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JUNIPR is an approach to unsupervised learning in particle physics that scaffolds a probabilistic model for
jets around their representation as binary trees. Separate JUNIPR models can be learned for different event or
jet types, then compared and explored for physical insight. The relative probabilities can also be used for
discrimination. In this Letter, we show how the training of the separate models can be refined in the context
of classification to optimize discrimination power. We refer to this refined approach as BINARY JUNIPR.
BINARY JUNIPR achieves state-of-the-art performance for quark-gluon discrimination and top tagging. The
trained models can then be analyzed to provide physical insight into how the classification is achieved. As
examples, we explore differences between quark and gluon jets and between gluon jets generated with two
different simulations.
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Modern machine learning has already made impressive
contributions to particle physics. Convolutional [1–6],
recurrent and recursive networks [7–11], autoencoders
[12–15], adversarial networks [16–18], and more have
been shown effective in applications including quark-gluon
jet discrimination, top tagging, and pileup removal. A key
question that is beginning to be addressed is this: what is
the optimal representation of the information in an event? Is
it through analogy with images [1,2], natural-language
processing [8,11], or set theory [19,20]? In many of these
approaches, there is a competition between effectiveness in
some task (e.g., pileup removal, jet classification) and
interpretability of the neural network. An approach to
machine learning for particle physics called JUNIPR [21]
builds a separate network for each jet type using a physical
representation of the information in the jet: the jet cluster-
ing tree. In [21] a method for construction and training of
such a network was introduced. In this Letter, we show how
the JUNIPR framework can be used in discrimination tasks,
achieving state-of-the art classification power while main-
taining physical interpretability.

JUNIPR begins by taking each jet in some sample and
clustering it into a binary tree according to some deter-
ministic algorithm. See Fig. 2 below for an example of such
a tree. The algorithm can be physically motivated (like the

kT [22] or Cambridge-Aachen [23] algorithms) but does not
have to be. In such a tree, the momenta of each mother
branch is the sum of the momenta of her daughters. We
denote the momenta of the particles in the jet by
fp1;…; png and the momenta in the clustering tree by

fkðtÞ1 ;…; kðtÞt g at branching step t. To be concrete, at t ¼ 1

we have kð1Þ1 ¼ p1 þ � � � þ pn, at t ¼ n we have

fkðnÞ1 ;…; kðnÞn g ¼ fp1;…; png, and at each branching in

between, fkðtÞ1 ;…; kðtÞt g → fkðtþ1Þ
1 ;…; kðtþ1Þ

tþ1 g involves a
single 1 → 2 momentum splitting. JUNIPR learns to com-
pute the probability PJ ðjetÞ of the jet, meaning the
probability that the corresponding set of final state
momenta fp1;…; png would be found in the given sample.
This probability can be factorized as a product over
branching steps in the clustering tree:

PJ ðjetÞ ¼
�Yn−1

t¼1

PðtÞðkðtþ1Þ
1 ;…; kðtþ1Þ

tþ1 jkðtÞ1 ;…; kðtÞt Þ
�

× PðnÞðendjkðnÞ1 ;…; kðnÞn Þ ð1Þ

To learn these probability distributions, JUNIPR introdu-

ces a quantity hðtÞ as a representation of fkðtÞ1 ;…; kðtÞt g, i.e.,
the “state” of the jet at branching step t. JUNIPR learns to
compute hðtÞ in training. In machine-learning language, hðtÞ
is the autoregressive latent variable, which in our imple-
mentations is taken to be the latent state of a recurrent
neural network. Then we can write, e.g.,

PðnÞðendjkðnÞ1 ;…; kðnÞn Þ ¼ PendðtruejhðnÞÞ; ð2Þ
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where PendðtruejhðnÞÞ is the binary probability that the
clustering tree ends at branching step n.

