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ABSTRACT

A new formulation of problems in random vibration analysis of linear systems
is presented. The formulation facilitates the solution of problems through a process
of synthesis. This solution approach is implemented in the instructional software
STOCAL-II, which is designed to be used in teaching graduate courses on random

vibrations.

In solving random vibration problems with STOCAL-II, the student issues a
sequence of commands that carry out the numerical computations required for each
basic element of the solution algorithm. The student must have a good understand-
ing of the fundamental concepts in order to choose the proper sequence of commands
and the corresponding parameters. The software assists the learning by: (a) freeing
the student from tedious computations that are required for the solution but are
not necessary for a fundamental understanding of the basic concepts, (b) providing a
transparent computing environment where explicit specification of operations is nec-
essary and all intermediate results are made available upon request, (c) facilitating
the solution of exercise problems of practical significance that could not be solved
by hand, (d) providing the student with an efficient means for parametric study and
experimentation, and (e) providing an interactive computing environment with facility

for immediate plotting of the results.

STOCAL-II is developed as an extension to CAL. Thus, in addition to nonde-
terministic analysis, STOCAL-II can perform basic matrix operations and static and

dynamic structural analysis. A 2D graphics capability is also implemented.

Commands and algorithms incorporated in STOCAL-II provide the means for
random vibration analysis of linear MDOF systems subjected to stationary or nonsta-

tionary excitations specified by their power spectral characterizations, or earthquake






excitations specified by their response spectra. Commands for computing the re-
sponse statistics of engineering interest, such as crossing rates, distributions of local
and extreme peaks, and the characteristics of the envelope process are also provided.
Additional commands allow the generation of sample functions or the estimation of
temporal or ensemble autocorrelation or power spectral density from given sample

functions.

A simple example, consisting of a two-story primary structure and an attached,

three-node secondary subsystem, is used to illustrate the application and capabilities

of STOCAL-II.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Increasing concern for the safety and economy of structures, and the awareness
that most dynamic load environments are random in nature, have made the theory
and methods of random vibrations essential for the analysis and design of impor-
tant structures. Random dynamic loads arise from diverse sources, including seismic
ground motions, jet noise, atmospheric turbulence, wind pressure, ocean waves and
road unew;enness. Because of the high degree of uncertainty of such loads, a determin-
istic treatment conducted in the usual engineering practice does not produce reliable
results. In particular, the practice of introducing a blanket safety factor to account
for all uncertainties is not appropriate, since it does not provide a consistent basis
for the evaluation and analysis of the underlying uncertainties. Structures designed

by such ”deterministic” approaches may not have the proper level of safety.
y

Recent progress in the theory and methods of random vibration analysis, and
vast improvements in the speed and power of computers, have facilitated the use of
non-deterministic in practice. However, there are very few trained engineers familiar
with the subject, and even fewer general-purpose computer codes for their use. As a

result, applications of random vibration methods in practice remain limited and rare.

Random vibration as a subject has been taught in mechanical, aerospace, and
structural engineering graduate programs of many U.S. universities since 1950s. How-
ever, few students interested in the applied aspects of these fields study it. One
reason is the abstract nature of the underlying concepts. The student often finds

it difficult to visualize a problem or solution, particularly if the subject is taught



in a traditional chalk-and-blackboard manner. Another reason is that the subject is
both analytically and computationally demanding. Even simple problems may require
lengthy and tedious solutions. As a result, many students are discouraged from taking
the subject, and others perceive it as too ”theoretical” or ”abstract” to be useful to

their future careers.

It is the premise of this thesis that the effectiveness of teaching the subject
of random vibrations can be greatly enhanced through the use of an instructional
software operable on a personal computer. Such a software should achieve two main
goals: (a) free the student from the routine computations or derivations that are
required but are not central to a fundamental understanding of the random vibration
theory, and (b) provide a convenient tool for graphic visualization and parametric
study in order to help the student in gaining experience and insight. From a pedagogic
viewpoint, the software should not act as a ”black box”, but should require active
involvement and decision by the student in solving problems. It is essential that
such a software be operable on personal computers for their wide availability and

convenience.

The development of such an instructional software, called STOCAL-II (Com-
puter Assisted Learning of STOchastic methods), is the subject of this thesis. This
software is an extension of the deterministic structural analysis code CAL developed
by Wilson (1979, 1986). It represents a vast improvement over an earlier such pro-
gram, STOCAL, which was developed at Berkeley by Button et al. (1981). STOCAL-
II is useful as an instructional code in a class environment, as well as in an office
environment where engineers may use the system not only for self learning, but also

to solve practical random vibration problems.



1.2 The Teaching of Random Vibration

The pioneer in teaching random vibrations in the United States has been
S. H. Crandall of M.I.T. His first edited book on the subject in 1958 (Crandall et
al. 1958) and his second co-authored text in 1963 (Crandall and Mark 1963) greatly
influenced the development of this field. The comprehensive text by Y. K. Lin in 1967
(Lin 1967) provided the next turning point. This text presented the first thorough,
indepth and systematic treatment of the subject. In spite of vast developments in
the field, the text by Lin remains a major source as a textbook and an indispensable
reference. After 1960’s, the teaching of random vibrations became widespread in
graduate programs of U.S. universities. Many new texts have been published on
the subject in recent years, including Clough and Penzien (1975), Newland (1984),
Bolotin (1984), Nigam (1983), Elishakoff (1983), Piszczek and Niziol (1986), Madsen
et al. (1986), and Yang (1986).

Solutions to random vibration problems are usually characterized by long
derivations and repeated, tedious calculations. It is often impossible for the stu-
dent to carry out the required calculations by hand, let alone conducting parametric
studies or sensitivity analysis which are so essential in gaining experience and insight.
Furthermore, the basic concepts and results of random processes are best explained
and understood through the aid of graphical means. However, preparing graphs by
hand is virtually impossible for many of the solutions to random vibration problems.
From an instructor’s viewpoint, one major difficulty in teaching random vibrations is
in finding example problems (for demonstration or assignment purposes), which are
meaningful from an applied engineering standpoint and yet are manageable in terms
of the required effort to solve. In most cases, the instructor has no choice but to
use highly idealized and contrived examples which have limited relevance to real, en-

gineering problems. Many of the end-of-chapter problems in the above texts are of



this type. For example, problems involving structures with more than one degree of
freedom, or problems dealing with nonstationary response are hard to find in these
texts. Because of this, the student does not have an opportunity to analyze a real-
istic random vibration problem on his own, and leaves the course with a lack of self
confidence and often the unfortunate perception that the topic of random vibrations

is ”"too theoretical” and not relevant to practical engineering problems.

The obvious way to resolve the above problems is to provide the student with
a computer code that carries out the necessary computations and prepares graphs.
However, the few available computer codes that have capabilities for random vibra-
tion analysis all function as black boxes and do not provide an opportunity for
learning and experimentation. Hence the objective of the present thesis is to develop
an interactive computational environment for learning the basic concepts of random
processes and, in particular, random vibration of structures. The underlying philoso-
phy in developing this software has been to provide a tool which helps the student
in computations, but which requires active involvement and decision by the student
in every step of solving a problem. This software allows the student to experiment
with a problem by, for example, conducting parametric studies or sensitivity analysis.
Furthermore, the interactive nature and the on-line graphics capability provide conve-
nient means to review and visualize the results of each analysis. The software allows
the instructor to assign exercise problems that are relevant to realistic engineering
problems, without worrying about the amount of required computations. It also pro-
vides an excellent tool for classroom demonstration of basic concepts and illustrative

examples.

Experience at the University of California, Berkeley, has shown that the most
effective manner for using this software for instructional purposes is a two-pronged ap-

proach where the student is assigned both analytical and numerical exercise problems.



The analytical exercises are small, can be done by hand and are designed to illustrate
the basic mathematical concepts and approaches. The numerical exercises, carried out
with the help of the instructional software, are designed to illustrate applications of
the same concepts to practical engineering problems. Furthermore, frequent numerical
examples and analysis with the software give the student a sense of confidence and

an interest in exploring possibilities.
1.3 Computer Assisted Instruction

The idea of using computers as a teaching tool, or Computer Assisted Instruc-
tion (CAI), has been around for two or three decades. However, personal computers,
and their wide availability on campuses, have made CAI a truly effective method.
Today, most students entering the universities are well versed in using personal com-
puters, and many possess their own before they graduate. These conditions call for
drastic change in the methods of education, and provide opportunities and challenges

to the teaching profession ahead.

Software for CAI has been developed for almost every field of education. These
include entire systems (e.g., IBM’s LOGO; PLATO IV of the University of Illinois) as
well as software for specialized subjects. In each field, the approach to CAI can be
different, depending on the special needs and requirements of the field. For example,
courses in the social sciences emphasize data retrieval techniques, whereas courses in
the applied sciences emphasize data computations. Nevertheless, a set of basis rules
are common to all CAI systems and software. These are: (1) the system must require
active involvement and decision by the student; (2) the system must provide means
for easy experimentation by the student; and (3) the system must provide an efficient

interactive environment with quick response time and attractive graphics.

The topic of random vibrations involves concepts and techniques from the



fields of statistics, probability and structural dynamics. Although there are many
CAI systems for statistics and probability, e.g., S (Becker and Chamers 1984), BLSS
(Abrahams and Rizzardi 1988), SAS (SAS Inc.), and SPSS (SPSS Inc.), and several
for structural dynamic analysis, e.g., ANSWERS (Saul et al. 1972), GIFTS (Kamel
and McCabe 1978), CAL (Wilson 1979), FEAP (Taylor 1987), there is very little
available that can be used for teaching random vibrations. To the writer’s knowledge,
the only software that is available is the program STOCAL developed by Button, Der
Kiureghian and Wilson at University of California, Berkeley, in 1981 (see Button et
al. 1981). This software, which was a precursor of the present development, has
limited capabilities (only stationary analysis; restricted choice of response statistics;
no graphics) and acts more like a black box than an interactive instructional program.
Therefore, for the present study, an entirely new software, denoted STOCAL-II, was
developed from scratch. Thus, STOCAL-II should not be regarded as a new version
of STOCAL, but an entirely different software. The Roman II extension in the name

of this software is used to emphasize this difference.

STOCAL-II is based on and is an extension of the program CAL developed
by Wilson (1979, 1986) for structural analysis. STOCAL-II uses the database man-
agement system of CAL and has a similar command syntax. Furthermore, CAL
commands are available in STOCAL-II for deterministic structural analysis, such as

formation of stiffness matrix, eigenvalue analysis, and various matrix manipulations.

STOCAL-II is intended for teaching and research purposes. As a result, it
emphasizes the generality of applications and the interactive involvement of the user
rather than the efficiency and productivity of computation. It is designed to operate in
an interactive mode, although batch operation is also allowed. Generally speaking, the
system has been developed based on the philosophy that the solution to a problem

can be decomposed into a sequence of logical steps, each step involving a certain



amount of routine computations. The student solves the problem in steps by issuing
a command for each logical step. The commands are designed such that the student
will have to understand the underlying concepts of the theory in order to choose the
proper sequence of commands and the parameters for each command. Furthermore,
the one-line graphics command, which can be issued at any point in the sequence of
commands, provides an excellent means for visualizing intermediate as well as final

results of the solution.
1.4 Problems and Methods in Random Vibrations

In the past two decades, the topic of random vibrations has vastly grown
in its methods and applications (e.g., reviews by Vanmarcke 1979, Crandall and
Zhu 1983, Spanos and Lutes 1986 and Lin et al. 1986). Any instructional software
on this subject necessarily will have to limit its scope. The following subsections
briefly describe the classes of problems and methods that are included in STOCAL-II.
Important classes of problems and methods that are not included in STOCAL-II are
briefly outlined in section 1.4.5. It is hoped that these methods will be incorporated

in the continuing development of STOCAL-II.

1.4.1 Analysis of Time Series Data

Fourier Transform Analysis

The Fourier transform is one of the most basic tools used in random vibration
analysis. For example, the autocorrelation and power spectral density (PSD) func-
tions of a stationary process are a Fourier transform pair (Lin 1967). Also, Fourier
transform analysis is often used in data processing for analyzing random signals. In
STOCAL-II, the Fourier and inverse Fourier transformations for either a piecewise
linear function or a set of discrete data are implemented. For discrete data, the

generalized fast Fourier transform algorithm (Cooley and Tukey 1965, and Dahlquist

7



and Bjorck 1974) is used when possible.

Statistical Estimation

A common problem in random vibrations is the analysis of time series data in
order to estimate the temporal or ensemble statistics. Commands for such elementary
analysis, namely temporal and ensemble estimation of the mean, the autocorrelation
function, and the PSD function are included in STOCAL-II. For a more sophisticated
analysis of time series data, one of the standard statistical programs mentioned in

section 1.3 can be used.

Generation of Sample Functions

Another problems of common interest in random vibration analysis is the gen-
eration of sample functions with a specified ensemble statistical characteristics. Such
sample functions may be used, for example, in Monte Carlo simulation studies, or
in verifying the results of analytical solutions. Methods for artificial generation of
sample functions have been used in structural engineering for many years (e.g., see
Housner and Jennings 1964, Ruiz and Penzien 1968, Shinozuka and Jan 1972, Sama-
ras et al. 1985, and Yamazaki and Shinozuka 1988). In STOCAL-II, commands for
generation of sample functions for both stationary and nonstationary processes are

included that make use of well known techniques employing the PSD function.
1.4.2 Random Vibration of Linear Discrete Systems

The bulk of the available literature on random vibrations deals with predicting
the response of discrete linear systems to stochastic excitations. This is because the
linear model yields satisfactory results for a large class of practical problems, and also
because the linear problem lends itself well to analytical solutions. In particular, the

Gaussian process is closed under linear transformations, which is convenient since most



available results for the statistics of random processes are restricted to the Gaussian

process. STOCAL-II presently is restricted to the analysis of linear, discrete systems.

The Normal Mode Approach

The normal mode approach is commonly used in the analysis of linear discrete
systems. In this approach, the response of a linear, multi-degree-of-freedom (MDOF)
system, which is governed by a set of coupled second-order linear differential equa-
tions, is decomposed into a set of modal responses that are represented by uncoupled
equations. Usually, a classical damping matrix (Caughey 1960) is assumed to achieve
the decoupling. A generic linear response quantity, then, is expressed as the superpo-
sition of the modal responses with the associated participation factors as coefficients
(see section 2.2.2). STOCAL-II employs this approach. In general, the generic infor-
mation needed to compute the statistics of the response are the natural frequencies,
the modal damping ratios, and the modal effective participation factors of the system
for the response quantity of interest, as well as a complete statistical specification of

the input excitation.

More generally, an n-degree-of-freedom system (represented by a system of n
second-order linear differential equations) can be represented by a set of 2n first-order
equations (Foss 1956). A general modal approach employing complex eigenvalues and
eigenvectors can be used to decouple these equations. This approach is employed when
a classical damping matrix cannot be assumed (Igusa et al. 1984). This approach is
also employed when a state-vector time-domain formulation is used (Bryson and Ho
1975, DebChaudhury and Gasparini 1982). This formulation is particularly useful
when the input is a delta correlated or a filtered, delta correlated process, in which
case the solution of the first-order equations constitutes a Markov process. This

approach is not implemented in the current version of STOCAL-IIL



Stationary Response

The stationary response of a linear system is of interest because some input
excitations, such as those induced by ocean waves, jet noise or road unevenness, are
appropriately described by stationary models. Furthermore, even though some excita-
tions such as an earthquake ground motion are distinctly nonstationary, a stationary
or ”quasi-stationary” model may still be used because of its analytical simplicity and

also because it may produce an acceptable approximation under certain conditions.

The stationary analysis of linear systems was well developed by statisticians
and communication engineers (Rice 1944, 1945) before the theory of random vibrations
was applied to structural engineering problems in the 1950s (Liepmann 1952, Miles
1954, Goodman et al. 1955). In structural engineering, a white-noise or banded
white-noise model was first used to describe random dynamic loadings (Bycrot 1960,
Crandall and Mark 1963). Since then, other models have been proposed to better
represent the random loading function in different applications. For example, the
Kanai-Tajimi model (Kanai 1957, Tajimi 1960), also known as a filtered white noise
process, is widely accepted in modeling earthquake excitations. For each of these
models, the response statistics of a linear system are obtained by direct integration

or by numerical means.

In general, the statistics of the stationary response that are of most interest
are the auto and cross-correlation functions, the auto and cross-PSD functions, and
the spectral moments. Other statistics of practical interest, such as the distribution
of local peaks or extreme response (Longuet-Higgins 1952, Vanmarcke 1975), are
computed in terms of these basic quantities. STOCAL-II is able to compute these
statistics for the stationary response of a linear MDOF system, which is subjected to
a white noise, a filtered white noise, or a banded linear-noise excitation, or general

stationary input described by a piecewise-linear-PSD function.
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Nonstationary Response

Nonstationary analysis is required when a structural system is subjected to a
nonstationary or a transient stationary excitation. Early works on this subject em-
ployed a direct time domain approach. However, in order to simplify the analytical
expressions, the input excitations considered were limited to two special classes of
nonstationary processes: shot-noise processes (Caughey and Stump 1961, Lin 1963b),
and uniformly modulated processes with an exponentially decaying harmonic correla-
tion function (Bucciarelli and Kuo 1970, Hasselman 1972, Sakata and Kimura 1979).
Because of the complexity of the solutions, therefore, investigators turned their atten-

tion to the frequency domain approach.

The frequency domain approach did not gain popularity until Priestley (1965)
proposed the evolutionary spectrum to describe a general class of nonstationary pro-
cesses. In addition to the evolutionary spectrum, three other spectra have been pro-
posed for describing nonstationary processes: the instantaneous spectrum (Page 1952),
the generalized spectrum (Bendat and Piersol 1962, Lin 1967, Barnoski and Maurer
1969), and the physical spectrum (Mark 1970). Among these, only Priestley’s defi-
nition provides a convenient input-output relation for dynamic systems, and hence it
enjoys the wide popularity among the researchers in the field (e.g., Hammond 1968,
Shinozuka 1970, Corotis and Vanmarcke 1975, Lin and Yong 1987). The general for-
mulation for the response to an evolutionary input was given by Hammond (1968).
Due to the computational complexity involved in the evaluation of the evolutionary
PSD, available studies involving this model are limited to cases where the input is a
uniformly modulated process (i.e., the modulating function is only a function of time).
In particular, Roberts (1971) obtained approximate expressions for the response to a
non-white input modulated by a periodic intensity function; Corotis and Marshall

(1977) obtained the exact evolutionary PSD and approximate variance functions of

11



the response of a single-degree-of-freedom (SDOF) oscillator under a uniformly mod-
ulated input with an exponential modulating function; and To (1982, 1984a, 1986)
obtained the evolutionary PSD and covariance functions of the response of an MDOF
system (or their derivatives) under a uniformly modulated input with an exponential

time modulating function.

Several recent studies have turned to the state-vector, time-domain approach
introduced by Wang and Uhlenbeck (1945). This approach is numerically simple when
the input is a shot-noise process (Masri 1978, Gasparini 1979) or a filtered shot-noise
process (Gasparini and DebChaudhury 1980, DebChaudhury and Gasparini 1982).
Under these inputs, the response is a Markov process and several powerful methods

based on the Fokker-Planck equation can be used to obtain the response statistics.

In STOCAL-II, the frequency-domain approach is used where the input exci-
tation is defined in terms of Priestley’s evolutionary spectrum with the modulating
function specified as a general piecewise linear function of time and frequency (see sec-
tions 2.4 and 3.3). Thus, STOCAL-II is capable of analyzing rather general classes
of nonstationary problems. The output response quantities in STOCAL-II include
the evolutionary PSD and the variance/covariance functions of specified responses
and their time derivatives. The derivative responses are of interest because they are

needed for evaluating the crossing statistics.
1.4.3 Statistics of Response Process

The final objective in random vibration analysis is to assess the reliability of
the structural system against the applied stochastic loading. Two types of failures are
usually considered in such analysis. One is first-excursion failures, where the structure
is assumed to have failed when a critical response exceeds a specified threshold for the

first time. The second is fatigue-type failure, where the structure fails under repeated
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applications of load cycles due to material or strength deterioration. The response
statistics that are necessary in order to compute probabilities for these failure events
include, in addition to mean and autocorrelation functions, the rates of threshold
crossings, distributions of local and extreme peaks, and the characteristics of the
envelope process. Analytical solutions for most of these statistics are available only
for Gaussian processes. STOCAL-II includes commands for computing these statistics

for stationary and nonstationary Gaussian processes.

For first-passage failure, the distribution of the time to the first crossing (the
first-passage time) is of interest. If the level crossings of the process are assumed to
constitute Poisson events, the distribution of the first passage time becomes exponen-
tial (Rice 1944, 1945). A more accurate result for a narrow-band process was obtained
by Vanmarcke (1975) by considering the qualified level crossings of the envelope pro-
cess. This distribution is included in STOCAL-II. More elaborate approximations,
primarily based on the Markov model (Lutes and Tzuang 1983, Madsen and Krenk
1984, Toro and Cornell 1986, Nielsen and Sorensen 1988), are also available which
are not included in STOCAL-IIL

The mechanism for the fatigue-type failure is more complicated. The fatigue-
type failure is assumed to occur when the accumulation of fractional damages from
repeated response cycles reaches a specified threshold (Kinra and Marshall 1979).
Thus, the distribution, or at least the mean and variance, of the accumulated dam-
age in a given time period are of interest. These are estimated in terms of the
distribution of local peaks in the random stress history (Crandall and Mark 1963).
The distribution of local peaks for a Gaussian process has been decided by Rice
(1944, 1945), Longuet-Higgins (1952), Cartwright and Longuet-Higgins (1956).
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1.4.4 The Response Spectrum Method

The response spectrum method is a widely used technique for determining the
maximum response of linear structures to earthquake excitations. In this method, the
ground motion is specified in terms of the response spectrum, which is a plot of the
mean maximum response of a linear oscillator to the specified base motion, expressed
as a function of the oscillator frequency and damping ratio. The maximum response
in each mode of the structure is determined in terms of the response spectrum
amplitude at the modal frequency. The maximum response of the structure is obtained

approximately by combing the maximum modal responses.

Several rules are available for combining the modal responses. Two traditional
methods are the absolute sum (Biot 1943), which always yield conservative results,
and the square-root-of-sum-of-squares (SRSS) method (Goodman et al. 1955), which
is based on the assumption that the modal responses are statistically independent.
More recently, several combination rules have been developed based on probabilistic
methods that include the effect of modal correlation (e.g., Rosenblueth and Elorduy
1969, Singh and Chu 1976, Der Kiureghian 1981). In particular, the method developed
by Der Kiureghian (1981) provides a basis for complete random vibration analysis in
terms of the response spectrum. This method is implemented in STOCAL-II. In its
original form, the method by Der Kiureghian employed a white-noise approximation
of the input excitation in computing the modal correlations. In STOCAL-II, the
method is extended to allow computation of the modal correlations based on various

non-white models of the input excitation.
1.4.5 Beyond STOCAL-II

The scope of STOCAL-II is necessarily limited. In this section, problem areas

in random vibrations which are not incorporated in STOCAL-II are reviewed. Some
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of these problems may be implemented in the future development of the software;
others are not included because of their limited use in structural engineering. It is
believed that the present version of STOCAL-II is appropriate and entirely adequate

for use in a first graduate course on random vibrations.

