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Abstract

Planets in synchronous rotation around low-mass stars are the most salient targets for current ground- and space-
based missions to observe and characterize. Such model calculations can help to prioritize targets for observation
with current and future missions; however, intrinsic differences in the complexity and physical parameterizations
of various models can lead to different predictions of a planet’s climate state. Understanding model differences is
necessary if such models are to guide target selection and aid in the analysis of observations. This paper presents a
protocol to intercompare models of a hypothetical planet with a 15-day synchronous rotation period around a
3000 K blackbody star across a parameter space of surface pressure and incident instellation. We conduct a sparse
sample of 16 cases from a previously published exploration of this parameter space with the ExoPlaSim model. By
selecting particular cases across this broad parameter space, the SAMOSA intercomparison will identify areas
where simpler models are sufficient, as well as areas where more complex GCMs are required. Our preliminary
comparison using ExoCAM shows general consistency between the climate state predicted by ExoCAM and
ExoPlaSim except in regions of the parameter space most likely to be in a steam atmosphere or incipient runaway
greenhouse state. We use this preliminary analysis to define several options for participation in the intercomparison
by models of all levels of complexity. The participation of other GCMs is crucial to understand how the
atmospheric states across this parameter space differ with model capabilities.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Planetary climates (2184); Planetary
atmospheres (1244)

1. Introduction

Planets orbiting M-dwarf stars are ideal targets for detection
with missions such as TESS (Ricker et al. 2014) and PLATO
(Rauer et al. 2014), while JWST (Gardner et al. 2006) and the
next generation of space telescopes (Tumlinson et al. 2019)
will provide opportunities for the characterization of terrestrial
planet atmospheres in such systems. Terrestrial planets around
low-mass stars that could retain surface liquid water on their
surfaces are considered to be “habitable” planets and represent
ideal targets to search for spectroscopic signs of life. M-dwarf
systems also comprise about 75% of the total population of
main-sequence stars, so the characterization of such systems
will also remain a high priority for exoplanet science in general
(e.g., Tarter 2007; Seager 2013; Shields et al. 2016; Meadows
& Barnes 2018).

Many planets in such systems are expected to be in
synchronous rotation around their host stars, so that one
side of the planet experiences perpetual daylight and the oppos-
ing hemisphere resides in perpetual night. Numerous climate
models have been developed for understanding this unique
climate configuration and its impact on the habitability of
planets orbiting M-dwarf stars (e.g., Joshi et al. 1997;
Joshi 2003; Merlis & Schneider 2010; Carone et al. 2014;
Turbet et al. 2016; Kopparapu et al. 2017; Del Genio et al. 2019).

The ability of such models to provide meaningful constraints
that can guide observations depends in part on identifying
areas where multiple models show robust agreement and
areas where predictions differ. One example of such a
model intercomparison was conducted by Yang et al.
(2019b), who found that model differences in the treatment
of radiative transfer and cloud parameterization can lead to
significant differences for planets in synchronous rotation
around M-dwarf stars, compared to planets in rapid rotation
around G-dwarf stars. Another example of such an effort was
the TRAPPIST-1 Habitable Atmosphere Intercomparison
(THAI; Fauchez et al. 2020), which compared four general
circulation models (GCMs) and several other models (includ-
ing energy balance models and radiative–convective equili-
brium models) using predetermined benchmark climate
configurations for TRAPPIST-1e (Fauchez et al. 2022;
Sergeev et al. 2022; Turbet et al. 2022). The efforts by both
Yang et al. (2019b) and THAI illustrated the need for
continued exoplanet model intercomparisons, which can
identify areas for improving individual models and also begin
to approach model ensemble predictions to guide exoplanet
observations.
A more recent effort at systematically developing a frame-

work for exoplanet model intercomparisons began with the
CUISINES (Climates Using Interactive Suites of Intercompar-
isons Nested for Exoplanet Studies) workshop in 2021.
CUISINES was organized to support modeling intercompar-
isons for the exoplanet community, with THAI as the first
example. The goal of CUISINES is to provide a framework for
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conducting exoplanet model intercomparisons and to provide
benchmarks to the community to help testing and validating
exoplanet models. In this paper, we present one such
intercomparison protocol for models of habitable planets in
M-dwarf systems.

