |       |       |       | DAT <sup>1</sup> |       |       |       |
|-----|---------------|-------------------------|-------|-------|-------|------------------|-------|-------|-------|
|     |               |                         | 30    | 45    | 60    | 75               | 90    | 120   | 150   |
|     |               | g a.i. ha <sup>-1</sup> |       |       |       | % Contro         | ol    |       |       |
| 1   | Indaziflam    | 56                      | 93    | 87    | 93    | 88               | 82    | 85    | 88    |
| 2   | Rimsulfuron   | 70                      | 88    | 92    | 92    | 95               | 85    | 92    | 90    |
| 3   | Flumioxazin   | 882                     | 93    | 90    | 94    | 93               | 82    | 87    | 83    |
| 4   | Pendimethalin | 4,259                   | 100   | 92    | 95    | 96               | 84    | 93    | 96    |
| 5   | Pyroxasulfone | 150                     | 100   | 93    | 99    | 93               | 86    | 92    | 93    |
| 6   | Pyroxasulfone | 225                     | 100   | 95    | 94    | 93               | 96    | 88    | 63    |
| 7   | Pyroxasulfone | 300                     | 98    | 97    | 94    | 95               | 84    | 89    | 91    |
| 8   | Pyroxasulfone | 150                     | 98    | 100   | 96    | 95               | 84    | 90    | 87    |
|     | Pendimethalin | 4,259                   |       |       |       |                  |       |       |       |
| 9   | Pyroxasulfone | 225                     | 63    | 100   | 99    | 96               | 85    | 96    | 88    |
|     | Pendimethalin | 4,259                   |       |       |       |                  |       |       |       |
| 10  | Flumioxazin + | 118                     | 92    | 100   | 98    | 96               | 85    | 93    | 93    |
|     | Pyroxasulfone | 150                     |       |       |       |                  |       |       |       |
| 11  | Flumioxazin + | 178                     | 100   | 70    | 99    | 99               | 87    | 96    | 93    |
| 10  | Pyroxasulfone | 225                     | 100   | 02    | 04    | 0.4              | 01    | 02    | 01    |
| 12  | Rimsulfuron   | 70                      | 100   | 95    | 94    | 94               | 04    | 92    | 91    |
| 13  | Pyroxasulfone | 225                     | 87    | 100   | 98    | 94               | 97    | 90    | 62    |
|     | Rimsulfuron   | 70                      |       |       |       |                  |       |       |       |
| 14  | Oxyfluorfen   | 2,018                   | 97    | 99    | 99    | 96               | 84    | 85    | 88    |
|     | Pendimethalin | 4,259                   |       |       |       |                  |       |       |       |
| 1   | P-value       |                         | 0.511 | 0.623 | 0.512 | 0.712            | 0.998 | 0.672 | 0.634 |

Appendix table 51. Overall weed control with preemergence herbicides in an almond orchard study in spring 2021 near Davis, CA (study 10).

| No. | Treatment                      | Rate                    | DAT <sup>1</sup> |       |       |            |       |       |  |  |
|-----|--------------------------------|-------------------------|------------------|-------|-------|------------|-------|-------|--|--|
|     |                                |                         | 30               | 45    | 60    | 75         | 90    | 120   |  |  |
|     |                                | g a.i. ha <sup>-1</sup> |                  |       |       | -% Control |       |       |  |  |
| 1   | Indaziflam                     | 56                      | 93               | 87    | 93    | 88         | 82    | 85    |  |  |
| 2   | Rimsulfuron                    | 70                      | 88               | 92    | 92    | 95         | 85    | 92    |  |  |
| 3   | Flumioxazin                    | 882                     | 93               | 90    | 94    | 93         | 82    | 87    |  |  |
| 4   | Pendimethalin                  | 4,259                   | 100              | 92    | 95    | 96         | 84    | 93    |  |  |
| 5   | Pyroxasulfone                  | 150                     | 100              | 93    | 99    | 93         | 86    | 92    |  |  |
| 6   | Pyroxasulfone                  | 225                     | 100              | 95    | 94    | 93         | 96    | 88    |  |  |
| 7   | Pyroxasulfone                  | 300                     | 98               | 97    | 94    | 95         | 84    | 89    |  |  |
| 8   | Pyroxasulfone<br>Pendimethalin | 150<br>4,259            | 98               | 100   | 96    | 95         | 84    | 90    |  |  |
| 9   | Pyroxasulfone<br>Pendimethalin | 225<br>4,259            | 63               | 100   | 99    | 96         | 85    | 96    |  |  |
| 10  | Flumioxazin +<br>Pyroxasulfone | 118<br>150              | 92               | 100   | 98    | 96         | 85    | 93    |  |  |
| 11  | Flumioxazin +<br>Pyroxasulfone | 178<br>225              | 100              | 70    | 99    | 99         | 87    | 96    |  |  |
| 12  | Pyroxasulfone<br>Rimsulfuron   | 150<br>70               | 100              | 93    | 94    | 94         | 84    | 92    |  |  |
| 13  | Pyroxasulfone<br>Rimsulfuron   | 225<br>70               | 87               | 100   | 98    | 94         | 97    | 90    |  |  |
| 14  | Oxyfluorfen<br>Pendimethalin   | 2,018<br>4,259          | 97               | 99    | 99    | 96         | 84    | 85    |  |  |
|     | P-value                        |                         | 0.511            | 0.623 | 0.512 | 0.712      | 0.998 | 0.672 |  |  |