Continuous Systems

Most real-world structures are continuous-mass systems. Thus, a continuous
model used to describe such systems is more realistic. An in-depth description of
random vibration analysis of continuous systems is given by Lin (1967), Nigam (1983),
and Bolotin (1984). However, a continuous model is not convenient for use on digital
computers. As a result, in application, a continuous system is usually described
by a discrete model by using finite difference or finite element method. Although,
STOCAL-II is not designed to solve for continuous systems, it can analyze any
discrete model of such systems provided the mass, damping and stiffness matrices are
given. Furthermore, STOCAL-II may be used in analyzing continuous systems by
the normal mode approach (Lin 1963a, Su and Ahmadi 1988), provided the modal
characteristics of the system are given as input. On the other hand, STOCAL-II can
not be used in analyzing continuous systems by the influence function approach (see

Nigam 1983, section 9.2.3).

Nonlinear Systems

As mentioned earlier, STOCAL-II presently is restricted to linear problems.
However, nonlinear problems are becoming of increasing importance, particularly, in
studies aimed at determining the safety of structures. It is envisioned that at least
some methods from nonlinear random vibrations will be incorporated in the future
development of STOCAL-II. Towards that end, this section presents a brief overview

of problems and methods in nonlinear random vibrations. More extensive reviews are
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given by Roberts (1981, 1984), Crandall and Zhu (1983), Spanos and Lutes (1986)
and To (1984b, 1987) among others. Nonlinearity in a structure may arise from dif-
ferent sources such as material properties, the nature of damping, large deformations,
or nonlinear coupling between the terms in the equation of motion. Mathemati-
cal models for nonlinear dynamic systems are represented by nonlinear differential
equations. An analytical solution of such an equation is usually difficult, or it is
restricted to very specific cases. Although there is no unified method for the solution
of general nonlinear problems, five methods are popularly used to obtain approximate
solutions. These are the Monte Carlo simulation method, the equivalent linearization
method, the Gaussian closure method, the perturbation method, and methods using

the Fokker-Planck equation. These are briefly described in the following paragraphs.

The Monte Carlo simulation method usually consists of three steps: (1) gen-
erate a large number of sample excitations, (2) compute the corresponding response
functions by deterministic nonlinear methods, and (3) process the response functions
to obtain the desired statistics. The method is simple and general, and it can be
applied to any problem, which has a deterministic solution. This method, however,
involves tremendous amount of computations and is often prohibitive even with the
most powerful computers today. The Monte Carlo simulation method is usually em-
ployed to examine the accuracy of approximate methods in bench mark studies (Yar

and Hammond 1986, Iyengar 1988).

In the statistical or equivalent linearization technique, the solution of a nonlin-
ear system is approximated by the solution of an equivalent linear system, where the
equivalent system is often obtained by minimizing some measures of the difference
between the nonlinear and equivalent linear equations. The method was introduced
by Krylov and Bogoliubov in 1931 and was extended to nonlinear random vibration

analysis by Booton (1954) and by Caughey (1959). The features and advantages of
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the method were widely reviewed by Roberts (1981), by Spanos (1981) and by Lin et
al. (1986). The method is popularly used for dealing with hysteretic systems (Wen
1980, 1986, Baber 1984, Wu 1987) and can be easily extended to nonlinear MDOF
systems (Casciati and Faravelli 1988). Bruckner and Lin (1987) recently generalized
the equivalent linearization method to the study of a nonlinear system subject to

random parametric excitations.

The Gaussian closure techniques (Kraichan 1962) are used when the excitation
and the response of a nonlinear system can be approximated as jointly Gaussian.
In this method, a closure technique converts the nonlinear system into an associated
linear system with Gaussian excitation (Iyengar and Dash 1978). The response of this
linear system is then assumed to be an approximation to the response of the original
nonlinear system. Wu (1987) recently showed that the Gaussian closure technique and
the equivalent linearization method often lead to identical or similar results, depending
on the specific equivalent linearization technique used. Similar closure techniques for

non-Gaussian problems have been used by Crandall (1980) and Noori et al. (1987).

The perturbation method (Erdelyi 1956) is often applied to problems where
Qthe amount of nonlinearity in the system is controlled by a small parameter. In
this method, the solution is expanded in a power series with respect to this small
parameter and then solved according to the first few terms in the series. Crandall
(1963b) has applied the classical perturbation theory to determine the approximate re-
sponse statistics for nonlinear systems under random excitations. A recent application

of this method to wave loading was presented by Lipsett (1986).

Methods using the Fokker-Planck equation (Fokker 1914, Planck 1917, Kol-
mogorov 1931) are most powerful when used for determining the probability structure
of a Markovian response process. The response of a linear structural system is a

Markov process when the excitation is a delta correlated process. This method is
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also applicable to nonlinear problems. However, exact solutions are available only
to a special class of nonlinear problems (Dimentberg 1982, Yonk and Lin 1987). In
order to obtain approximate solutions of the Fokker-Planck equation, a number of
techniques have been proposed. These include the stochastic averaging method (see
an overreview by Zhu 1988), the iterative method (Caughey 1971, Orabi and Ahmadi
1987b), the series expansion method (Yar and Hammond 1986, Orabi and Ahmadi
1987a), the Galerkin method (Wen 1975, 1976), moment closure methods (Sun and

Hsu 1987), and the detailed balance method (Langley 1988).

Parametric Excitation and Uncertain Systems

The parametric excitation means the excitation of a vibratory system due to
the time variation of its inertia, damping, or stiffness parameters. When some of
these parameters are random in nature, the system is said to have random parametric
excitation. The study of the random parametric excitation can be traced back to 1959
by Samuels and Eringen. A review of parametric excitations is given by Ibrahim
and Roberts (1978, 1981), and more recently in a thorough monograph by Ibrahim
(1985). Most early investigations (even for deterministic analysis) are directed toward
delineating the boundaries between stable and unstable response without attempting
to characterize the response in any further detail. However, in recent studies of
this problem, attempts have been made to obtain the response statistics of linear or

nonlinear systems (Benaroya and Rehak 1987, Yong and Lin 1987).
Non-Gaussian Excitation

Most random processes studied in random vibrations are Gaussian processes.
This is because large classes of processes resulting from natural phenomena are indeed
Gaussian, or can be closely approximated as Gaussian processes, and also because

the probabilistic analysis of a Gaussian process is much simple. In some situations,
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however, non-Gaussian models are needed to study problems, where non-Gaussian
characteristics are evident. For example, Ochi (1986) has shown that wave heights
recorded in a sea of finite water depth have a skewed non-Gaussian nature. Thus,
non-Gaussian models and analysis methods have gained more attention in recent
years. Grigorius (1984) has obtained an approximate solution for the crossing rates
of a class of non-Gaussian processes; he has also (1986) obtained the response to
quadratic Gaussian excitations. Lutes and Hu (1986) have obtained the non-Gaussian
response characterized by its first fourth moments, and Yamazaki and Shinozuka

(1988) have simulated sample fields of multi-dimensional non-Gaussian functions.
1.5 Objectives and Organization of the Study

The primary purposes of this study are (a) to present a synthesis of solutions to
various random vibration problems as stated in Section 1.4 and then (b) to implement
the solutions in STOCAL-II such that STOCAL-II unified with CAL can be used as

an efficient teaching and research tool for random vibration analysis.

The needs of developing an instructional software are clearly stated in Sections
1.2 and 1.3. The problems and methods, developed in this study and implemented
in STOCAL-II, are clearly described in Section 1.4 where the limitations of this
study are also stated in details. In general, the response of a linear elastic MDOF
system subject to a uni-source stochastic loading is of interest; on the other hand,
the nonlinear response, the non-classical damping, and the multi-support input are

not considered.

This study is divided into six chapters. All of the analytical results needed for
STOCAL-II implementation are derived in Chapter 2. The results required lengthy
numerical computations are put in Chapter 3. The development and description of

overall features in STOCAL-II are stated in Chapter 4. In Chapter 5, several examples
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are used to illustrate how to perform the nondeterministic analysis of a linear MDOF
structure by using STOCAL-II. Finally, an overview of the work is summarized in
the last chapter. Additional details including the STOCAL-II Command Summary
are also presented in appendices. Detailed descriptions of the individual STOCAL-II

commands can be found in the companion report (Wung and Der Kiureghian 1989).
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CHAPTER 2

FORMULATION AND SYNTHESIS OF PROBLEMS
IN RANDOM VIBRATIONS

2.1 Introduction

The objectives in developing an instructional software are very different from
the objectives in developing a software for conventional engineering applications.
Whereas for conventional applications the user-friendliness and efficiency of a soft-
ware are top priorities, in an instructional software the direct involvement of the user
in solving a problem, the transparency of the solution algorithm (versus a black box
approach), and the ability to obtain intermediate results and carry out parametric
studies are prime qualities. A careful planning is necessary not only in the devel-
opment of the instructional software, but also in the formulation of problems and

solutions that are implemented in the software.

An instructional software should not perform as a black box. It should require
the active involvement of the user in solving each problem. In STOCAL-II as in
CAL, the fundamental principle has been to decompose a problem into its most
basic (or generic) elements and provide simple commands that carry the necessary
computations for each basic element. The user solves a problem through a synthesis
process by issuing a sequence of commands that solve and combine the required basic
elements. Thus, it is necessary that the user understand the basic elements of the
problem and the solution algorithm in order to provide the correct ingredients and

command sequence.

For example, in order to obtain the response of an MDOF system to a uni-

formly modulated input, the user has to understand that the basic elements are the
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modal effective participation factors and the modal cross-correlation functions for the
specific input. The basic elements for computing the modal effective participation
factors are the mode shapes, the response transfer matrix, and the influence vector of
the input loading. These matrices are computed by using elemental commands. The
basic ingredients for computing the modal cross-correlations are the modal frequencies
and damping ratios and the PSD and modulating function of the input excitation.
These are computed by a separate command. A further command is then used to
superimpose the modal responses which are scaled by the corresponding effective par-
ticipation factors. Through this process the student learns, for example, that the
modal responses are generic to all different responses of the structure. That is, if
a different response is to be computed, the student only needs to compute the new
set of modal effective participation factors and then only issue the modal superposi-
tion command. No recomputation of the modal cross-correlations (which is the most
time-consuming part of the solution) is necessary. Throughout the solution process,
the student is able to examine the intermediate results, e.g., the modal effective par-
ticipation factors for a selected response quantity, the cross-correlation between two

selected modes.

The objective of this chapter is to formulate selected problems in random
vibrations in a format that clearly identifies the most basic elements and allows their
solutions through a process of synthesis. Although no major new results are derived,
existing solutions are presented in a new and unified format that facilitates their
implementation in the instructional software. As indicated in the introduction, the
scope of the study and the software is limited to the analysis of linear, MDOF
systems through the normal mode approach. However, extensive capabilities for both
stationary and nonstationary analysis are provided. The formulation starts in Section
2.2 from the dynamic analysis of a SDOF oscillator and progresses to the analysis of

MDOF systems using the normal mode approach. Both time-domain and frequency-
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domain analysis are discussed. For stationary inputs, several standard PSD’s are
introduced, which are incorporated in the library of STOCAL-II. These include PSD’s
for white noise and filtered white noise processes and a banded, linear PSD. In
addition, the user may specify a general PSD as a piecewise linear function. For
nonstationary analysis, an evolutionary process is provided which is specified through
a PSD function and a modulating function of time or time and frequency. These
are presented in Section 2.3. Section 2.4 includes the analysis of the response to
stochastic input, where it is shown that the generic element for random vibration
anaiysis of MDOF systems is the cross-correlation or cross-PSD function of the ml-
th and m2-th derivatives of two modal responses. Section 2.5 summarizes formulas for
well known statistics of random processes that are of engineering interest, including
crossing rates and distributions of local and extreme peaks. The final section of this
chapter describes the response spectrum method for random vibrations developed by

Der Kiureghian (1981).

Throughout this chapter, indented paragraphs are used to give short descrip-
tions of CAL or STOCAL-II commands that are relevant to the topic under discus-
sion. More detailed descriptions are given in the companion report (Wung and Der

Kiureghian 1989).
2.2 Dynamic Response of Linear Systems
2.2.1 The Single-Degree-of-Freedom Oscillator

In this section, the response of a SDOF linear oscillator is reviewed. Charac-
terization of the oscillator in terms of unit impulse and frequency response functions

is described, and expressions for the response to general loading are given.

The Equation of Motion
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The equation of motion of the oscillator, when it is excited by an externally

applied dynamic load, p(t), is (Fig. 2.1a)
m §(t) + c §(t) + k s(t) = p(t) (2.1)

where m, ¢ and k are the mass, damping and stiffness, respectively, and s(t) denotes
the displacement. If the oscillator is excited by base motion (Fig. 2.1b), the equation

of motion is
mat) + cé(t) + ks(t) = — m £,(t) (2.2)

in which Z,(t) represents the acceleration of the base and s(t) now denotes the
relative displacement with respect to the moving base. Note that Egs. 2.1 and 2.2

are identical if —mz,(t), an inertia force, is treated as p(t), an external force.

Introducing the notations

k
Wo = ;; (23)
c
= 2.4
o = Sk 24)
both Egs. 2.1 and 2.2 can be written in the general form
8(t) + 26wos(t) + w2 s(t) = f(t) (2.5)

where f(t) = p(t)/m for the external loading and f(t) = —Z,(t) for the base motion.
The parameters w, and ¢, respectively represent the natural frequency and damping
ratio of the oscillator. In structural engineering applications usually ¢, is greater than

zero, but much smaller than unity.

In the following sections, the general form of the equation of motion in Eq. 2.5
is considered. Solutions for the particular cases are obtained by specifying the proper

form of f(t).
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Unit Impulse and Frequency Response Functions

The unit impulse response function, h(t), is defined as the response of the
oscillator, starting from at rest conditions, to a unit impulse loading applied at t=0;

i.e., to f(t) = 6(t), where 6(t) is the Dirac delta function defined by

5(t) = {8° :;g and /_: s(t)dt = 1 (2.6)

A system is said to be stable if its unit impulse response function approaches zero as
time approaches infinity. The oscillator under consideration is stable for all positive
values of ¢,. For 0 < ¢, < 1, the solution of Eq. 2.5 for the unit impulse loading
yields (Lin 1967)

) = U) wid €= 5%t sin(wat) 2.7)

where wy = w,y/1—¢2 is the damped frequency and U(t) is the Heaviside’s step
function
1 t>0
ve) = {, L 20 (2.8)
The frequency response function, H(w), of a stable system is defined as the

amplitude of the steady-state response to a harmonic input, f(t) = €“!. For the

SDOF oscillator defined by Eq. 2.5, provided 0 < ¢,,

1 -1

Hw) = w? —w? +2A¢wow (W - z)(w - 2) )
where

212 = g+ iGow, (210)

It can be shown (Lin 1967, p114) that the unit impulse and frequency response

functions are Fourier transform pairs, i.e.,
H(w) = / h(t)e i“tdt (2.11)
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— L * iwt
At = 5- /_ @) (2.12)
This also implies that the frequency response function exists omly if the system is

stable.

Response to General Loading

The response of the SDOF linear oscillator to a general loading can be de-
termined by the use of either the unit impulse or the frequency response function.
For a general loading function, f(t), applying the principle of superposition for linear

systems, one has

s(t) = s(0)g(t) + 3(0)A(t) + /: f(r)h(t — r)dr (2.13)

in which s(0) and $(0) are the initial displacement and velocity of the oscillator,
respectively, and g(t) is the response of the oscillator to an initial unit displacement.

For the oscillator defined by Eq. 2.5 with 0 < ¢, <1,

SoWo
wq

g(t) = U(t) e *“*[cos(wat) + sin(wgt)] (2.14)

If the steady-state response of the oscillator is of interest, the loading can be regarded

to have begun in the infinite past. The steady-state solution, then, is

Surcaay(t) = /_ ; £(r)h(t = r)dr (2.15)

The solution to a general loading f(t) employing the frequency response func-

tion, H(w), requires the Fourier transform of the loading

- 1 had
flw) = —-—/ f(r)e “dr (2.16)
27 J_ o
Provide f(w) exists, the solution for the oscillator defined by Eq. 2.5 with 0 < ¢, <1
is given by
s(t) = e %v*[Acos(wqt) + Bsin(wat)] + / H(w)f(w)e“tdw (2.17)
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where A and B are constants dependent on both the initial conditions of the oscillator

and the Fourier transform of the loading, which are

s(0) = A+ /_ ” H(w)f(w)dw (2.18)
6(0) = —gowoA+waB+i / " wH(w)f(w)dw (2.19)

The frequency-domain solution is particularly useful in determining the steady-state

response of the oscillator, which is given by

8steady(t) = /_ : H(w)f(w)e"“* dw (2.20)
Note that for any given loading Egs. 2.15 and 2.20 should yield identical results.
2.2.2 The Multi-Degree-of-Freedom System

In this section, the response of an n-degree-of-freedom linear system is reviewed.
The static condensation method is used to reduce the equations of motion when the
formulation involves unwanted degrees of freedom. The modal decomposition method
is used to decouple the equations of motion, and the response to general loading is

given by modal superposition.

The Equations of Motion

The equations of motion, when the system is excited by an externally applied

load vector F(t), are
M X(t) + CX(t) + K X(t) = F(t) (2.21)

where X(t) denotes the nodal displacement vector with n components and M, C
and K are the n x n mass, damping and stiffness matrices, respectively. Here, we

consider the special case where the load vector is expressed in the form,

Ft) = P f(t) (2.22)
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where P is a constant vector of nodal load coefficients and f(t) is a time function.
When F(t) involves more than one time function, the principle of superposition is

applied to the responses to the individual time functions to obtain the total response.

The above formulation is also applicable to the case of system response to base
motion. In that case, X(t) denotes displacements relative to the base, f(t) equals
the base acceleration, Z,(t), and P = —MR, where R is the influence vector relating
the base motion to the degrees of freedom of the system. This last vector equals the
displacement vector of the system for a unit static displacement of the base in the

direction of the base motion.

The CAL commands TRUSS, SLOPE, FRAME and FRAMES form
local stiffness matrices for truss or frame members of a structure. The
CAL command ADDK is used to construct the global stiffness matrix
K from these local stiffness matrices. The diagonal mass matrix M

and influence vector P are specified by use of the CAL command

LOAD.
Static Condensation

The equations of motion may be formulated incorporating both translational
and rotational degrees of freedom. However, the dynamic responses at rotational
degrees of freedom are usually dependent on the responses at translational degrees of
freedom when the elementary lumped-mass approach is used and no mass moment of
inertia or external loading is present at the rotational degrees of freedom. In such
cases, the static condensation method is needed to eliminate the rotational degrees of

freedom from the equations of motion.

Assume the translational and rotational degrees of freedom be segregated such

that Eq. 2.21 without considering the damping matrix is written in the partitioned
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form

(M 9)(£) + (e Be) (%) = (%) e

where the subscript t denotes the translational degrees of freedom and the subscript

0 denotes the rotational degrees of freedom. From the second submatrix equation of

Eq. 2.23,

X, = -K;'KoX, (2.24)
Substituting this result into the first submatrix equation leads to

M.X. + K.X; = F, (2.25)
where

K, = Ku - KoK, 'K (2.26)

Note that Eq. 2.25 and Eq. 2.21 are identical with the exception of the damping
effect if My, K,, F, and X, in Eq. 2.25 are treated as M, K, F and X in Eq. 2.21,
respectively. The effect of damping is included in terms of modal damping ratios, as

described in the following section.

The CAL command REDUCE performs static condensation to elimi-

nate the unwanted degrees of freedom from the total stiffness matrix

K.

In the following sections, the general form of the equations of motion in

Eq. 2.21 is considered.

Modal Decomposition

In the absence of damping and the external force, Eq. 2.21 reduces to

MX(t) + KX(t) =0 (2.27)
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The mode shapes, ®;, and natural frequencies, w;, ¥ = 1,2,...,n, of the system are

the solutions of the preceding equation in the form
X(t) = ®; sin(w;t+0) (2.28)

in which @ denotes an arbitrary phase angle. By substituting this relation in Eq. 2.27,
the following eigenproblem is obtained:

(2.29)

[K - w2M] & =0 i=1,2,..,n

The n solutions ®; are orthogonal with respect to the positive-definite matrices K

and M. In particular, by proper normalization of the mode shapes,

T M &, = §; (2.30)
T K &, = u? &, (2.31)

in which §;; is the Kronecker delta
(2.32)

6. = 41 i=7J

=0 i

The system is said to have proportional (or classical) damping when the un-
damped mode shapes are also orthogonal with respect to the damping matrix C. In

that case, modal damping ratios ¢; are defined by
Q‘T C @j = 2w $i 5,‘_.,‘ (233)

Throughout this study proportional damping will be assumed.
The CAL command EIGEN solves for the matrix of mode shapes
® = [®,,9,,..9,] and the vector of squared undamped frequencies

2

[w?,w3,...,w?] when the stiffness matrix K and the diagonal mass ma-

trix M are provided.
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The orthogonality relations in Egs. 2.30-33 are used to decompose the equations
of motion. Introducing the transformation

X =9Y (2.34)
where YT = [y1,¥2,.--,¥n] denotes the modal coordinates, use of the orthogonality
relations leads to the n uncoupled equations of motion,

% () + 2wt (t) + WPy (t) = BT Pf(t) =pif(t) §=1,...,n (2.35)
in which p; = ®TP denote the modal participation factors. For base motion, these

factors are given by

p = —8TMR (2.36)

The command MPF computes the vector of modal participation fac-
tors p = [p1,...,p,|T when the vector of nodal load coefficients P (or

—MR) and the matrix of mode shapes ® are provided.

From Eq. 2.35, it is clear that the response in each mode of the system is
proportional to the response of a SDOF oscillator of frequency w; and damping ¢;
to the forcing function f(t), with the participation factor being the proportionality

constant.

Modal Superposition

The solution for the nodal displacements of the MDOF system is given by the

superposition rule

A generic response of the system (e.g., displacement, stress or internal force at

a point) can be expressed as a linear function of the nodal displacements,

z(t) = QT X(t) (2.38)
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where Q7 =[g;,92,...,9] is a vector of constants. For instance, for the relative dis-
placement between the first and second degrees of freedom Q7 = [1,-1,0,...,0]. More
generally, when a stress or internal force is of interest, Q involves the stiffness prop-

erties of the relevant structural member.
Using Eqs. 2.35-38, the generic response is given by
z(t) = QTR®Y = zﬂ: QT ®,y(t) = i QT ®;p;s;(t) = z”:a,-s,- (t) (2.39)
i=1 i=1 i=1
where
a; = Q" & p (2.40)

is the modal effective participation factor (MEPF) for mode ¢ and s;(t) is the response
of a SDOF oscillator (Eq. 2.5) of properties w; and ¢ to loading f(t), hereafter
denoted the i-th modal response. From Eq. 2.13 the t-th modal response is expressed
by

silt) = 5:(0)gi(t) + & (O)hs(2) + /0 Cf ()il - r)dr (2.41)

where s;(0) and §;(0) are the initial displacement and velocity and h;(t) and g;(t) are
identical to h(t) and g(t) in Eqs. 2.7 and 2.14, respectively, with w, and ¢, replaced
by w; and ¢;. In addition, the frequency response function of mode ¢, denoted H;(w),

is identical to Eq. 2.9 with w, and ¢, replaced by w; and ¢;, respectively.

Eq. 2.39 indicates that any generic response of the system can be expressed
as a linear superposition of the modal responses with the associated MEPF’s as
coefficients. In this superposition, the MEPF’s a; incorporate the influence of the
mode shapes and the response transfer vector Q, whereas the modal responses s (t)
incorporate the influences of the natural frequencies, damping ratios and the loading
function f(t). It is important to note that while the modal participation factors p; are

affected by a scaling of the mode shapes (e.g., multiplication by a —1), the MEPF’s
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a; remain unaffected. Therefore, the magnitude and algebraic sign of each MEPF is
an invariant characteristic of the system and the response quantity of interest. This is
not true for the modal participation factors p;. Also note that s;(t) are independent
of the response transfer vector Q and, hence, need to be solved only once for all

response quantities of interest.