The purpose of the Sparse Atmospheric MOdel Sampling
Analysis (SAMOSA) intercomparison is to compare GCMs of
varying complexity, as well as other climate models, across a
broad parameter space of atmospheric nitrogen pressure and
stellar instellation. By selecting particular cases across this
parameter space, the SAMOSA intercomparison will identify
areas where simpler models are sufficient, as well as areas
where more complex GCMs are required. The identification of
such areas of the parameter spaces may depend on the GCM
used and on how far from the standard modern Earth
atmosphere the simulation takes place. The design of this
intercomparison is motivated by a recent study that used the
ExoPlaSim GCM of intermediate complexity to conduct
hundreds of simulations of an Earth-sized planet in a fixed
synchronous orbit around an M-dwarf host star (Paradise et al.
2022). ExoPlaSim is a computationally efficient GCM that can
rapidly explore a large parameter space that would be difficult
or intractable with a GCM of full complexity. Comparing
ExoPlaSim results can be instead accomplished by using sparse
sampling methods to select a small number of cases from the
complete set to be simulated with a full GCM.

This paper defines the protocol for the SAMOSA intercom-
parison. We describe the sampling method and the parameters for
the sparse sample of 16 cases in Section 2. However, we also
recognize that at least some of these cases may be in an extremely
hot regime that may not be easily simulated by many models. In
some instances, this difficultly is the result of a limited scope of
the model physics, such as the use of a radiative transfer scheme
that is only validated up to a fixed temperature threshold. In other
instances, warm atmospheres with significant water vapor may
enter a dynamical regime that leads to inaccuracies in the
representation of atmospheric dynamics. Such problems may be
addressable through additional model development, which, if
implemented, may result in stable “steam atmosphere” solutions
(e.g., Turbet et al. 2021). Yet in other instances, a planet may
enter a true runaway greenhouse state (e.g., Ingersoll 1969;
Goldblatt et al. 2013; Leconte et al. 2013) in which the
accumulation of water vapor increases the greenhouse effect until
the planet’s oceans evaporate. Numerical simulation of runaway
greenhouse atmospheres is untenable for most climate models; at
best, such models can demonstrate a trend toward an incipient
runaway greenhouse state before the model becomes numerically
unstable. In order to demonstrate the difficultly of simulating
these various hot atmospheres, we therefore also present a set of
simulations of these 16 cases using the ExoCAM GCM (Wolf
et al. 2022) in Section 3. This preliminary comparison shows
regions of the ExoPlaSim parameter space that are likely to be
numerically unstable hot or runaway atmospheres, while other
regions of the parameter space show better agreement between
ExoPlaSim and ExoCAM. We refrain from providing any further
quantitative comparison between ExoCAM and ExoPlaSim, as
such analysis will be saved for a future, multi-model inter-
comparison paper.

We invite GCMs, energy balance models (EBMs), radiative–
convective equilibrium (RCE) models, and others that may be
relevant to participate in the SAMOSA intercomparison. We

offer several different options for participation that range from
a single model run to the full set of 16 cases, as well as
additional sequences that extend coverage of the parameter
space, which are all described in Section 4. The SAMOSA
intercomparison will continue for the next 2–3 yr, with the goal
of providing a comprehensive assessment of the range and
unity of exoplanet climate models.

2. Defining the Sparse Sample

We begin by describing our approach for defining the sparse
sample across a parameter space of pressure and instellation.
This sparse sample will form the basis of the SAMOSA
intercomparison.
Paradise et al. (2022) used the ExoPlaSim GCM of

intermediate complexity to study the effect of varying back-
ground pressure and stellar instellation on climate. Their set of
model calculations assumed an Earth-sized planet with
aquaplanet surface conditions and a fixed 15-day synchronous
rotation around a 3000 K blackbody host star. The model
atmospheres included a fixed 400 ppm of CO2 with no ozone or
other trace gases but with H2O produced from surface
evaporation. The parameter space consisted of a grid of 460
simulations with ExoPlaSim that spans 0.1–10 bars for surface
pressure (represented mainly as the N2 gas pressure) and
400–2600Wm−2 for instellation. Further details about the
model configuration were described by Paradise et al. (2021),
who performed a similar set of experiments with ExoPlaSim
but with a Sun-like host star.
Intermediate GCMs like ExoPlaSim are computationally

