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Abstract 

It is shown that in the relativistic many-body theory the Coulomb sum 

rule value is never exhausted in the space-like momentum transfer region. 

This implies that the Coulomb sum rule should be used with a particular 

caution to analyze deep inelastic electron scattering from nuclei. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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Currently, the Coulomb sum rule is of special interest relating to deep 

inelastic electron scattering from nuclei 1). In the nonrelativistic quantum 

many-body theory, the Coulomb sum rule gives a simple and very useful relation 

between the static two-body correlation function and the inelastic electron 

scattering cross section integrated over the energy 10ss2). Quite recently 

a relativistic extension of the nonrelativistic Coulomb sum rule has been made 

by Walecka3). He also evaluated the relativistic two-body correlation 

function in the relativistic mean-field theory4), which provides a concise 

and realistic description of nuclei 5), and observed that the anomalous 

magnetic moment of nucleon dominates the Coulomb sum rule value at high 

momentum transfer region (q > 2kF), indicating the importance of dynamical 

behavior of mesons in nuclei. 

The Coulomb sum rule involves the integral of the Coulomb response 

function over the entire positive energy region. This is so even in the 

relativistic case 3). Thus it is not apparent that the sum rule value is 

really exhausted, as commonly assumed, in the space-like momentum transfer 

region (w < q), which can be reached by the electron scattering. 

In the following we shall carefully inspect the relativistic Coulomb sum 

rule by focusing on the distribution of the sum rule value over two different 

kinematical regions, i.e., space-like vs time-like (w > q) momentum transfer 

regions. After the analysis of the lowest order Coulomb response function in 

the relativistic mean-field theory, we shall see a remarkable upshot that the 

sum rule value of the Fermi sea nucleons is not exhausted in the space-like 

momentum transfer reg ion, even in the extreme momentum transfer 1 imit q ~ 00. 

The remaining part of the sum rule value is found in the time-like momentum 

region, mixed with the contribution from the Dirac sea nucleons, i.e., the 

vacuum polarization of baryon field. 
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To make the following argument transparent, we first assume that the 

baryon is a point-like Dirac particle with no anomalous magnetic moment. Then 

the relativistic Coulomb sum rule of Walecka3) is written as 

00 

S(q) - f 
o 

2 
doo Wc 1 (q ,00) ou • -

where WCoul .(g2,oo) is the Coulomb response function and g(x,y) is a 

(1) 

function defined by the trace of a product of proton charge operator Q = (1 + 

T3)/2 and the baryon two-body correlation function over Dirac (a,a, ... = 

1, ... ,4) and isospin (k, 1, ... = 1,2) indices, 

+ 
g(x,y) = Q 0 kl g 0 kl' ~ ,'J' (x,y) Q ~ ,'J' - - ap, ap, ,Yu, - - yu, 

g kl .. (x,y) aa, ;yo,'J 

+ + 
- <~ k(x)~ l(x»<~ .(y)~~ .(y» 

a - a - yl - uJ-

where the symbol < ... > indicates the ground state expectation value. 

The two-body correlation function summarizes all informtion about the 

dynamics of two baryon interaction inside the nuclei. It is, however, 

(2) 

(3) 

extremely difficult to carry out a reliable calculation of this function in the 

framework of the relativistic quantum field theory, and this is far beyond the 

scope of the present study. Instead, we Simply evaluate it here in the rela-

tivistic mean-field theory. The prescription was given by Walecka in ref. 3); .: 

the baryon field is first expressed in terms of the Dirac spinors, which 

satisfy modified Dirac equations, (i~+M*)U(k,A) = 0 and (i~-M*)V(-k,A) = 0 

with an effective mass M*, 
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) 1 ~ () ik·x -ik·x + 
~ l(x = -- ~ [U(k,A) n I) le - - ak, + V(-~'A)an(l))le - - bk,~J • 

a lIT kAI) - a _1\1) 1\", 

(4) 

Inserting this into Eq. (3) one may readily compute the ground state expecta-

tion value, noting that the ground state is composed of an equal number of 

proto~s and neutrons filled in the modified baryon spectra up to the Fermi 

level according to the Pauli principle. The trace in Eq. (2) is then carried 

out with the aid of the energy-projection relations, L U+(k,A) U(k,A) = 
A - U - v 