The command EPF computes the vector of MEPF’s A = [a;,...,a,]T
when the response transfer vector Q, the mode shape matrix ® and

the vector of modal participation factors P are provided.

One should also note that certain response quantities cannot be expressed as
linear combinations of modal responses. An example is the principal stress at a
point. Such response quantities cannot be obtained by modal superposition. Instead,
one needs to compute intermediate response quantities (e.g., components of stress at
the point) and then combine them nonlinearly to obtain the response quantity of

interest. The analysis of such responses is beyond the scope of this study.
2.3 Models of Stochastic Excitation

For application in random vibrations, a random process z(t) is most con-
veniently described in terms of its moment functions. In particular, the first two

moment functions are of most interest, which are the mean function

u:(t) = Efz(t)] (2.42)

and the autocorrelation function

$aa(ts,ta) = Elz(ti)z(tz)] (2.43)
Furthermore, the autocovariance function is defined and related to the above by
Kzz(ti,t2) = E{[z(tl) = pa(t1))[2(t2) — b2 (t2)]}
= ¢zz (tlgt2) = Wz (tl )I‘x (t2)
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For t; =t; =t, ¢..(t,t) = E[z?(t)] is the mean-square function and K. (t,t) = o2(t)

is the variance function. For a process with zero mean, ¢.;(t1,t2) = Kz2(t1,%2).

For two processes z(t) and y(t), joint moment functions analogous to the above

are the cross-correlation function

¢=y(t1,t2) = E[z(tl)y(tZ)] (245) V

and the cross-covariance function

Kay(ts,t2) = E{[z(t:) — p=(t)]ly(t) — my (22)]}

= @ay(ts,t2) — pe(t1)ny(t2)

(2.46)

In this study a random process is usually considered to have a zero mean. This
simplifies derivations without a loss of generality, since a general process may be seen
as the superposition of a zero-mean process and its mean function. Furthermore, the
process is usually considered to be Gaussian. This is because processes encountered
in civil engineering practice are often Gaussian or assumed to be Gaussian, and
also because most results available in the theory of random processes are limited to
Gaussian processes. It is important to note that a Gaussian process is completely
defined by its second-moment functions described above. Furthermore, a Gaussian
process remains Gaussian under all linear transformations. Thus, the response of a

linear system to a Gaussian input is also Gaussian.

In the following analysis, random processes are categorized into two classes:

the class of stationary processes and the class of nonstationary processes.
2.3.1 Stationary Processes

A random process is stationary if its probability characterization remains un-
changed under an arbitrary shift of the parameter origin (Lin 1967). In most sit-

uations, only the mean and autocorrelation functions are available. Thus, a weakly
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stationary process is defined if only the mean and autocorrelation functions of the

process are known to be invariant with respect to the shift in the parameter origin.

In that case,

B:(t) = = (2.47)
and

$=2(ti,tz) = Reo(ts —t2) = Reo(r) (2.48)

where 71 =1; — i5.

The Power Spectral Density (PSD) function, ®,,(w), of a stationary process is

defined as the Fourier transform of the autocorrelation function:
1 [ .
3,.(0) = — / R..(r)e7dr (2.49)
27 J_o
This relation and its inverse
R..(r) = / P, (w)e“ dw (2.50)

are known as Wiener-Khintchine relations (Wiener 1930, Khintchine 1934). It can be
shown (Lin 1967, p57) that the PSD function is related to the incomplete Fourier

transformation of the process

— _ 1 T —iwt

Z(w,T) = o _Tz(t)e dt (2.51)
through

®,.(w) = lim %E[i(w,T)i‘(w,T)] (2.52)

where Z*(w,T) denotes the complex conjugate of Z(w,T).
Relations analogous to Eqs. 2.49 and 2.50 for two processes z(t) and y(t) are
1 [= _
%.,) = o / Ray(r)e“dr (2.53)
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R.,(r) = [_: B, ()e™" dw (2.54)

where ®,,(w) is denoted cross-PSD function.

The commands FTP and FTD compute Fourier transforms using direct
integration and discrete Fourier transform methods, respectively. These
commands can be used to compute the PSD function for a given
auto- or cross-correlation function. The commands IFTP and IFTD
compute the inverse Fourier transforms using the respective methods.
These commands can be used to compute the auto- or cross-correlation

function for a given PSD.

Models of Stationary Input in STOCAL-II

Four types of stationary input models are included in STOCAL-II. These are

specified by their PSD functions as follows:

White Noise (WN): This model (Fig. 2.2a) is defined by

<I>,f(w) = @, (2.55)
where P, is a positive constant.

Banded Linear Noise (BLN): This model (Fig. 2.2b) is defined by

P, - P, ol P, 0, — 90,
2w = y0,-0, . 0, -0

0 <ol <12 (2.56)
elsewhere ‘

where 2, > 0 and ®, and P, are such that the PSD is nonnegative over the specified

symmetric intervals.

Piecewise linear Noise (PLN): This model is formed by patching together sevéra.l

banded-linear PSD’s as shown in Fig. 2.2c. Any arbitrary PSD can be represented

by this model through a proper discretization.
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Filtered White Noise (FWN): This model (Fig. 2.2d) is defined by

¢ 2,,2,,2

wy + 4¢  ww
2 _ w2)2 222 ¢
w? —w?)? + 4¢%wiw

&, (w) = ( (2.57)

where w, and ¢, are the natural frequency and damping ratio of the filter, respectively,

and P, is a positive constant.

The above stationary process models are accessed in STOCAL-II by providing
an indicator number (I=1 for WN, I=2 for BLN, I=3 for PLN, and I=4 for FWN)

and appropriate parameters in the command line.

Generation of Sample Functions

When the PSD function ®(w) of a stationary Gaussian process is specified,
sample functions of the process can be generated by using the formula (Clough and

Penzien 1975),

z(t) = 2 i V&(w;)Aw cos(w;t + 6;) (2.58)

where ©; are random phase angles with uniform distribution in [0, 2x] and ®(w;)Aw
represents the total energy concentrated in frequency band Aw around frequency w;.
For large m, this procedure generates samples of a Gaussian process by virtue of the

central limit theorem.

The sample functions of a zero-mean stationary Gaussian process having a
given autocorrelation function R,.(r) can also be generated in the form of a vector

X given by
X =Lnu (2.59)

where u is a standard uncorrelated Gaussian vector and L is the Cholesky decompo-
sition,
R=LL" (2.60)
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where R is a positive definite, symmetric Toeplitz matrix,

o 1 eee Tp-1
r o cee Tp_2
R = : o , (2.61)
fn-1 Tpn-2 ... o

having the elements r, = R,,(kAr), k = 0,1,...,n — 1, where n is the number of
equidistant sample points. This procedure is applicable for generating short samples of
the process, since the accumulation of roundoff errors often hinders the decomposition

of a large correlation matrix.

The command GSGP generates sample functions of a zero-mean sta-
tionary and asymptotically Gaussian process with a specified PSD
function according to Eq. 2.58; the command GSGPT generates sample
functions of a zero-mean stationary Gaussian process with a specified

autocorrelation function according to Eqs. 2.59-61.
2.3.2 Nonstationary Processes

A zero-mean nonstationary Gaussian process is completely characterized by its
autocorrelation function ¢,,(t;,t;) defined in the time domain. However, for the
modeling and evaluation of random processes and for random vibration analysis of
linear systems, a characterization in the frequency domain is more desirable. For
this reason, several approaches for spectral characterization of nonstationary processes
have been proposed. These include the instantaneous spectrum (Page 1952), the
physical spectrum (Mark 1970), the evolutionary spectrum (Priestley 1965), and the

generalized spectrum (Bendat and Piersol 1962).

The first three spectra provide mixed time-and-frequency domain characteriza-
tions of the nonstationary process. At any given time, these spectra represent the
decomposition of a measure of the mean square of the process in the frequency do-

main. Nonstationarity is achieved by changing the spectral shape and content with
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time. For random vibration analysis, the instantaneous and physical spectra do not
provide convenient input/output relations. For this reason, they are not included in
the present version of STOCAL-IL Priestley’s evolutionary spectrum, on the other
hand, provides a convenient input/output relation for linear systems and is generally
favored for random vibration analysis. This spectrum is included in STOCAL-II as

described in the following section.

The generalized PSD (Bendat and Piersol 1962, Lin 1967) is defined as the
bivariate Fourier transform of the at_xtocorrelation function, ¢.z(t:,t2), and is repre-
sented in a two-dimensional frequency domain. Although this spectrum provides a
convenient input/output relation for linear systems (see Lin 1967), its use in random
vibrations has been limited due to the difficulty in its interpretation and evaluation

from recorded data. For this reason, this model is also not included in the present

development of STOCAL-IIL

The Evolutionary Spectrum

A random process in general can be represented in terms of a Fourier-Stieltjes

integral (Priestley 1965)

2() = / T et ds(w) (2.62)

B
where dS(w) is an increment process which may or may not be differentiable. The

autocorrelation function of the process with this definition is

$ez(ts,tz) = ,/.:, [: ellvrtr=e1ts) BldS(w, )dS* (ws))] (2.63)

where the superposed asterisk denotes the complex conjugate.

Consider the special case where dS,(w) is not differentiable but is an

orthogonal-increment process satisfying the relation

E[dS(w,)dS* (w2)] = ®(w1)é(wr — wy)dw; dw, (2.64)
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where ®(w) is a real, even and positive function of frequency. In that case Eq. 2.63

reduces to
buultists) = / T BW)e M dw = Ri.(t - ta) (2.65)

which is the definition of a stationary process with PSD ®(w). On the other hand,

when dS(w) is differentiable, one may write
E[dS(wl)dS‘(wg)] = Q(wl,wg)dwldwg (266)
In that case, Eq. 2.63 reduces to

bualtits) = / f B(wr,wg) 1t =93) duy dusg (2.67)

This relation is a bivariate inverse Fourier transform and, therefore, ®(w;,w;) denotes
the generalized PSD of a nonstationary process as defined by Bendat and Piersol

(1962). As mentioned earlier, this definition is not of practical interest.

Priestley (1965) defined an evolutionary process by employing the relation in
Eq. 2.64 for the increment process, but introducing a time and frequency modulating

function A(w,t) in the Stieltjes integral representation, i.e.,

2(f) = f Aw,?) & dS(w) (2.68)
Using Eq. 2.64, the autocorrelation function with this definition is

b22(t1,t) = / ” Aw,ty)A* (w, ;) B(w)e ) dy (2.69)

which for t; =t; =t yields

)] = [ lAw 0P

~= (2.70)
= / D, (w’ t)dw
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where
®..(0)) = |A(w,0)*P(w) (2.71)

This defines the evolutionary PSD function of the process. From Eq. 2.70, it is
clear that ®,,(w,t) represents the spectral decomposition of the mean square at time
instant t. Also note that this definition reduces to a stationary process if A(w,t) 7
is taken to be only a function of w. This definition of the spectrum of a nonsta-
tionary process enjoys broad acceptance in random vibrations and is mathematically

convenient.

A special class of nonstationary processes with evolutionary spectrum is defined
by specifying the modulating function A(w,t) as a function of time only. This class,

denoted uniformly modulated processes, is characterized by

z(t)

I

/ T Al) ét dS(w)

- 00

= A(t) /_ : et dS(w) (2.72)
= A(t) y(t)

where y(t) = [~ €“*dS(w) is a stationary process. Thus, a uniformly modulated
process is obtained by time-modulation of a stationary process. It is important to
note that the spectral decomposition of such a process remains unchanged with time,

except for a scaling of the spectral amplitudes.

Models of Nonstationary Input in STOCAL-II

In STOCAL-II, an evolutionary process is defined by specifying the modulating
function A(w,t) as a piecewise linear function of time and frequency. Although the
function in general can be complex, in the present development it is restricted to
being real. The frequency function ®(w) can be specified as a piecewise linear function

of frequency.
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A uniformly modulated process is defined in STOCAL-II by specifying the
modulating function A(t) as a piecewise linear function of time. The PSD ®(w) of

the associated stationary process is specified as indicated above.

Generation of Sample Functions

Sample functions of an asymptotically Gaussian process with a specified evolu-

tionary PSD are generated using the following equation:

z(t) = 2 i A(w;, 1) V/®(w;)Aw cos(w;t + 6;) (2.73)

where ©; are independent random phase angles with uniform distribution in [0, 2x],
A(w,t) is the specified modulating function, ®(w) is the time-invariant part of the

evolutionary PSD, and Aw is the frequency increment.

The command GEGP generates sample functions of an evolutionary
process with a specified evolutionary PSD. Samples of a uniformly
modulated process can be generated by using either the command
GEGP or the commands GSGP and TSSF. In the latter case, sam-
ple functions of the stationary process are generated first and then

multiplied by the time modulating function.
2.4 Response to Stochastic Excitation

A random dynamic loading, f(t), can always be separated into a mean loading,

pys(t), and a zero-mean random fluctuating component, f (t), ie.,

) = w(®)+7(2) (2.74)

Substituting Eq. 2.74 into Eq. 2.13, the response of the linear oscillator can be written

s(t) = s(0)g(t) + (0)A(t) + ‘/0t ps(r)h(t — r)dr + /ot f(r)h(t —r)dr (2.75)

42



where the function g(t) and h(t) are as defined in Section 2.2.1. Assuming determin-
istic initial conditions, the first three terms on the right hand side can be evaluated
by conventional deterministic dynamic analysis methods. Only the fourth term is
nondeterministic. Evaluation of the statistical characteristics of this latter term for
the SDOF oscillator and MDOF systems is the subject of study for the remainder of
this chapter. Thus, unless specified otherwise, in the remainder of this chapter the
input excitation will be considered to be a zero-mean process and the system initial
conditions will be assumed to be zero. For non-zero initial conditions or non-zero
mean excitation, the deterministic solution and the superposition rule in Eq. 2.75
can be used to obtain the complete response. For the convenience of notation, the

superposed tilde on the zero-mean random excitation f (t) will be dropped henceforth.

In random vibration analysis of linear systems, usually a second-moment char-
acterization of the response is of interest. For a zero-mean excitation, this charac-
terization is either in terms of the auto- or cross-correlation function or the auto-
or cross-PSD function of the response. In addition, many results for stationary pro-
cesses are given in terms of spectral moments. These quantities are formulated in the

following sections for stationary and nonstationary responses.
2.4.1 Stationary Response

The response of a stable system to a stationary excitation f(t) approaches
stationarity after the effect of initial conditions is diminished. Mathematically, this
is achieved by assuming that the excitation started in the infinite past. Thus, the

stationary response of mode ¢ of an MDOF system is given by

si(t) = /_ ; f@)hs(t - r)dr (2.76)

where h;(t) is the impulse response function of the mode ¢ as defined in Section 2.2.2.

The generic term in the solution of the auto- or cross-correlation function of
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the response of an MDOF system is the modal cross-correlation function given by

¢ii(ts,ta) = E| /: : f(r)ha(ts — r)dr, /_ : ()b 2 = r2)dra (2.77)

= / / R;y(n — m2)hi(ty — n)h;(t; — 73)drydr,

in which the upper limits of the integrals are replaced by oo by observing that
h(u) =0 for u < 0. Expressing the autocorrelation function of the excitation in terms

of the PSD and changing the orders of integration, one obtains
©o co
¢"J'(tl)t2) = / Q,,(w)/ h‘-(t1 - 1-1) e‘i“(‘x-n) dr,
—oo oo

o
h.(tz -7 eiw(iz-f:) dr, elv(t1—t3) dw
/-°° ’ : (2.78)

I

o
/ @y (w)H; (w)H} (w)e'“ 7)) du
= Rij(t — t2)
where H;(w) = [%_ hi(r)e"7dr is the frequency response function of mode i, and
R;;(.) is used to denote the stationary form of the cross-correlation function. This

relation defines the modal cross-PSD function

2;(w) = Hi(w)H;(w)®ss(w) (2.79)

Eqgs. 2.78 and 2.79 are the generic modal solutions needed for computing dis-
placement or displacement-related (e.g., internal forces and stresses) responses of the
MDOF system. More generally, one is also interested in the time derivatives of the
response. The generic modal solutions needed then are the cross-correlation or cross-
PSD function between the m;-th derivative of mode ¢ and the m,-th derivative of

mode j. Assuming the derivative processes exist, the required functions are given by

mi,ma ma aml+m’R"J'(r)
R ™) (1) = (-1) Trmitms
oo (2.80)
- [ (i)™ (i)™ H) () ()
and
M m (W) = (w)™ (—iw)™ H; (0) Hj (w) @y 4 () (2.81)
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As described in Section 2.5, most response statistics of interest are expressed
in terms of the spectral moments of the PSD. The generic term needed for such

evaluation is the cross-modal spectral moments defined by (Der Kiureghian 1980)
Amij = 2 Re / O H () H: ()8 (@)do  m=0,1,2,. (2.82)
(1]

where Re denotes the real part.

The terms <I>g."""")(w), Rg.""'"’)(r) and ),,;; are all the generic solutions
needed for stationary random vibration analysis using the modal approach. Detailed
solutions of these functions for the four types of input excitations defined in Section
2.3.1 are described in Chapter 3. In the following section modal superposition rules

for computing the total response in terms of these generic terms are presented.

Modal Superposition

Consider two response quantities z; and 2, having the MEPF’s; a;; and a,;,
for 1 =1,2,...,n, where n is the number of degrees of freedom of the MDOF system.
The cross-correlation and cross-PSD functions for the m;-th and m,-th derivatives of

z; and z, are obtained by modal superposition from

n n
Rma™a)(r) = 3 ay ay; RT™(r) (2.83)
i
and
mamad(w) = DY ay 6y BT (w) (2.84)
L )

Obviously, the autocorrelation and auto-PSD functions are obtained if z; and 2,
denote the same response quantity. Note that these expressions fully account for the

cross-correlation between modal responses.

The spectral moments for a response quantity z(t) are obtained from the su-

perposition rule

Am = D) 8 85 Amy; (2.85)

A J
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where a; denote the MEPF’s.

The commands SCF and SPSD compute the auto/cross-correlation and
auto/cross-PSD functions of the m,-th and m,-th derivatives of two
response quantities z, and 2z, when the modal frequencies, damping
ratios, and MEPF’s of the MDOF system and the PSD function of
the stationary input are provided. The command SRSM computes
the spectral moments of a response quantity z when the same modal

information is provided.
2.4.2 Nonstationary Response

Using an evolutionary representation of the excitation, the response in mode

of the MDOF system is given by
t
slt) = / F)hilt —7) dr
0

. (2.86)
= /0 [/;w Ag(w,7)ev"dS, (w)] hi(t—7) dr

in which Ajy(w,t) represents the modulating function and dS;(w) denotes the
orthogonal-increment process of the input excitation (see Section 2.3.2). After ex-

changing the order of integration, one obtains

8(t) = /w M; (w,t)e“tdS; (w) (2.87)
where

M;(w,t) = /: Af(w,7) hi(t—17) e @07 gr (2.88)

Thus, the response is also an evolutionary process with the modulating function
M;(w,t). Using the orthogonal property of dS;(w), the generic modal cross-correlation

function is given by
i (t1,t2) =/ Mi(w,t)) M;(w,t:) ®75(w) €“t17%) dw (2.89)
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where the superposed asterisk denotes the complex conjugate. Comparing Eqs. 2.69

and 2.89, it is clear that the generic modal evolutionary cross-PSD function is

Pij(w,t) = Mi(w,t) Mj(w,t) &ss(w) (2.90)

Eqs. 2.89 and 2.90 are the generic modal solutions needed for computing dis-
placement or displacement-related nonstationary responses of the MDOF system. More
generally, one is also interested in the time derivatives of the response. The generic
modal solutions needed then are the cross-correlation or evolutionary cross-PSD func-
tion between the m,-th derivative of mode ¢ and the m,-th derivative of mode j.

Assuming the derivative processes exist, the required functions are given by

gmigms E[S,‘ (tl)Sj (tz)]
Ere¥ T

=/ M(mx)(w,tl)M}m:)*(w’tz)QII(w)eiw(tx—t,)dw
)

¢§;~M'm’)(t1,t2) =

(2.91)

and
(™) (w,1) = M (w0, )M (0, 8)8; () (2.92)

where

m L gma .
M) (w,t) = e s (M, t)e*] (2.93)
The terms Qf;'"m’)(w,t) and ¢§;""m’)(t1,t2) are both the generic solutions
needed for nonstationary random vibration analysis using the modal approach. De-
tailed solutions of these functions for the particular forms of A;(w,t) and ®,(w)
defined in Section 2.3.2 are described in Chapter 3. In the following section modal

superposition rules for computing the total response in terms of these generic terms

are presented.
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Modal Superposition

Consider two response quantities z;, and 2; having the MEPF’s, a,; and a,;,
for + =1,2,...,n, where n is the number of degrees of freedom of the MDOF system.
The cross-correlation and evolutionary cross-PSD functions for the m;-th and m,-th

derivatives of z; and 2; are obtained by modal superposition from

n n
$irLm) (t,1,) = Z a;; Gz; ¢g~nl’m2)(t1,tz) (2.94)
i g
n n
‘I’,‘,’:‘,‘,""’)(w,t) = ZZ a;; ag; Qf;f'"'"’)(w,t) (2.95)
L )

Obviously, the autocorrelation and evolutionary auto-PSD functions are obtained if 2,
and z; denote the same response quantity. Note that these expressions fully account

for the cross-correlation between modal responses.

The commands ECF and EPSD compute the auto/cross-correlation
and evolutionary auto/cross-PSD functions of the m,-th and m,-th
time derivatives of two response quantities z, and z, when the modal
frequencies, damping ratios, and MEPF’s of the MDOF system and
the time-frequency modulating and time-invariant PSD functions of

the evolutionary input are provided.

When the input is a uniformly modulated process (see Eq. 2.72), the expres-
sions from Eq. 2.86 to Eq. 2.95 can be used used with A;(w,t) replaced by A,(t).

The commands TCF and TPSD compute the auto/cross-correlation
and evolutionary auto/cross-PSD functions of the m,-th and m,-th
time derivatives of two response quantities 2z, and z; when the modal
natural frequencies, damping ratios, and MEPF’s of the MDOF sys-
tem and the time modulating and time-invariant PSD functions of the

uniformly modulated input are provided.
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2.5 Response Statistics of Engineering Interest

The ultimate purpose in using random vibration theory in structural engi-
neering is to assess the reliability of structures. Two kinds of failure events are of
interest in such applications: first-excursion failures, which occur at the first crossing
of the dynamic response above or below a specified threshold, and fatigue-type fail-
ures, which occur due to damage accumulated from repeated response cycles. Detailed
review of models used for describing these events is beyond the scope of this study.
The emphasis instead is on formulating those statistical measures of the response that
are necessary in assessing the reliability against these failure events, and the coding
of these formulations in STOCAL-IL. The statistics considered include crossing rates
and distributions of local and extreme peaks for a general response, and the spectral
moments, measures of bandwidth and the characteristics of the envelope process for
a stationary response. Since these are well known results in the theory of random

processes, derivations of the formulas are not presented.
2.5.1 Spectral Moments

The statistics of a stationary process z(t) are well represented by its first few

spectral moments, defined by
Am = / w™®,, (w)dw m=0,1,2,... (2.96)
V]

In particular, for a zero-mean process,

A = E[2*@t)] = o2 (2.97)
A = E[#(t)] = o2 (2.98)
A = E[F(t)] = o2 (2.99)

which are the mean squares (or variances) of the process and its first two derivatives.

Furthermore, A\; = —E|[z(t)Z(t)] is the negative cross-correlation of the process and
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its second derivative. The first spectral moment, A,, is the cross-correlation of the

process and the time derivative of its Hilbert transform (Grigorius 1981), i.e.,
A = Ez(t)z()] (2.100)

where

(2.101)

m)=%[:m%f

The latter spectral moment is of interest in characterizing the envelope process and

the extreme peak.