efficient and capable of exploring a much broader parameter
space than more complex GCMs. For example, ExoPlaSim
cases take on the order of minutes to complete, whereas a
model like ExoCAM can require 35,000 core hours per
simulation, which takes about two weeks on a supercomputing
cluster. Even with the capability of running multiple simula-
tions in parallel, the use of a full GCM like ExoCAM requires a
significant investment in researcher time to initialize the set of
simulations, inspect and restart crashed cases, conduct mid-run
analyses, and manage the model output data (up to ∼80 GB per
simulation). The computational advantages of ExoPlaSim are
offset by simplifications in the model physics, most notably
with the model radiative transfer that includes two shortwave
bands and one longwave band. Full GCMs, by contrast, may
have dozens or more bands each for shortwave and longwave
regions. For example, ExoCAM uses 37 bins for the longwave
calculation from wavenumber infinity to 4030 cm−1 and
53 bins for the shortwave calculation from 875 cm−1 to
42,087 cm−1. ExoPlaSim also considers water vapor as a
minor atmospheric constituent, which may limit the accuracy of
its predictions for warm climates where water vapor becomes a
major constituent. These and other simplifications in ExoPla-
Sim will lead to differences in the steady-state climate
predictions when compared to full GCMs, but the magnitude
of these differences may vary across the parameter space.
Directly comparing the complete set of 460 ExoPlaSim cases

to a full GCM would be computationally expensive, but such
comparisons can instead be accomplished by using sparse
sampling methods to select a small number of cases from the
complete set to be simulated with a full GCM. Paradise et al.
(2020) emphasized the need for such comparisons by calling
for “studies which sparsely re-sample the PlaSim-surveyed
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parameter space with higher-complexity GCMs,” which would
“be useful in verifying PlaSim’s results, as well as in helping to
indicate where PlaSim is inaccurate or likely has missing
physics (such as a dynamic ocean or sea-ice drift).” This model
protocol paper represents an attempt to conduct such a sparse
sampling comparison between ExoPlaSim and other models.

We use a quasi–Monte Carlo approach to select a sparse
sample of cases from the set of 460 ExoPlaSim simulations.
Quasi–Monte Carlo methods enable improved uniformity
when sampling from a large distribution by making use of
low-discrepancy sequences (i.e., randomly selecting cases or
samples that are uniformly distributed over a large parameter
space). Conventional Monte Carlo methods, by contrast, rely
on pseudo-random number generators that may have poor
space-filling properties (i.e., higher discrepancy) for a small
number of samples. For further discussion about quasi–Monte
Carlo methods, see Lemieux (2009) and references therein.
Our particular approach uses a scrambled Sobol sequence to
select cases (Joe & Kuo 2003, 2008), which requires the
number of points to be equal to a power of 2 (i.e., the number
of points selected in each uniformly distributed sequence must
be 2n, where n can be any whole number).

We show the selection of a sequence of eight cases from the
ExoPlaSim parameter space in the left panel of Figure 1 and
top half of Table 1, which we refer to as Sequence 1. The
distribution of Sequence 1 can be visually inspected to show
reasonable uniform properties, with the value of the centered
discrepancy for this sequence equal to 0.007 81. The seed value
for this sequence is fixed at 5936744 for reproducibility. The
purpose of Sequence 1 is to provide a sparse selection of cases
to compare with GCMs, or other models, that span the full
parameter space. Comparing these eight cases with ExoPlaSim
and more complex GCMs will identify the broad regions of this
parameter space that show the greatest extent of agreement or
disagreement.

We also select a second sequence of eight cases from a
narrower set of the ExoPlaSim parameter space. This approach

is known as importance sampling (Andral 2022) and provides a
way to use quasi–Monte Carlo methods to sample from a
subspace that is expected to be physically interesting. In this
case, the ExoPlaSim results shown in Figure 25 by Paradise
et al. (2022) indicate numerical instabilities or runaway/steam
atmospheres at high pressure and instellation, which may be a
result of some of the physical parameterizations in ExoPlaSim.
Such warm climates can also be challenging for full GCMs to
accurately represent. We therefore construct Sequence 2 by
sampling only from 400 to 1800Wm−2 for instellation, shown
in the bottom half of Table 1. The distribution of Sequence 2 is
shown in the right panel of Figure 1 as light blue dots, with the
darker dots indicating the cases from Sequence 1. The centered
discrepancy of Sequence 2 is 0.008 17, and the seed value is
8398110.

Figure 1. Quasi–Monte Carlo selection of 16 points from the ExoPlaSim parameter space, with Sequence 1 (left) consisting of eight points that span the full parameter
space and Sequence 2 (right) consisting of eight points within a region where full GCMs are expected to be numerically stable. Points marked with X symbols indicate
numerically unstable atmospheres when calculated with ExoCAM. Numbered labels correspond to the sample number in Table 1.