Appendix table 52. Control of ryegrass with preemergence herbicides in an almond orchard study in spring 2021 near Davis, CA (study 10).

| No. | Treatment                      | Rate                    |       |       |       | — DAT <sup>1</sup> |       |       |       |
|-----|--------------------------------|-------------------------|-------|-------|-------|--------------------|-------|-------|-------|
|     |                                |                         | 30    | 45    | 60    | 75                 | 90    | 120   | 150   |
|     |                                | g a.i. ha <sup>-1</sup> |       |       |       | % Control          | [     |       |       |
| 1   | Indaziflam                     | 56                      | 47    | 47    | 100   | 70                 | 67    | 57    | 47    |
| 2   | Rimsulfuron                    | 70                      | 50    | 17    | 83    | 40                 | 93    | 33    | 50    |
| 3   | Flumioxazin                    | 882                     | 57    | 53    | 70    | 40                 | 33    | 27    | 57    |
| 4   | Pendimethalin                  | 4,259                   | 100   | 80    | 67    | 63                 | 100   | 90    | 100   |
| 5   | Pyroxasulfone                  | 150                     | 72    | 93    | 50    | 57                 | 90    | 70    | 72    |
| 6   | Pyroxasulfone                  | 225                     | 67    | 30    | 40    | 23                 | 93    | 50    | 67    |
| 7   | Pyroxasulfone                  | 300                     | 67    | 57    | 33    | 23                 | 90    | 60    | 67    |
| 8   | Pyroxasulfone<br>Pendimethalin | 150<br>4,259            | 90    | 83    | 43    | 33                 | 100   | 23    | 90    |
| 9   | Pyroxasulfone<br>Pendimethalin | 225<br>4,259            | 100   | 100   | 73    | 70                 | 100   | 33    | 100   |
| 10  | Flumioxazin +<br>Pyroxasulfone | 118<br>150              | 100   | 87    | 73    | 49                 | 60    | 70    | 100   |
| 11  | Flumioxazin +<br>Pyroxasulfone | 178<br>225              | 100   | 63    | 100   | 80                 | 100   | 75    | 100   |
| 12  | Pyroxasulfone<br>Rimsulfuron   | 150<br>70               | 67    | 80    | 77    | 17                 | 77    | 50    | 67    |
| 13  | Pyroxasulfone<br>Rimsulfuron   | 225<br>70               | 100   | 80    | 67    | 40                 | 100   | 57    | 100   |
| 14  | Oxyfluorfen<br>Pendimethalin   | 2,018<br>4,259          | 93    | 87    | 63    | 17                 | 100   | 50    | 93    |
|     | P-value                        |                         | 0.340 | 0.141 | 0.428 | 0.363              | 0.166 | 0.829 | 0.340 |

Appendix table 53. Control field bindweed with preemergence herbicides in an almond orchard study in spring 2021 near Davis, CA (study 10).

