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Flexible rerouting of hippocampal replay sequences around 
changing barriers in the absence of global place field remapping

John Widloski1, David J. Foster1,2,*

1Helen Wills Neuroscience Institute and Department of Psychology, University of California, 
Berkeley, CA 94720, USA

2Lead contact

SUMMARY

Flexibility is a hallmark of memories that depend on the hippocampus. For navigating animals, 

flexibility is necessitated by environmental changes such as blocked paths and extinguished 

food sources. To better understand the neural basis of this flexibility, we recorded hippocampal 

replays in a spatial memory task where barriers as well as goals were moved between sessions 

to see whether replays could adapt to new spatial and reward contingencies. Strikingly, replays 

consistently depicted new goal-directed trajectories around each new barrier configuration and 

largely avoided barrier violations. Barrier-respecting replays were learned rapidly and did not rely 

on place cell remapping. These data distinguish sharply between place field responses, which were 

largely stable and remained tied to sensory cues, and replays, which changed flexibly to reflect the 

learned contingencies in the environment and suggest sequenced activations such as replay to be 

an important link between the hippocampus and flexible memory.

In brief

Widloski and Foster show that place cells in rat hippocampus learn replay sequences around 

barriers, even after a large (>90) number of barrier reconfigurations. By contrast, cells’ place fields 

are largely stable, dissociating the stable representation of space from a powerful mechanism for 

the acquisition and recall of flexible memory.

INTRODUCTION

Flexibility in the use of learned associations about the world is critical to survival and 

has long been considered an indicator of cognition (Kohler, 1925; Tolman, 1948; Bayne 

et al., 2019). An important aspect of flexibility is the ability to adapt when the structure 

of the environment changes unexpectedly (Rashotte, 1987; Kabadayi et al., 2018; Hebb 
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and Williams, 1946; Alvernhe et al., 2012; de Cothi et al., 2020). Dynamic environments 

pose a substantial challenge to animal navigation, requiring both flexibility within and rapid 

adaptation across contexts. Lesion studies point to the hippocampus as being essential for 

both aspects of behavioral flexibility. Hippocampal lesions in rodents produce deficits in 

the ability to flexibly navigate to a learned goal from unpredictable locations (Morris et al., 

1982) or to make flexible inferences across learned odor pairs (Eichenbaum, 2004) and in 

humans leads to deficits in the ability to imagine new experiences (Hassabis et al., 2007). 

Moreover, damage to the hippocampus results in performance deficits on spatial replanning 

tasks that require the construction of novel routes to familiar goals in the presence of barriers 

or shortcuts (Thompson et al., 1984; Winocur et al., 2010; Maguire et al., 2006; Rosenbaum 

et al., 2015).

Hippocampal place cells fire selectively to the conjunction of spatial and nonspatial cues 

in the environment. As such, the hippocampus has been thought to encode a cognitive 

map of the environment (O’Keefe and Nadel, 1978), one that individuates states as well 

as encodes state relationships to support flexible, inferential behavior (Muller et al., 1996; 

Eichenbaum and Cohen, 2014; Whittington et al., 2020). The hippocampus readily forms 

distinct representations across contexts (Alme et al., 2014; Leutgeb et al., 2005; Wood et 

al., 2000; Frank et al., 2000; Ferbinteanu and Shapiro, 2003; Kennedy and Shapiro, 2009; 

Kentros et al., 2004; Muzzio et al., 2009; Monaco et al., 2014; Kelemen and Fenton, 

2010; Muller and Kubie, 1987; Bostock et al., 1991; Moita et al., 2003; Komorowski et 

al., 2009), thus in theory enabling the formation of new cognitive maps adapted to the 

context-specific needs of the animal (Smith and Mizumori, 2006; Stachenfeld et al., 2017). 

However, remapping to encode context is not always observed (Berke et al., 2009; Ainge 

et al., 2012; Griffin and Hallock, 2013; Duvelle et al., 2019). Strikingly, place fields are 

largely unperturbed by the introduction and manipulation of barriers, whether or not those 

manipulations necessitate small (Muller and Kubie, 1987; Rivard et al., 2004) or large 

(Alvernhe et al., 2008, 2011; Duvelle et al., 2021) changes to the behavioral policy. This 

is especially perplexing given the importance of the hippocampus in such replanning tasks 

(Thompson et al., 1984; Winocur et al., 2010; Maguire et al., 2006; Rosenbaum et al., 2015), 

and raises the question of whether a significant but possibly more covert hippocampal neural 

correlate of behavioral adaptation to changes in spatial contingencies can be found.

Place cells participate in rapid sequenced reactivations called “awake replays” that can 

depict past and future behavior (Diba and Buzsá ki, 2007; Foster and Wilson, 2006; 

Davidson et al., 2009; Pfeiffer and Foster, 2013) and have been linked to planning (Jadhav 

et al., 2012; Pfeiffer and Foster, 2013) and memory consolidation (Dupret et al., 2010; 

Ego-Stengel and Wilson, 2010; Girardeau et al., 2009). Replay is increasingly seen as 

a generative process that reflects the behavioral contingencies of the environment rather 

than the specific experiences of the animal (Gupta et al., 2010; Foster, 2017) and is thus 

well suited to subserve behavioral flexibility. In addition, replay offers a unique window 

on hippocampal contextual coding without the confounding effects of behavior. However, 

nothing is known about how replays adapt to spatial contingency changes, especially 

when those changes are expected to elicit minimal changes to the hippocampal place 

code. We tested this by recording place cells and replay in a goal-directed task subject 

to repeated barrier manipulations that would dramatically and unpredictably alter the 
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navigational requirements of the animal while minimally affecting the sensory perception 

of the environment (through the use of transparent barriers in a highly familiar environment). 

We used wireless ultra-high-density hyperdrives to record from hundreds of place cells 

simultaneously and across sessions, enabling us to measure replay during the learning of the 

task as well as ascertain changes in place fields across barrier configurations. This approach 

of tracking both place fields and replay allowed us to assess hippocampal adaptation to 

changing spatial contingencies at multiple resolutions to determine how place encoding and 

replay-based path encoding contribute to flexible learning.

RESULTS

Behavior is goal directed

Rats were trained on a spatial memory task in a square arena to search for liquid chocolate 

available in one of nine food wells, which alternated on consecutive trials between a 

learnable fixed location (Home well) and unpredictable other locations (Random wells), 

designated as Home and Random trials, respectively. In each trial, a variable time delay 

(5–15 s) passed before: (a) reward was provided at the bait location, and (b) for all Random 

trials, a light came on next to the rewarded well, cueing the approach. Before each session, 

transparent “jail-bar” barriers (Ólafsdóttir et al., 2015), permeable to visual and olfactory 

information, were placed in 6 out of 12 possible locations, in a novel, random selection 

from 924 possible configurations (Figures 1A and 1B). Two to three consecutive behavioral 

sessions were performed per day for a total of up to 94 sessions per rat with sessions 

separated by ~3–4 h, each with a novel barrier configuration (or in some cases, no barriers) 

as well as a novel, pseudo-randomly chosen Home location (Figure S1A) (47 sessions 

total; 12 sessions for rat 1, 17 sessions for rat 2, 8 sessions for rat 3, and 10 sessions for 

rat 4). Rats exhibited trial-selective spatial memory, as evidenced by greater Home-well 

visit probability during the unrewarded delay (Figures 1C and 1D) and greater anticipatory-

licking duration at the Home well for Home versus Random trials (Figure 1E; Figure S1B).

Replay is goal directed and predictive of future behavior

In order to measure replay, we implanted four trained rats with headstages holding 64 

independently-adjustable tetrodes (Figure S1C), which were lowered over the course of 

2–4 weeks into the pyramidal cell layer of the CA1 subregion of dorsal hippocampus in 

both hemispheres. The headstages digitized and stored neural signals, enabling wireless 

recording during behavior, because wires would have constrained the rats’ behavior around 

the barriers. We recorded the activity of up to 295 hippocampal place cells simultaneously 

(Figure S1D) (mean per session = 156 cells; Rats 1–3 had >100 cells in every session and 

were included in replay analyses; Rat 4 had <100 cells in every session and was used for 

place field analysis only). In order to better understand the effect of barriers on replay, we 

recorded the same cells across multiple barrier configurations. Place fields were determined 

for each active cell, and memory-less Bayesian position estimation was used to decode 

the posterior probability of position from the spiking of all simultaneously recorded cells. 

During stopping periods in the task, candidate events were identified as continuous epochs 

lasting at least 100 ms where the decoded position changed smoothly (Figures S2A–S2G). 