The command SM computes the spectral moments of a stationary

process when the PSD is provided.

For a zero-mean evolutionary, nonstationary process z(t), the mean squares
of the process and its time derivatives are obtained as the area underneath the
corresponding evolutionary PSD functions. In terms of the autocorrelation functions

defined in Eq. 2.94, these are

$:2(t,t) = E[z°(t)] = oi(t) (2.102)
$EV(Y) = E[F@)] = 02(0) (2.103)
$2(t,t) = E[(t)] = o2() (2.104)

Note that spectral moments defined according to Eq. 2.96 with the evolutionary
PSD could not produce the mean squares of the derivative processes due to the
time dependent modulating function. In addition to the above, the following cross-

correlation coefficient functions are also of interest,

()]

p=s(t) = . ()2 (1) (2.105)
()

Pzz (t) - o, (t) os (t) (2'106)
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¢t (t,1)

pll) = o, @00

(2.107)

The command EMS computes the variances and cross-correlation coef-
ficients of an evolutionary process. The command TMS computes the

same results when a uniformly modulated process is provided.

The command ERMS computes the variances and cross-correlation co-
efficients of the response and response derivatives of an MDOF sys-
tem subjected to an evolutionary input when the modal frequencies,
damping ratios, and MEPF’s of the system and the modulating and
PSD functions of the evolutionary input are provided. The commands
TRMS computes the same results when the input is a uniformly mod-

ulated process.
2.5.2 Measures of Bandwidth

The shape of the PSD function of a process, in particular its bandwidth,
has a distinct influence on the statistical character of the process. Various measures
of bandwidth (also known as regularity factors) have been defined for stationary

processes. These include

o = 22 0<a<l (2.108)

VAo

which was defined by Cartwright and Longuet-Higgins (1956), and

A

5=\ %o

0<é<1 (2.109)

which was defined by Vanmarcke (1972). A large a or small § denotes a narrow-band

process.
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2.5.3 Crossing Rates

Let z(t) be a mean-square differentiable process. According to Rice (1944,

1945), the mean rate of upcrossing of z(t) above a threshold a at time ¢ is given by
v(a*,t) = / i fos(a,3;t)di (2.110)
0
where f.:(z,z;t) denotes the joint PDF of z(t) and Z(t) at time t.

When z(t) is a zero-mean stationary Gaussian process, the mean upcrossing

rate becomes

1 a,

ve(a®) = 270,

) (2.111)

0-2

which is invariant of time. The mean upcrossing rate of level zero, commonly known

as the apparent frequency is

1 [ 1 Ag
Vo = Vz(0+) = 5;;— = -2'; 'i; (2112)
z

When z(t) is a zero-mean nonstationary Gaussian process, the mean upcrossing

rate of level a becomes

(2.113)

v(a*,t) = . \/21’_:3 &) :: g; ( 2 2(t)) [¥(r) + r2(r)]

where ¢(.) and ®(.) denote the standard normal probability distribution function

(PDF) and cumulative distribution function (CDF), respectively, and

pz:(t) a
V1-72,(t) o= (1) (2.114)

The zero upcrossing rate is
y(o*,g) = Y1zt o:(t) (2.115)

2x o.(t)
Note that the above crossing rates in general are functions of time.
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Similar results can be derived for threshold down-crossing rates by use of

symmetry principles.
2.5.4 Distribution of Local Peaks

A local peak of a differentiable process z(t) occurs whenever the derivative
process z(t) crosses down the zero level. The mean rate of local peaks, therefore, is
given by

v;(07,t) = f ’ |Z| f:2(0,%;t)dE (2.116)

where f::(z,%;t) is the joint PDF of Z(t) and Z(t) at same time. The mean rate of

local peaks above level a is given by (Rice 1944, 1945)

ula,t) = / dz / 18] fos(z,0, 5 t)di (2.117)

where f. ::(z,%,%;t) is the joint PDF of z(t), #(t) and #(t) at time t. From this
result, the PDF of peaks at level a is given by (Huston and Skopinski 1956)

hlat) = -2l

1 . v ..
m/_w |Z| f(a,0,%;t)di

For a zero-mean stationary Gaussian process, the PDF of local peaks is inde-

(2.118)

pendent of time and is given by (Cartwright and Longuet-Higgins 1956)

Vv1- a? aa
@) = = enp|- 20—2(‘1??5] raer(-3)t(esn) o)
where a is the bandwidth factor in Eq. 2.108. The CDF is

Fy(a) = Q(ﬁz) a ezp( ;az) Q(_\/—l_—_f‘;T%) (2.120)

For a zero-mean nonstationary Gaussian process, the use of Eq. 2.118 leads to

a; = \/% T)+7P(r
Frfest) 1= OV =700 TRl

P { 2p0 a,(t))z[ 1-p2:(t) - lp ”(tl)l'_”;i((tt)ﬁis(t)]’ ]}

(2.121)
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where

= = Pex(t) —p=s(t)pss(t) a

T V=20 ()

and po =1+ 2p.:(t)p-z(t)p:2(t) — P2, (t) — p2;(t) — p2;(2).

(2.122)

2.5.5 Envelope of Narrow-Band Stationary Process

The envelope of a narrow-band process z(t) is defined as a pair of smoothly
varying processes E(t) such that |E(t)| > |z(t)| for all ¢ and |E(t)| = |z(t)| at, or
very nearly at, the peaks of z(t). One definition of the envelope for a narrow-band

stationary process is (Rice 1944, 1945),
z(t) = E(t) coswnt+ 6(1)] (2.123)

where w,, represents a midband frequency and ©(t) denotes a random phase process.
The midband frequency is selected such that E(t) and ©(t) are much more slowly
varying with time than z(t). Another definition of the envelope by Cramer and
Leadbetter (1967) is

E*t) = (1) +2%(t) (2.124)

where Z(t) is the Hilbert transform in Eq. 2.101. For a stationary Gaussian process

both above definitions lead to the following joint PDF of E(t) and its derivative E(t),

a 1,a° v?
feg (a,v) = \/5;02655-6::? [— E(E + 502 )] (2.125)

where § is the bandwidth factor in Eq. 2.109. From this equation, E(t) and E(t) are

found to be statistically independent with Rayleigh and normal marginal distributions,

2
fe(a) = ;‘%ezp(—z';,) (2.126)
1 v?
feglv) = Eezp(-w) (2.127)
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The means and standard deviations of E(t) and E(t) are

pg = % o, (2.128)

o = 2—% i (2.129)
and

pg = 0 (2.130)

o, = bo, (2.131)

Using Eqgs. 2.110 and 2.111, the mean upcrossing rate of the envelope process is

ve(at) = ﬁafu,(a+) (2.132)

2.5.6 Distribution of Extreme Peak

The one-sided extreme peak of a process z(t) over a duration (0, r) is defined

z, = max z(t) (2.133)

0<t<T

For a zero-mean process, the two-sided extreme peak defined by

z, = max |z(t) (2.134)

0<t<r

is also of interest.

When the crossings of the process above level a are assumed to be statistically
independent and to constitute Poisson events, the cumulative distribution of the one-

side extreme peak is given by

F.,(a) = ezp|- fo ' v.(a*,t)dt] (2.135)
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Where z(0) < a is assumed. For the two-side extreme peak of a zero-mean process,

the CDF is given by

F, (a) = ezp[— /: [vz(at,t) + v (—a” ,t)]dt] (2.136)

The assumption of statistical independence between upcrossings is not reason-
able for a narrow-band process. In fact, for every upcrossing of the envelope process
E(t), one may expect a clumping of the upcrossings of the narrow-band process at
the same level (see Fig. 2.3). Vanmarcke (1975) has derived the following expression
for the expected clump size associated with a qualified upcrossing of the envelope
(i.e., an upcrossing of the envelope which includes at least one upcrossing of the

process) of a stationary process:

1
1 - ezp(—V2r6 %)

Considering such qualified crossing as independent events, he has obtained the follow-

E[clump size] = (2.137)

ing CDF for the extreme peak z, of a zero-mean stationary Gaussian process,

1- e VEsr
LA S

eT —1

F, (a) = (1- e‘zﬂl) ea:p(—u,r ) r>0 (2.138)

where r = . This expression denotes the distribution of the one-sided extreme peak
when 6, = (26)*2 and v, = v,, and it denotes the distribution of the two-side extreme
peak when §, = (§)*-*> and v, = 2v,, where § and v, denote the bandwidth factor in
Eq. 2.109 and the mean zero-crossing rate in Eq. 2.112, respectively. The mean and

standard deviation of the extreme peak may be obtained from
Bz, = P O; (2.139)

0., = q 0 (2.140)

where p and ¢ are peak factors, approximately given by (Der Kiureghian 1980)

0.5772

Vain(r)

p = Vain(vr)+ (2.141)
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12 5.4 \
= V2In(vr) T 1.3+ [2n(vr)]P? (2.142)

where

(1.6389-37% — 0.38)v,r 0.063 < 6, < 0.64 (2.143)

maz(2.1, 26, v.7) 0.0 <6, < 0.063
vr =
v.T 0.64 < &,

The above relations, which are extended from their original version to account for
both the one-sided and two-sided extreme peaks, are appropriated for earthquake
engineering applications where v.7 < 1000 . For larger values of v.r, which may occur

in wind or ocean engineering problems, the following expressions due to Davenport

(1964)

0.5772

Vv 2in(v,r)

p = V2in(v.r) + (2.144)

1

e N (2.145)

For a nonstationary process, the current version of STOCAL-II uses Eqgs. 2.135

and 2.136 to computes the probability distribution of the extreme peak.

The command SSGP computes the statistics of a stationary Gaussian
process, including the root mean squares of the process, its envelope
and their derivatives, the apparent frequency, the regularity factors,
mean upcrossing rates, the mean clump size, and CDF’s and PDF'’s of
the local and extreme peaks and the envelope process when the first
few spectral moments are provided. Furthermore, the commands LPKD
and EXTD compute the PDF and CDF of the local and extreme

peaks, respectively, the results of which can be plotted.
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The command NCR computes the mean upcrossing rates at speci-
fied thresholds when the matrix containing the variances and cross-
correlation coefficients of a zero-mean nonstationary Gaussian process
and its derivatives is provided. The commands NDLP and NDEP re-
spectively compute the the PDF of local peaks and the CDF of the
extreme peak at specified levels when the same variance matrix in the

preceding command is provided.
2.6 The Response Spectrum Method

In earthquake engineering, the input ground motion is usually specified in terms
of the response spectrum. By definition, the response spectrum of a ground motion
process is a plot of the mean maximum response of an oscillator to the specified
base motion, expressed as a function of the oscillator frequency and damping ratio.
Der Kiureghian (1980) has shown that this specification of the input can be used
to carry out complete random vibration analysis under two assumptions: (a) the
input excitation is wide band and the dominant modes of vibration are within the
significant range of input frequencies; and (b) the strong-motion phase of the ground
motion is at least several times longer than the fundamental period of the structure.
Employing the modal combination rule for the spectral moments of a stationary
response, Eq. 2.85, Der Kiureghian (1981) developed the following relation for the

m-th spectral moment of the MDOF response

n n
1
Am = ZZa;ajpm,sjwm,ewm,jﬁjD(w;,g.-)D(w,-,g,-), m=0,1,2 (2.146)
i g +59
in which
Amis
Pmi; = T'—;’— (2.147)
m,is Sm,3)
A oo
Umi = ([T (2.148)
0,5
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In the above relation D(w;,¢;) is the ordinate of the (displacement) response spectrum
for mode ¢, and p; is a peak factor for mode s given by Eq. 2.141 in terms of the
spectral moments Ap, ;i (m = 0,1,2) of the response in mode ¢ and the duration of
the excitation. The latter factor is used to define the response spectrum ordinate in

terms of the modal mean square response.

The above formulation is exact if the input process is stationary and the exact
modal spectral moments are employed to compute pp,;;, Wm, and p;. In practice,
the input is not stationary and the modal spectral moments are not available. In
that case, Der Kiureghian (1981) has shown that sufficiently accurate results can be
obtained by approximating p,,:;, Wm, and p; by their values for simple stationary
models, such as the WN model. This approximation works well because these terms
are expressed in terms of the ratios of spectral moments rather than their absolute
values. More accurate approximations are obtained by using the FWN model (Igusa
and Der Kiureghian 1985). In STOCAL-II, the terms can also be approximated by
using the BLN or PLN model. In that case, pp;j, wm,: and p; are obtained from
Eqgs. 2.147, 2,148 and 2.141, based on A,,;; and A, ;; obtained from Eq. 2.82.

With the spectral moments for m = 0,1,2 determined, various statistical mea-
sures of the response can be obtained as described in Section 2.5.1. In particular,
the mean maximum response is obtained by the product p\/A,, where p is the peak
factor of the total response computed from Eq. 2.141. Noting that the ratios p/p;
appearing in the expression for the product pVA, are near unity, Der Kiureghian
(1981) suggested a simpler modal combination rule for the mean maximum response.

This rule, now known as the CQC rule (Wilson et al. 1981), is

Ellz.l] = [33 acaip0. Dlwn)Dlws, )] (2.149)
LI )
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where

_ 8,/5iG; (s + rg;)r*/?
Posi = = + daigyr (14 12) + 48 + 5072 (2:150)

where r = w;/w;. One should note that the above modal combination rule does not

include the effect of the peak factors.

The command RSM computes the first few spectral moments of the
response of an MDOF system when the modal frequencies, damping
ratios, MEPF’s and the input response spectrum are specified. These
spectral moments may be used with the command SSGP to compute
the response statistics. The command CQC computes the mean max-

imum response according to Eq. 2.149.
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CHAPTER 3

NUMERICAL COMPUTATION

3.1 Introduction

This chapter describes the formulas and numerical algorithms used for comput-
ing the general results derived in Chapter 2 and their implementation in STOCAL-II.
The results include the generic solutions for the cross-modal responses, including the
modal cross-PSD and cross-correlation functions for stationary and nonstationary re-
sponses, and the cross-modal spectral moments for stationary responses. Moreover,
the numerical algorithms for the Fourier and inverse Fourier transforms are described
in Section 3.4. Consistent with the objectives of STOCAL-II, the formulas and algo-
rithms presented in this chapter stress the generality rather than efficiency of compu-

tations.
3.2 Stationary Response

In this section, the expressions for numerical computation of the generic cross-

modal terms Qf;"""")(w), ¢™™)(r) and An.; are presented. Stationary inputs

under consideration are the WN, the BLN and the FWN models described in Section
2.3.1. The solution for an input with an arbitrary, piecewise linear PSD is obtained

by patching together the solutions for BLN inputs.

3.2.1 Modal Cross-PSD Functions
From Eq. 2.81, the (m; + m;)-th order modal cross-PSD function is
S (W) = (W)™ (—iw)™ Hi () B ()7 (@) (3.1)

where H;(w) is the frequency response function of mode ¢ given in Eq. 2.9 with

w, and ¢, replaced by w; and ¢, respectively, and the asterisk denotes the complex
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conjugate. For a given input PSD, this function is computed term by term for all
specified frequency values. For ¢ # j, the modal cross-PSD function is complex valued
with an even real part and an odd imaginary part; for ¢ = j, the imaginary part is

zero and the real part is a positive and even function of w.
3.2.2 Modal Cross-Correlation Functions

The (m,; + m;)-th order modal cross-correlation function is given in terms of

the corresponding cross-PSD function by the inverse Fourier transform

R ™) (r) = j 8™ () €47 dw (3.20)

When appropriate, this integral is computed by using the residue theorem. It can be
shown (Henrici 1974, p256) that

/ Qg;f'"m’)(w)e“"'dw= 2xi E res[Qg""m’)(z)]ei" T>0

Imz>0 . (32b)
= — 2mi Z res[{)('."""‘z)(z)]em F<0

Imz<0 Y
where the sum involves the residues of Qg""m’)(z)ei" at all poles in the upper half-
plane for 7 > 0, or in the lower half-plane for r < 0, and <I>§:,.""m’)(z)eizf is a rational
function with no poles on the real axis and a zero of order > 1 at infinity. Other

integration methods are employed when the residue theorem is not applicable.

Response to White Noise

The solution for the response to a WN input (Eq. 2.55) is obtained by using
Egs. 3.2. For m; +m; <3
BT ™) (1) = 2086()™ ()™ [Ru(a) + Ra(2)] 720

(3.3a)
= 2x®, (i)™ (—i)™** ! [Rs(23) + Ru(2d)] 7<O
where 2z, k=1,2,3,4, are the poles in the complex plane given by
212 = (/1 - ¢ +ig)w;
(3.3%)

234 = (£y/1 - ¢} —igj)w;
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The residue at pole z; is given by

z1m1+mz eiz;r

Rl (2'1) = (31 - 12)(31 - zs)(zl - 3'4)

(3.3¢)

Similar expressions hold for the residues at poles 2;, 23 and 2.
Note that Rg."""")(r) does not exist for m; +m; > 3.

Response to Banded Linear Noise

The solution for the response to a BLN input (Eq. 2.56) is obtained by using
the method of partial fractions (Kreyszig 1972, p158) and direct integration:

awm+1 + bwm

4 Qs
R!"nx,mz) = (Y1 {3 mgQ / iwfdw
R e
-0, _,,,m+1 m
+/ o 2% + bw e“'”dw}
-0, W — 2
4 (3.4a)
= i™1 (=)™ ®, E ek [ad(zk,m +1,0,,0,,7)

k=1
+ bJ (2, m,0,,0,,7) —aJ (2, m+1,-0;,-Qy,7)

+ bJ(zk, m, -, -, T)]

where m = m; +my, 2, k = 1,2,3,4, are as in Eq. 3.3b, J[.] is the compound

exponential integral described in Appendix A, and ¢, are as follows:

. = 1
1= (21 — 22)(21 — 23)(21 — 24)
Cy = L
(22 — 21)(22 I z3)(22 — z4) (3.4b)
= os — 21)(2s — 22) (25 — 22)
4= L

(20 — 21) (24 — 23) (24 — 23)

Response to Filtered White Noise

The solution for the response to a FWN input (Eq. 2.57) is obtained by using

Egs. 3.2. For m; + m; < 5,
RP+™)(r) = 2x®, (i)™ *1(-i)™ R (3.50)
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where

R= Z Ry () SgF G or wygFw, 720
k=1,2,5,6
= Z Ry (=) $g=¢ and wy =w;, 720
=L (3.5b)
= - Y Rean) gFgGorwFw, 1<0
k=3,4,7,8
= —th’k(zk) ¢ =¢ and wy; =w;, 7<0
k=3,4
where 2, k=1,2,3,4, are as in Eq. 3.3b and
z56 = (£4/1—¢2 +ig)wy (
3.5¢)

278 = (:h\/ 1-¢2 - igg)wy

An order 1 residue occurs at pole z; when ¢, # ¢ or w, # w;, which is given by

(w +4§:w )zm1+mz iz1r

R =
(1) I, (s — )

(3.5d)

Similar expressions hold for the first order residues at the remaining poles. An order
2 residue, denoted by a superposed bar, occurs at pole z; when ¢, =¢ and w, = w;,

and is given by

Rl(zl) — 2, 1+ms izyr [8§2w211 + (w4 + 4§2w212
(21 - 22)2Hk=3,4,7,s (zl - zk) 99 d 979"
(m1 tmy 2 1 )] (3.5€)
41 21 — 22 2 — %

k=3,4,7,8
The residue R,(z;) is similar to the above with the positions of 2; and z; switched.

Also, R;(23) is given by

_ z;"l-f'mz iz T [ 2
= + (w) +4
Rs(zs) (z - 34)2Hk..1 2,6 6(23 - zk) zs (w §g
m; + m, . (3‘5f)
( 23 tir- = 24 Z - 2k ]

k= 1,2,5,6

and R,(z,) is similar with the positions of 23 and z, switched.

Note that Rg."""”)(r) does not exist for m; +m, > 5.
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3.2.3 Modal Cross-Spectral Moments

The modal cross-spectral moments are defined by
Am,ij = 2 Re / w™ ng(&)) dw m=0,l,2,... (36(1)
0

When m is even, these moments can be computed as values of the modal cross-
correlation function, Eqs. 3.2, for r = 0. However, here, a computationally more
efficient formulation is presented, which is applicable to even as well as odd values of

m from the residue theorem (Henrici 1974, p259):

= a, m 2xi a,m
/; w w @.,(w)dw= eres [Z F4 “j(Z)] (36b)

where z%, 0 < a < 1, is computed with arg(z) € (0,2x), the sum involves the residues
at all nonzero poles of 2™ ®;;(z), and z™®;;(z) is a rational function with no poles
on the positive real axis, a pole of order < 1 at O, and a zero of order > 2 at

infinity. Applying L’Hopital’s rule to Eq. 3.6b when a approaches zero, gives

/:o WP (w)dw = — Zres [In(2)z™®;;(2)) (3.6¢)

where In(z) is the logarithmic function defined in Appendix A. This approach is used

to compute the spectral moments for WN and FWN inputs.

Response to White Noise

The solution for the response to a WN input is obtained by using Eqgs. 3.6.

For m< 2,

4
Ami; = Re [_ERk(zk)] (3.7a)
k=1
where z, are as in Eq. 3.3b and the residue for pole z, is

In(21)(z,)™
(21 = z2) (21 — 23) (21 — z4)

Ri(z) = (3.75)
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Similar expressions hold for the residues at the remaining poles.
Note that A, ;; does not exist when m > 2.

Response to Banded Linear Noise

The solution for the response to a BLN input is by using partial fractions and

direct integration:

m+l m
Ami; = 280 Re [Z / ——-‘*idw

(3.8)

=2<I>0Re[z:ck[a I(z,m+1,9,,0,) + b I(zk,m,ﬂl,ﬂz)]]
k=1

where I[.] is the compound logarithmic integral described in Appendix A. Other terms

in the above equation are defined in Eq. 3.4b.

Response to Filtered White Noise

The solution for the response to a FWN input is obtained by using Egs. 3.6.

For m <5,
r 8
Am,i; =— Re Z R, (z,,)} case 1
k=1
- 4
=— Re Z _k(z,,)] case 2
k=1

(3.9a)

= — Re Z Ry (z) + Z Rk(z,,)] case 3

'k=1, k=3,4,7,8

= — Re Ri(z) + Z Rk(zk)] case 4

"k=3,4 k=1,2,6,6

where case 1: ¢ # ¢ or w, # w;, and ¢ # ¢; or w, # w;, case 2: ¢, = ¢ and
w, = w;, and ¢ = ¢; and w, = w;, case 3: ¢ = ¢ and w, = w;, and ¢, # ¢; or
wy, # wyj, and case 4: ¢, F ¢ or w, #w;, and ¢ = ¢; and w, = w;. Also, z, are as
in Egs. 3.3b and 3.5c. The residue of order 1 at pole z, is given by

In(2;)z (W) + 4g2w2 22

Ri(z) = B, (s =) (3.9¢)
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Similar expressions hold for the residues of order 1 at the remaining poles. The

residue of order 2 at pole z; is given by

_ zm— 1
R = 1
() (21 — 22)?*Mi=s,4,7,8 (21 — 2)
86262 22In(z) + [1+ m In(z,)|(w} + 4670722) (394)
— zln(z)(w) + 46%w222)( Z - ]
k=3,4,7,8 22 %k

and R,(z;) is similar with the positions of z; and z, switched. Also, the residue

Ry (z5) is given by
P

(13 - 24)2nk= 1,2,6,6 (13 - 11:)

[ngwgzgln(zs) + (1 +m In(zs))(w) + 42w2 23 (3.9¢)

2 1
- 23171(28)((‘): + 4"02(0313 (7-3 — 24 + Z 23 — Zk)]

k=1,2,6,6 ~°

R3 (23) =

and R,(z,) is similar with the positions of z; and 2z, switched.
Note that A, ;; does not exist when m > 5.
3.3 Nonstationary Response

In this section, expressions for the the numerical computation of the generic
cross-modal response of an MDOF system to an evolutionary excitation are devel-
oped. In section 3.3.1, a convenient model for the modulation function A(w,t) is
proposed, which is used to describe the evolutionary, nonstationary input. Based on
this model, expressions for computing the generic modal terms, Q(m"m’)(w,tl,tg) and

¢f.;"""")(t1,t3), are presented in sections 3.3.2 and 3.3.3, respectively.
3.3.1 Models of Modulating Function

A nonstationary process with the evolutionary spectrum is described by the

PSD function, ®(w), of the independent-increment process dS(w) and the modulating
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function A(w,t), see Eq. 2.71. ®P(w) defines the overall frequency content of the
process, whereas the modulating function A(w,t) describes its evolutionary behavior
in both frequency and time domains. In general, the modulating function A(w,t) is

assumed to be slowly varying in both w and ¢.