Table 1
Variables from the Quasi–Monte Carlo Selection of Cases in Sequence 1 and

Sequence 2

Sample Instellation (W m−2) Surface Pressure (bar)

Sequence 1 1 500 0.70
2 1900 7.85
3 2400 0.21
4 1200 2.34
5 1500 0.16
6 2100 1.83
7 1600 0.55
8 800 6.16

Sequence 2 9 1100 0.70
10 400 4.83
11 900 0.10
12 1500 2.98
13 1600 0.16
14 900 1.44
15 600 0.43
16 1400 10.0
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The cases selected by Sequence 1 and Sequence 2 represent
only 3.5% of the total number of simulations in the ExoPlaSim
parameter space, but the quasi–Monte Carlo approach provides
confidence that these sequences give representative behavior
across the full parameter space and within the subsampled
region. The use of only 16 cases across both sequences is
tractable even for computationally intensive models and can
facilitate a comparison between ExoPlaSim and more complex
full GCMs. We will use these 16 cases as the basis for the
SAMOSA intercomparison. In Section 4, we also provide
additional options for extending beyond this set of 16 cases in
order to give better coverage of the parameter space.

3. Preliminary Comparison

We next perform calculations with ExoCAM (Wolf et al.
2022) to simulate the cases in Sequence 1 and Sequence 2 as
shown in Table 1, using the planetary parameters listed in
Table 2. These calculations are intended to provide an initial
assessment of the regions of parameter space where ExoPlaSim
and ExoCAM differ significantly. We do not perform any
detailed quantitative analysis; instead, we focus on identifying
the regions of parameter space where complex GCMs like
ExoCAM are likely to be numerically stable and computation-
ally feasible.

ExoCAM is configured with 4°× 5° horizontal resolution
with 40 vertical layers extending three orders in magnitude in
dry atmospheric pressure. Because each simulation has a
different assumed dry surface pressure, all simulations also
have a different model top. We assume a thermodynamic ocean
with a 50-meter depth and no zonal or meridional ocean heat
transport; this “slab ocean” configuration has been used in
other exoplanet modeling studies with ExoCAM (e.g.,
Kopparapu et al. 2016; Adams et al. 2019; Komacek &
Abbot 2019; Rushby et al. 2020). Sea-ice and snow albedos
have been weighted against the input spectra (3000 K black-
body) to yield an accurate representation in two-channel form
(e.g., Shields & Carns 2018), with sea-ice albedos calculated to
be 0.65 and 0.17 and snow albedos calculate to be 0.97 and
0.46, in visible and near-infrared channels, respectively. Water
vapor adds mass to the atmosphere and virtual temperature is
used to account for atmospheric density changes due to
moistening atmospheres. Here, we use the finite volume
dynamical core (Lin & Rood 1996) along with the CAM4 set
of moist physics routines (Rasch & Kristjánsson 1998). We use
the ExoRT radiation model n68equiv, which features absorp-
tion by H2O and CO2 using HITRAN2016 (Gordon et al. 2017)
and MT_CKD version 3.2 for the H2O continuum (Clough
et al. 2005). Other collision-induced absorptions are included

but are not relevant in this study. More details on ExoCAM can
be found in the paper by Wolf et al. (2022) and related
references to the National Center for Atmospheric Research
Community Earth System Model contained within.
In Table 3, we summarize the climate results from ExoCAM.

Cases 2, 3, 5, 6, 7, and 13 enter numerically unstable states
(marked with X on Figure 1). In each of these cases, we find
large positive top-of-atmosphere energy imbalances combined
with steep increases in the global mean temperature and
stratospheric specific humidity. Model limitations, both numeric
and functional, prevent us from exploring to terminal states for
such hot atmospheres that are characterized by steam atmo-
spheres and ∼1500 K surface temperatures (Goldblatt et al.
2013). Cases 3, 5, and 13 were terminated due to numerical
instabilities between radiation and dynamics coupling, an
unfortunately common problem for low-pressure, high-instella-
tion, non-diluted water-vapor atmospheres in our model. Cases
2, 6, and 7 are numerically stable, but increasing temperatures
push the model out of the boundaries of the radiative transfer
absorption coefficient tables (which fix such cases to maximum
values of 500 K) and also run afoul of the wet-bulb temperature
parameterization used in the cloud model. Both of these aspects
can be fixed in theory, but here we stop the model integration
when these limits are reached.
Figure 2 shows time series model outputs from case 6, which

is an example of a case in the onset of an incipient runaway
greenhouse. At the time of model termination, the mean surface
temperature was ∼415 K, with maximum atmosphere tempera-
tures found at∼510 K. The top-of-atmosphere energy imbalance
is ∼80% Wm−2, and the trend of gradual continued warming
looks to persist for an undetermined amount of model time.
Water vapor has become a major constituent of the atmosphere,
with the total atmospheric surface pressure reaching ∼5 bars,
while the dry pressure at the start of the simulation was only
1.83 bars. Even at the uppermost grid box of the model, specific
humidity exceeds the 10−3 kg kg−1 threshold that corresponds to
rapid stratospheric water vapor loss. Analysis and demonstration
of the transient behavior of our simulations as shown in Figure 2,
along with our previous model experience (Kopparapu et al.
2017), give us confidence in declaring these cases to be incipient
runaway greenhouse worlds.
The remaining cases yield stable climates, ranging from