Those candidate events that satisfied spatial coverage criteria were classified as replays 
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(number of candidate events per session across 37 sessions: 2,652 ± 224; percentage of 

candidate events that were classified as replays: 5.7% ± 0.4%). As in previous studies with 

large-scale recordings, the posterior probability from each time bin during replay was so 

sharply defined that we could sum across time bins to produce a clear representation of the 

depicted two-dimensional trajectory through the environment (Figures 2A–2G; Figure S3). 

Replays initiated at Random wells when the rat was consuming chocolate there (Away-event 

replays) were more likely to terminate at the Home well than at other wells (Figure 2G; 

Figure S2H). Moreover, the probability of the rat visiting the Home well was higher if 

preceded by a Home-well-terminating replay (Figure 2H; Figure S2I). Further, the angular 

displacement between the decoded position within each replay time step and the immediate 

future or past trajectory of the animal revealed closer alignment to the future trajectory 

than to the past (Figure 2I; Figures S2J–S2M and S3E). Thus, in the barrier maze, as 

previously in the open field, replays exhibited memory for the goal location and predicted 

the immediate future behavior of the animal.

Replay rapidly and repeatedly adapts to conform to the barriers

While individual replay examples moved around barriers (Figures 2A–2C; Figures S3A, 

S3B, and S3F), the full extent of barrier conformity was evident from all the replays 

recorded during each session (Figures 3A and 3B; Figure S4). This was particularly striking 

because large numbers of conflicting barrier configurations had been experienced in the 

same environment prior to each session (76 by the third session in Figure 3A). In order to 

quantify conformity, we first partitioned each replay into constituent instantaneous velocity 

vectors. Each constituent vector was then scored based on its proximity and alignment to the 

local barrier structure in the environment (Figure 3C; Figure S5A): constituent vectors were 

scored high for moving parallel to nearby barriers and scored low for moving perpendicular 

to them, with constituent vectors close to barriers counting more heavily than those further 

away (Figure S5B). We defined the session-averaged barrier conformity score as the mean 

of all scores across all constituent replay vectors within the session. We then compared 

this score to a control distribution of session-averaged barrier conformity scores obtained 

when computed against the other 923 possible barrier configurations (Figure 3D). To address 

sampling differences between configurations conservatively, we removed from consideration 

constituent vectors very close to the barriers (Figure 3C). For 87% of sessions (27 out of 31 

sessions with barriers), the session-averaged barrier conformity score for the actual barrier 

configuration exceeded the 95th percentile of the control distribution (binomial test, p < 

0.001) (Figure S5C). Further, barrier conformity arose rapidly within each session (Figure 

3E; Figure S3F) and showed no dependence on rat heading (Figure S5D). In order to assess 

how far barrier conformity persisted from the barriers, we removed the proximity-to-barrier 

weighting (Figure S5B) and recalculated the scores as a function of distance to the nearest 

barrier. Barrier conformity was found to extend nearly 18 cm from the barriers (Figure 3F), 

nearly the minimum inter-well distance Together, these results show that replays adapted to 

conform to the barriers in each new configuration, that the adaptation was rapid, and that 

barrier conformity was spatially extended and unlikely to depend on visual guidance.
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The barriers are impermeable to most activity during immobility periods

An alternative hypothesis for the observed barrier conformity was that our criterion for 

detecting replay was biased because of a lack of place field coverage near barriers, either 

because of behavioral sampling or altered place fields. Therefore, we developed a second 

measure of activity that did not require selection of replays but instead analyzed the spiking 

activity in all candidate events. Moreover, the measure assessed the relationship between 

the representation of pairs of locations irrespective of the representation of locations 

between them, where data might be missing. For each position, we calculated the posterior 

probability as a time series (Figure 4A, top). We then used the cross-correlogram between 

pairs of time series to define a “time lag” between the two associated positions (Figure 4A, 

bottom; Figure S6A): this represented the latency at which, on average, representation of 

the first position was followed by representation of the second. Finally, time lag maps were 

constructed from the time lags of one reference location to all other locations (Figure 4B; 

Figure S6B). We hypothesized that barrier conformity would be reflected in greater time 

lags between positions straddling a barrier than not. Moreover, such a finding would indicate 

a much more prevalent effect than for replay because candidate events accounted for ten 

times as many spikes as replay events during immobility periods (Figure 4C; Figure S6C). 

Indeed, examination of time lag maps for a set of different reference locations (Figure 4B, 

columns) across different barrier configurations (Figure 4B, rows) revealed a striking effect 

of the barriers, squashing low time lag regions (shown in dark blue) up against the barriers, 

and elongating them in unobstructed regions. To quantify this effect, slices of the maps 

extending from the reference location toward the nearest barrier were extracted (Figure 4D; 

Figure S6A). As expected, we found that the rise in time lags occurred sooner the closer 

the reference bin was to a barrier (Figure 4E, solid line). As a control, we repeated the 

analysis with respect to barriers located at the six complementary positions in the maze, 

in which case we found no such dependence (Figure 4D, inset; Figure 4E, dashed line). 

Lastly, we used multi-dimensional scaling (Gustafson and Daw, 2011; Buja et al., 2008) 

to translate temporal lags into spatial offsets, reducing the full set of time lag maps (L2 

numbers, where L is the number of spatial bins per dimension) into a distorted lattice in the 

Euclidean plane (2L numbers) (Figure 4F; Figures S6D–S6F). Deformations around barriers 

were clearly visible, indicative of the relative inaccessibility of states on opposite sides of 

the barrier. Together, these results indicate that not just replay but most population activity 

during stopping periods exhibited learned avoidance of the current session’s configuration of 

barriers.

The majority of place cells are stable across sessions

In order to gain a more mechanistic understanding of replay adaptation, we next sought 

to understand to what extent this adaptation was mirrored at the level of changes to the 

underlying hippocampal map. We tracked single units across multiple barrier configurations 

and compared the rate maps and population vectors (PVs) (the set of firing rates at a 

spatial bin across all active cells) across pairs of neighboring sessions (Figure 5A; Figures 

S7 and S8A–S8C). Surprisingly, we found that a majority of pairwise session correlation 

measurements across cells and across spatial locations were stable (rate maps: 1,686 of 

2,887 comparisons [58%] were stable across 27 session pairs with an average of 107 

cell comparisons per session pair; a binomial test indicated that the proportion of stable 
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cell comparisons was higher than expected by chance [p < 0.001, two-sided, n = 2,887], 

assuming a chance level of stability for each cell was 0.5; mean fraction of stable cells 

per session: 0.58 ± 0.02, n = 27 session pairs; PVs: 28,788 of 33,245 comparisons [87%] 

were stable across 27 session pairs with an average of 1,231 bin comparisons per session 

pair, where bins are 2 cm per dimension; a binomial test using coarse-grained rate maps 

to compute the PV correlations [see STAR Methods] indicated that the proportion of stable 

bin comparisons was higher than expected by chance [p < 0.001, two-sided, n = 10,748], 

assuming a chance level of stability for each bin was 0.5; mean fraction of stable bins 

per session: 0.87 ± 0.02, n = 27 session pairs; Figures 5B and 5C). Stability was not 

restricted to any part of the environment (Figures 5D and 5K; Figures S8G–S8I) and 

was sufficiently distributed such that both replay content and the accuracy of behavioral 

decoding was largely preserved when decoded using the full set of place fields from 

neighboring sessions (Figures 5E and 5F). We next examined whether the relationships 

between stable cells carried information about the new barrier configuration. When time-lag 

maps were constructed from stable cells alone, we found that the barrier impermeability 

remained intact (Figure S8D), suggesting that the stable cells were capable of supporting 

the flexible expression of replay around the reconfigured barriers. At the same time, 

we wondered whether faded memories of previous barrier configurations stored in the 

connections between stable cells might support the occasional barrier-crossing replay that 

we did find (Figure 2E; Figure S3D). To test this, we simulated replays using a continuous 

attractor network with synaptic weights reflecting a tunable combination of previously 

learned and newly acquired information about the connectedness of the environment prior to 

and following barrier insertion, respectively (Figure S9). At modest mixing levels, we found 

that, while a majority of replays conformed to the newly positioned barrier, a small but 

significant fraction went through it. This suggests that remnants of past experience encoded 

as connections between stable cells might act as bridges or leaks for replay to cross between 

directly inaccessible regions.