| No. | Treatment                      | Rate                    |        |       | DAT   | l      |       |
|-----|--------------------------------|-------------------------|--------|-------|-------|--------|-------|
|     |                                |                         | 30     | 45    | 75    | 90     | 120   |
|     |                                | g a.i. ha <sup>-1</sup> |        |       | % C   | ontrol |       |
| 1   | Indaziflam                     | 56                      | 89 c   | 86    | 96    | 96     | 88    |
| 2   | Rimsulfuron                    | 70                      | 95 ab  | 86    | 98    | 97     | 86    |
| 3   | Flumioxazin                    | 882                     | 97 a   | 95    | 98    | 97     | 96    |
| 4   | Pendimethalin                  | 4,259                   | 93 abc | 86    | 97    | 97     | 96    |
| 5   | Pyroxasulfone                  | 150                     | 90 abc | 85    | 98    | 98     | 94    |
| 6   | Pyroxasulfone                  | 225                     | 96 a   | 85    | 99    | 97     | 93    |
| 7   | Pyroxasulfone                  | 300                     | 93 abc | 86    | 98    | 97     | 91    |
| 8   | Pyroxasulfone<br>Pendimethalin | 150<br>4,259            | 92 abc | 91    | 99    | 97     | 73    |
| 9   | Pyroxasulfone<br>Pendimethalin | 225<br>4,259            | 96 a   | 90    | 97    | 95     | 94    |
| 10  | Flumioxazin +<br>Pyroxasulfone | 118<br>150              | 97 a   | 71    | 97    | 97     | 94    |
| 11  | Flumioxazin +<br>Pyroxasulfone | 178<br>225              | 96 a   | 94    | 99    | 98     | 91    |
| 12  | Pyroxasulfone<br>Rimsulfuron   | 150<br>70               | 96 a   | 93    | 98    | 97     | 93    |
| 13  | Pyroxasulfone<br>Rimsulfuron   | 225<br>70               | 93 abc | 93    | 98    | 98     | 93    |
| 14  | Oxyfluorfen<br>Pendimethalin   | 2,018<br>4,259          | 95 ab  | 95    | 98    | 96     | 93    |
|     | P-value                        |                         | 0.058  | 0.732 | 0.800 | 0.986  | 0.598 |

Appendix table 54. Overall weed control with preemergence herbicides in an almond orchard study in spring 2021 near Winters, CA (study 11).

| No. | Treatment     | Rate                    |       | DAT <sup>1</sup> |       |
|-----|---------------|-------------------------|-------|------------------|-------|
|     |               |                         | 75    | 90               | 120   |
|     |               | g a.i. ha <sup>-1</sup> | (     | % Control        |       |
| 1   | Indaziflam    | 56                      | 96    | 96               | 88    |
| 2   | Rimsulfuron   | 70                      | 98    | 97               | 86    |
| 3   | Flumioxazin   | 882                     | 98    | 97               | 96    |
| 4   | Pendimethalin | 4,259                   | 97    | 97               | 96    |
| 5   | Pyroxasulfone | 150                     | 98    | 98               | 94    |
| 6   | Pyroxasulfone | 225                     | 99    | 97               | 93    |
| 7   | Pyroxasulfone | 300                     | 98    | 97               | 91    |
| 8   | Pyroxasulfone | 150                     | 99    | 97               | 73    |
|     | Pendimethalin | 4,259                   |       |                  |       |
| 9   | Pyroxasulfone | 225                     | 97    | 95               | 94    |
|     | Pendimethalin | 4,259                   |       |                  |       |
| 10  | Flumioxazin + | 118                     | 97    | 97               | 94    |
|     | Pyroxasulfone | 150                     |       |                  |       |
| 11  | Flumioxazin + | 178                     | 99    | 98               | 91    |
|     | Pyroxasulfone | 225                     |       |                  |       |
| 12  | Pyroxasulfone | 150                     | 98    | 97               | 93    |
|     | Rimsulfuron   | 70                      |       |                  |       |
| 13  | Pyroxasulfone | 225                     | 98    | 98               | 93    |
|     | Rimsulfuron   | 70                      |       |                  |       |
| 14  | Oxyfluorfen   | 2,018                   | 98    | 96               | 93    |
|     | Pendimethalin | 4,259                   | 0.000 | 0.007            | 0.500 |
|     | P-value       |                         | 0.800 | 0.986            | 0.598 |

Appendix table 55. Control field bindweed with preemergence herbicides in an almond orchard study in spring 2021 near Winters, CA (study 11).