snowball planets to hot, moist worlds. Figure 3 shows the surface
temperature contour plots from the 10 simulations that yield
climatologically stable states. Note that we have sorted the figures
in ascending order of mean surface temperature, with the coldest
case in the upper left corner and warmest non-runaway case in the
lower right corner. We have also categorized the climate state of
each case in Table 3 according to its global mean temperature as
hot (300–400K), warm (250–300K), icy (200–250K), or snow-
ball (below 200K). The corresponding climate state and global
mean climate statistics for ExoPlaSim is also shown in Table 3.
We note that cold ice-dominated simulations (70+% ice coverage)
have a small residual negative surface energy imbalance and cold
temperature drift even after 200 model years of simulation. A
closer examination reveals that, while dayside temperatures and
sea-ice fractions have long since stabilized, the nightside cold traps
continue to gradually cool as the sea-ice sheet continues to thicken.
For computational expediency, we have truncated these runs after
150 model years. Cases 12 and 16 were found to stabilize in a hot
and most climate state, with surface temperatures above 350K.

Table 2
Fixed Stellar and Planetary Parameters

Star and Spectrum 3000 K Blackbody
Rotation period 15 d
Orbital period 15 d
Planet mass 1 M⊕

Planet radius 1 R⊕

Planet density ρ⊕
Gravity 1 g⊕
Atmospheric CO2 400 ppm
Surface conditions aquaplanet

Note. Earth values are assumed to be the mean for each parameter.
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Table 3 shows the stratospheric water vapor content for both
models, which is calculated as the specific humidity at the
model top. For ExoPlaSim, the model top is fixed at 50 hPa for
all simulations. For ExoCAM, the model top is variable and
equal to three orders of magnitude lower than the surface
pressure. In all cases, the ExoCAM stratospheric water vapor
content is greater than that calculated by ExoPlaSim, with the
hot cases 12 and 16 showing the closest agreement between the
two models. Although the difference in the model top may
account for some of the differences between these cases, these
differences primarily arise from the fact that ExoCAM treats
water vapor as a major atmospheric constituent whereas
ExoPlaSim does not. The results in Table 3 only include the
stable ExoCAM solutions, but incipient runaway cases also
show a rapid increase in stratospheric water vapor; for example,
panel c of Figure 2 shows the model top water vapor evolution
in the unstable ExoCAM case 6, where the stratospheric
specific humidity is 5.8× 10−1 kg kg−1 and climbing.

Figure 4 plots all of our 16 cases from Sequence 1 and
Sequence 2 with simulations from ExoCAM in the left panel
and ExoPlaSim in the right panel. Each point is color-coded to
indicate a particular climate state, with dashed lines showing
approximate boundaries between climate states. Simulations in
a numerically unstable regime only occur for ExoCAM, with
ExoPlaSim calculating these to be in hot (cases 2, 3, and 6) or
warm (cases 5, 7, and 13) climate states. Such behavior is
expected, as Paradise et al. (2022) noted that they “have not
validated ExoPlaSim in moist greenhouse and runaway green-
house regimes” and chose to “include these warmer models for
the sake of completeness.” Although ExoPlaSim shows
numerically stable solutions for these extremely hot atmo-
spheres, it is worth noting that Paradise et al. (2022) calculate
the stratospheric water vapor content of these cases to be near
or in excess of 10−3 kg kg−1, which is indicative of a moist or
runaway greenhouse state. Case 4 is the only warm climate
state calculated with ExoCAM, and the region of warm
parameter space predicted by ExoCAM is smaller than for

Table 3
ExoCAM and ExoPlaSim Global Mean Climate Statistics and General Climate Categorization for Sequence 1 and Sequence 2

Sample Model Climate State TS,mean(K) TS,max(K) TS,min(K) Ice Fraction Stratospheric Water (kg kg−1)