We next examined the properties of the unstable cells in our task. Compared to stable cells, 

unstable cells tended to have higher firing rates and more diffuse fields (Figure 5G), as 

well as higher instability in mean firing rate across sessions (Figure 5H). Moreover, field 

stabilization of the unstable cells occurred slowly over the course of the trial (Figure 5I) and 

was neither explained by any behavioral sampling bias (Figure S8E) nor mirrored by any 

obvious behavioral correlate (Figure S8F). To understand how field stability was impacted 

by the changes in the positions of the barriers, we created a measure of the similarity of the 

local environment across sessions (Figure 5J, left) and compared it to the PV correlations 

across different spatial locations (Figure 5J, right). PV correlations were highest at spatial 

bins near stable portions of the environment (Figure 5K). This was also true of the rate 

maps when calculated on a cell-by-cell basis (Figures S8G–S8I). We hypothesized that the 

observed instability was not random, but rather encoded the presence of barriers in the local 

environment. Thus, we predicted that cells that remap when the environment was locally 

changed (e.g., a barrier is removed in going from session 1 to session 2) should reinstate 

their original fields when the environment is locally restored (the barrier is returned to its 

original position in going from session 2 to session 3). For this analysis, we utilized the 

subset of recording days with 3 sessions. Indeed, we found that both the unstable-cell PV 
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and rate map correlations exhibited a striking enhancement in stability around locations 

where the local environment was restored (Figure 5L; Figures S8J and S8K), suggesting 

that the unstable cells actually fire reliably to the presence (or absence) of local cues in 

the environment. Taken together, these results demonstrate the co-existence of two maps: a 

rigid place cell map in which the majority of cells participate, spatially invariant, rapidly 

instantiated and adapted, albeit imperfectly, to the new barrier configuration, and a slower-

to-develop barrier-specific map that codes for local features of the environment (Figure 

S10A).

DISCUSSION

There has recently been increased interest in hippocampal replay as a general mechanism 

for learning and control, inspired by the rodent spatial literature (Wimmer et al., 2020; 

Schuck and Niv, 2019; Momennejad et al., 2018; Eldar et al., 2020; Liu et al., 2019; 

Mattar and Daw, 2018; Mnih et al., 2015; van de Ven and Tolias, 2018). A common 

theme is that replay reflects learned relationships between task states, be they locations 

or non-spatial states. However, most studies of replay in rodents have been restricted to 

very simple environments composed of tracks or open areas, so that the ability of replay 

to reflect arbitrary contingencies between states has barely been tested. Here we utilized 

a much more complex environment, which furthermore incorporated changes to goals and 

barrier structure between sessions, to reveal that replays did indeed depict traversable routes 

through the space reflecting the current contingencies between locations. Moreover, these 

depicted trajectories were predictive of future behavior, and were directed toward goals 

during phases of the task when such routes were needed.

Our results reveal a remarkable level of plasticity in replay sequences. Even after 90+ 

different barrier configurations, replay exhibited adaptation to each new configuration. By 

contrast, the underlying hippocampal representation was largely stable across different 

barrier configurations. The flexibility of the former, in contrast to the overall rigidity of 

the latter, is surprising given previous reports suggesting that place cells remap readily 

between different environments (Alme et al., 2014) and are sensitive to not just location but 

also events that happen in a location (Leutgeb et al., 2005), the origin and destination of 

routes through a location (Wood et al., 2000; Frank et al., 2000; Ferbinteanu and Shapiro, 

2003), motivation (Moita et al., 2004; Kennedy and Shapiro, 2009), attention (Kentros et 

al., 2004; Muzzio et al., 2009; Monaco et al., 2014; Kelemen and Fenton, 2010), and minor 

changes in context (Muller and Kubie, 1987; Bostock et al., 1991). This propensity for 

remapping has led to the speculation that place cells are the readouts of memories stored in 

the hippocampus (Moser et al., 2015). However, remapping to encode context is not always 

observed (Berke et al., 2009; Ainge et al., 2012; Griffin and Hallock, 2013), and it has been 

noted that a general strategy of remapping to encode memory does not only provide a poor 

basis for generalization (Quian Quiroga, 2020) but leads to an unsustainable explosion in 

numbers of neurons needed in order to avoid catastrophic interference.

In line with this more critical view and consistent with our results, several studies have 

shown that place cells remain largely or entirely stable in tasks in which animals must make 

use of alternative routes when barriers are introduced to or manipulated within a familiar 
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environment (Muller and Kubie, 1987; Rivard et al., 2004; Alvernhe et al., 2008, 2011; 

Duvelle et al., 2021). Such stability may reflect a place cell’s predisposition, possibly via 

its anatomical location (Danielson et al., 2016; Geiller et al., 2017), to ignore non-stationary 

or unpredictable cues in favor of idiothetic ones (Knierim et al., 1995; Sharp et al., 1995; 

Jeffery, 1998), though we did observe a substantial number of cells that, like object (Manns 

and Eichenbaum, 2009; Burke et al., 2011) or landmark vector (Deshmukh and Knierim, 

2013; Sarel et al., 2017) cells, seemed to code for the barriers more explicitly (Rivard 

et al., 2004). Puzzlingly, accumulating evidence suggests that such tasks are dependent 

on the hippocampus (Thompson et al., 1984; Winocur et al., 2010; Rosenbaum et al., 

2015), indicating that perhaps a more covert hippocampal mechanism is at play. Our results 

now point to replay and potentially other sequenced reactivations such as theta sequences 

(Foster and Wilson, 2007; Johnson and Redish, 2007; Wikenheiser and Redish, 2015) as the 

principal hippocampal mechanism by which the memory of the maze is read out to support 

flexible behavior. Furthermore, to the extent that our own experiences, like those of rats, 

vastly outnumber the places in which they occur, these results suggest a novel mechanism 

for the flexible creation and expression of memories in the brain.

How might the memory of the maze be encoded? One attractive possibility consistent with 

our data is that it is encoded within the hippocampus as synaptic changes to an otherwise 

rigid map or graph (Muller et al., 1996; Burgess and O’Keefe, 1996; Blum and Abbott, 

1996; Gillner and Mallot, 1998; Redish and Touretzky, 1998; Whittington et al., 2020). This, 

in turn, could constrain the range and behavior of replays produced by the network (Figure 

S10). The rapid stabilization of the stable cells (Figure 5I) and the preservation of barrier 

avoidance with the stable cell time lag maps (Figure S8D), in conjunction with the rapid 

adaptation of replay (Figure 3E), supports this mechanism, at least early within the session. 

Specialized cell types like barrier-specific cells (Rivard et al., 2004), object or landmark 

vector cells (Manns and Eichenbaum, 2009; Burke et al., 2011; Deshmukh and Knierim, 

2013; Sarel et al., 2017), interneurons (Stark et al., 2014), and boundary-encoding cells 

(Solstad et al., 2008; Lever et al., 2009) could then reinforce, refine, or even supplement 

the graph for the purposes of more accurate and more efficient navigation (Muller et al., 

1996; Stachenfeld et al., 2017). Along these lines, the leaking of replays through barriers 

could be interpreted as a consequence of imperfectly adapted networks (Figure S9). On the 

other hand, Hopfield networks with “palimpsest” properties (Parisi, 1986; Chaudhuri and 

Fiete, 2016) solve the catastrophic interference problem by fading out older memories while 

at the same time flexibly encoding new ones, suggesting that replays that leak through the 

barriers may reflect more a feature of hippocampal processing than a bug. Alternatively, 

though not mutually exclusively, the maze may be encoded upstream in areas known to be 

involved in replay and sharp-wave ripples, including the ventral striatum (Lansink et al., 

2009), ventral tegmental area (Gomperts et al., 2015; Valdé s et al., 2015), or cortex (Ji and 

Wilson, 2007; Jadhav et al., 2016; Berners-Lee et al., 2021). Untangling the roles of intra- 

versus extra-hippocampal mechanisms in the control and adaptation of replay is a question 

for future study.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the Lead Contact, David Foster 

(davidfoster@berkeley.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. The DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were in accordance with the University of California Berkeley 

Animal Care and Use Committee and US National Institutes of Health guidelines. Neural 

activity was recorded from dorsal hippocampus (region CA1) of 4 Long-Evans rats (Rattus 
norvegicus; 3–4 months old) performing a goal-directed task in an open field maze with 

movable barriers (task described below). Rats were housed in a humidity and temperature 

controlled facility with a 12 h light-dark cycle. Before the start of the experiments, rats from 

the same breeding cohort were housed in pairs. At the start of the experiments, rats were 

single-housed.

METHOD DETAILS

Pre-training—Adult male Long-Evans wildtype rats (3–4 months old) were handled daily 

and put on a free-feeding diet for approximately 1 month. Pellets soaked in chocolate 

milk (Nesquik) were occasionally placed inside the rat’s cage to facilitate familiarity with 

the taste of chocolate. Rats were then food restricted to approximately 85%–90% of their 

free-feeding weight and then trained for 1 week on a linear track to drink chocolate milk 

from reward wells at both ends of the track.