| No. | Treatment     | Rate                    |       |    | - DAT <sup>1</sup> |       |
|-----|---------------|-------------------------|-------|----|--------------------|-------|
|     |               |                         | 75    |    | 90                 | 120   |
|     |               | g a.i. ha <sup>-1</sup> |       |    | % Control          |       |
| 1   | Indaziflam    | 56                      | 100   | а  | 50                 | 50    |
| 2   | Rimsulfuron   | 70                      | 75    | ab | 75                 | 50    |
| 3   | Flumioxazin   | 882                     | 75    | ab | 50                 | 50    |
| 4   | Pendimethalin | 4,259                   | 100   | а  | 75                 | 75    |
| 5   | Pyroxasulfone | 150                     | 100   | a  | 100                | 75    |
| 6   | Pyroxasulfone | 225                     | 100   | a  | 100                | 100   |
| 7   | Pyroxasulfone | 300                     | 100   | a  | 95                 | 75    |
| 8   | Pyroxasulfone | 150                     | 100   | a  | 100                | 100   |
|     | Pendimethalin | 4,259                   |       |    |                    |       |
| 9   | Pyroxasulfone | 225                     | 0     | c  | 75                 | 100   |
|     | Pendimethalin | 4,259                   |       |    |                    |       |
| 10  | Flumioxazin + | 118                     | 75    | ab | 100                | 100   |
|     | Pyroxasulfone | 150                     |       |    |                    |       |
| 11  | Flumioxazin + | 178                     | 75    | ab | 75                 | 100   |
|     | Pyroxasulfone | 225                     |       |    |                    |       |
| 12  | Pyroxasulfone | 150                     | 100   | а  | 63                 | 100   |
|     | Rimsulfuron   | 70                      |       |    |                    |       |
| 13  | Pyroxasulfone | 225                     | 78    | ab | 75                 | 75    |
|     | Rimsulfuron   | 70                      |       |    |                    |       |
| 14  | Oxyfluorfen   | 2,018                   | 50    | b  | 75                 | 93    |
|     | Pendimethalin | 4,259                   |       |    |                    |       |
|     | P-value       |                         | 0.005 | 5  | 0.725              | 0.360 |

Appendix table 56. Control of prostrate knotweed with preemergence herbicides in an almond orchard study in spring 2021 near Winters, CA (study 6).

| No. | Treatment     | Rate                    | 120 DAT   |
|-----|---------------|-------------------------|-----------|
|     |               | g a.i. ha <sup>-1</sup> | % Control |
| 1   | Indaziflam    | 56                      | 50 bc     |
| 2   | Rimsulfuron   | 70                      | 25 c      |
| 3   | Flumioxazin   | 882                     | 100 a     |
| 4   | Pendimethalin | 4,259                   | 100 a     |
| 5   | Pyroxasulfone | 150                     | 75 ab     |
| 6   | Pyroxasulfone | 225                     | 50 bc     |
| 7   | Pyroxasulfone | 300                     | 75 ab     |
| 8   | Pyroxasulfone | 150                     | 100 a     |
|     | Pendimethalin | 4,259                   |           |
| 9   | Pyroxasulfone | 225                     | 100 a     |
|     | Pendimethalin | 4,259                   |           |
| 10  | Flumioxazin + | 118                     | 100 a     |
|     | Pyroxasulfone | 150                     |           |
| 11  | Flumioxazin + | 178                     | 100 a     |
|     | Pyroxasulfone | 225                     |           |
| 12  | Pyroxasulfone | 150                     | 100 a     |
|     | Rimsulfuron   | 70                      |           |
| 13  | Pyroxasulfone | 225                     | 100 a     |
|     | Rimsulfuron   | 70                      |           |
| 14  | Oxyfluorfen   | 2,018                   | 93 a      |
|     | Pendimethalin | 4,259                   |           |
|     | P-value       |                         | 0.016     |

Appendix table 57. Control of prostrate pigweed with preemergence herbicides in an almond orchard study in spring 2021 near Winters, CA (study 11).