Exact, closed form solutions of the response of a linear oscillator or MDOF
system to an evolutionary input with a general modulating function are not available,
or are extremely lengthy due to the multi-fold integrals that are involved. As a result,
only a few simple cases of the modulating function have been considered, mostly as
a function A(t) of time alone. Lin (1963) used A(t) as a step or half sine function;
Barnoski and Maurer (1969) used a rectangular function; Hasselman (1972) used a
stair case function; Roberts (1971) used a periodic function; Saragoni and Hart (1974)
used a gamma function; Shinozuka and Sato (1967), Corotis and Marshall (1977), and
To (1982, 1984) used an exponential function; and Gasparini (1979) used a piecewise
linear time function. The above models all produce nonstationary processes which are
evolutionary only in the time domain; i.e., their frequency contents remain fixed in

time. This class of evolutionary processes are known as uniformly modulated process.

In order to provide a flexible yet effective means for implementing the evo-
lutionary process model in STOCAL-II, we have assumed A(w,t) to be a piecewise

linear function in both frequency and time variables:

Aw, ) =) Au(w,t) (3.10a)

where
A (w,t) = agwt + byew + et + di O <w< Dy
T <t <Ti4: (3.108)
=0 elsewhere

where O, [ =1,2,..., and T}, k= 1,2,..., are the selected frequency and time points

71



(denoted transition points), respectively, and a, by, ¢ and dj; are given by

e A, Tx) — A, Tetn) = A(Qu4 1, Te) + A(Qutr, Tes1)
= (Te+1 = T} (Do — )

_ Tesa[A(Qi41, T) — A, Th)) + T [A(Q, Tet1) — A(Qus1, Tiet1))

b,
= (Tevr = Te) (1 — )
_ Dia [A(Q, Tet1) — AQ, Ti )] + U[A(D41,To) — A(Qur 1, Tt 1))
(Te+1 — T )(Dusr — )
dy = Tret1 N1 A, Te) = T 1 A, Tier 1) — Tor 1 U A(Qis 1, Ti)

(Te+1 — Te)(Qusr — )
T UA(Qu41,Th+1)
(Tres1 — Te) (s — )

In STOCAL-II, A(w,t) is specified by providing the values A((;,T%) at the transition

(3.10¢)

points.

When A(w,t) = A(t) is only a function of time, i.e., a uniform modulating

function, we assume the piecewise linear model

Alt) =) Acl?) (3.11q)
k
Ax(t) = cxt+dx T <t<Tiya
(3.11b)
=0 elsewhere

in which Tk, k = 1,2,..., are the selected transition points and a, and b; are given

by
¢ = A1) - A(T:)
Tevs = To (3.11c)
d = —Tx A(Tk+1) + T 1 A(T) '
* Ti:— Tk

In STOCAL-II, A(t) is specified by providing the values A(T:) at the tranmsition
points. Obviously, the uniform modulating function A(t) is a simple case of the
more general modulating function A(w,t) in Eqs. 3.10 with | =2, a;, =0, b =
0, 1, =0 and Q; = oco. However, this model is included in STOCAL-II because

the corresponding computations are much efficient that they would be if A(t) was
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specified as a special case of A(w,t). An illustration of this model for fitting a target

modulating function is shown in Fig. 3.1.

It must be pointed out that in general A(w,t) can be a complex valued func-
tion. However, in the present development we have considered A(w,t) only as a real
function. The extension to the more general case can be easily done with the present

formulation. However, at present, it does not seem to have practical relevance.

Since A(w,t) and A(t) are piecewise linear functions, their time derivatives at
the transition points along the time axis do not exist. This creates a problem in
computing the statistics of the response derivatives at the transition points. This
problem is avoided by taking the derivatives of A(w,t) or A(t) slightly removed the
transition points. This is a reasonable approximation, since the modulating function

is slowly varying and its derivative has a small contribution to the response statistics.

The effort needed for computing the autocorrelation function with the evolu-
tionary model is roughly proportional to the number of frequency points, 1,, and
to the square of the number of time points, Tx. For the uniform modulating func-
tion, computing effort is roughly proportional to the square of the number of time
points. Thus, to reduce the computation time, one should use as few frequency and
time points (especially the latter) as are necessary to adequately describe the target

modulating function.
3.3.2 Modal Evolutionary Cross-PSD Functions

In Eq. 2.90, the (m; + m;)-th order modal evolutionary cross-PSD function is

given by

™) (w, b1, 12) = M) (0, )M ™) (0,12) () (3.120)

73



where the asterisk denotes a complex conjugate, and
Mg = 2 / Ay (w, )bt — 7)™ dr (3.12b)

Specific formulas for computing I\rf‘.("')(w,t) for the modulating functions described in

the previous section are presented below.
Using Eqgs. 3.10 and 3.12b,
M) = M) (130
k

where

m

M(m) (w’ t) — e—wt a

min(t,Tks1)
ot {/ [(akw+ck)r+ (bkw+dk)]
t Tk

(3.13b)
hi(t — r)ei“"dr}
Using direct integration,
(m) (w t) — ZZ( 1)r+peu.,(t1—Tk.'.,)e—w(tl—Tk.,.,)
V t r=0p=1
(lziﬂ) a(akybk,ck:dhzipaw Tk+r’0) Tk+r S t (3.130)
Z Z( 1)r+penz.,(t,-Th+,)e—w (tl-Tk+')
iV 1- S’, r=0p=1
a(ak’bk)ckadkazip,wat, m) Tk+, >t
where z;; and z. respectively are z; and z; defined as in Eq. 3.3b, and
s m+1 m T m+1
I(a,b,c,d, z,w,T,m) = ()" i(aw + ¢2:w ) + (aT +b)w
(w-2) w-—2z (3.13d)
(d - ima + cT)w™ — imew™ ! '
w-—2z

The results for the uniform modulating function are obtained from the above

expressions by setting ax =0 and b, =0.
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3.3.3 Modal Cross-Correlation Functions

Two ways are used to compute the correlation function of the evolutionary
response. One is to compute the correlation function as the Fourier transform of the
evolutionary PSD function. For example, the cross-correlation function between the

m,-th and mg-th derivatives of the responses z;(t) and z;(t) is obtained from
B i) = [ B (0, ) ) du (3.14)

in which <I>£',",‘,""’)(w,t1,t2) denotes the (m; + m;)-th order evolutionary cross-PSD
function that is computed in terms of the modal cross-PSD function Qf;""m’)(w,tl,tz)
by use of the modal superposition rule stated in Eq. 2.95. The STOCAL-II commands

for computing Fourier transform is used for this purpose.

In the second method, the modal cross-correlation functions are first computed
by use of direct integration, which are then combined to obtain the response cor-
relation function. In this approach, the (m; + m;)-th order modal cross-correlation
function ¢g.""'"’)(t1,t2) is the generic solution sought. Expressions for computing this

term are presented in the remainder of this section.

To compute ¢g.""'"’)(t1,t2), the PSD function ®;;(w) associated with the

independent-increment process of the evolutionary input is assumed to be a piecewise

linear function

Oy (w) =) Bi(w) (3.150)

®(w) = ar|w|+ B Q) < |w| < Qg
(3.150)
=0 elsewhere

Based on this model, the (m; + m;)-th order modal cross-correlation function

is given by
g™ (0, 1) = 4T (,10) (3.16a)
1
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(m1.m3) _ [T M)
Gi " (b t2) = (w + B)M;™ (w, 1)
Q

M}m’)t (w,tz)eib)(‘l“z)da)

(3.16)

in which It{'.("')(w,t) is as in Eq. 3.12b. Based on Egs. 3.13c for the piecewise linear

modulating function, and using direct integration,

Q41 '
Hr " )= | (e + BIMT (@,8) M) (0, 15)e 7 d
o}

P D I)IPIPISY

- J‘ k;y kg r1=0r3=0p;=1p3=1

3.16¢
(_1)'1+'3+P1+Pz ei*ivs (1= Thy+ry) g1 25y, (3= Ty try) ( )

(izip, )Hl (—izip, );;‘ (e, Bisk, » by »Chy s Bk, s By s ks s

* m o = =
ckz)dkz,zipnsz, )nl,nl+17T11T2)m1,m2)

where m; = m;, m; = my, T,=t and T, =t; for Tk, 4,, > t; and Tk, 4,, > t2;
m; = my, my; = 0, T_l =t and Tz = Tk,+,, for Tk1+f1 > t; and Tkg+r, < i3;
m; =0, m; = m,, Tl = Tk;-{-rl and Tz =1, for Tkl+rx <t and Tk,.,.,., > ta;

.ﬁ‘il = 0, -ﬁg = 0, -Tlv =Tk‘+,1 and Tg =Tk,+" for Tk1+r1 < t1 and Tk,+,, < tz; and

(a,B,a1,b1,¢1,d1,82,b2,¢2,d2, 21, 25,01,02, T, T2, m;,my,) =
@™ (-i)™ {(alTl +b,)(a2 Tz + b3)[@J2(Z,,2,,m + 3,0,,0;3,AT)
+ BJI2(Z1,2Z2,m + 2,00,,02,AT)] + [(dy — imya; + 1 T1)(az Tz + b3)
+ (a; Ty + b,)(dz + imaa;z + 62 T3)][@J2(2,, Z;,m + 2,0,,0,,AT)
+BJ2(Zy,22,m +1,0,,0;,AT)] + [i(a1 Ty + by)mzc,
+ (dy —imya; + ¢, T1)(dz + imaa; + €;3T2) — imy ey (ax T + b3)]
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[@J2(Z1, Z2,m +1,0,,90,,AT) + BJ2(Z1, 2,,m, 04,0, AT))

— [i(dy — imya; + 1Ty )macz — imyci(dz +imza; + c2T2)]
[@J2(Z1, Z2,m, 0,00, AT) + BI2(Z1, Zo,m — 1,04, AT)]
+mycimacz[at2(2,,Z;,m — 1,0,,0,,AT)

+BJI2(Zy, 22, m — 2,0,,0;,AT)] —i(a, Ty + by)a;

[@J3(Z:, Z2,m + 3,01, 0, AT) + BI3(Z1, Zo, m + 2,04, 005, AT))]
—i[(ayTy + b1)ez + (di — imya; + ¢1T1)az)

[@J3(Z1, Za,m + 2,0,00, AT) + BI3(21, Z5,m + 1,04, 0z, AT)]
—i[(dy — im1a1 + c1Th) ez — imyciaz]

(@J3(Z1, Zaym +1,9,,00, AT) + BI3(Z1, Zo,m, 0y, 03, AT)]
—mycic;[a3(Z:, 2,,m,Q,,0Q,,AT)

+ BI3(Zy, Zsym — 1,001,005, AT)] + iay (a2 T; + b2)

[@T3(2},, 255, m + 3,041,002, AT) + BI3(z, 2ip,m+ 2,01,0,AT))
+i[e;(az Tz + b2) + a1 (d2 + imzaz + ¢, T3)]

[aT3(z,

0> Zipy M+ 2,0,,0;,AT) + BJ3(2],, zjp, m + 1,04,03, AT)]
+ifiaimzcs + c1(dz +imzaz + ;. T2))
[@g3(z;

q?

sz’m+ lanl,nhAT) +ﬂJa(z:q’sz:m)nl)QZ)AT)]

— cymacz[ad3(2},, 2ip, m, (11,02, AT)

@
+ BI3(2},, 2ip,m — 1,0:,03,AT)] + a10,
[aJ4(Z1, Z2,m + 3,0,,05,AT) + BI4(2,,Z;,m + 2,0,,0;,AT))

+ (a1¢2 + c102)[J4(2,, 22, m + 2,04,,03,AT) + B

J4(Z,,2,,m+ 1,0,,0;,AT)] + c1¢2[aJ4(2,,2Z;,m + 1,0,,0;,AT)

+ﬂJ4(Zl’Z2ym;nlan2aAT)]} . (316d)

where m =m; + my, AT =T, — T, and the remaining terms are as follows:
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5 b wMelwt &
J2(z;,25,m,a,b,7 =/
(51,2 )= ), -
1
= J br)—-J
z — 22[ (zl:m1a’ )T) (zg,m,a,b,r)] 2 56 22 (3.166)
— a™ iar __ b™ ibr
- a—zle b—ll
+mJ(z;,m—1,a,b,7) +irJ(z1,m,a,b,7) 2 =2
b wmeiut
J3(z, 23, m,a,b, 7 =/ dw
( 1y %2 ) . (w_zl)(w_zz)2
- 1 _ (3.18f)
= (z: - 2'2)2 [J(zlam; a,b,7) J(z2am7 a,b,7)
— (21 — 22)J2(22, 22, m, a,b,7)] 2 F 2z

b wmeiwt
J4(21,zz,m,a’b:r)=/ (w_zl)z(w—22)2
1

= ————(z Z )3{—2J(z1,m,a,b,r)+2J(z2,m,a,b,r)
1= <2

+ (2'1 - zz)[J2(z1,z1,m,a, b) T)

(3.169)

+J2(32)12)m7a’b’f)]} 4 ¢z2

in which J(.) is the compound exponential integral defined in Appendix A.

3.4 Fourier and Inverse Fourier Transforms

The Fourier transform and its inverse for a function f(t) are defined, respec-

tively, by

W= g [ 1) e (3.17)

ft)= /: Z f(w) é“tdw (3.18)

Three algorithms for computing the Fourier and inverse Fourier transforms are in-

cluded in STOCAL-II. These are the Fourier transform of a piecewise linear function,

the discrete Fourier transform and the fast Fourier transform. Among other tasks,
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these routines are used to compute the PSD function for a given autocorrelation

function, and vice versa.
3.4.1 Fourier Transform of a Piecewise Linear Function

Consider f(t) as a real, piecewise linear function defined by

HOERIIAL

Jx(t) = axt + b, te <t <ty

=0 elsewhere

By substituting Eqs. 3.19 into Eq. 3.17, the Fourier transform of f(t) is
fw)= fr@)+i fi(w)
1 te41 X
-y / folt) e tat
27 J,
k k

= Z{%[COS(wtwl) — cos(wty)] + %[sin(wtk-n) — sin(wiy)]

+ %[tk+lsin(wtk+1) - t,,sin(wtk)]}+i{

. . b
w(;k [sin(wtx+1) — sin(wte)] + :k[cos(wtk...l) — cos(wty)]

a
+ f[tk+1608(wtk+1) - tkcos(wtk)]}

When f(t) is a complex, piecewise linear function

fR)= fFO+ i '@

(3.19a)

(3.190)

(3.20)

(3.21)

with fB(t) and f’(t) denoting its real and imaginary parts, respectively, the Fourier

transform of f(t) is computed from

f@)= frW) +ifi(w)=fr(@) - fiw)+ i [f{' @)+ fr(@)]

(3.22)

where fZ(w) and fF(w) are the imaginary and real parts of the Fourier transform

of fB(t) and fi(w) and ff(w) are those of fI(t).
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Expressions for the inverse Fourier transform are derived in a similar manner
and will not be stated here. The STOCAL-II commands used to compute the Fourier

and inverse Fourier transforms of a piecewise linear function are FTP and IFTP.
3.4.2 Fourier Transform for Discrete Data
Discrete Fourier Transform

When the ordinates of f(t) (real or complex) are provided at equidistance time
points beginning at ¢, and ending at t,_,, for small At, Eq. 3.17 can be rewritten

in the form

flw)= —Zf(t Jem i (3.23)
In STOCAL-II, the command FTD computes the Fourier transform according to this
equation by specifying two end-limits of w, and w. and the number of frequency
points m. In a similar manner, the command IFTD computes the inverse Fourier

transform of a function specified by its ordinates at equidistance time points.
Fast Fourier Transform

When the number of output frequency points is not specified, the fast Fourier
transform algorithm is used to compute the Fourier transform of the discrete function.

In this case, by substituting t; =t, + kAt and letting Aw = T’ Eq. 3.23 becomes

Flwo+ iAw)= 223 Z [t + kAL (etiB0)(tetha0
k-—O

n—-1
_ ﬁe_wogo Zf(to+kAt)e—iw,kAte-ijAukAt

2n k=0 (3.24a)

= At e~ iwoto Za e ik ir
k=0

g c’. e- iwoto
2x
where

a; = f(to + kAt)e~wokat (3.24d)
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n—-1
c; = Z ae Ik (3.24¢)
k=0

Eq. 3.24c is in the form of generalized fast Fourier transform algorithm (Dahlquist and
Bjorck 1974, Section 9.3). The routines used in CAL were developed by Dicken and
Wilson (1980) and are retained in STOCAL-II. These routines can accommodate any
number of data points for a discrete function f(t). However, it is more advantageous -
to have n as a highly composite number. In particular, it is best to have n as a

power of 2.

Expressions for the inverse fast Fourier transform for discrete data are derived
in a similar manner and will not be stated here. The STOCAL-II commands FTD
and IFTD use the algorithms in Eqs. 3.24 when the number of output data points is

not specified. Otherwise, the algorithm in Eq. 3.23 is used.
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CHAPTER 4

DEVELOPMENT OF STOCAL-II

4.1 Introduction

The development of an instructional program such as STOCAL-II requires -
a more systematic approach than the development of a program for personal use.
The developers, users and maintainers of an instructional software are often distinct
entities. Lack of planning will cause difficulties not only in the development and
use but also in the future maintenance and expansion of the program. With these
concerns in mind, careful consideration and planning were made in the development

of STOCAL-IIL

An early decision that had to be made was whether the program should be an
extension to the program STOCAL by Button et al. (1981), or it should be developed
anew. STOCAL is an extension of CAL (Wilson 1979) and performs matrix manip-
ulations, deterministic structural analysis (static and dynamic) and nondeterministic
structural analysis. However, the commands for nondeterministic analysis in STOCAL
are limited to very simple applications of the stationary random vibration theory and
are designed in a black box fashion. Thus, the program has limited instructional
capability. Moreover, the solutions in STOCAL are not derived in a general form
and cannot be easily extended to nonstationary analysis. Therefore, it was decided to
develop STOCAL-II anew and independently of STOCAL. However, the facilities in
CAL for matrix manipulations, and for static and dynamic structural analysis are es-
sential for random vibration analysis. Thus, STOCAL-II is developed as an extension
to CAL.

STOCAL-II, like CAL, is written in FORTRAN-77. Most application programs
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in civil engineering have been written in FORTRAN, not only because the language
has been in use for a long time, but also because of its proven transferability and
portability. Moreover, programs in FORTRAN are efficient and are easy to write
for numerical computations. Today, many compilers have the ability to link routines
written in different languages into one executable file. Therefore, by proper planning,
routines in different languages can be mixed so that functions available in C or other '

languages can be used in a FORTRAN program.

In 1983, the Civil Engineering Division of the American Society for Engineering
Education (ASEE) conducted a survey on the use of microcomputers in civil engineer-
ing education (Mcdonough 1985). This survey showed that the use of microcomputers
in civil engineering departments was very popular in 1983. Since then, the price of
a microcomputer has substantially dropped and the hardware has dramatically im-
proved. Today, the microcomputer has become an affordable educational tool for
many college students, and it is gradually becoming a necessity. With these in mind,
it was decided to develop STOCAL-II for use on microcomputers. Nevertheless, the
program is written in a manner that it can be easily transferred to other machine.

Owing to its popularity, the IBM-PC was selected for developing the program.

The next consideration was the necessity of including graphic capabilities, which
were not available in CAL. For random vibration analysis graphic features are ex-
tremely important as results such as the autocorrelation and PSD functions cannot
be easily interpreted without graphic aids. Such aids are particularly essential in
an instructional environment. It was decided, therefore, to include a two-dimensional
on-line graphics capability in STOCAL-II. Unfortunately, FORTRAN is not a good
language for graphics purposes. Therefore, it was decided to use a commercial graph-
ics library available to FORTRAN programmers on IBM-PC. After an evaluation of

several options, IBM’s Graphics Development Toolkit was selected. This package is
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hardware independent when the appropriate device driver files are used.
4.2 The Architecture of STOCAL-II

The architecture of STOCAL-II is similar to that of CAL. Some minor modifi-
cations, including changes in some basic commands, were made to make the program
more user friendly. A detailed description of CAL can be found in the Ph.D. disser-
tation by Marc 1. Hoit (1983). The architecture of STOCAL-II is described in this

section.

The structure of STOCAL-II includes four parts: the user interface, command
interpreter, analysis modules, and databases (see Fig. 4.1). The user interface refers
to the routines that read the input data and produce the output. The command in-
terpreter translates the input data into a form in which the command and its param-
eters are identified. The routines allow a free-form input. STOCAL-II is a modular
system including seven analysis modules. Beside CAL (Wilson 1979) and OTHERS,
each module contains a group of commands with similar functions. Each module is
able to work independently or in combination with other modules, thus forming a
complete program. STOCAL-II includes an internal and an external database. The
internal database includes arrays stored in the internal storage while STOCAL-II is in
use, whereas the external database includes data files stored on an external memory

device.

The detailed description of the user interface, command interpreter, analysis

modules and databases is described below.
4.2.1 User Interface
STOCAL-II with the features of CAL allows the user to supply the input

data interactively or through batch files. In an interactive mode, the user supplies
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the data through the keyboard, and the output is shown on the monitor. However,
the command PRINT sends the output to both the monitor and a specified output
file. In the batch mode, the command SUBMIT is used to execute a sequence of
commands stored in a batch command file. CAL only allows one command file to
be accessed within each job, although a different command file may be specified by
reinitializing the job. In STOCAL-II, the user is allowed to access more than one
command file within one job. The format of the command SUBMIT in STOCAL-II

is designed to be
SUBMIT Sep FileName N=n

This command causes the input data to be read from an input file, FileName.
The program executes the commands in FileName starting with the separator Sep
until a RETURN or a blank statement is encountered. The process is executed n
times. If FileName is not specified, the default name, specified when the program
is initialized, is used. The output message in a batch mode is sent to the default

output file.

If the available RAM size of the computer when STOCAL-II in use is big
enough, STOCAL-II also allows the user to execute a DOS command by using the

command SYS. With this feature, the user may edit a sequence of commands in a

command file without exiting STOCAL-II.