Apparatus—The barrier maze was positioned at the center of a 10 by 10 ft room. The 

dimensions of the maze exterior were 90 by 90 cm. The maze floor was raised to a height of 

52 cm off the floor. The perimeter of the maze consisted of plexiglass walls 60 cm high. The 

lower portion of each wall (up to 30 cm high) was painted with white geometrical designs 

(e.g., circles, cross-hatches, vertical parallel lines, etc) against a black background (Figure 

1A). In addition, distinct geometrical cues hung from the distal walls of the room. The floor 

of the maze was made of a semi-absorbent material (cardboard spray-painted lightly with 

black latex paint) so as to preserve odor cues left by the rat. Between sessions, feces were 

removed from the floor and pools of urine were soaked up, but the floor was not wiped 

with ethanol. Rats were assigned separate floors (starting approximately 1–2 weeks after 
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the start of training - before this, a cohort shared the same floor) in order to facilitate the 

familiarity with the environment. The floor contained 9 transparent conical reward wells 1.5 

cm in diameter and evenly-spaced on a 3 by 3 grid, with an inter-well spacing of 23 cm 

along each dimension. Chocolate milk could be delivered in 0.1 mL amounts to each of the 

wells via a tubing system under the maze that was gated by solenoid valves controlled by 

the experimenter. The filling of wells elicited no obvious visual or auditory cues and lasted 

approximately 1 s. Green LEDs were placed under each well and programmed to flicker at 

13 Hz when the well was filled (only on Random trials - see below). 6 jail bar-like barriers 

were constructed that could fit into any of 12 slots in the maze floor, yielding a total of 
12
6 = 924 unique barrier configurations (up to rotations). Each barrier was 19.5 cm (width) 

by 23 cm (height) and made of thin plexiglass rods (0.5 cm diameter) with an inter-rod 

spacing of 3.5 cm. Barriers were cleaned with ethanol between sessions. Rats were trained to 

avoid climbing over barriers.

Task design and training—The task consisted of alternate trials of goal-directed 

navigation to a fixed, unmarked Home well (Home trial) and cued navigation to one 

of the other 8 randomly baited Random wells (Random trial). Home wells were chosen 

pseudorandomly each session. The Random-well baiting sequence was controlled by the 

random number generator from an Arduino. On Random trials, the green LED beneath the 

baited random well flickered once the well was filled. Between trials, a 5–15 s random 

delay (controlled by an Arduino) was imposed between the end of drinking at the last 

well and the filling of the next well, in order to encourage better spatial coverage of the 

environment. Recording sessions typically lasted between 30 and 70 min, depending on the 

rat’s activity level. Room lights were kept dim for the duration of the session. During the 

session, the experimenter sat out of sight at a computer in the corner of the room. For each 

session, the positions of the 6 barriers were chosen pseudorandomly. The sequence of barrier 

configurations was approximately repeated across rats. During early training on the task, rats 

experienced one session per day. After a few days of training, the number of sessions per 

day was increased to 2, with an inter-session spacing of about 2–4 h. For two of the rats, the 

number of sessions per day was increased to 3, beginning a few weeks after surgery (Figure 

S1A). Between sessions, rats were returned to a sleep stand (an elevated glass dish inside a 

tall, well-lit cardboard box next to the recording computer) and neural activity was recorded 

for 1 h. Sometimes, rats were recorded for an additional hour before the next run. For longer 

intervals (greater than 2 h), the rats were returned to their home cage between recordings on 

the sleep stand. Rats did not experience a completely open maze (no barriers) until very late 

in the session sequence, if at all (Figure S1A).

Drive design and surgery—Four rats were implanted with microdrive arrays weighing 

40–50 g and consisting of 64 independent-adjustable tetrodes made of twisted platinum 

iridium wires (Neuralynx) gold plated to an impedance of 150–300 MOhms. Drive cannulae 

were implanted bilaterally to target hippocampal dorsal CA1 (−4.13 AP, 2.68 ML relative to 

bregma) using a surgery protocol described elsewhere (Pfeiffer and Foster, 2013). Tetrodes 

were slowly lowered to the cell layer over the course of 2–4 weeks, which was identified 

by the presence (and shape) of strong-amplitude sharp-wave ripples. The rats were allowed 
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3–4 days recovery, after which behavioral training on the barrier maze task was resumed 

but without food restriction in their home cages. Food restriction was resumed a week after 

surgery.

Behavioral analysis—Rat position was tracked using automated software from Spike 

Gadgets and sampled at 30 Hz. Position and velocity were smoothed using a Butterworth 

filter (second order with a cutoff frequency of 0.1 samples/s using the butter function in 

MATLAB, selected to give reasonable smoothing to the rat’s trajectory). The beginning 

of each trial was marked as the time at which the rat had moved a distance of 6 cm 

away from the rewarded well after consuming the chocolate there. Drinking periods were 

defined as times in which the smoothed rat speed (a second order Butterworth filter with 

a cutoff frequency of 0.02 samples/s applied to the rat’s speed computed above), dropped 

below 1 cm/s while the rat was at the rewarded well. During bouts of anticipatory licking, 

rats exhibited characteristic speed and distance-to-well profiles (Figure S1B). Anticipatory 

licking periods were defined as times in which the rat was both near a well (within 6 cm) 

and the smoothed velocity stayed within 1–6 cm/s. The parameters listed above for the 

selection of the drinking and licking bouts as well as the need for secondary smoothing of 

the rat’s speed were determined so as to automate the process of bout demarcation so as to 

best match what would be selected manually.

To compute the probability of a well visit, a well was counted as visited on each trial if the 

rat came within 6 cm of it at least once. Well visit probability was then calculated in two 

ways, as a function of trial and collapsed across trials. For the former, well visit probability 

as a function of trial number was defined as the total number of times a particular well 

(Home versus Random) was visited on the ith trial divided by the total number of sessions. 

For the latter, well visit probability was defined as the total number of times a particular well 

was visited across trials divided by the total number of trials, then averaged across sessions. 

Only well visits that occurred within 5 s of the start of the trial and at least 1 s before 

the start of the drinking period were considered. The latter constraint was imposed so as to 

ensure that the behavior analyzed was unaffected by possible reward cues (i.e., the blinking 

light on Random trials, which could come on as early as 5 seconds after the beginning 

of the trial—see Task design and training). Only trials with duration less than 60 s were 

considered. For both the Random-well visit probabilities and Random-well anticipatory 

licking durations, data was averaged across all 8 Random wells of the session. For the Home 

well shuffle, the Home well was selected at random 10 times and the well visit probabilities 

were recomputed and averaged.

Cluster analysis—Spikes were extracted from channel LFP’s (sampled at 30 kHz) using 

Spike Gadgets Trodes software and clustered automatically using Mountainsort (Chung 

et al., 2017) and merged across sessions using the msdrift package. Additional cluster 

mergings across sessions was performed manually based on similarity of waveform. Clusters 

were accepted if noise overlap < 0.03, isolation > 0.95, peak SNR > 1.5 (Chung et al., 2017) 

and had passed a visual inspection.
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Rate maps—For each spike time, the rat position and speed was found through linear 

interpolation (interp1 in MATLAB). Positions were binned with 2 cm square bins. The rate 

map for the itℎ cell was defined as

fi xj =
# of spikes fired within the jtℎ spatial bin centered at xj

time spent within the jtℎ spatial bin centered at xj
.

A speed cutoff of 5 cm/s was used in the construction of the rate maps to filter out spikes 

in which the rat was stationary or moving slowly. Smoothed rate maps were computed by 

first setting unvisited bins to zero and convolving the rate maps with a 2D isotropic Gaussian 

kernel (8 cm standard deviation (SD)). Spatial information (bits/spike) for the itℎ cell was 

defined as

SIi = ∑
j = 1

L
Prat xj

fi xj
ri

log2
fi xj

ri

where L is the number of spatial bins, Prat xj  is the probability of the rat being at the 

jtℎ spatial bin, and ri = ∑j = 1
L Prat xj fi xj  is the cell’s mean firing rate. Place cells were 

identified as having r > 0.01 Hz and SI > 0.5 bits/sec. Field peak locations were measured 

as the spatial bin location with the highest firing rate. The number of fields for each rate 

map was calculated using a density-based clustering approach. First, rate maps were treated 

as discrete probability distributions and resampled 2,500 times (using the pinky function 

in MATLAB). Then, the sample points were clustered using dbscan in MATLAB, with a 

neighborhood search radius of 2.5 bins and a minimum number of neighbors of 50. The 

number of fields was set as the number of clusters found.