| No. | Treatment     | Rate                    | DAT <sup>1</sup> |          |       |
|-----|---------------|-------------------------|------------------|----------|-------|
|     |               |                         | 75               | 90       | 120   |
|     |               | g a.i. ha <sup>-1</sup> |                  | % Contro | ol    |
| 1   | Indaziflam    | 56                      | 50               | 63       | 50 bc |
| 2   | Rimsulfuron   | 70                      | 50               | 93       | 25 c  |
| 3   | Flumioxazin   | 882                     | 75               | 100      | 100 a |
| 4   | Pendimethalin | 4,259                   | 50               | 100      | 100 a |
| 5   | Pyroxasulfone | 150                     | 50               | 93       | 75 ab |
| 6   | Pyroxasulfone | 225                     | 67               | 68       | 50 bc |
| 7   | Pyroxasulfone | 300                     | 25               | 93       | 75 ab |
| 8   | Pyroxasulfone | 150                     | 100              | 100      | 100 a |
|     | Pendimethalin | 4,259                   |                  |          |       |
| 9   | Pyroxasulfone | 225                     | 100              | 100      | 100 a |
|     | Pendimethalin | 4,259                   |                  |          |       |
| 10  | Flumioxazin + | 118                     | 100              | 100      | 100 a |
|     | Pyroxasulfone | 150                     |                  |          |       |
| 11  | Flumioxazin + | 178                     | 100              | 100      | 100 a |
|     | Pyroxasulfone | 225                     |                  |          |       |
| 12  | Pyroxasulfone | 150                     | 50               | 68       | 100 a |
|     | Rimsulfuron   | 70                      |                  |          |       |
| 13  | Pyroxasulfone | 225                     | 50               | 100      | 100 a |
|     | Rimsulfuron   | 70                      |                  |          |       |
| 14  | Oxyfluorfen   | 2,018                   | 100              | 100      | 93 a  |
|     | Pendimethalin | 4,259                   |                  |          |       |
|     | P-value       |                         | 0.209            | 0.160    | 0.016 |

Appendix table 58. Control of malva with preemergence herbicides in an almond orchard study in spring 2021 near Winters CA (study 11).

| No. | . Treatment Rate — DAT <sup>1</sup> — DAT <sup>1</sup> |                         |            |       |       |       |       |       |       |
|-----|--------------------------------------------------------|-------------------------|------------|-------|-------|-------|-------|-------|-------|
| _   |                                                        |                         | 30         | 45    | 60    | 75    | 90    | 120   | 150   |
|     |                                                        | g a.i. ha <sup>-1</sup> | % Control% |       |       |       |       |       |       |
| 1   | Indaziflam                                             | 56                      | 100        | 100   | 98    | 97    | 95    | 96    | 95    |
| 2   | Rimsulfuron                                            | 70                      | 100        | 100   | 72    | 98    | 97    | 99    | 94    |
| 3   | Flumioxazin                                            | 882                     | 100        | 100   | 94    | 97    | 98    | 98    | 96    |
| 4   | Pendimethalin                                          | 4,259                   | 100        | 100   | 97    | 96    | 97    | 97    | 96    |
| 5   | Pyroxasulfone                                          | 150                     | 100        | 100   | 95    | 97    | 99    | 99    | 98    |
| 6   | Pyroxasulfone                                          | 225                     | 100        | 100   | 98    | 97    | 99    | 99    | 98    |
| 7   | Pyroxasulfone                                          | 300                     | 100        | 100   | 95    | 95    | 98    | 98    | 96    |
| 8   | Pyroxasulfone<br>Pendimethalin                         | 150<br>4,259            | 100        | 100   | 97    | 98    | 98    | 98    | 96    |
| 9   | Pyroxasulfone<br>Pendimethalin                         | 225<br>4,259            | 100        | 100   | 96    | 96    | 98    | 96    | 93    |
| 10  | Flumioxazin +<br>Pyroxasulfone                         | 118<br>150              | 100        | 100   | 97    | 99    | 98    | 99    | 97    |
| 11  | Flumioxazin +<br>Pyroxasulfone                         | 178<br>225              | 100        | 100   | 96    | 97    | 98    | 98    | 96    |
| 12  | Pyroxasulfone<br>Rimsulfuron                           | 150<br>70               | 100        | 100   | 94    | 97    | 98    | 99    | 94    |
| 13  | Pyroxasulfone<br>Rimsulfuron                           | 225<br>70               | 100        | 100   | 96    | 99    | 98    | 99    | 96    |
| 14  | Oxyfluorfen<br>Pendimethalin                           | 2,018<br>4,259          | 100        | 100   | 96    | 98    | 99    | 98    | 98    |
|     | P-value                                                |                         | 0.482      | 0.966 | 0.823 | 0.937 | 0.084 | 0.482 | 0.966 |