Graphic operations are allowed only in an interactive mode. The graphic output
can be directed to the monitor screen and/or to a plotter. The monitor screen is
divided into three windows: an input window, and an output window, and a command
window (see Fig. 4.2). The input data are supplied through the input window located
on the bottom of the screen, the graphic output is shown on the output window

located on the upper left of the screen, and the command window on the right side
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of the screen lists the available commands. The command PLOT sends the graphic
output to the plotter. A description of each graphic command is shown on the output

window by the use of the command HELP.
4.2.2 Command Interpreter

Command lines in the input file to STOCAL-II have the syntax

CommandName Input Matrices Output Matrices+ (Conditional Matrix) \

Required Parameters (Conditional Parameters) |[Optional Parameters

where CommandName is the name of the command, Input Matrices are the names
of a set of previously defined matrices, which are separated by commas or blanks,
Output Matrix is the name of the generated matrix storing the results of the anal-
ysis invoked by the command, Conditional Matrix is the name of an additional
input matrix which conditionally might be required, Required Parameters consist of
one or more sets of identifiers and parameters in the form P=pl1,p2 p8 or I=11,12,18,
and Conditional Parameters and Optional Parameters are similar, but are either condi-
tionally used or are optional. The only exceptions to the above rule are continuation
lines and data lines immediately following the LOAD command. Thus, a typical

command line may appear as

CommandName M1 M2 M3- M4+ P=p1,p2pS,.... 1=11,12,38,...

For clarity in describing the syntax of each command, a ”+” sign is used to indicate
a newly created matrix, a ”-” sign is used to indicate a modified matrix. Note that
the parentheses or brackets indicating the conditional or optional entries need not be

used in the actual command line.
As an example, the command GSGP, which is used to generate samples of a
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stationary Gaussian process with a specified PSD function, has the form:

GSGP MSG+ (MPI) I=type [P=p1,p2,..] N=n,nt T=tbte [M=m RS=rs

where GSGP is the command name, MSG+ is a new matrix to store the generated
samples, MPI is needed only when /=9, and rs (a random seed) is selected either
by the user or by the default value. Some simple mathematical operations producing
numerical data are allowed in the parameter list but they are evaluated only in
sequential order to compute a real type data. Integer, real, exponential and Hollerith
data are allowed in the operation. For example, a particular use of the command

GSGP may appear as

GSGP MSG+ I=1 P=10ES$*12/$ N=0,101 T=0,5

which is the same as

GSGP MSG+ I=1 N=0,101 T=0,5 P=4000

The input command lines are read and interpreted by the command interpreter
through a set of routines. The most basic routines in CAL for this purpose are FREE,
FREEI, FREER and FREEH. The FREE subroutine can read up to 160 characters
from either the input file or the terminal. Any input line can be continued for as
many times as desired until the 160-character limit is reached. A backslash character
may be used at the end of any input line to indicate that the command is to be
continued on the following line. The subroutines, FREEI, FREER and FREEH are

then used to read integer, real and alphanumeric data, respectively.
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4.2.3 Modules

STOCAL-II is designed as a modular system. Each module in STOCAL-II with
a basic library routine can be separately compiled and linked to form an independent
executable file. With this formation, the complete STOCAL-II system includes several
executable files sharing with each other the data stored in the internal or external
data files. This system is easy for testing and debugging. However, it is inconvenient
when needed commands reside in different modules. In that case, the user has to

exit from one module and execute another module.

Another way to form STOCAL-II is to link all the modules into a single
executable file. In this case, the data generated by one command can be immediately
used by all other commands. In general, this formulation of STOCAL-II is more
desirable, except when the required memory exceeds the available RAM size of the
computer. Fortunately, an overlay feature in the modern compiler allows reducing
the required resident RAM size of the program. Therefore, the program can be
installed in a microcomputer, although a very limited RAM size is available in such
a machine. The regular version of STOCAL-II is formed in this way, and, with
the use of Microsoft (version 4.0) compiler, the minimum load size of STOCAL-II
is around 47000 bytes. For cases where the smaller load size of the program is
required, the graphics module may be separated from the main program. In this
case, two executable files are formed where the load size of the larger program are

around 42000 bytes.

STOCAL-II is divided into seven modules: CAL, CALSR, CALNR, CALGEN,
CALFT, CALPLT and OTHERS. CAL developed by Wilson (Wilson 1979) is for
the purpose of deterministic (static and dynamic) analysis of structures, and is incor-

porated into STOCAL-II without major modifications. The commands available in

CAL is listed Table 4.1 and their detailed descriptions can be found in the Ph. D. dis-

89



sertation by Marc. 1. Hoit (1983). The STOCAL-II commands available in each mod-
ule are also listed in Table 4.1, and a simple description of each module, with the

exception of CAL is given in the following paragraphs:

CALSR - This module includes commands for computing the response of
linear systems to stationary excitations. The input excitation can be a white noise,
banded linear noise, a filtered white noise or through a piecewise linear PSD function.
The computed results include the auto and cross PSD and correlation functions and
the spectral moments of the response process and its time derivatives. In addition,
by providing the spectral moments of order 0, 1, 2, and 4, various statistics of
a stationary Gaussian process are computed. The statistics include the apparent
frequency, regularity factors, mean upcrossing rates, CDF and PDF of local peaks,
mean, standard deviation, CDF and PDF of the extreme over a specified interval,

and statistics of the envelope process.

CALNR - This module includes commands for computing the response of
linear systems to nonstationary excitations. The evolutionary model is used for non-
stationary analysis. The input is specified in terms of a time or a frequency-and-time
modulated PSD function. The computed results include the evolutionary auto and
cross PSD and correlation functions of the response and its time derivatives. The up-

crossing rates and the distributions of local and extreme peaks can also be obtained.

CALGEN - This module includes commands for generation or estimation
of samples of random numbers or random processes. Commands are available for
generation of samples of random numbers with prescribed probability distributions,
and for generation of sample functions of stationary and nonstationary Gaussian pro-
cesses. For stationary processes, samples are generated by either specifying the PSD
or the autocorrelation function. For nonstationary processes, samples are generated

by specifying the modulating and PSD functions in a piecewise linear form. Parallel
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commands are available for estimating the second-order statistics, i.e., the temporal

and ensemble mean, variance and autocorrelation functions, of specified samples.

CALFT - This module includes commands for Fourier and inverse Fourier
transformation of piecewise linear functions by an exact integration method, and
commands for discrete Fourier and inverse Fourier transformation using DFT and
FFT algorithms. These commands can be used to compute the PSD for a given

autocorrelation function, or vice versa.

CALPLT - This module includes commands for interactive graphics specifi-
cally designed for an IBM-PC (or compatible) computer. The commands can be used
interactively to draw 2-D curves on a display and a plotter. This facility is partic-
ularly helpful for gaining insight into the stochastic response, which is achieved by
readily observing plots of response quantities such as PSD and correlation functions.

The graphics facility is also useful in verifying the accuracy of input data.

MISCELLANEOUS - This module includes several commands of general
nature which are not included in the above modules. Commands are available for
computing the modal participation factors and MEPF’s, which are needed in the
structural analysis. Commands are also available for writing the data from the internal
database to an ASCII file. The command HELP can be used to invoke aid on the

computer.

See the command summary in Appendix B or the companion report (Wung

and Der Kiureghian 1989) for a detailed description of each command in STOCAL-IIL
4.2.4 Data Management

The data management in STOCAL-II, as in CAL, employs the method of

dynamic storage allocation. In this method, all arrays are stored in a single one
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dimensional storage named IA declared as an integer array, but the storage is used
to store all kinds of data. A 4-byte word is used to store an integer-type datum,
an 8-byte word is used to store a floating point datum with double precision, and
an l-byte word is used to store a Hollerith-type datum. The location of each integer
or real array is calculated and kept track of by the program. The layout of the
storage is illustrated in Fig. 4.3. This approach greatly increases the capacity of the
program by allowing the data storage to adjust to the requirements of each problem.
However, care must be taken in counting the array addresses, since character, integer
and real data are stored in the same storage. In practice, it is undesirable for the
user to change the maximum storage frequently. Therefore, a sufficiently large array
is opened to accommodate most analysis needs, and which satisfies the hardware and
compiler limitations. In this manner, the usage of the storage is not efficient for
most analysis. Fortunately, this is not a problem in a modern computer, where the
technique of memory paging is used. Nevertheless, care must be taken so that no

word is split by a page boundary.

Another important feature of STOCAL-II is that it allows storing data on
an external file, which may be used in a later job or by other programs with the
same data management. The FORTRAN subroutine transferring the internal data to

an external file is as follows.

SUBROUTINE SAVE1
CHARACTER*1 NOP,CH*20
COMMON MTOT,NP,IA(66000)
COMMON /DBSYS/ NUMA,NEXT,IDIR,IP(3)
COMMON /IOLIST/ NTM,NTR,NIN,NOT,NSP,NFL,NT7,NT8
WRITE (NFL) NUMA,NEXT,IP
IC = IDIR
DO 10 J=1,NUMA
WRITE(NFL) (IA(K),K=IC,IC+9)

IC = IC + 10
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10 CONTINUE
WRITE (NFL) (IA(I),I=1,NEXT)
CLOSE(NFL)

RETURN
END

where 1o, NExT and IDIR are as shown in Fig. 4.3, Numa is the number of arrays '
available in the storage, and 1p(s) is a vector containing the word length in bytes for
integer, real and character data. Note that the directory information for each array

requires the length of 10 integer-type data.

A series of commands are available in STOCAL-II for the user to manipulate

the internal and external data bases. These are as follows:
START F1

The START command initializes the program and its internal database. F1 is

assigned as the default name of the database.
READC [F1] [(M1+)]

The READC command reads all arrays (or only the array M1) from the
external data file F1.COR and puts the arrays (or M1) into the internal database.
The original names of the arrays are retained. If F1 is not supplied, the default
data file name is used. Also, if M1 is not supplied all arrays are transferred into

the internal database; otherwise, only M1 is transferred.
LIST [F1] or L [F1]

The LIST or L command displays a list of the names and sizes of all arrays in
the external data file F1.COR. When F1 is not supplied, the arrays in the internal

database are listed.
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SAVE [F1]

The SAVE command saves all arrays in the internal database ‘to the external

data file F1.COR. When F1 is not supplied, the default name is used.
STOP or S

The STOP or S command terminates the use of the program and returns the
control to the computer’s operating system. All arrays in the internal database are

stored in the external data file with the default name.
QUIT or Q

The QUIT or Q command leaves the program without saving any data.
DELETE M- o D M-

The DELETE or D command deletes the array M in the internal database.

The storage, therefore, is compacted.
LOAD M+ R=? C=?

The LOAD command creates a real matrix M with R rows and C columns.
The data must be supplied one row per line, and must immediately follow the LOAD
command. The data is separated by commas, or one or more blanks. A line of
data may be continued by the use of a backslash at the end of the line. However,
the total length of the line may not exceed 160 characters. If the data for a row
is greater than 160 characters, the matrix must be loaded by the use of submatrix

operations.
PRINT M o P M

The PRINT or P command displays the contents of the matrix M both on
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the terminal screen and in the default output file.
4.3 Documentation

The documentation of STOCAL-II includes an on-line help and the user’s man-

ual.
4.3.1 On-Line Help

The on-line help feature is designed such that the syntax and usage of each
command in STOCAL-II can be seen on the terminal screen by using the command
HELP command-name in the STOCAL-II environment. The description of each
command is prepared in an external, ASCII file with an extension name .HLP. These
files are stored under the directory CAL.HLP, where CAL.HLP and the executable
file are installed in the same directory. Since the help files, not part of the executable
file, are readable, they can be edited or extended by the user to enhance the help
feature. The separation of the help files also makes the executable file as compact as
possible. When the computer storage is limited, the help files may not be installed.
In general, the help file for each command is a condensed version of the command

documentation given in the user’s manual in Appendix B.
4.3.2 User’s Manual

A complete description of each STOCAL-II command is given in the compan-
ion report (Wung and Der Kiureghian 1989). The report used as an user’s manual
includes an introduction, a command summary, the command syntax, free format
conventions, and a description of each available command. In general, the command
descriptions in the User’s Manual are more detailed than in the help files. Each
command description includes the syntax of the command, a detailed description of

the required parameters and matrices, and, when appropriate, simple mathematical
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formulae to illustrate the function of the command.

Table 4.1 Commands in each module

CAL CALSR|CALNR |CALGEN |CALFT| CALPLT |OTHERS
MULT | LOADI | SPSD | TPSD GSU FTP (under PLOT| HELP
TMULT | ADDK SCF TCF GSGP IFTP AXIS AMP

ADD |MEMFRC| SRSM | EPSD GSGPT | FTD CLEAN | VECTOR

SUB EIGEN SM ECF GEGP IFTD ERASE MPF

DUP JACOBI | SMSM | TRMS TSSF HIDE EPF
STODG | SQREL SMR | ERMS TFSU INIT WRITE
DUPDG | INVEL |RCQC | TMS TTSU PLOT
SCALE |DYNAM | RSM EMS ACF QUIT
INVERT | NORM | SSGP NCR TACF RDATA
SOLVE MAX LPKD | NDLP STAT SET
STOSM | STEP | EXTD | NDEP NFD TEXT
DUPSM | RITZ NCFD UNIT
TRUSS DFT VIEW
SLOPE IDFT WIND
FRAME | RADIUS ZOOM
FRAME3| FSOLVE
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CHAPTER 5

EXAMPLES AND APPLICATIONS

5.1 Introduction

This chapter includes a series of numerical examples which are designed with
three goals in mind: (a) To illustrate the use of STOCAL-II in conjunction with CAL;
(b) to demonstrate the capabilities of STOCAL-II; and (c) to show how the CAL-
STOCAL-II software can be used in teaching random vibrations. The examples are in
three parts: Section 5.2 deals with the generation and estimation of random processes;
Section 5.3 deals with the modeling and eigenvalue analysis of the structural system;
and Section 5.4 deals with the analysis of the structural response to stochastic input.
A simple, combined structural system, consisting of a two-story primary structure and
an attached secondary subsystem (i.e., a pipe) is considered for this purpose. This
system is chosen for its special characteristics, i.e., tuning, interaction, and closely
spaced modes, which provide an opportunity to investigate interesting characteristics

of the response.

The examples included in this chapter do not cover all the commands of
STOCAL-II. However, it is believed that by reviewing these examples, the reader
can easily learn the use of the other commands by consulting the User’s Manual in

Appendix B or the on-line HELP command of STOCAL-II.
5.2 Generation and Estimation of Random Processes

The examples in this section illustrate the use of commands GSGPT and GSGP
for generation of a stationary Gaussian process, and the commands TSSF and GEGP
for generation of a nonstationary Gaussian process. Moreover, the commands ACF

and TACF are used to estimate the autocorrelation function of the generated sample,
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which is then compared with the assumed autocorrelation function of the process.
5.2.1 Stationary Gaussian Process

The CAL command LOAD is used to define a triangular autocorrelation func-

tion in matrix CF:

LOAD CF R=2 C=2
0.0 1.0
1.0 0.0

PLOT CF
The plot of the triangular autocorrelation function is shown in Fig. 5.1a.

The command GSGPT is used to generate 100 sample functions of a zero-mean
stationary Gaussian process having the triangular autocorrelation function defined in
matrix CF. The generated samples, contained in matrix GV, are specified at 41
time points over a 4 unit interval of time. RS is the seed for the random number

generator:

GSGPT CF GV N=100,41 T=0,4 RS=0.499

The command VECTOR is used to generate a vector GVX containing 41
equally spaced time points in the interval O to 4. This vector is used as the X-
coordinate in plotting the first sample function, which is contained in the first row

of matrix GV:

VECTOR GVX T=0,4 N=41
TRAN GV GVT
PLOT GVX GVT

The result of the above commands is shown in Fig. 5.1b.

The command ACF is used to compute the autocorrelation function of the

100 sample functions in GV by ensemble averaging. The computed autocorrelation
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function is contained in matrix CF1:

ACF GV CF1 DT=0.1

PLOT CF1

The result of the above commands is compared with the known autocorrelation func-

tion in Fig. 5.1a.

The command GPSD is used to create a matrix PFWN to contain the data
for a FWN PSD function with the parameters ®,=100 in?/sec®, w,=15.7 rad/sec,
and ¢,=0.6 (see Section 2.3.1). The PSD function is specified at 101 equally spaced

frequency points in the interval 0 to 50 rad/sec:

GPSD PFWN I=4 P=100,15.7,0.6 W=0,50 N=101

PLOT PFWN
The plot of the PSD function is shown in Fig. 5.2a.

The command GSGP is used to generate one sample function of a zero-mean
stationary Gaussian process having the FWN PSD function described above. The
sample function, stored in matrix SFW, is specified at 401 time points over a 20
unit interval of time. It is generated by superimposing 50 sine functions with random

phase angles:

GSGP SFW I=4 P=100,15.7,0.6 N=1,401 T=0,20 M=50
TRAN SFW SFWT
VECTOR VT T=0,20 N=401

PLOT VT SFWT
The result of the above commands is shown in Fig. 5.2b.

The command TACF is used to compute the temporal autocorrelation function
of the sample function given in matrix SFW. Assuming the process is ergodic, the

temporal autocorrelation function asymptotically approaches the true autocorrelation
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function as the averaging time approaches infinity. An estimate of the PSD function
of the process is, therefore, obtained by Fourier transforming the temporal autocor-
relation function. Only the first 4 units of time lag of the temporal autocorrelation

function are used to obtain the estimated PSD function:

TACF SFW SFWC DT=0.05
DUPSM SFWC SFWD L=1,1 R=80 C=2
FTP SFWD SFWP W=0,50 N=51 I=1

PLOT SFWP

The result of the above commands is compared with the true PSD function in

Fig. 5.2a.

5.2.2 Nonstationary Gaussian Process

The CAL command LOAD is used to define a time-modulating function in
matrix MT. The first column of MT stores the time coordinates while the second

column stores the ordinates of the function:

LOAD MT R=6 C=2
0.0 0.0

2.8 1.0

5.6 1.0

12.0 0.43

20.0 0.1

PLOT MT

The plot of the modulating function is shown in Fig. 5.3a.

The command TSSF is used to construct one sample function of a uniformly
modulated process by the multiplication of the stationary Gaussian process SFW

constructed in Section 5.2.1 and the time-modulating function defined in matrix MT:

TSSF SFW MT TFW T=0,20

TRAN TFW TFWT
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PLOT VT TFWT
The result of the above commands is shown in Fig. 5.3b.

The CAL command LOAD is used to define a time-frequency modulating func-
tion in matrix MWT. The first row of MWT specifies the frequency coordinates,
the first column specifies the time coordinates, and the remaining entries specify the
ordinates of the function at the corresponding points. The first entry of MWT must
be -1.1:

LOAD MWT R=6 C=5

-1.1 0.0 13. 30. 60.

0.00 0.0 0.0 0.0 0.0

2.80 0.8 1.0 1.2 1.3

5.60 1.2 1.0 0.8 0.7

12.0 0.5 0.4 0.3 0.2

20.0 0.2 0.2 0.0 0.0
The plot of the time-frequency modulating function is shown in Fig. 5.4a.

The command GEGP is used to generate one sample function of an evolu-
tionary Gaussian process, described through the FWN PSD function and the time-
frequency modulating function defined in matrix MWT. The generated sample EFW

is specified at 401 time points over a 20 unit interval of time:

GEGP MWT EFW I=4 P=100,15.7,0.6 N=1,401 T=0,20 M=50
TRAN EFW EFWT

PLOT VT EFWT
The result of the above commands is shown in Fig. 5.4b.
5.3 Structural Analysis

The examples in this section illustrate the use of commands for constructing

the structure stiffness matrix, performing static condensation to eliminate unwanted
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degrees of freedom, eigenvalue analysis, computing modal participation factors, and
computing MEPF’s for selected measures of response. Most commands for these
analyses were available in CAL and are not new. They are described here for the
purpose of completeness of the presentation. It is important to note that for the
response analysis in the following section only the natural frequencies and the MEPF’s

will be necessary.

The configuration and properties of the example structural system are shown
in Fig. 5.5a. The system consists of a two-story primary structure and an attached
secondary subsystem which is discretized at three nodes. The assumed degrees of
freedom and their numbering system is shown in Fig. 5.5b. The structure mass is
modeled by lumped nodal masses with negligible rotational inertias. The condensed
diagonal mass matrix is represented by the the vector VM (in units of kip * sec®/in)

with the elements corresponding to the first translational five degrees of freedom:

LOAD VM R=1 C=5§

0.2 0.1 0.005 0.01 0.005
5.3.1 Formation of Structure Stiffness

The CAL command SLOPE is used to form the element stiffness matrices for
the members of the primary structure and the secondary subsystem. For the primary,
the length "L” of each element is 100 #n, Young’s modulus "E” is 30,000 kst¢, and
the moment of inertia ”I” is 1,200 in*. For the secondary members, the length is 50
in, Young’s modulus is 30,000 ksi, and the moment of inertia is 5 in*. Matrices KP
and KS store the typical element stiffness matrices for the primary and secondary

members, respectively:

SLOPE KP E=30000 I=1200 L=100
P KP
COL = 1 2 3 4

ROW 1 .14400E+07 .72000E+06 .21600E+056 -.21600E+05
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ROW 2 .72000E+06 .14400E+07 .21600E+05 -.21600E+05
ROW 3 .21600E+05 .21600E+05 .43200E+03 -.43200E+03
ROW 4 -.21600E+05 -.21600E+05 -.43200E+03 .43200E +03
SLOPE KS E=30000 I=5 L=50
P KS
COL = 1 2 3 4

ROW 1 12000.00000 6000.00000 360.00000 -360.00000

ROW 2 6000.00000 12000.00000 360.00000 -360.00000
ROW 3 360.00000 360.00000 14.40000 -14.40000
ROW 4 -360.00000 -360.00000 -14.40000 14.40000

The CAL command TRUSS is used to form the element stiffness matrix for
the connecting spring members where the section modulus EA” is 50 kips. The
length of the element is specified through the coordinate matrix ”XYZ”. The spring

stiffness matrix is denoted in matrix KPS:

LOAD XYZ R=2 C=3
0 00
40 0 0

TRUSS KPS TTT E=50 A=1 N=1,2

P KPS
COL = 1 2 3 4 5 6
ROW 1 1.25000 .00000 .00000 -1.25000 .00000 .00000
ROW 2 .00000 .00000 .00000 .00000 .00000 .00000
ROW 3 .00000 .00000 .00000 .00000 .00000 .00000

ROW 4 -1.25000 .00000 .00000 1.25000 .00000 .00000
ROW & .00000 .00000 .00000 .00000 .00000 .00000

ROW 6 .00000 .00000 .00000 .00000 .00000 .00000

The CAL command ADDK is used to assemble the element stiffness matrices
into the global structure stiffness matrix K in accordance to the identification arrays
ID1 and ID2, which provide the correspondence between the local and global degrees
of freedom:

LOADI ID1 R=4 C=4

6 79 10
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0 6 8

12 4

013

9

5

4

LOADI ID2 R=6 C=2

12
00
o

35
00

00

ZERO K R=10 C=10

ADDK
ADDK
ADDK
ADDK
ADDK
ADDK
P K

K KP ID1 N=1

K KP ID1 N=2

K KS ID1 N=3

K KS ID1 N=4

K KPS ID2 N=1

K KPS ID2 N=2

COL

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW

ROW

COL

ROW
ROW
ROW
ROW
ROW
ROW
ROW

2

3

6

7

1

.86525E +03
-.43200E +03
-.12500E +01
.00000E +00
.00000E +00
.00000E +00
-.21600E +05
.00000E +00
.00000E +00

.00000E +00

6
.00000E +00
.21600E +05
.00000E +00
.00000E +00
.00000E +00
.28800E +07

.T2000E +06

2

-.43200E +03
.43325E+03
.00000E +00
.00000E +00
-.12500E +01
.21600E +05
.21600E +05
.00000E +00
.00000E +00

.00000E +00

7

-.21600E +05
.21600E +05
.00000E +00
.00000E +00
.00000E +00
.T2000E +06

.14400E +07
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3

-.12500E +01
.00000E +00
.15650E +02
—.14400E +02
.00000E +00
.00000E +00
.00000E 400
-.36000E +03
-.36000E +03

.00000E +00

8

.00000E +00
.00000E +00
-.36000E +03
.36000E+03
.00000E +00
.00000E +00

.00000E +00

4

.00000E +00
.00000E +00
-.14400E+02
.28800E+02
-.14400E+02
.00000E +00
.00000E+00
.36000E+03
.00000E +00

-.36000E+03

9
.00000E+00
.00000E +00

-.36000E+03
.00000E +00
.36000E+03
.00000E +00

.00000E +00

5

.00000E + 00
-.12500E +01
.00000E + 00
—.14400E + 02
.15650E +02
.00000E + 00
.00000E + 00
.00000E + 00
.36000E + 03

.36000E +03

10

.00000E + 00
.00000E + 00
.00000E + 00
-.86000E +03
.36000E +03
.00000E + 00

.00000E + 00



ROW 8 .00000E +00 .00000E +00 .12000E +05
ROW 9 .00000E +00 .00000E +00 .60000E +04
ROW 10 .00000E +00 .00000E +00 .00000E +00