Rate map correlation—Rate map correlation was defined as the Pearson’s correlation 

between any pair of rate maps. For the itℎ cell, with rate maps fi
I and fi

J or the itℎ and jtℎ

sessions respectively, the rate map correlation was

ρiRM =
∑j = 1

L fiI xj − fiI fiJ xj − fiJ

∑j = 1
L fiI xj − fiI

2∑j = 1
L fiI xj − fiI

2

where fi = 1
N ∑j = 1

L fi xj  is the mean spatial firing rate. Rate map correlations were 

evaluated only at visited spatial bins common to both sessions and were only measured 

for cells identified as place cells for both sessions. A rate map correlation shuffle distribution 

was computed for each place cell by randomly permuting place cell ID’s 100 times in the 

second session and recomputing the correlations. A place cell was called stable across a pair 

of sessions if its rate map correlation exceeded the 95th percentile of its shuffle distribution; 

otherwise it was called unstable. A 2-tailed binomial test was performed to determine if the 

proportion of pairwise session correlation measurements across cells designated as stable 

was above chance level, assuming a chance level of stability of 50%. We note that the 
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fraction of unstable cells measured in our task is probably an overestimate, given that 

some cells are likely to develop directional tuning in response to the linearization of the 

environment by the barriers. This, coupled with mismatched behavioral sampling across 

sessions, could lead to false rejections of stability. Rate overlap (Leutgeb et al., 2005) for the 

same place cell across a pair of sessions was computed by dividing the lower mean firing 

rate of the two sessions by the higher mean firing rate.

Within-session stability—Rate map correlation as a function of time within session was 

computed by first calculating rate maps within 6 min windows (shifted in 3-min increments) 

across the session (windowed rate maps). Rate map correlation was then computed between 

the windowed rate maps and the whole session rate map. Windowed rate maps for which 

there was insufficient behavioral sampling (i.e., less than 40% of all “active” spatial bins–

bins with > 1 Hz firing rate–from the whole session rate map were visited by the rat during 

the 6 min window) were not analyzed. Field coverage fraction as a function of time within 

session was computed by calculating for each cell the fraction of the field covered by the 

rat within each 6 min window. Specifically, the fraction of the field covered was measured 

as the number of active bins within the place field visited by the rat divided by the total 

number of active bins. Position density correlation as a function of time within session 

was computed by correlating (Pearson’s) the rat position occupancy grid within each 6 min 

window against the full session position occupancy.

Population vector correlation—Population vectors (PVs) were constructed by 

concatenating the value of each place cell’s rate map at a given spatial bin into a vector. 

Let Fj = f1 xj , …, fN xj  be the PV for the jtℎ spatial bin, where N is the number of place 

cells. The PV correlation at the jtℎ spatial bin across sessions I and J was computed as

ρj
PV =

∑i = 1
N fiI xj − FiI fiJ xj − FiJ

∑j = 1
N fiI xj − FiI

2∑j = 1
N fiI xj − FiJ

2

where Fj = 1
N ∑i = 1

N fi xj  is the mean spatial firing rate at the itℎ bin across all place 

cells. PV correlations, like rate map correlations, were evaluated only at visited spatial 

bins common to both sessions and were only measured for cells identified as place cells 

andP having minimal overlap with the barriers in both sessions (see section on Rate 

map correlations). A PV correlation shuffle distribution was computed for each PV by 

randomly permuting place cell IDs 100 times in the second session and recomputing the PV 

correlations. A PV was called stable across a pair of sessions if the correlation exceeded 

the 95th percentile of its shuffle distribution. A 2-tailed binomial test was performed to 

determine if the proportion of pairwise session correlations across bins designated as stable 

was above chance level, assuming a chance level of stability of 50%. The binomial test was 

performed on PV correlations measured from coarse-grained rate maps (bin size = 4 cm) so 

as to reduce the otherwise inflated n-value used in the test.
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Local barrier similarity—The barrier potential was computed for each barrier 

configuration by convolving the barriers with a 2D isotropic Gaussian kernel (24 cm SD) 

(Figure S5B). Let xk
b  be the set of bins overlapping with the barriers in session I, where k 

indexes the overlapping bins, and I ≤ k ≤ K, where K is the number of overlapping bins. The 

barrier potential at the itℎ spatial bin for session I was computed as

bI xi = ∑
j = 1

L
∑

k = 1

K
δ xi − xj − xk

b ℎ xj

where h is the Gaussian kernel. The local barrier similarity (LBS) for the itℎ spatial bin 

across sessions I and J was defined as

LBSiIJ = 1 −
∑t = 1

4 bI xl − bJ xl
2

2ℎ

where the summation is over the 6 closest spatial bins xl  (indexed by l) to the itℎ bin xi and 

⋅  is the L2 norm. The cell barrier similarity (CBS) was the average local barrier similarity 

within the cell’s fields for sessions I and J. For the itℎ cell, this was defined as

CBSiIJ = 1
2

1
NI ∑

j = 1

Nl
LBSjIJ + 1

NJ ∑
j = 1

Nl
LBSjIJ ,

where the summations are over the set of “active bins” in the cells field (bins with > 1 Hz 

firing rate) on sessions I and J (total number of active bins in sessions I and J is NI and NJ, 

respectively).

Local barrier restoration and the reinstatement of rate maps and population 
vectors—For each 3-session day, “restored” spatial bins were selected that had low LBS 

on sessions 1–2 (i.e., the environment was changed locally) and high LBS on sessions 1–3 

(i.e., the environment was restored locally). Specifically, the itℎ spatial bin was selected 

if LBSi
12 < LBS and LBSi

13 > LBS, where LBSi
IJ is the local barrier similarity of the itℎ

spatial bin across sessions I and J and LBS is the average LBS across all bins of all 

three sessions. In addition, the bin was required to have been visited by the rat in all 

three sessions. Likewise, ”unrestored” spatial bins were those bins that had both low LBS 

on sessions 1–2 and 1–3 (specifically, LBSi
12 < LBS and LBSi

13 < LBS for the itℎ bin). 

The population vector correlation across sessions 1–3 was then computed at the restored 

bins and unrestored bins using only cells designated as unstable between sessions 1–2 

and active in all three sessions. Similarly, changes in rate map correlation as a function 

of local barrier restoration were computed by selecting cells with rate maps in “restored” 

areas (i.e., CBSi
12 < CBS and CBSi

13 > CBS, where CBSi
IJ is the cell barrier similarity of 

the itℎ cell across sessions I and J and CBS is the average CBS across all cells of all 
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three sessions) versus “unrestored” areas (i.e., CBSi
12 < CBS and CBSi

13 < CBS). Again, 

only cells designated as unstable between sessions 1–2 and active in all three sessions were 

included in this analysis.

Spike density and sharp wave-ripple amplitude—Population spike density was 

computed by first summing the total number of spikes from all clusters in 1 ms non-

overlapping time bins. Sharp wave-ripple amplitude was computed by band-pass filtering the 

LFP in the 120 to 170 Hz range and then extracting the amplitude envelope via a Hilbert 

transform. Both the spike density and ripple amplitude were smoothed through convolution 

with a Gaussian kernel (80 ms SD) and z-scored.

Bayesian decoding—Let Ki be the number of spikes emitted by the itℎ place cell in a 

given time bin of duration τ. The posterior probability at bin xj conditioned on the activity 

vector k  (with the itℎ element as Ki) is given by Bayes rule (assuming Poisson spiking 

noise statistics, independence between neurons, and a uniform spatial prior (Davidson et al., 

2009)):

P xj ∣ k = ∏
i = 1

N
P xj ∣ ki ∝ ∏

i = 1

N
fi xj

kie−τfi xj .

A uniform prior was used for the purposes of making minimal assumptions about the 

location of the decoded positions. The posterior probability was computed for all bin 

locations xj where 1 ≤ j ≤ L and L is the total number of spatial bins. Define Pj = P xj ∣ k

and let xj = xj, yj  be the coordinates of the jtℎ spatial bin. The coordinates of the posterior 

center-of-mass (COM) were given by

xcm = xcm, ycm = ∑
j = 1

L
xjPj, ∑

j = 1

L
yjPj .

The posterior spread was defined as the square root of the second moment of the posterior:

m2 = ∑
j = 1

L
xj − xcm

2 yj − ycm
2Pj .

The posterior COM jump size was defined as the L2 norm of the difference vector between 

consecutive posterior center-of-mass estimates: δ = xcmt − xcmt + 1 .