1 ExoCAM snowball 196.8 268.9 147.4 1.0 3.7 × 10−8

ExoPlaSim snowball 176.0 264.7 124.6 1.0 1.8 × 10−15

2 ExoCAM unstable L L L 0.0 L
ExoPlaSim hot 368.2 377.3 318.2 0.0 3.0 × 10−2

3 ExoCAM unstable L L L 0.0 L
ExoPlaSim hot 296.6 320.5 259.5 0.0 5.3 × 10−1

4 ExoCAM warm 260.0 299.6 211.1 0.64 1.2 × 10−6

ExoPlaSim warm 254.0 300.4 200.6 0.7 4.2 × 10−10

5 ExoCAM unstable L L L 0.0 L
ExoPlaSim warm 265.7 306.1 219.0 0.6 6.9 × 10−3

6 ExoCAM unstable L L L 0.0 L
ExoPlaSim hot 343.1 352.2 333.9 0.0 1.0 × 10−1

7 ExoCAM unstable L L L 0.0 L
ExoPlaSim warm 279.7 316.8 245.5 0.5 1.5 × 10−4

8 ExoCAM icy 243.8 286.4 218.2 0.82 2.4 × 10−9

ExoPlaSim icy 215.9 274.5 158.1 0.95 8.4 × 10−15

9 ExoCAM icy 244.8 286.4 200.4 0.72 1.2 × 10−5

ExoPlaSim icy 239.9 301.7 182.1 0.7 3.5 × 10−9

10 ExoCAM snowball 194.1 230.0 166.5 1.0 1.6 × 10−12

ExoPlaSim snowball 172.8 232.7 132.2 1.0 4.4 × 10−17

11 ExoCAM icy 234.0 291.0 195.2 0.78 2.8 × 10−3

ExoPlaSim icy 211.3 289.7 133.5 0.9 2.8 × 10−4

12 ExoCAM hot 350.9 355.7 348.2 0.0 4.4 × 10−4

ExoPlaSim hot 345.7 355.0 337.2 0.0 2.9 × 10−4

13 ExoCAM unstable L L L 0.0 L
ExoPlaSim warm 272.9 309.5 229.0 0.6 1.0 × 10−1

14 ExoCAM icy 236.8 288.7 183.2 0.74 2.4 × 10−7

ExoPlaSim icy 224.5 297.5 158.1 0.8 3.8 × 10−12

15 ExoCAM icy 211.5 285.6 157.9 0.88 4.7 × 10−7

ExoPlaSim icy 186.3 287.0 122.5 0.95 3.3 × 10−13

16 ExoCAM hot 356.7 360.7 353.8 0.0 1.5 × 10−7

ExoPlaSim hot 346.3 356.0 306.3 0.0 5.8 × 10−7
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ExoPlaSim. The icy and snowball climate states of ExoCAM
and ExoPlaSim otherwise remain consistent with each other.

This preliminary comparison between ExoCAM and Exo-
PlaSim highlights the similarities between the climate states
predicted between the two models across most of the parameter
space, aside from the region prone to a runaway greenhouse or
numerical instability; however, further intercomparison with
other models, and GCMs in particular, is needed in order to
understand the extent to which intermediate complexity models
like ExoPlaSim give results similar to those of more complex
GCMs. We do not conduct any further detailed analysis in this
protocol paper, but we note that the results shown in Table 3

indicate notable differences between ExoCAM and ExoPlaSim
when individual cases are examined. The contribution of
additional simulations by other GCMs is essential for under-
standing whether these differences result from model complex-
ity, the choice of physical parameterizations, or other model-
dependent factors.
We also note that subsequent analysis should also compare

other factors that will be useful in diagnosing the regions of
agreement or disagreement between different models. Intercom-
parison with models of varying complexity, such as radiative–
convective equilibrium models, may reveal areas of parameter
space where simpler models can make robust predictions about

Figure 2. ExoCAM time series simulation output from case 6, showing mean (solid) and maximum (dashed) temperature (top left), stratospheric specific humidity
(top right), net energy balance (bottom left), and total pressure (bottom right).

Figure 3. Average surface temperature for the 10 cases from Sequence 1 and Sequence 2 that remain stable with ExoCAM.
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the onset of moist or runaway greenhouse states based on the
stratospheric water vapor content. Dynamical circulation patterns
may also be a useful diagnostic for comparing various GCMs
across the full parameter space, as differences in physical
parameterizations and the dynamical core may result in different
predictions for the atmosphere’s dynamical regime (e.g., Haqq-
Misra et al. 2018). These and other atmospheric diagnostics will
be of critical importance for understanding the role of different
GCMs and models of varying complexity in making useful
predictions about climate across this parameter space.