5.3.2 Static Condensation

.60000E+04 .00000E + 00
.24000E+05 .60000E + 04

.60000E +04 .12000E + 05

The CAL command REDUCE is used to perform static condensation on the

stiffness matrix K to eliminate the rotational degrees of freedom. The retained degrees

of freedom are specified through the vector IRD. The condensed stiffness matrix is

denoted K1:

LOADI IRD R=1 C=$§

1 2345

DUP K KT

REDUCE KT K1 IRD

P K1
COoL
ROW
ROW
ROW
ROW

ROW

= 1 2
1 494.96429 -154.28571
2 -154.28571 62.96429
3 -1.25000 .00000
4 .00000 .00000
5 .00000 -1.25000

3

-1.25000

.00000

3.05000

-3.60000

1.80000

4

.00000

.00000

-3.60000

7.20000

-3.60000

5

.00000

-1.25000

1.80000

-3.60000

8.05000

In some versions of CAL, the command REDUCE does not exit. In that case,

static condensation can be performed by matrix manipulations:

DUPSM K
DUPSM K
DUPSM K
DUPSM K

K11 L=1,1
K12 L=1,6
K21 L=6,1

K22 L=6,6

DUP K22 K221

INVERT K221

MULT K221 K21 K1T

MULT K12 KI1T KTT

DUP K11 K1

SUB K1 KTT

R=56 C=5
R=56 C=5
R=56 C=5

R=56 C=5b
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where the CAL commands DUP, DUPSM, INVERT, MULT, and SUB are used to
duplicate a matrix, duplicate a submatrix, invert a matrix, multiply two matrices,

and subtract two matrices, respectively.
5.3.3 Eigenvalue Analysis

The CAL command EIGEN is used to compute the eigenvalues and eigenvectors
of the structure, which are stored in matrix PHIC and vector W2, respectively. The
natural frequencies are computed as the square roots of the eigenvalues, which are
stored in vector W in units of rad/sec. The condensed mode shapes are the same

as the eigenvectors PHIC:

DUP K1 KR
DUP VM W2
EIGEN KR PHIC W2
DUP W2 W
SQREL W
P W
COL = 1 2 3 4 5

ROW 1 9.26721 12.09267 15.93769 39.70709 54.60483

P PHIC
COL = 1 2 3 4 5
ROW 1 .63574 66258 -.20878 .01401 -2.02806
ROW 2 1.93764 2.04796 -.52343 .07826 1.33090
ROW 3 3.83769 -5.91833 -9.57771 -7.64669 .20257
ROW 4 5.48333 -5.33247 .35668 6.43198 -.01558
ROW & 5.82089 -2.58058 10.03941 -7.65879 -.10482

Note that the mode shapes are stored columnwise. Also note that the command
EIGEN automatically scales the mode shapes by the mass matrix such that the

modal masses are equal to one.

The CAL command RECOVE is used to obtain the uncondensed mode shapes,

which are stored in matrix PHI. Matrix KT is from Section 5.3.2:
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RECOVE KT PHI PHIC IRD N=1

P PHI
COL = 1 2 3 4 5
ROW 1 .63574 .66258 -.20878 .01401 -2.02806
ROW 2 1.93764 2.04796 -.562343 .07826 1.33090
ROW 3 3.83769 -5.91833 -9.57771 -7.64669 .20257
ROW 4 5.48333 -5.33247 .35668 6.43198 -.015658
ROW & 5.82089 -2.58058 10.03941 -T7.65879 -.10482
ROW 6 -.01103 -.01162 .00314 -.00040 .00299
ROW 7 -.01401 -.01497 .00315 -.00077 -.06188
ROW 8 -.03945 -.00089 -.19995 —.42242 .00501
ROW 9 -.01983 -.03338 -.19617 .00012 .00307
ROW 10 -.00021 -.06587 -.19240 42266 .00114

The five mode shapes are qualitatively plotted in Fig. 5.6.

The uncondensed mode shapes can also be obtained through matrix manipula-

tion as follows:

ZERO K2T R=56 C=5 D=1.0
ZERO K2 R=10 C=5

ZERO MT R=1 C=1 D=-1.0
SCALE KI1T MT

STOSM K2 K2T L=1,1
STOSM K2 KI1T L=6,1
MULT K2 PHIC PHI

P PHI
5.3.4 Modal Participation Factors

The modal participation factors MPF are obtained as the product of the
modal matrix PHI and the vector of nodal load coefficients P (see Section 2.2.2).
For the base input to be considered, the vector of nodal load coefficients is obtained
by multiplying the uncondensed mass matrix (10 x 10) and the influence vector

(1,1,1,1,1,0,0,0,0,0]7 (see Section 2.2.2):
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LOAD P R=1 C=10
0.2 0.1 0.005 0.01 0.0056 0 0 0 0 O
MULT P PHI MPF
P MPF
COL = 1 2 3 4 &

ROW 1 .42404 .24149 -.08822 -.001568 -.27219
5.3.5 Modal Effective Participation Factors

STOCAL-II command EPF is used to compute MEPF’s for selected responses.
For each response quantity, a transfer matrix relating the response to the nodal
degrees of freedom must be provided (see Section 2.2.2). For the analysis in Section

5.4, the MEPF’s for the following responses are considered:

MEPF’s for Nodal Displacements

The response transfer matrix for the five nodal displacement responses at de-

grees of freedom (DOF) 1 to 5, denoted QND, is loaded as follows:

LOAD QND R=5 C=10
1000000O0O00O0

01000000O00O0

The corresponding MEPF’s are:

EPF PHI MPF QND END

P END
COL = 1 2 3 4 5
ROW 1 .26958 .82163 1.62733 2.32514 2.46828
ROW 2 .16001 49457 -1.42924 -1.28776 -.62319
ROW 3 01842 .04618 .84498 -.03147 -.88571
ROW 4 -.00002 -.00012 .01207 -.01016 .01209
ROW & .65202 -.36226 -.06514 .00424 .02853
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Note that the effective participation factors for each mode are stored row-wise in

matrix END.

MEPF’s for Member Forces

The response transfer matrix for the member forces is determined by consid-
ering an identity matrix I of nodal displacements. The CAL command MEMFRC is
then used to compute the corresponding forces for each member, which are identical

to the required response transfer matrix.

For the analysis in Section 5.4, consider the four end forces of column AB of

the primary structure. The response transfer matrix QCF is computed by

ZERO I R=10 C=10 D=1.0

MEMFRC KP I ID1 QCF N=1

P QCF
COL = 1 2 3 4 5
ROW 1 .21600E+05 .00000E+00 .00000E+00 .00000E +00 .00000E +00
ROW 2 .21600E+05 .00000E+00 .00000E+00 .00000E+00 .00000E +00
ROW 3 .43200E+03 .00000E+00 .00000E+00 .00000E+00 .00000E+00

ROW 4 -.43200E+03 .00000E+00 .00000E+00 .00000E+00 .00000E+00

COL = 6 7 8 9 10
ROW 1 .14400E+07 .00000E+00 .00000E+00 .00000E +00 .00000E+00
ROW 2 .72000E+06 .00000E+00 .00000E+00 .00000E +00 .00000E +00
ROW 3 -.21600E+05 .00000E+00 .00000E+00 .00000E +00 .00000E+00

ROW 4 .21600E+05 .00000E+00 .00000E+00 .00000E +00 .00000E+00

The MEPF’s for the member forces, stored in matrix EPF, are computed by

using the command ECF:

EPF PHI MPF QCF ECF

P ECF
COL = 1 2 3 4
ROW 1 -911.46838 2455.69293 15.44225 -15.44225
ROW 2 -583.47339 1436.37027 8.52897 -8.52897
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ROW 3 -.81299 198.51696 1.97704 -1.97704
ROW 4 42132 -.02826 .00393 -.00393

ROW 5 10752.47629 11338.01953 220.90496 -220.90496

MEPF’s for Spring Axial Force

The response transfer vector QSA for the axial force in spring CF is obtained
by the product of the transfer vector of the relative displacement between nodes C
and F and the axial stiffness of the spring. The corresponding MEPF’s are stored in

the column vector ESA.

LOAD QSA R=1 C=10
0 1.25 0 0 -1.25 0 0 0 0 O
EPF PHI MPF QSA ESA
P ESA
COL = 1
ROW 1 -2.05830
ROW 2 1.39720
ROW 3 1.16486
ROW 4 -.01627

ROW 5 -.48849
5.4 Response to Stochastic Excitation

The examples in this section illustrate the use of STOCAL-II in determining
the statistics of structural response to stationary and nonstationary excitations. The
structure considered is that shown in Fig. 5.5. As indicated before, the only informa-
tion needed from the previous section for the analysis in this section are the natural
frequencies and the MEPF’s for the selected responses. In addition, modal damping
ratios are required, which are assumed here to be 0.05 for each mode of the combined
system. The modal damping ratios are specified in vector D, which is defined by the
use of the CAL command LOAD:

LOAD D R=1 C=5
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0.05 0.056 0.05 0.05 0.05

The input excitation considered is motion at the base of the primary structure.
This input is specified in terms of the base acceleration process, X, (t). Various forms

of the input process are considered in this section.

The examples in this section are in three parts. Part one in Section 5.4.1 deals
with the stationary response of the structure to a stationary base input; part two in
Section 5.4.2 deals with the nonstationary response of the structure; and part three

in Section 5.4.3 deals with the input specified through a response spectrum.
5.4.1 Stationary Responses

For the examples in this section, unless indicated otherwise, the input base
acceleration is the FWN process described in Section 5.2.1 having the parameters

®,=100 tn?/sec®, w, = 15.7 rad/sec, and ¢, = 0.6.
5.4.1.1 Response PSD Functions

The command SPSD is used to compute the PSD function of the base shear
response. The MEPF’s for this response are contained in the third column of matrix
ECF. The response PSD, stored in matrix PS4, is specified at 181 frequency points

along the frequency band 0-90 rad/sec:

SPSD W D ECF ECF PS4 I=4 P=100,15.7,0.6 W=0,90 N=181 IC=3,3

To investigate the effect of the input ”filter” (which may be representing the
effect of the soil layer at the base of the structure), the PSD for the same response
is computed assuming the input is a WN process with a constant PSD at ®,=100
in? [sec®:

SPSD W D ECF ECF PS1 I=1 P=100 W=0,90 N=181 IC=3,3

PLOT PS1
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PLOT PS4
The above two response PSD functions are compared in Fig. 5.7.

Next, the command SPSD is used to compute the cross-PSD function of the
nodal displacement responses at DOF’s 1 and 3 for the FWN input. The MEPF’s
for the two responses are stored in the first and third columns of matrix END,
respectively. The result, consisting of a real and an imaginary part, is stored in

matrix PD13 for 121 frequency points along the frequency band 0-30 rad/sec:

SPSD W D END END PD13 I=4 P=100,15.7,0.6 W=0,30 N=121 IC=1,3

PLOT PD13 N=2
The result of the above commands is shown in Fig. 5.8a.

Next, the command SPSD is used to compute the cross-PSD function of the

nodal velocity responses at DOF’s 1 and 3 for the FWN input:

SPSD W D END END PV13 I=4 P=100,15.7,06 W=0,30 N=121 IC=1,3 M=1,1

PLOT PV13 N=2
The result of the above commands is shown in Fig. 5.8b.

Similarly, the command SPSD is used to compute the cross-PSD function of

the nodal acceleration responses at DOF’s 1 and 3 for the FWN input:

SPSD W D END END PA13 I=4 P=100,15.7,0.6 W=0,30 N=121 IC=1,3 M=2,2

PLOT PA13 N=2
The result of the above commands is shown in Fig. 5.8c.
5.4.1.2 Response Correlation Functions

The command SCF is used to compute the autocorrelation function of the

nodal displacement response at DOF 1 for the FWN input. The MEPF’s for this
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response are contained in the first column of matrix END. The autocorrelation func-
tion, stored in matrix C1, is specified at 201 points along the time-lag band 0-10

8€c:

SCF W D END END C1 I=4 P=100,156.7,0.6 TA=0,10 N=201 IC=1,1

PLOT C1
The result of the above commands is shown in Fig. 5.9a.

Next, the command SCF is used to compute the autocorrelation function of
the nodal displacement response at DOF 3 for the FWN input. The MEPF’s for
this response are contained in the third column of matrix END. The autocorrelation

function is stored in matrix C3:

SCF W D END END C3 I=4 P=100,15.7,0.6 TA=0,10 N=201 IC=3,3

PLOT C3
The result of the above commands is shown in Fig. 5.9b.

The command SCF is used to compute the cross-correlation function of the
nodal displacement responses at DOF’s 1 and 3 for the FWN input. The result,
stored in matrix CD13, is specified at 401 points along the time-lag band from -10

to 10 sec:

SCF W D END END CD13 I=4 P=100,15.7,0.6 TA=-10,10 N=401] IC=1,3

PLOT CD13
The result of the above commands is shown in Fig. 5.10a.

The above cross-correlation function can also be generated approximately by
inverse Fourier transformation of the corresponding cross-PSD function stored in ma-
trix PD13 (see Section 5.4.1.1). This is accomplished by issuing the STOCAL-II

command IFTD as follows:
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IFTD PD13 C13A T=-10,10 N=401 I=1

PLOT C13A

The exact and approximate cross-correlation functions, from CD13 and C13A re-

spectively, are compared in Fig. 5.10a and are found to be in perfect agreement.

Next, the command SCF is used to compute the cross-correlation functions of

the nodal velocities and accelerations responses at DOF’s 1 and 3:

SCF W D END END CV13 I=4 P=100,15.7,0.6 TA=-10,10 N=401 IC=1,3 M=1,1
PLOT CV1s
SCF W D END END CA13 I=4 P=100,15.7,0.6 TA=-10,10 N=401 IC=1,3 M=2,2

PLOT CA13

The resulting functions, stored in matrices CV13 and CA13 are shown in Figs. 5.10b

and 5.10c, respectively
5.4.1.3 Response Spectral Moments

The command SRSM is used to compute the zeroth, first, second, and fourth
spectral moments of the nodal displacement response at DOF 2 for the FWN input.
The MEPF’s for this response are stored in the second column of matrix END.
The units for the zeroth, first, second and fourth spectral moments are in?, in?/sec,

in?[sec?, and in?/sec*, respectively. The results are stored in vector SN2:

SRSM W D END END SN2 I=4 P=100,15.7,0.6 IC=2,2

Oth spectral moment 10 = 5.3028
1st spectral moment 11 = §50.032
2nd spectral moment 12 = 505.24
4th spectral moment 14 = 70278.

The same is repeated for the nodal displacement at DOF 5:

SRSM W D END END SN5 I=4 P=100,156.7,0.6 IC=5,6
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Oth spectral moment 10 = 39.019

1st spectral moment 11 = 361.62
2nd spectral moment 12 = 3523.1
= .37934E 406

4th spectral moment 14

An alternative method to compute the spectral moments is to use the command
SM, which computes the moments of the response PSD by direct integration assuming
it to be a piecewise linear function. The following commands compute the PSD and
spectral moments for the nodal displacement at DOF 2:

SPSD W D END END P2 I=4 P=100,15.7,0.6 W=0,00 N=181 IC=2,2

SM P2 SN2A

Oth spectral moment 10 = 5.2755
1st spectral moment 11 = 49.868
2nd spectral moment 12 = 507.35

= 7T0063.

4th spectral moment 14

Note that the above results are approximate because of the piecewise assumption.

A further method to compute the spectral moments is to first use the command
SMSM to compute the modal spectral moments and correlation coefficients, and then
use the command SMR to perform modal superposition. For the Oth, 1st, 2nd and

4th spectral moments of the nodal displacement at DOF 2, this is accomplished by

SMSM W D MSMO0 RHOO I=4 P=100,15.7,0.6 M=0
SMR MSMO0 RHOO END END SN20 IC=2,2

Spectral Moment = 5.3028
SMSM W D MSM1 RHO1 I=4 P=100,15.7,0.6 M=1
SMR MSM1 RHO1 END END SN21 IC=2,2

Spectral Moment = 50.032
SMSM W D MSM2 RHO2 I=4 P=100,15.7,0.6 M=2
SMR MSM2 RHO2 END END SN22 IC=2,2

Spectral Moment = 505.24
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SMSM W D MSM4 RHO4 I=4 P=100,15.7,0.6 M=4
SMR MSM4 RHO4 END END SN24 IC=2,2

Spectral Moment = 70278.
5.4.1.4 Statistics of Response Process

The command SSGP is used to compute various statistics of the nodal dis-
placement response at DOF 2 when its Oth, 1st, 2nd and 4th spectral moments are
provided in matrix SN2. The response is assumed to be a zero-mean stationary
Gaussian process with a 10 sec duration. Five equally spaced threshold between 2-10
¢n are considered. The statistics including the crossing rates of the process and its

envelope, and the PDF and CDF of the local and extreme peaks of the process:

SSGP SN2 T=10 X=2,10 N=§

——— STATISTICS OF ZERO-MEAN STATIONARY GAUSSIAN PROCESS ——-

Process X(t):

Standard deviation of X(t) sqrt(10) = 2.3028

E | X(t) d(Hilbert tran X)/dt |**1/2 sqrt(11) = 7.0733

Standard deviation of dX/dt sqrt(12) = 22.478

Standard deviation of dX2/dt2 sqrt(14) = 265.10
Cramer-Leadbetter envelope E(t):

Mean of E(t) = 2.8861

Standard deviation of E(t) = 1.5086

Standard deviation of dE(t)/dt = .59027
Regularity factors (measures of bandwidth):

delta (1 - 11*11/10/12)**1/2 = .25633

alpha 12*12/10/14 = .82763
Mean zero upcrossing rate (apparent frequency):

nu(0+) (1/2pi)*(12/10)**1/2 = 1.5536
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Threshold crossings:

Threshold Mean Upcrossing Rates Mean Clump Size
Level X(t) E(t) (qualified crossings of E)
2.0000 1.06541 59454 2.33826
4.0000 .34366 .38355 1.48713
6.0000 .056214 .08728 1.23073
8.0000 .00372 .00830 1.12019
10.000 00012 .000356 1.06543

Probability distribution:

Level PDF CDF

X E Xpeak X E Xpeak
2.0000 .1188 .2220 .2587 .80744 .42837 .31419
4.0000 .3832E-01 .1382 .1669 05881 .81689 .77879
6.0000 .5814E-02 .3143E-01 .3797E-01 99541 .97223 .96644
8.0000 .4148E-03 .2990E-02 .3613E-02 00974 .99802 .99761
10.000 .1392E-04 .1254E-03 .1515E-03 99999 .99993 .99992

Statistics of max['X(t)l] for duration T=10:

Peak factors: p = 2.6913
q = .48983

[}
Mean = 5.9671
Standard deviation = 1.1280

Probability distribution:
Level PDF CDF
2.0000 .7T6359E-05 .00000
4.0000 .93909E-01 .03667
6.0000 .83367 .581156
8.0000 .61957E-01 .95590

10.000 .31364E-02 .99829

Next, the command SSGP is used to compute the statistics of the nodal
displacement response at DOF 5 where the required spectral moments are provided

in matrix SN5. In this case, the response is assumed to be a stationary Gaussian
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process with a mean equal to 10 sn. Such a non-zero mean response is possible, for
example, when the displacement due to a static loading is combined with the dynamic

displacement response. Four threshold levels 20, 25, 30 and 35 in are considered:
SSGP SN5 T=10 X=20,35 N=4 MU=5§
———— STATISTICS OF STATIONARY GAUSSIAN PROCESS ————

Process X(t):

Mean of X(t) = 5.0000
Standard deviation of X(t) sqrt(10) = 6.2465
E [ X(t) d(Hilbert tran X)/dt | 1/2 sqrt(l11) = 19.016
Standard deviation of dX/dt sqrt(12) = 59.355
Standard deviation of dX2/dt2 sqrt(l14) = 615.90

Cramer-Leadbetter envelope E(t):

Mean of E(t) = 12.829
Standard deviation of E(t) = 4.0923
Standard deviation of dE(t)/dt = 1.3783

Regularity factors (measures of bandwidth):

delta (1 - 11*11/10/12) 1/2 = .22066

alpha 12*12/10/14 = .91573

Mean upcrossing rate at mean level (apparent frequency):

nu(mean+) (1/2pi)*(12/10) 1/2 = 1.5123

Threshold crossings:

Threshold Mean Upcrossing Rates Mean Clump Size

Level X(t) E(t) (qualified crossings)
20.000 08462 .11239 1.36046
25.000 .00899 .01691 1.20507
30.000 00050 .00111 1.12271
35.000 .00001 .00004 1.07650

Probability distribution:
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Level PDF CDF

X E Xpeak X E Xpeak
20.000 .3574E-02 .1970E-01 .2151E-01 99183 94876 .94405
25.000 .3795E-03 .2789E-02 .3046E-02 .99932 99456 .99406
30.000 .2123E-04 .1951E-03 .2130E-03 99997  .99970 99967
35.000 .6261E-06 .6902E-056 .7T8637E-05 1.00000 .99999 .99999

Statistics of max[X(t)] for duration T=10:

Peak factors: p = 2.4647

q = .51296
Mean = 25.396
Standard deviation = 3.2042

Probability distribution:
Level PDF CDF
20.000 .12760 51492
25.000 .35027E-01 92657
30.000 .28737E-02 .99542

35.000 .10839E-03 .99986

Note that the command SSGP considers the simple maximum of the process
(rather than the maximum of its absolute value) when a mean value for the process
is specified. To obtain the statistics for the simple maximum of a zero-mean process,

MU=0 may be specified.
5.4.1.5 Distribution of Local and Extreme Peaks

The command LPKD is used to compute the PDF and CDF of the local
peaks of the nodal displacement response at DOF 2. The response is assumed to be
a zero-mean stationary Gaussian process with the required spectral moments provided
in matrix SN2. The result is specified at 121 points between the levels -2 to 4 times

the root-mean-square response:

LPKD SN2 MLPD R=-2,4 N=121
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The command EXTD is used to compute the PDF and CDF of the extreme
peak (defined as maz[|X(t)|]) of the nodal displacement response at DOF 2 over a
10 sec duration. The result is specified at 101 points between the levels O to 5 times

the root-mean-square response.

EXTD SN2 MEPD T=10 R=0,6 N=101 MU=0
PLOT MLPD N=1

PLOT MEPD N=1

PLOT MLPD MLPD N=1 X=1 Y=3

PLOT MEPD MEPD N=1 X=1 Y=3
The distributions of the two local and extreme peaks are compared in Fig. 5.11a-b.