+ 
[(~.~ + aM* + Ek)/(2Ek)J uv and XV (-~'A)UV(-~'A)V = [(~.~ - aM* + Ek)/(2Ek)Juv ' 

with Ek = ~2+~2. w: end up with the following result for the Fou;ier -

transform of the relativistic Pauli correlation function. 

where nk = e(k - kF) is the ground state distribution function. In ref. 3), 

only th; first term GF(q) is retained in Eq. (5). Another term GD(q), which 

(5) 

(6 ) 

(7) 

contains a divergent integral over ~, arises due to the inclusion of the wave 

function V(-k,A), which corresponds to the negative energy baryon state in the 

Dirac sea. This term was omitted in ref. 3) ; simi lar to the procedure to 

ne,-glect the zero point motion energy of the baryon field in the mean-field 

theory4) . As we shall see later, however, this term is very important to 
, 

understand the distribution of sum rule value over the time-like momentum 

transfer region. 



-4-

Now we shall compute the w-integral of the Coulomb response function in 

Eq. (1) in the same approximation scheme and compare it to the above result. 

According to the linear response theory 2),6),7), the Coulomb response 

function, WCoul • = W44 , can be related to the fourth component of the 

imaginary part of the photon self-energy tensor in nuclei 

S1 W (q,w) = - - 1m IT (q,w) 
~v ~ ~v 

. where S1 is the volume of the system. This relation simply means that 

inelastic electron scattering is described, in one-photon exchange 

approximation, as the absorption of a virtual photon emitted by the electron 

in nuclei. In the mean-field approximation, the polarization tensor n is 
~v 

reduced to the form 

* n 
~v 

= 

(8) . 

(9) 

where ~~ = Qy~ is the electromagnetic vertex of the point-like Dirac baryon and 

the baryon propagator in the mean-field theory is given by 

G*(k) = [-i~ + M*] {- 1 + 2~i o(k 2 + M*)2 
k2+M*2_i € ~ 
~ 

(10) 

Then, noting that S1 f d3k3 = L, a straightforward calculation leads to 
(2~) k 

W (q,w) =->. 
\.IV k 

-F 4E
k

@k+q o(w+E~ + E~+g)(l-n~) .:r~)ko= E~) 

-f 4Ek~k+q o(w-E~ - E~+g)(l-n~+g) ~)ko= -Ek) (11 ) 

with:f = q q - q2
0 - (q + 2k)(q + 2k ) where q = (q,iw) and 

~v ~ v ~v ~ ,~v v ~ 

.. 

.. 
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and k = (k,iko). The current conservation, q W = 0, can be readily 
lJ - lJ lJ\I 

recovered from this result. The above result was first obtained by Chin in 

the context of the study of collective mode6). Using Eq. (11) one can 

separate the Coulomb sum rule value into two parts, 

00 00 

f dw WCoul. (q,w) =f dw W44 (q,w) = SSL(q) + S TL(q) (12) 

o 0 

where SSL(q) and STL(q) correspond to the space-like energy integral and the 

time-like energy integral of W
44

(q,w) respectively 

q 
(E +E )2_q2 

SSL(q) == f d w W 44 ( q, w) L = ~ ~+g nk(1 - nk ) (13 ) 
~ 

4E kEk+ -+q 
0 - - q 

00 2 2 
TL = f L: (E~-E~+q) -g (1 - n~+g) (14 ) S (q) - dw W44 (q,w) = - 4E E 

q ~ ~ ~+g 

If one compares this result with the previous one for the two-body 

correlation function, Eqs. (5)-(7), then the following relations can be found 

where 

2 2 
(E~-E~+q) -'1 

~G(q) = L: 4E E n~ 
~ ~ ~+q 

The striking observation here is that the sum rule value, Z + GF(q), which 

(15) 

(16 ) 