Replay detection and analysis—Classical approaches to extracting replay start with 

identifying population burst or sharp-wave ripple events and then evaluating the sequence 

content contained therein (Pfeiffer and Foster, 2013). In practice, we have found that 

many replay-like events during immobility periods were unaccompanied by large ripples 

or population bursts (Figure S2B). Thus, we developed a “bottom-up” procedure for replay 
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extraction that wasn’t predicated on the existence of such events. Moreover, this technique 

allowed us to more flexibly and meaningfully demarcate replay boundaries. First, the 

Bayesian decoder was applied to spikes within a sliding window of 80 ms duration (shifted 

in 5 ms increments) over the entire session. We found that using a relatively large decoding 

window had little effect on the overall spatial structure of the replay (Figure S2F). Time 

bins were kept for further analysis based on three criteria: rat speed (νrat < 5cm/s; rat speed 

was computed at the center of each time bin via linear interpolation), posterior spread 

(m<10 cm), and posterior COM jumps size (δ < 20 cm) (Figures S2A and S2B; see Bayesian 

decoding). We defined a subsequence as a set of temporally contiguous bins satisfying 

the above criteria. Subsequences captured epochs in which the posterior was well defined 

(small posterior spread) and moved smoothly (small COM jump size across time steps). 

Note that the jump size threshold was set to be relatively large to allow for barrier-crossing 

subsequences. The choice of the posterior spread threshold was set to be close to the 

“elbow” of the distribution (see Figures S2A and S2B). We next considered the possibility 

that long subsequences might get fragmented, for example when passing near a barrier. 

Thus, neighboring subsequences were merged if the spatial and temporal gap between 

them was 20 cm and 50 ms, respectively. This essentially imposed a velocity prior on the 

subsequence movement speed. A subsequence (merged or not) was denoted a candidate 
sequence if its duration was greater than 100 ms. We chose this duration threshold as it was 

roughly half of the mode of the replay duration distibution (~200 ms), Figures S2C and S2D. 

Replays were then selected as candidate events that were sufficiently spatially dispersed (so 

as to filter out any “stationary” replays—Denovellis et al., 2021). To this end, we defined a 

spatial dispersion metric:

D2 = 1
M ∑

t = 1

M
xcmt − xcm

where M is the number of time bins in the sequence and xcm = ∑t = 1
M xcmt . A candidate 

sequence was defined as a replay if its dispersion was greater than 12 cm (Figure S2E). The 

dispersion threshold was set relatively low so as to be more permissive (see examples in 

Figure S3F) for the purposes of capturing possible shorter barrier-crossing replays.

Away-events were defined as replays that occurred during the drinking period at the Random 

well within the Random trial. Likewise, Home-events were defined as replays that occurred 

during the drinking period at the Home well within the Home trial. The probability of replay 

terminating at a well was computed as the number of trials in which a replay ended within 

6 cm of the well divided by the total number of trials. For the Random well termination 

probability, data was averaged across all 8 Random wells of the session. For the Home 

well shuffle, the Home well was selected at random 10 times and the well termination 

probabilities were recomputed and averaged.

The angular displacement of replay relative to rat’s behavior was computed similar to 

previous work (Pfeiffer and Foster, 2013). Let xrat be the location of the rat for a given replay 

(found via linear interpolation at the center of the event). For each time bin, a circle centered 
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at xrat was drawn that passes through the posterior center-of-mass estimate for that time bin, 

xcmt (Figure S2L). Angular displacements between xcmt  and the intersections of the circle with 

the rat’s past and future trajectories were computed. If multiple intersections of the circle 

with the rat’s past or future trajectories, the intersection that occurred closest in time to the 

replay was used. We also computed the angular displacement between the intersection of 

the circle with the rat’s heading direction vector and the rat’s future trajectory. Absolute 

angular displacements within each class were averaged across the session. Only angular 

displacements for which xcmt − xrat > 15 cm were considered (Pfeiffer and Foster, 2013).

Decoding error during run—For the decoding error analysis in Figure 5E, posterior 

probabilities were calculated for non-overlapping time bins of 250 ms duration during 

running periods νrat > 10 cm/s . Error was defined as the distance between the posterior 

center-of-mass estimate and the actual rat position in each time bin. For each session, a 

shuffle distribution for the error analysis was computed by shuffling place cell IDs 10 times 

and recomputing the error during run.

Replay vector field—For each spatial bin, the mean vector length and orientation 

(modulo 180 degrees) of the distribution of constituent replay vectors found within a 

radius of 2 spatial bins was computed. The modulo operation was used to collapse across 

orientations that differ by 180 degrees.

Barrier conformity analysis—Let Δxcmt  be a constituent replay vector with unit length

Δxcmt =
xcmt + 1 − xcmt

xcmt + 1 − xcmt ,

where t takes values 1 ≤ t ≤ M and M is the total number of time bins in the replay. The 

barrier conformity (BC) score for the constituent replay vector was defined as

BC Δxcmt = ∇b xcmt × Δxcmt − ∇b xcmt ⋅ Δxcmt ,

where ∇b xcmt  is the gradient of the barrier potential (see section Local Barrier Similarity) 

evaluated at the tail of each constituent replay vector ( Figure S5B). The first (second) 

term scores as high (low) constituent replay vectors perpendicular (parallel) to the local 

barrier potential gradient. We defined the session-averaged barrier conformity score BC as 

the average of all the BC scores across all replays in the session. In order to minimize bias in 

this calculation due to the uneven distribution of replays within the current environment, 

constituent replay vectors initiated within 4 cm of any of the twelve possible barrier 

positions were removed from the analysis before. Statistical significance of the BC score 

was determined by recomputing BC scores for the same dataset against all other 923 barrier 

configurations (“shuffle” distribution) and comparing with the test statistic. The p value was 

calculated as
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p = 1 + X
1 + 924,

where X is the number of shuffles greater than test statistic. The BC score was determined 

to be statistically significant if it exceeded the 95th percentile of its shuffle distribution (p 

< 0.05). A 2-tailed binomial test was performed to determine if the proportion of sessions 

with statistically significant BC scores was above chance level, assuming a chance level of 

significance of 50%.

The barrier conformity as a function of time within session was computed by averaging 

BC scores for all constituent replay vectors occurring within 6 min windows shifted in 

3-min increments (Figure 3E). Time bins containing less than 200 constituent replay vectors 

were discarded. Scores were also computed against the previous barrier configuration 

(“previous”) or against all other possible barrier configurations (“shuffle”). Barrier 

conformity versus rat heading direction was computed by averaging all all BC scores for 

all constituent replay vectors occurring in front of (within an angle ± 90 degrees from the 

rat’s heading) versus behind the rat (within an angle ± 90 degrees opposite the rat’s heading) 

and at least 15 cm away (Figure S5D). For computing barrier conformity as a function of 

the distance to the nearest barrier, we defined a normalized barrier conformity score (Figure 

S5B) which normalizes the barrier potential gradient evaluated at each constituent replay 

vector to unit length (i.e., replace 
∇b xcmt

∇b xcmt ∇b xcmt ) so as to remove the distance-to-

barrier dependent discounting. Normalized barrier conformity scores were averaged across 

all constituent replay vectors occurring at a certain distance from the nearest barrier for each 

session. Distance bins containing less than 20 constituent replay vectors were discarded. For 

the shuffle, session scores were computed for each barrier configuration (except the current 

one) and then averaged.

Time-lag maps—To deal with the possibility that our inability to track replays in the 

vicinity of the barriers (because of the lack of place field coverage there) might lead us 

to erroneously conclude that replays avoid barriers, we devised an alternative method that 

did not require replay selection but instead using spikes from all candidate sequences. Let 

Pj
t denote the posterior probability associated with the jtℎ spatial bin at the ttℎ time bin. 

The cross-correlogram of the posterior probability time series associated with the itℎ and jtℎ

spatial bins was computed by measuring cross-covariances at different lags, β:

Cij(β) = 1
T − β ∑

t = 1

T − β
Pit − Pi Pj

t + β − Pi ,

where T is the total number of time bins, β is the lag, and ⋅  is the temporal average 

over all time bins belonging to candidate events. Cross-covariances were computed for 

all temporal lags within the range of −1 to 1 s and smoothed through convolution with 

a Gaussian kernel (60 ms SD). Posterior probabilities were computed using a smaller 
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decoding window of 20 ms in order to more reliably characterize the dynamics around the 

barriers. In computing the cross-covariances, posterior probabilities associated with time 

bins outside of candidate sequences or with above-threshold posterior spreads and COM 

jump sizes within candidate sequences (see Replay detection and analysis) were set to 

zero (note: candidate sequences were temporally demarcated using the original approach—

with 80 ms decoding windows—as described above in Replay detection and analysis). For 

computational tractability, rate maps with larger spatial bins (4 cm square bins) were used. 

The time lag associated with a pair of bins was defined as

Dij = argmaxβ Cij(β)

which extracts the absolute latency associated with the global peak in the cross-correlogram 

and then takes the absolute value. Time lags associated with unvisited spatial bins were 

removed.