Although the results shown in Figure 4 (left panel) may seem
to indicate a narrow region of parameter space for warm
planets, it is important to emphasize that these simulations all
use a fixed amount of CO2. This implicitly ignores the carbon–
silicate weathering cycle, which could act to regulate climate
and produce warmer states with higher CO2 at lower
instellation values. We have also omitted ocean heat transport,
which for continent-free planets could lead to considerable
warming and de-icing of the nightside on colder tidally locked
worlds (e.g., Hu & Yang 2014; Yang et al. 2014, 2019a;
Checlair et al. 2019; Kane et al. 2021). Furthermore, we note
that, in this preliminary analysis, we have made an approximate
delineation between five climate states, which reveals that
useful information can be deduced using a spare grid
representation. However, one of the challenges of using sparse
grid techniques is to devise scientifically driven interpolation
methods to stitch the sparse grids together, which is nontrivial
given the inherent complexity and nonlinearity of tipping
points in planetary climate. We will explore such analysis
methods in our future intercomparison paper.

4. Participation Options

We invite other climate models to join the SAMOSA
intercomparison. Participation is open to GCMs, EBMs, RCE
models, and any others that can examine terrestrial climate for a
synchronously rotating planet as a function of surface pressure
and instellation. Participating models should be configured
with the fixed parameters listed in Table 2.

The cases in Sequence 1 and Sequence 2 are listed in Table 1
and plotted in Figure 1, which provide coverage across the full
parameter space; however, the use of additional cases could
provide even greater insight into the similarities and differences
in the climate states predicted by various models. We therefore
provide additional sequences that allow participants to choose
to extend the number of simulations for comparison with
ExoPlaSim and other participating models. The first option
extends Sequence 1 by eight additional points to give Sequence
1b, which provides additional cases across the full parameter
space (and reduces the discrepancy to 0.002 25). The second
option extends Sequence 2 by eight additional points to give
Sequence 2b, which provides additional cases across the region
of parameter space that is expected to be numerically stable for
GCMs (and reduces the discrepancy to 0.002 12). The variables
for Sequence 1b and Sequence 2b are given in Table 4 and
plotted in the left panel of Figure 5 as green dots. A third option
provides a new sparse sample across the full parameter space,
Sequence 3, which consists of 32 points that do not necessarily
fall along the predefined ExoPlaSim grid points. The centered
discrepancy of Sequence 3 is 0.000 604, and the seed value is
1043337. The variables for Sequence 3 are given in Table 4 and
plotted in the right panel of Figure 5. These optional cases are
intended to supplement the 16 primary cases that were
discussed in Section 3.
We offer several options for participation in SAMOSA, each

with a different number of required simulations:

1. Simulate only the warm ExoCAM case (one model run,
case 4)

2. Simulate only the cases in Sequence 2 (eight model runs,
cases 9–16)

3. Simulate all stable ExoCAM cases (10 model runs, cases
1, 4, 8–12, and 14–16)

4. Simulate all cases in Sequence 1 and Sequence 2 (16
model runs, cases 1–16)

5. Simulate all cases in Sequence 1, Sequence 1b, Sequence
2, and Sequence 2b (32 model runs, cases 1–32)

Figure 4. Global average surface temperature for all 16 cases using ExoCAM (left) and ExoPlaSim (right). Colors correspond to the climate state calculated for each
case, with dashed lines showing approximate boundaries between climate states.
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6. Simulate all cases in Sequence 1, Sequence 1b, Sequence
2, Sequence 2b, and Sequence 3 (64 model runs,
cases 1–64)

These options are intended to provide flexibility for participat-
ing models, given the constraints imposed by the computational
requirements for a model integration, the physical parameter-
izations within the model, and the availability of researcher
time. The parameter space studied here can push many models
into extreme limits, as shown by our ExoCAM results, so we
do not prescribe a specific time step, resolution, or any other

model requirements for this intercomparison. Any parameters
not listed in Tables 1 and 2 should be selected at the discretion
of the researcher based on prior experience with the particular
model.
We note that the activities involved in scientific research,

including computational modeling, can serve as sources of carbon
emissions. Aujoux et al. (2021) have provided a framework for
assessing the largest emissions factors for a particular scientific
project, which include professional travel, digital communication,
computational simulations, data transmission and storage, and the
use and transportation of hardware. Most, if not all, of these factors
can contribute to the total emissions of a project like SAMOSA.
The choice of a researcher to perform additional computational
simulations, preserve excess data in cloud storage, or engage in
travel for conferences or collaboration is a complex cost–benefit
analysis that may include subjective elements on the part of the
researcher. Quantifying these sources of carbon emissions may be
useful as researchers contemplate such questions. In this protocol
paper, we do not perform any such quantification of emissions
associated with simulations or other factors, but such factors may
be relevant for individuals and research groups as they decide
which of the SAMOSA participation options to choose.
We will compare the participating models using the same