Appendix table 59. Overall weed control with preemergence herbicides in a vineyard study in spring 2021 near Davis, CA (study 12).

| No. | Treatment                      | Rate                    | DAT <sup>2</sup> |       |       |
|-----|--------------------------------|-------------------------|------------------|-------|-------|
|     |                                |                         | 60               | 75    | 90    |
|     |                                | g a.i. ha <sup>-1</sup> | % Control        |       |       |
| 1   | Indaziflam                     | 56                      | 100              | 100   | 100   |
| 2   | Rimsulfuron                    | 70                      | 25               | 100   | 100   |
| 3   | Flumioxazin                    | 882                     | 50               | 75    | 100   |
| 4   | Pendimethalin                  | 4,259                   | 0                | 75    | 75    |
| 5   | Pyroxasulfone                  | 150                     | 75               | 75    | 75    |
| 6   | Pyroxasulfone                  | 225                     | 75               | 75    | 100   |
| 7   | Pyroxasulfone                  | 300                     | 25               | 75    | 75    |
| 8   | Pyroxasulfone<br>Pondimethalin | 150<br>4 259            | 67               | 67    | 100   |
| 9   | Pyroxasulfone<br>Pendimethalin | 225<br>4,259            | 50               | 100   | 100   |
| 10  | Flumioxazin +<br>Pyroxasulfone | 118<br>150              | 75               | 100   | 100   |
| 11  | Flumioxazin +<br>Pyroxasulfone | 178<br>225              | 50               | 75    | 100   |
| 12  | Pyroxasulfone<br>Rimsulfuron   | 150<br>70               | 25               | 100   | 75    |
| 13  | Pyroxasulfone<br>Rimsulfuron   | 225<br>70               | 50               | 75    | 100   |
| 14  | Oxyfluorfen<br>Pendimethalin   | 2,018<br>4,259          | 100              | 100   | 100   |
|     | P-value                        |                         | 0.590            | 0.830 | 0.910 |

Appendix table 60. Control of filaree<sup>1</sup> with preemergence herbicides in a vineyard study in spring 2021 near Davis, CA (study 12).

<sup>1</sup>Filaree began to senesce approximately 90DAT <sup>2</sup>DAT = days after treatment

| No. | Treatment     | Rate                    | DAT <sup>2</sup> |       |
|-----|---------------|-------------------------|------------------|-------|
|     |               |                         | 75               | 90    |
|     |               | g a.i. ha <sup>-1</sup> | % Control        |       |
| 1   | Indaziflam    | 56                      | 100              | 50    |
| 2   | Rimsulfuron   | 70                      | 100              | 100   |
| 3   | Flumioxazin   | 882                     | 38               | 63    |
| 4   | Pendimethalin | 4,259                   | 80               | 88    |
| 5   | Pyroxasulfone | 150                     | 68               | 75    |
| 6   | Pyroxasulfone | 225                     | 75               | 88    |
| 7   | Pyroxasulfone | 300                     | 100              | 100   |
| 8   | Pyroxasulfone | 150                     | 75               | 75    |
|     | Pendimethalin | 4,259                   |                  |       |
| 9   | Pyroxasulfone | 225                     | 93               | 75    |
|     | Pendimethalin | 4,259                   |                  |       |
| 10  | Flumioxazin + | 118                     | 75               | 88    |
|     | Pyroxasulfone | 150                     |                  |       |
| 11  | Flumioxazin + | 178                     | 75               | 93    |
|     | Pyroxasulfone | 225                     |                  |       |
| 12  | Pyroxasulfone | 150                     | 93               | 100   |
|     | Rimsulfuron   | 70                      |                  |       |
| 13  | Pyroxasulfone | 225                     | 88               | 100   |
|     | Rimsulfuron   | 70                      |                  |       |
| 14  | Oxyfluorfen   | 2,018                   | 80               | 84    |
|     | Pendimethalin | 4,259                   |                  |       |
|     | P-value       |                         | 0.880            | 0.310 |

Appendix table 61. Control of hare barley<sup>1</sup> with preemergence herbicides in a vineyard study in spring 2021 near Davis, CA (study 12).

<sup>1</sup>Hare barley began to senesce approximately 90DAT <sup>2</sup>DAT = days after treatment