Time-lag maps were constructed by arranging the time lags associated with a given spatial 

reference bin into a square grid. Thus, the jtℎ column of the time lag matrix, M(: , j), was 

defined as the time lag map for the jtℎ spatial bin, when expanded into a 2D array. A time 

lag map slice was part of a row or column taken from a time lag map that starts at the 

reference bin and moves toward the nearest barrier along a path that intersects the barrier 

perpendicularly (Figure S6A). Time lag slices were averaged with the two nearest adjacent 

rows/columns, so as to avoid introducing potential artifacts by smoothing across the barrier. 

The distance between the reference bin and the nearest barrier location along the slice path 

was called the reference-bin-to-barrier distance. Each time lag map contributed at most one 

slice. For reference bins equidistant from two barriers, a slice was chosen randomly between 

the two directions. Slices for references bins close to the maze perimeter walls (less than 

4 cm away) were excluded. Session-averaged slices were computed by averaging across all 

slices belonging to the same reference-bin-to-barrier distance class. The area under the slice 

was measured by numerically integrating each session-averaged slice (trapz in MATLAB) 

out to 8 bins (32 cm). As a control, slices were also taken from the same set of time lag 

maps assuming a barrier configuration complementary to the actual barrier configuration 

(i.e., the barriers occupy the other 6 positions within the environment). Time lag map slice 

analysis for the stable cells was performed by computing time lag maps using stable cells 

only. Since stability was defined with respect to the previous session, time lag maps were 

computed for all sessions except the first session of each day.

Multidimensional scaling (MDS) was applied to the time lag matrix in order to transform 

the temporal delays between pairs of spatial bins into spatial deformations between points 

on the Euclidean plane. First, the full time lag matrix was converted to a distance 

matrix by smoothing each time lag map with an 2D isotropic Gaussian kernel (1 bin 

SD), symmetrizing the matrix (by averaging the (i, j)tℎ and (j, i)tℎ elements), taking the 

log-transform (in order to discount longer time lags), and setting the diagonal to zero. A 

weight matrix was constructed of the same size and used to additionally weight elements 

of the distance matrix in the MDS algorithm: W ij ∝ exp −Dij
2 /σ , where Dij is the Euclidean 
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distance between the itℎ and jtℎ spatial bins, and σ = 6 bins. Multidimensional scaling was 

performed using mdscale in MATLAB, using the metricstress option, which uses the actual 

values of the dissimilarities (metric) that are then fitted by distances (stress) in the Euclidean 

plane. Lastly, Procrustes algorithm was applied (procrustes in MATLAB) to translate, rotate, 

and uniformly scale the set of bin positions in the Euclidean plane to best match the original 

positions of the bins before deformation (compare the left and right columns of Figure S6D). 

To demonstrate that the MDS algorithm was largely insensitive to missing data, MDS was 

applied to two sets of dissimilarity matrices corresponding to cityblock distances applied 

to an environment with and without barriers using the shortestpath function in MATLAB 

(Figures S6E and S6F).

Replay simulations—Replays were simulated using a bump attractor network where the 

movement of the bump was driven by spike-frequency adaptation (Hopfield, 2010; Itskov et 

al., 2011). Given a summed input current li(t) to the itℎ cell, the instantaneous firing rate of 

the cell was f Ii(t) , with the neural transfer function f given by

f(x) = 0 x ≤ 0
x x > 0

Based on this time-varying input, neurons fired spikes according to a Poisson point process 

with a coefficient of variance of 1. The activation si(t) of synapses from the itℎ cell was given 

by

dsi(t)
dt +

si(t)
τs

= σi
spk(t),

where τs is the synaptic time constant and

σi(t) = ∑
b

δ t − ti, b ,

where ti, b specifies the time of the btℎ spike of the cell and the sum is over all spikes of the 

cell. We also implemented spike frequency adaptation. The adaptation dynamics for the itℎ

cell was given by

dai(t)
dt +

ai(t)
τa

= σi
spk(t),

where τa is the timescale of adaptation.

The total synaptic current Ii(t) into the itℎ cell was given by

Ii(t) = Ai lirec(t) + li
adapt(t) + I0 ,
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where lirec(t) is the recurrent input (see below), li
adapt(t) = − W adaptai(t) is the adaptive 

inhibitory input (W adapt is the strength of adaptation), I0 is a small positive constant bias 

common to all cells, and Ai is suppressive envelope function that tapers activity near the 

boundaries of the network (see below). The recurrent input was

lirec(t) = ∑
j = 1

N2
W ij − W inℎ sj(t),

where W ij are the excitatory recurrent weights, W inℎ is the strength of recurrent inhibitory 

feedback, and N2 is the number of neurons in the network. To specify the recurrent weights, 

we first organized cells into a 2D array on the neural sheet (N neurons per dimension). 

Let W ij
0  be a set of translation-invariant weights with Gaussian shape that depend on the 

distance between cells in the neural sheet:

W ij
0 = W recexp

− xi − xj 2

2σw2

where xi is the itℎ cell’s location in the sheet and σW  controls the spatial extent of the 

connectivity. W 0 mimics, for example, the resultant synaptic weights after Hebbian learning 

for a rat exploring a barrier-free environment assuming a one-to-one correspondence 

between the cell’s location in the neural sheet and the cell’s preferred firing location in the 

environment. To mimic synaptic weights learned in an environment with a barrier (Figures 

S9A and S9B), we drew an imaginary barrier line in the neural sheet corresponding to the 

barrier in the environment, then used the shortestpath function in MATLAB to compute the 

shortest paths between cells. We then used this distance metric, Dij, to modulate the original 

translation-invariant weights W 0:

W ijbarrier = exp −Dij
2 W ij

0 .

The final recurrent weights were then a mixture of the original translation invariant weights 

and the barrier-respecting weights (Figure S9B), parameterized by the mixing ratio λ:

W ij = λW ij
0 + (1 − λ)W ijbarrier .

Lastly, the suppressive envelope function that tapers activity near the network edges (Burak 

and Fiete, 2009) was given by

Ai =

1 di < ηN

exp −a0
di − ηN
(1 − η)N

2
otherwise
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where N is the size, per dimension, of the network, di = xi − N
2  is the distance between 

the cell’s location in the neural sheet and the network edge, η determines the range over 

which tapering occurs, and a0 controls the steepness of the tapering.

For the simulations: the number of neurons per dimension was N = 32; timesteps were 0.5 

ms; τs = 30 ms; g0 = 100; wrec = 30; winℎ = 0.02; τa = 100 ms; wadapt = 140; η = 0.4; a0 = 50; 

the duration of each simuation was 500 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests and corresponding p values are reported within the figure legends. All 

statistical analyses were performed in MATLAB. Wilcoxon sign-rank tests were used for 

paired comparisons and Wilcoxon rank-sum tests for nonpaired comparisons. Binomial tests 

were performed assuming 50% chance occurrences. Two-sample Kolmogorov-Smirnov tests 

were used to compare cumulative distributions of the data to chance. A minimum number 

of simultaneously recorded single units was a prerequisite for some analyses (analysis of 

replay). 3/4 rats were deemed to have sufficient cell yield in all recorded sessions for 

analysis (> 100 cells in all its sessions) and 1/4 rats was deemed not to (< 100 cells in all its 

sessions). This rat was used for place field analysis only.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Rats learn to solve a goal-directed navigation task with randomly-changing 

barriers.

• Replay adapts to the new barriers and is predictive of future behavior.

• Place fields are largely stable across barrier configurations.
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Figure 1. Behavior is goal directed
A) Photo of the maze interior showing transparent barriers, reward wells, and painted wall 

cues.

(B) Top: Behavioral trajectory (gray) from session 77, rat 1. Bottom: Barrier configurations 

for sessions 1 through 4.

(C) Behavioral trajectories across several trials from session 78, color-coded according to 

time within the trial. Trial phase and number are at bottom right. The rewarded well for each 

trial is outlined in red.

(D) Probability of the rat visiting the Home well (H) versus a Random well (R) within the 

first 5 s of the Home trial, as a function of trial number (left) or averaged across trials (right). 

Horizontal black line: p < 0.05. Hshuff is calculated the same as H except that the Home well 

ID was selected randomly. Colored lines indicate means for individual rats.

(E) Duration of anticipatory licking at the Home well for Home (H) versus Random (R) 

trials as a function of trial number (left) or averaged across trials (right). Horizontal black 

line, p < 0.05.