diagnostic output quantities that were used in the THAI
intercomparison (Fauchez et al. 2020), which are listed in
Table 5. These diagnostics are all average quantities that should
be calculated for at least 10 orbits after the models has reached
a steady state. Models should strive to achieve ∼±1 Wm−2

radiative balance at the top of atmosphere; however, if this
balance cannot be achieved, then a stable trend over at least 10
orbits will suffice. For models that are in a numerically unstable
or incipient runaway regime, participating models may choose
to terminate such cases as appropriate; incipient runaway cases
may be reported at the last stable model state or may be
omitted. In cases of numerical instability, we ask participants to
also provide additional details to explain the reason for the
instability, as such information will be useful in the
intercomparison for determining whether such crashes occur
because of physical instabilities that are difficult to model (such
as a runaway greenhouse state) or because of limitations to the
model itself. The protocol does not provide any specific
requirements for the length of model integration, as this will
differ among the 16 cases and will also depend on the choice of
model resolution and time step.
We ask that participating GCMs provide all output quantities

in netCDF format. Other models (e.g., EBMs and RCE models)
are encouraged to use netCDF but may also submit output in
ASCII format. Participants can upload their output to a
repository at https://ckan.emac.gsfc.nasa.gov/organization/
cuisines-samosa (last access: 09/21/2022) after first requesting
access from Thomas Fauchez (thomas.j.fauchez@nasa.gov).
Similarly to THAI, we will quantify the impact of atmospheric
model output differences on JWST simulated spectra using
the planetary spectrum generator (PSG; Villanueva et al.
2018, 2022). This step is important to understand how intrinsic
differences between atmospheric models could affect the
prediction of future observations and the interpretation of the
data, therefore justifying even more the need for model
intercomparisons.

Table 4
Variables from the Quasi–Monte Carlo selection of Cases in Sequence 1b,

Sequence 2b, and Sequence 3

Sample Instellation (W m−2) Surface Pressure (bar)

Sequence 1b 17 700 0.26
18 1700 2.98
19 2300 0.89
20 1300 10.0
21 900 0.43
22 2600 4.83
23 2000 0.10
24 500 1.13

Sequence 2b 25 1300 0.16
26 500 2.34
27 1000 0.89
28 1700 3.79
29 1400 0.55
30 800 7.85
31 500 0.21
32 1200 1.13

Sequence 3 33 1279 3.92
34 2455 1.00
35 1628 1.07
36 466 0.27
37 838 2.72
38 2013 0.11
39 2279 9.97
40 1114 0.39
41 981 1.78
42 2143 0.22
43 1871 4.83
44 696 0.60
45 599 6.00
46 1762 0.48
47 2596 2.20
48 1421 0.18
49 1490 1.81
50 2528 0.15
51 1692 6.58
52 668 0.53
53 764 5.29
54 1803 0.66
55 2074 1.46
56 1050 0.18
57 1182 8.18
58 2208 0.32
59 1944 2.98
60 907 0.12
61 535 1.17
62 1560 0.30
63 2385 3.21
64 1348 0.82
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5. Summary

The SAMOSA intercomparison seeks to understand the
applicability of a range of climate models for studying the
habitability of synchronously rotating planets. The intercom-
parison is defined by a sparse sample of 16 cases from
previously published intermediate GCM results, which pro-
vides a way to explore a parameter space of surface pressure
and instellation for a hypothetical synchronously rotating
exoplanet around a 3000 K blackbody star. This paper provided
a preliminary comparison between this intermediate GCM and
a full GCM in order to demonstrate the cases most likely to be
numerically unstable or enter an incipient runaway greenhouse
state. This preliminary analysis allows us to offer several
options for participation in the SAMOSA intercomparison,
which will enable GCMs, EBMs, RCE models, and others to

participate. The results of this intercomparison will be
published in a future paper in 2–3 years.

This material is based upon work performed as part of
the CHAMPs (Consortium on Habitability and Atmospheres
of M-dwarf Planets) team, supported by the National
Aeronautics and Space Administration (NASA) under grant
No. 80NSSC21K0905 issued through the Interdisciplinary
Consortia for Astrobiology Research (ICAR) program. A.L.S.
acknowledges support from the National Science Foundation
under Award 1753373, and by a Clare Boothe Luce
Professorship supported by the Henry Luce Foundation. The
authors acknowledge support from the GSFC Sellers Exopla-
net Environments Collaboration (SEEC), which is funded by
the NASA Planetary Science Division’s Research Program.
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