(17) 

results from the neglect of anti nucleon wave function, does not coincide with 

the space-like energy sum of the Coulomb response function. The difference 

~G(q) is always negative and has the limiting behaviors, ~G(O) = 0 and 
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AG(oo) = -Z/2. Since GF(q) = a for q ~ 2PF, this implies that only a half 

of the total charge of the system is visible by the electron scattering with 

extremely large momentum transfer. The missing part of the sum rule value 

appears in the time-like region, mixed with the anti nucleon (or Dirac sea 

nucleon) sum rule value, as shown in Eq. (16). If one takes the 

non-relativistic limit Oy setting M*/q ~ 00 and M*/PF ~ 00, then AG(q) 

vanishes and thereby one sees that the sum rule value of the Fermi sea nucleon 

is completely exhausted. in the space-like momentum transfer region. It is the 

relativistic kinematics that makes AG(q) finite and shifts a part of sum rule 

value out of sight. [Because of the close resemblance between AG(q) and the 

density dependent term in GD(q) (see Eq. (7)) except for a factor 2, one may 

interpret that AG(q) arises due to the Pauli correlation between the Fermi sea 

nucleon and the Dirac sea nucleon. Also note that the divergent term r1 in 
k 

Eq. (16), corresponding to the total charge of the baryons in the infinite 

Dirac sea, has to be also added in the right-hand side of Eq. (1) for 

completeness.] 

In Fig. 1 the numerical result of SSL(q) normalized by the total charge 

Z is compared to the total normalized sum rule value, 1 + GF(q)/Z, for the 

relevant momentum regions. The space-like component of the sum rule value 

strongly depends on the effective mass of the baryon, while the total sum rule 

value remains very close to the nonrelativistic result. With a small effective 

mass M* = 0.56 M we find 15% reduction in the space-like component of the sum 

rule value at q = 2kF, and with M* = 0.70M this number is reduced to 11%. 

So far we have neglected the presence of the anomalous magnetic moment of 

nucleon and the nucleon electromagnetic form factor. The inclusion of these 

effects can be made by simply replacing the electromagnetic vertex operator in 

Eq. (9) byi/t = F1(q)y + F2(q)a q. If we assume the intrinsic 
~ ~ ~v v 
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nucleon properties do not change in nuclei, although this might not be the 

case8,9), then we can take F1(q) = (1 + L 3)/2 and F2(q) = 

[l p(I+L 3)/2 + 1n(I-L 3)/2J/(2M), where 1p = 1.7928 and 1n = -1.9131 

are the static anomalous moments of proton and neutron respectively and the 

overall free nucleon form factor fsn(q2) is removed. Corresponding sum 

rule value is obtained by substituting the effective charge operator defined by 

Q = ~4Y4 into Eq. (2) and by replacing Z by [1 + ~21~/(2M)2JZ + [~21~/(2M)2]N. 

The result is shown in Fig. 2. Again we find a considerable difference between 

the total sum rule value C(q) of the Fermi sea nucleon [this is exactly what 

was evaluated by Walecka3)] and its space-like visible part. Note that the 

difference becomes minimum at M* - O~35M around q = 2PF' converting the 

order of the curves for different effective masses from that of Fig. 1. 

In summary, we have studied the distribution of the Coulomb sum rule value 

over the space-like and time-like momentum transfer regions by analyzing the 

lowest order Coulomb response function. In the present calculation the nucleus 

is virtually viewed as a relativistic Fermi gas of baryon with an effective 

mass M*, and, therefore, only the Pauli correlation between baryons is taken 

into account. Our key observation was that the Coulomb sum rule value of the 

Fermi sea nucleon is incompletely exhausted in the space-like momentum transfer 

region and thus, in principle, it cannot be entirely seen by the inclusive 

electron scattering. Of course the actual experimental situation would be far 

more complicated because of the exchange current 10) and the production of 

real mesons ll ) and baryon resonances I2 ), which are not included in the 

present study, and certainly requires more elaborate study including these 

effects. Although we used a specific model description of the nuclear 

many-body system, one may consider that our finding is one of the general 

aspects of the relativistic many-body problem. 
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Figure Captions 

Fig. 1. Space-like component of the Coulomb sum rule value [see Eq. (13)]. 

Fig. 2. 

The total sum rule value of the Fermi sea nucleon (dashed line) does 

not depend much on the effective baryon mass M* and appears very 

close to the nonrelativistic result. 

Space-like component of the Coulomb sum rule value with nucleon 

anomalous magnetic moments. C(q) is the total sum rule value of the 

Fermi sea nucleon obtained by Walecka3) [We set M* = M here to 

evaluate C(q)]. 
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