5.4.2 Nonstationary Response

Two types of nonstationary input are considered in STOCAL-IL. One is a uni-
formly modulated process and the other is a fully evolutionary input. The uniformly
modulated process is described through a time-invariant PSD function and a modu-
lating function of time. The evolutionary model is described through a time-invariant
PSD function and a real-valued modulating function of time and frequency. In this
section, two modulating functions of time are used. One is defined in matrix MT
from Section 5.2.2 and is shown in Fig. 5.3a. The other is the unit step function,

which is defined by matrix MT1 as follows:

LOAD MT1 R=1 C=2

01

For the evolutionary input, the modulating function of time and frequency is defined
by matrix MWT of Section 5.2.2, which is shown in Fig. 5.4a. The time-invariant

PSD is a piecewise linear function defined by matrix PI below:

LOAD PI R=4 C=2
0.00 90.

13.0 190
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30.0 486.
60.0 0.0

PLOT PI
The plot of the time-invariant PSD is shown in Fig. 5.12

In order to observe the evolutionary nature of the response, it is useful to
investigate the individual modal responses. For this purpose, a fictitious MEPF matrix 7

MI is defined as follows:

LOAD MI R=56 C=2
10
00
01
0o

00

This matrix is used in the following analysis to study the responses in modes 1 and

3.
5.4.2.1 Response Evolutionary PSD Functions

The command TPSD is used to compute the evolutionary PSD of the first
mode of the structure. The effective participation factors for this modal response
are specified in the first column of MI. The input is specified by a WN PSD with
®, = 100 in?/sec® modulated by the unit step function defined in matrix MT1.
Since only the response in the first mode is required, L=1 is specified. The resulting
evolutionary PSD is computed at time instants 1, 2 and 3 sec and for 121 frequency
points between O and 30 rad/sec. For comparison, the stationary PSD of the response

is also determined by using the command SPSD:

TPSD W D MI MI MT1 TP1 I=1 P=100 W=0,30 N=121 T1=1,2,3 L=1
SPSD W D MI MI SP1 I=1 P=100 W=0,30 N=121 IC=1,1 L=1

PLOT TP1 TP1 N=3 X=1,1,1 Y=2,4,6
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PLOT SP1
The results of the above commands are shown in Fig. 5.13a.

The above analysis is repeated for the response in mode 3, for which the

effective participation factors are specified in the second column of MI:

TPSD W D MI MI MT1 TP3 I=1 P=100 W=0,30 N=121 T1=1,2,3 IC=2,2 L=3
SPSD W D MI MI SP3 I=1 P=100 W=0,30 N=121 IC=2,2 L=3
PLOT TP3 TP3 N=3 X=1,1,1 Y=2,4,6

PLOT SP3
The results of the above commands are shown in Fig. 5.13b.

Next, the command TPSD is used to compute the evolutionary cross-PSD of
the responses in modes 1 and 3. The resulting evolutionary PSD, consisting of a real
and an imaginary part, is obtained for time instants 1, 2 and 3 sec. For comparison,

the stationary cross-PSD is also computed:

TPSD W D MI MI MT1 TP13 I=1 P=100 W=0,30 N=121 T1=1,2,3 IC=1,2 L=3
SPSD W D MI MI SP13 I=1 P=100 W=0,30 N=121 IC=1,2 L=3

PLOT TP13 TP13 N=3 X=1,1,1 Y=2,4,6

PLOT SP13

PLOT TP13 TP13 N=3 X=1,1,1 Y=3,5,7

PLOT SP13 SP13 N=1 X=1 Y=3
The results of the above commands are shown in Fig. 5.14.

Observe in Figs. 5.13 and 5.14 the modal responses initially are relatively wide
band processes, but with time the energy concentrates around the modal frequency
and after a sufficiently long time the response in each mode approaches the stationary

response.

The command EPSD is used to compute the evolutionary PSD of the nodal

displacement response at DOF 1. The MEPF’s for this response are contained in the
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first column of matrix END from Section 5.3.5. The evolutionary input considered
is specified by the PSD function defined in matrix PI (Fig. 5.12) and the time-
frequency modulating function defined in matrix MWT (Fig. 5.4a). L=3 is specified
because only the contributions from the first three modes are included in the analysis.
The resulting evolutionary PSD at time instants 3, 4 and 5 sec is obtained. For

comparison, the stationary PSD is also computed:
EPSD W D END END MWT EP11 PI I=3 W=0,30 N=121 T1=3,4,5 L=3
SPSD W D END END SP11 PI I=3 W=0,30 N=121 L=3

PLOT EP11 EP1l1 N=3 X=1,1,1 Y=2,4,6

PLOT SP11
The results of the above commands are shown in Fig. 5.15a.

The above analysis is repeated for the nodal displacement at DOF 3, for which
the MEPF’s are contained in the third column of matrix END from Section 5.3.5:

EPSD W D END END MWT EP33 PI I=3 W=0,30 N=121 T1=3,4,6 IC=3,3 L=3

SPSD W D END END SP33 PI I=3 W=0,30 N=121 IC=3,3 L=3

PLOT EP33 EP33 N=4 X=1,1,1 Y=2,4,6

PLOT SP33
The results of the above commands are shown in Fig. 5.15b.

Next, the command EPSD is used to compute the evolutionary cross-PSD of
the nodal displacement responses at DOF’s 1 and 3. The resulting evolutionary PSD,
consisting of a real and an imaginary part, is obtained. For comparison, the stationary
cross-PSD is also computed:

EPSD W D END END MWT EP13 PI I=8 W=0,30 N=121 T1=3,4,6 IC=1,3 L=3

SPSD W D END END SP1A PI I=8 W=0,30 N=121 IC=1,3 L=3

PLOT EP13 EP13 N=3 X=1,1,1 Y=2,4,6

PLOT SP1A

PLOT EP13 EP13 N=3 X=1,1,1 Y=38,5,7

PLOT SP1A SP1A N=1 X=1 Y=3
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The results of the above commands are shown in Fig. 5.15b.
5.4.2.2 Response Correlation Functions

The command TCF is used to compute the variance function of the first
modal displacement response of the structure. The effective participation factors for
this modal response are contained in the first column of matrix MI. The input is the
WN modulated by the unit step function. Since only the response of the first mode
is required, L=1 is specified. For comparison, the stationary variance of the response

is also computed:

TCF W D MI MI MT1 TT1 I=1 P=100 T1=0,5 N=101 L=1
SCF W D MI MI TS1 I=1 P=100 TA=0,1 N=1 L=1
P TsS1

COL = 1 2

ROW 1 .00000 3.94732

PLOT TT1 TT1 N=1 X=1 Y=3
The results of the above commands are shown in Fig. 5.17a.

Next, the command TCF is used to compute the covariance function of the

first modal displacement and velocity responses of the structure:

TCF W D MI MI MT1 TT2 I=1 P=100 T1=0,56 N=101 M=1,0 L=1

PLOT TT2 TT2 N=1 X=1 Y=3

The result of the above commands is shown in Fig. 5.17b. Note that the correspond-

ing stationary covariance in this case is zero.
In a similar manner, the command TCF is used to compute the variance
function of the first modal velocity response:

TCF W D MI MI MT1 TT3 I=1 P=100 T1=0,6 N=101 M=1,1 L=1
SCF W D MI MI TS3 I=1 P=100 TA=0,1 N=1 M=1,1 L=1

P TsS3
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COL = 1 2
ROW 1 .00000 339.00082

PLOT TT3 TT3 N=1 X=1 Y=3
The results of the above commands are shown in Fig. 5.17c.

The results in Fig. 5.17 are in agreement with previously published results by

Caughey and Stumpf (1961) and others.

Next, the command TCF is used to compute the variance function of the nodal
displacement at DOF 2 for a uniformly modulated input having the PSD function
defined in matrix PI (Fig. 5.12) and the modulating function defined in matrix MT
(Fig. 5.3a). The MEPF’s for this response are contained in the second column of
matrix END from Section 5.3.5. The variance function is computed at 81 points
along time band 0-20 sec. Only the contributions from the first three modes are

included in the analysis:

TCF W D END END MT TC2 PI I=3 T1=0,20 N=81 IC=2,2 L=3
PLOT TC2 TC2 N=1 X=1 Y=3

The command TCF is repeated to compute the variance function of the nodal dis-

placement at DOF 5:

TCF W D END END MT TCS5 PI I=3 T1=0,20 N=81 IC=5,6 L=3

PLOT TC5 TC5 N=1 X=1 Y=3
The two variance functions are compared in Fig. 5.18.

Next, the command ECF is used to compute the variance functions of the nodal
displacements at DOF’s 2 and 5 for an evolutionary input with a constant PSD and
the time-frequency modulating function defined in matrix MWT (Fig. 5.4a). The
MEPF’s for this response are contained in the second and fifth columns of matrix

END from Section 5.3.5.
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ECF W D END END MWT EC2 I=1 P=100 T1=0,20 N=81 IC=2,2 L=3
PLOT EC2 EC2 N=1 X=1 Y=3
ECF W D END END MWT EC5 I=1 P=100 T1=0,20 N=81 IC=5,6 L=38

PLOT EC6 EC5 N=1 X=1 Y=3
The results the above commands are shown in Fig. 5.19.
5.4.3 Response Spectrum Analysis

In this section the input ground motion is specified through a mean response
spectrum. The standard response spectrum suggested in the NRC Regulatory Guide
1.60 (NRC 1976), which is shown in Fig. 5.20, is used for this purpose. For 0.05
modal damping, the spectrum ordinates at modal frequencies of the structure are

loaded in vector SPC (in units of in) as follows:

LOAD SPC R=1 C=5

9.118 6.664 4.746 0.672 0.340
This input is used to investigate several modal combination rules as follows:

The command RCQC is used to compute the approximate mean of the maxi-
mum base shear force in the connecting member AB according to the CQC (Wilson et
al. 1981). The MEPF’s for this response are obtained from matrix ECF (in Section

5.3.5) and store in vector El:

DUPSM ECF El1 R=5 C=1 L=1,3
RCQC W D E1 SPC VvVCQC

The mean of absolute maximum response = 176.09
The above rule accounts for the correlation between modal responses.

To investigate the effect of ignoring modal correlations, the above maximum

response is estimated by the SRSS rule through the use of matrix manipulations:

ZERO M1 R=5 C=5
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STODG M1 SPC
MULT M1 E1 M2
TRAN M2 M2T
MULT M2T M2 SRSS
SQREL SRSS
P SRSS

COL = 1

ROW 1 169.66134

Another common modal combination rule is the absolute sum method. The

maximum response based on this rule is computed as follows:

DUP E1 E1lA
ABS ElA
MULT SPC E1A VMA
P VMA
COL = 1

ROW 1 282.13280

From the above results, it is seen that the effect of modal correlations is around

4 percent and that the absolute sum method grossly overestimates the response.

The command RSM is used to compute the spectral moments of the base shear
response according to the response spectrum method proposed by Der Kiureghian
(1981). The modal combination rule uses a modal correlation coefficient matrix ob-
tained from the assumption of a FWN input. The duration of strong shaking is
assumed to be 10 sec. The command SSGP is then used to compute the response

statistics for a 10 sec duration:

RSM W D E1 SPC VMW T=10 I=4 P=100,15.7,0.6
SSGP VMW T=10

——— STATISTICS OF ZERO-MEAN STATIONARY GAUSSIAN PROCESS ——-
Process X(t):
Standard deviation of X(t) sqrt(l0) = 67.676
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E | X(t) d(Hilbert tran X)/dt ]**1/2 sqrt(l1) = 252.38

Standard deviation of dX/dt sqrt(12) = 1260.0

Standard deviation of dX2/dt2 sqrt(l4) = b58265.
Cramer-Leadbetter envelope E(t):

Mean of E(t) = 84.819

Standard deviation of E(t) = 44.337

Standard deviation of dE(t)/dt = 44.995
Regularity factors (measures of bandwidth):

delta (1 - 11*11/10/12)**1/2 = .66485

alpha 12%]12/10/14 = .40263
Mean zero upcrossing rate (apparent frequency):

nu(0+) (1/2pi)*(12/10)**1/2 = 2.9632

Statistics of max[lX(t)h for duration T=10:

Peak factors: p = 3.0593

q = .41356
Mean = 207.04
Standard deviation = 27.988
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Figure 5.8 Cross-PSD’s of Responses at DOF’s 1 and 3:
(a) Displacements (in? * sec), (b) Velocities
(in?/sec), (c) Accelerations (in®/sec®)
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Figure 5.10 Cross-Correlations of Responses at DOF’s 1 and 3:
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Figure 5.13 Evolutionary Response PSD Functions
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

A new formulation of problems in random vibration analysis of linear systems
is presented. The formulation facilitates the solution of problems through a process
of synthesis. This solution approach is implemented in the instructional software
STOCAL-II, which is designed to be used in teaching graduate courses on random

vibrations.

In solving random vibration problems with STOCAL-II, the student issues a
sequence of commands that carry out the numerical computations required for each
basic element of the solution algorithm. The student must have a good understand-
ing of the fundamental concepts in order to choose the proper sequence of commands
and the corresponding parameters. The software assists the learning by: (a) freeing
the student from tedious computations that are required for the solution but are
not necessary for a fundamental understanding of the basic concepts, (b) providing a
transparent computing environment where explicit specification of operations is nec-
essary and all intermediate results are made available upon request, (c) facilitating
the solution of exercise problems of practical significance that could not be solved
by hand, (d) providing the student with an efficient means for parametric study and
experimentation, and (e) providing an interactive computing environment with facility
for immediate plotting of the results. STOCAL-II is the first instructional software

in the area of random vibrations to possess these qualities.

STOCAL-II is developed as an extension to CAL. Only minor modifications

to CAL have been made in this development, and all the commands in CAL are
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available in STOCAL-II. Thus, in addition to nondeterministic analysis, STOCAL-II
can perform basic matrix operations and static and dynamic structural analysis. A
2D graphics capability, employing the IBM Graphics ToolKit (1984), is implemented
which allows visualization of the results on the monitor screen or hard-copy plotting

on a standard pen plotter.

Commands and algorithms incorporated in STOCAL-II provide the means for
random vibration analysis of linear MDOF systems subjected to stationary or nonsta-
tionary excitations specified by their power spectral characterizations, or earthquake
excitations specified by their response spectra. Commands for computing the re-
sponse statistics of engineering interest, such as crossing rates, distributions of local
and extreme peaks, and the characteristics of the envelope process are also provided.
Additional commands allow the generation of sample functions or the estimation of
temporal or ensemble autocorrelation or power spectral density from given sample

functions.

A simple example, consisting of a two-story primary structure and an attached,
three-node secondary subsystem, is used to illustrate the application and capabilities
of STOCAL-II. The example does not illustrate the use of all STOCAL-II commands.
However, after reviewing this illustration and the command descriptions in Appendix

B the use of other commands should be straightforward.

6.2 Conclusions

The main contribution of this thesis has been in the new formulation of random
vibration problems employing the solution by a process of synthesis, and in develop-
ing the instructional software STOCAL-II. It is hoped that these developments will
facilitate the teaching and learning of the topic of random vibrations, both in a class-

room setting as well as through self-learning or in the preparation of lectures. It is
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also hoped that the software will be useful in research and application employing the

methods of random vibrations.

In developing a software one always has to put limits on the scope. However,
STOCAL-II has been developed in a manner that further developments or expansion
can be done rather easily. Although the current version has extensive capabilities, .
there are many areas where it can be further improved or expanded. For example,
it would be useful to allow a complex-valued modulating function for the evolution-
ary input. This would then allow the solution of the response of cascaded systems
subjected to nonstationary excitation. Another useful extension would be the capabil-
ity to compute the frequency response function for general systems, including those
with non-classical damping. Finally, it is recalled that presently STOCAL-II is lim-
ited to linear systems with deterministic properties. Extensions of the instructional
software for the study of nonlinear problems, or problems with uncertain systems and

parametric excitation would be significant additions to this work.
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APPENDIX A

BASIC INTEGRALS

This appendix summarizes formulas used for computing six integrals that are

basic elements in the evaluation of stochastic modal response.

A.1 Logarithmic Integral
The logarithmic integral, In(z), (Abramowitz and Stegun 1970, p67) is defined
by
In(z) = / Lo
1 &

= In(|2]) +iarg(2)

(A1)

where z = z+1y is a complex number and |z|> = z% + y®. Note that In(1) = 0, since

In(1) = 0+ i2kx with k=0.
A.2 Exponential Integral

The exponential integral, E,(z), is defined by
-t

Ei(2) = / ” ert
: = (_a (A.2q)

= -y —lIn(z) - Z

n=1

n x n!
where v = 0.5772156649, z = z +iy and |arg(z)| < . In addition, E;(z*) = E;(z),

where the asterisk denotes the complex conjugate.

Since an exact evaluation E,(z) is not available from Eq. A.2a is not possible,

approximate are used. For values of z for which

2 2

y

2—5+§>1andz>0 (A.2b)
or
2 2
-1%6+§5’3>1 and z <0 (A.2¢)
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an approximate solution given by Abramowitz and Stegun (1970, p228-p254) is

0.711093 0.278518 0.010389

¢ B2 = 0415775 T s 1229428 + 6.2900

+¢€ |e] < 5x10™* (A.2d)

For other values of z, a truncated Taylor series expansion is used. The number of
terms in the series expansion is chosen such that the at least a 4 digit accuracy is

achieved.
A.3 Expanded Logarithmic Integral

If the integration range of a logarithmic integral is from z; to 2y, then we call

it an expanded logarithmic integral:

23 l
In(z,z =/ —dt
( ! 2) 23 t (A.3a)

=In(2;) - In(z;) +iA(21, 22)

where A(z;,2;) is an integration path function and is defined as

A(z1,22)= O A<B
= 2 A=B, C#0, and y; > y,
= -2 A=B, C#0, and y; <y, (A.3b)
= .3 A=B, C=0, and y; > y,
= — A=B, C=0, and y; <y,

where 21 = z; +iy1, 22 = 22 +iy2, C = 21y — Y122, A= [C+y, — y2| and B =
IC| + |y1| + ly2|- In other words, A is equal to £« when the integration path passes
through the origin, it is 227 when the path passes over the negative axis, and it is
zero elsewhere. When the path passes through the origin, the integration value may
not exist. However, using a generalization of the Cauchy principal value (Greenberg

1978, p285) the integral may be defined as +x.
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A.4 Expanded Exponential Integral

If the integration range of an exponential integral is from 2, to z2, then we

call it an expanded exponential integral;

z3 e—t
E12(21,22) =/ Tdt

z1

(A.4)
= E'l(zl) —E1(22)+iA(z1’z‘2) |

where the value of A depends on the integration path from 2z, to zo as described

above.
A.5 Compound Logarithmic Integral

The compound logarithmic integral, I(z,m,a,b), for m > 1 is defined by

b wm
I(z,m,a,b)=/ ” dw

a
b

= [ w™ 'dw+ zI(z,m — 1,a,b) (A.5a)
1 m m
=;(b —a™)+zI(z,m - 1,a,b)

which is a recursive formula. For m =0,

I(z,0,a,b) =In(a — z,b — 2) (A.5b)

A.6 Compound Exponential Integral

The compound exponential integral, J(z,m,a, b, 1), for m > 1 is defined by

b m wr
J(z,m,a,b,7) = / L% dw

w—2z

b .
/ w""lel“”dw+zJ(z,m—l,a,b,r)
= 2J(z,m—1,a,b,7) + ‘-rl-[a”‘—leiaf - b"“lei"’] (A.6a)
S~ (L) (m = 1)(m = 2) - - (m
+ D () (m-1)(m~2)--- (m—k+1)
k=2
[am—keiar — bm-keibr]
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which is a recursive formula. For m =0 and 7 #0
J(Z, 0, a, b, T) = ei" E12 (21 , 22) (A.6b)

where z; = —ir(a — z) and 2, = —ir(b—2). For 7 = 0, the compound logarithmic

integral is used.
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APPENDIX B

STOCAL-II COMMAND SUMMARY

STOCAL-II commands are categorized into the following groups:

(1) Two Dimension Graphics

PLOT

draws 2-D curves on the screen and the plotter by supplying the x
and y coordinates in a single matrix or two separate matrices. A

series of secondary commands are available to draw axes, zoom, etc.

(2) Generation of Samples

GSU

GSGP

GSGPT

GEGP

TSSF

GPSD

generates random numbers between 0 and 1 with uniform distribution.

generates an ensemble of sample functions for a stationary Gaussian

process with a specified PSD function.

generates an ensemble of sample functions for a stationary Gaussian

process with a specified autocorrelation function.

generates an ensemble of sample functions for a Gaussian process with

an evolutionary PSD function.

multiplies generated sample functions by a time modulating function.

discretizes a specified PSD function.

(3) Transformation of Samples

TFSU

TTSU

transforms a uniformly distributed sample to a sample with a specified

distribution.

transforms a sample with a specified distribution to a uniformly dis-

tributed sample.
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(4) Estimation of Samples

STAT

NFD

NCFD

ACF

TACF

computes the means, standard deviations and skewness coefficients of

specified samples of random variables.
constructs the normalized frequency diagram of a given sample.

constructs the normalized cumulative frequency diagram of a given

sample.

computes the ensemble autocorrelation function of a random process

from specified sample functions.

computes the temporal autocorrelation function of a random process

from a specified sample function.

(5) Fourier Transform

FTP

IFTP

FTD

IFTD

computes the Fourier transform of a piecewise linear function.
computes the inverse Fourier transform of a piecewise linear function.
computes the Fourier transform for discrete data.

computes the inverse Fourier transform for discrete data.

(6) Response PSD Functions

SPSD

TPSD

EPSD

computes the stationary response PSD function.

computes the evolutionary response PSD function, where the input is

specified by a uniformly modulated PSD function.

computes the evolutionary response PSD function, where the input is

specified by an evolutionary PSD function.

(7) Response Correlation Functions

SCF

computes the stationary response auto or cross-correlation function.
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TCF

ECF

computes the evolutionary response auto or cross-correlation function,
where the input is specified by a uniformly modulated PSD function.

computes the evolutionary response auto or cross-correlation function,

where the input is specified by an evolutionary PSD function.

(8) Spectral Moments

SM

SRSM

SMSM

SMR

RCQC

computes the spectral moments for a specified PSD function.

computes the spectral moments of a stationary response when the
input is specified by a PSD function.

computes the spectral moments for stationary modal responses when
the input is specified by a PSD function.

computes the spectral moments of a stationary response by superpo-
sition of modal spectral moments.

computes the mean of absolute maximum of a response quantity using

the CQC response spectrum method.

computes the spectral moments of the response when the input is

specified by a mean response spectrum.

(9) Statistics of Stationary Gaussian Process

SSGP

LPKD

EXTD

computes various statistics of a stationary Gaussian process, including
crossing rates, distributions of peaks and the statistics of the envelope

process.

computes the PDF and CDF of the local peaks of a stationary Gaus-

sian process.

computes the PDF and CDF of the extreme peak of a stationary

Gaussian process.
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(10) Statistics of Nonstationary Process

T™MS

TRMS

EMS

ERMS

NCR

NDLP

NDEP

computes the variances and cross-correlation coefficients of a uniformly

modulated process and its derivatives.

computes the variances and cross-correlation coefficients of the re-
sponse and/or its derivatives when the input is specified by a uni-

formly modulated PSD function.

computes the variances and cross-correlation coefficients of an evolu-
tionary process and its derivatives.

computes the variances and cross-correlation coefficients of the re-
sponse and/or its derivatives when the input is specified by an evo-
lutionary PSD function.

computes the mean upcrossing rate of a zero-mean nonstationary
Gaussian process above specified thresholds.

computes the PDF of the local peaks of a zero-mean nonstationary

Gaussian process.

computes the PDF and CDF of the extreme peak of a zero-mean

nonstationary Gaussian process.

(11) Miscellaneous

AMP

MPF
EPF

VECTOR

WRITE

transforms complex numbers expressed by real and imaginary parts

into an amplitude and phase angle expression.
computes modal participation factors.
computes modal effective participation factors.

constructs a vector containing a sequence of equally spaced ascending

numbers.

writes numerical data onto an external file.
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