(D and E) n = 47 sessions (total number of recorded sessions from all rats); Wilcoxon 

sign-rank tests, ***p < 0.001; error bars are SEM.
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Figure 2. Replay is goal directed and predictive of future behavior
(A–F) Replay examples from different sessions from rat 1, targeting (A) the Home well, (B) 

Random wells, or (C) the upper right corner of the maze (a preferred grooming location), 

as well as (D) stopping at or (E) passing through a barrier. The colored blob in each panel 

is the posterior probability of replay, defined as the summed posterior across time bins of 

the replay (time bin duration of 80 ms). The posterior has been binarized (by discarding 

bins where the posterior is less than 0.01) and color-coded according to elapsed time within 

the replay. Solid black line: replay center-of-mass. Gray segments indicate excluded time 

bins (see STAR Methods). Time within session is shown at the upper left (min:s). Replay 

duration (s) at upper right. (F) shows a long-duration example replay from rat 2.

(G) Probability of Away-event replays terminating at Home (H) versus Random (R) wells. 

Hshuff is calculated the same as H except that the Home well ID was selected randomly. 

Colored lines indicate means for individual rats.

(H) The occurrence of an Away-event replay terminating at the Home well versus 

probability of the rat visiting the Home well within the first 5 s of the subsequent Home trial.

(I) Absolute angular displacement between replay and the rat’s future and past path.

(G–I) n = 37 sessions (total number of recorded sessions from rats 1–3); Wilcoxon sign-rank 

tests, ***p < 0.001; error bars are SEM.
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Figure 3. Replays rapidly adapt to conform to the barriers
A) All replays from sessions 75, 76, and 77 recorded on the same day from rat 2, color-

coded according to elapsed time within session.

(B) Local averaging of replay orientation as a function of position within the environment. 

For each bin, the mean vector orientation and length are plotted for the distribution of 

replay orientations (modulo 180) found within a circle of radius 2 bins. Color transparency 

indicates the number of data points (orientations) used to compute each mean vector.

(C) Replays from (A) have been decomposed into their constituent vectors (with 80 ms time 

bins) and color-coded according to barrier conformity score. Vectors starting near the 12 

barrier positions have been removed. The background image is the barrier potential. The 

session-averaged barrier conformity score and significance are at the upper left of each 

panel.

(D) The session-averaged barrier conformity score for session 75 (red vertical line) and 

the distribution of scores with respect to all other possible barrier configurations (gray 

histogram, “shuffle”). The barrier conformity p value for the session is the fraction of scores 

greater than the red line.
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(E) Barrier conformity as a function of time within the session, computed within a 6 

min sliding window, with respect to the current (red), previous (green), and shuffled 

(blue) barrier configurations. Horizontal lines (p < 0.05), comparison of current barrier 

configuration scores with previous (gray) and shuffle (black) scores. Current condition: n 

= 31 sessions, which is the total number of recorded sessions with barriers from rats 1–3. 

Previous condition: n = 16, which is the total number of recorded sessions with barriers that 

had a corresponding previous session on the same day.

(F) Barrier conformity as a function of distance to the nearest barrier, with respect to the 

current (red) and shuffled (blue) barrier configurations. Horizontal blackline, p < 0.05. The 

large peak near 30 cm (approximately the mean wall-to-barrier distance) is the effect of local 

alignment to the walls. Wilcoxon sign-rank tests; error bars are SEM.
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Figure 4. The barriers are impermeable to most activity during immobility periods
(A) Schematic showing how time lags are computed. Top: Each frame is the decoded 

posterior probability across spatial bins within a 20 ms window. Two candidate sequences 

are shown. White frames indicate dataset to zero. Bottom: Example cross-correlogram (gray: 

raw curve; black: smoothed with Gaussian kernel, 60 ms SD) computed from the posterior 

probability time series from a pair of spatial bins (long horizontal red dashed lines in the top 

plot), with the vertical red line indicating the latency at the peak. The time lag is defined as 

the absolute value of this latency.

(B) Representative time lag maps taken from sessions 76, 77, and 78, rat 1. The red square is 

the map’s reference bin.
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(C) The fraction of spikes during immobility is defined as the total number of spikes 

within all candidate sequences and replays divided by the total number of spikes within all 

immobility periods (rat speed < 5 cm/s) within the session (n = 37 sessions, which is the 

total number of recorded sessions from rats 1–3).

(D) Time lag map slices grouped according to the distance from the reference bin to the 

nearest barrier (cool-to-hot colors represent near-to-far distances) (n = 31 sessions, which 

is the total number of sessions with barriers from rats 1–3). Inset: Same as main figure, 

except slices are taken with respect to the barriers in the remaining six positions in the maze 

(“complementary barrier configuration”).

(E) Integrated areas under the slices for the data in (D) for the actual (solid line: Pearson’s 

r = −0.6, p < 0.001) and the complementary (dashed line: Pearson’s r = −0.11, n.s.) barrier 

configurations.

(F) Left: Multi-dimensional scaling applied to session 79 time lag maps. Right: The same 

grid prior to deformation. Wilcoxon sign-rank tests, **p < 0.01, ***p < 0.001; error bars are 

SEM.
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Figure 5. The majority of place cells are stable across sessions
(A) Subset of rate maps for the same cells from sessions 79, 80, and 81 recorded on the 

same day from rat 1, ordered in descending order according to mean spatial information 

across sessions. Peak spatial firing rate (Hz/cm) at lower left of each panel. Stability of 

rate maps between neighboring sessions is indicated above each panel (S = stable cell, U = 

unstable cell).

(B) CDFs of the rate map correlations (left) and PV correlations (right). Rate map 

correlations were measured between the same cells across adjacent sessions recorded on 
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the same day (n = 2,887, which is the total number of pairwise session measurements across 

all cells from rats 1–4; two-sample KS test, p < 0.001). PV correlations were measured 

between the same locations across adjacent sessions on the same day (n = 33,245, which 

is the total number of pairwise session measurements across all spatial bins from rats 1–4; 

two-sample KS test, p < 0.001). Only bins that were visited by the rat in both sessions are 

colored. Dashed lines: chance level from cell ID shuffle (two-sample KS tests, p < 0.001).

(C) Fractions of stable cells and stable bins across sessions are shown (n = 27, which is the 

total number of recorded adjacent session pairs from rats 1–4).

(D) Field peak locations and bin locations for all stable cells and stable bins, respectively, 

from session 80, rat 1. Solid (dashed) lines indicate overlapping (non-overlapping) barriers 

between the two sessions.

(E) Decoding error during run using the current (black), previous (magenta), or next (green) 

session place fields. Dashed lines, chance level from cell ID shuffle (two-sample KS tests, p 

< 0.001).

(F) Two example replays decoded with the place fields from different sessions recorded on 

the same day. The red box indicates during which session the replay occurred. Thus, in the 

first example at left, the replay occurred in session 1. The same replay decoded with the 

place fields from session 2 is shown in the neighboring box.

(G) Mean firing rate, spatial information, and number of fields for stable (S; n = 1,686) 

versus unstable (U; n = 1,201) cells.

(H) Rate overlap for stable versus unstable cells.

(I) Evolution of within-session rate map correlation in 6-min windows measured against the 

full session rate map for stable versus unstable cells. Horizontal black line, p < 0.05.

(J) Left: Local barrier similarity (LBS) between sessions 79 and 80, rat 1. Solid (dashed) 

lines same as in (D). Right: PV correlation map between sessions 79 and 80.

(K) Left: PV correlation versus LBS across all spatial bins of all session pairs (n = 33,245; 

Pearson’s r = 0.57, p < 0.001). Blue and red circles represent stable and unstable bins, 

respectively. Right: Mean local barrier similarity for stable (S; n = 28,788) versus unstable 

(U; n = 4,457) bins.

(L) Left: Mean PV correlation for “restored” bins (bins with low LBS scores across sessions 

1 and 2 and high LBS scores across sessions 1–3; n = 1,374) versus “unrestored” bins 

(bins with low LBS scores across both sessions 1 and 2 and 1–3; n = 3,435) across all 

three-session days, using only the unstable cells (unstable between the first and second 

session of each day). Right: Same as left, except for rate map correlations between cells 

with rate maps in “restored” areas (cells with low cell barrier similarity (CBS; see STAR 

Methods) scores across sessions 1 and 2 and high CBS scores across sessions 1–3; n = 47) 

versus “unrestored” areas (cells with low CBS scores across both sessions 1 and 2 and 1–3; 

n = 133). Wilcoxon rank-sum tests; *p < 0.05, **p < 0.01, ***p < 0.001; error bars are 

SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rat: Crl:LE Charles River Strain Code: 006

Software and algorithms

Mountainsort Chung et al., 2017 https://github.com/flatironinstitute/mountainsort

Trodes Spike Gadgets https://spikegadgets.com/

Custom data processing and analysis code This paper Zenodo: https://doi.org/10.5281/zenodo.5880582
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