JUNIPR further factorizes the branching probabilities of
Eq. (1) into more intuitive probability distributions

PðtÞðkðtþ1Þ
1 ;…jkðtÞ1 ;…Þ¼PendðfalsejhðtÞÞ

×PmotherðmðtÞjhðtÞÞ
×Pbranchðkðtþ1Þ

d1
kðtþ1Þ
d2

jkðtÞm hðtÞÞ: ð3Þ

Here, PendðfalsejhðtÞÞ is the binary probability that the
clustering tree does not end at branching step t,
PmotherðmðtÞjhðtÞÞ is the discrete probability that tree-

momentum kðtÞm will participate in the 1 → 2 branching

at step t, and Pbranchðkðtþ1Þ
d1

kðtþ1Þ
d2

jkðtÞm hðtÞÞ is the distribution
over daughters of the branching. Structuring the probabi-
listic model in terms of the product of these parts is
essential to the interpretability of the model’s output, as
each part has separate physical meaning.
The latent state hðtÞ has access to the global content of the

jet at branching step t, i.e., to all the momenta

fkðtÞ1 ;…; kðtÞt g. The factorization over branching steps is
powerful, and useful to the extent that the 1 → 2 branching

dynamics encoded in Pbranchðkðtþ1Þ
d1

kðtþ1Þ
d2

jkðtÞm hðtÞÞ are local,
depending only weakly on hðtÞ. Even if there were no
evidence for this factorization in the training data (as was
explored with “printer jets” in [21]), JUNIPR would still
learn the probability distributions, but physical interpret-
ability would be lost.
In [21], JUNIPR was trained to model jet dynamics via

unsupervised learning. In that approach, the probabilistic
model is learned by maximizing the log likelihood of PJ
over the training data:

log likelihood ¼
X
jets

logPJ ðjetÞ; ð4Þ

where the sum is over jets fp1;…; png in the training set.
We call this the “unary objective function.” Despite being
unsupervised, this approach can be used to discriminate
between two jet types, say a and b. To accomplish this, one
trains two separate JUNIPR models: PJ ðjetjaÞ on a data set
containing predominantly type-a jets and PJ ðjetjbÞ on
predominantly type-b jets. Discrimination between a and b
is then achieved by thresholding the likelihood
ratio PJ ðjetjaÞ=PJ ðjetjbÞ.
While discrimination by likelihood ratio is theoretically

optimal in the perfect-model limit, it has been shown that
deep neural networks classify out-of-distribution data
poorly [24,25]. That is, e.g., the PJ ðjetjaÞ model is not
expected to behave well on type-b jets. It is thus advanta-
geous in practice to refine the training for discrimination.
By training directly for discrimination, JUNIPR can also

focus model capacity on learning the often-subtle
differences between type-a and type-b jets. In fact,
JUNIPR’s probabilistic nature makes supervised discrimi-
nation learning very straightforward. Assuming a mixed
sample of both jet types, the probability that a given jet
drawn at random belongs to class a is, through Bayes’s
theorem, given by

PðajjetÞ ¼ PðjetjaÞPðaÞ
PðjetÞ : ð5Þ

For binary discrimination, PðajjetÞ þ PðbjjetÞ ¼ 1, so

PðajjetÞ ¼ PðjetjaÞPðaÞ
PðjetjaÞPðaÞ þ PðjetjbÞPðbÞ : ð6Þ

Here PðaÞ and PðbÞ are simply the composition fractions
fa and fb of the mixed sample, while PðjetjaÞ and PðjetjbÞ
can be computed using two separate JUNIPR networks as
laid out in the paragraphs above. This leads directly to the
binary cross-entropy objective function one should use to
train JUNIPR for discrimination:

L ¼
X
ajets

log
PJ ðjetjaÞfa

PJ ðjetjaÞfa þ PJ ðjetjbÞfb

þ
X
bjets

log
PJ ðjetjbÞfb

PJ ðjetjaÞfa þ PJ ðjetjbÞfb
; ð7Þ

where the sums extend over type-a and type-b jets in the
training data, respectively. We call training with this
objective function “BINARY JUNIPR.” Note that BINARY

JUNIPR still learns the probabilities for type-a and type-b
jets and still trains the same neural-network functions;
however, it uses a more effective objective function for
discrimination applications. We also note that training can
easily be generalized to multiclass classification.
As a test of the advantage that the binary objective

function provides over its unary counterpart, we applied
BINARY JUNIPR to the discrimination of quark and gluon
jets. We used a mixed sample of 106 PYTHIA quark jets and
106 PYTHIA gluon jets from the data set at [26], see also
[19,27]. We set aside 105 jets of each type into a test set, 105

for validation, and used the remaining 80% of the jets for
training. For the JUNIPR models, PJ ðjetjquarkÞ and
PJ ðjetjgluonÞ, we used an LSTM of dimension 30 to
model hðtÞ and separate feed-forward networks, each with a
single hidden layer of dimension 10, to model Pend, Pmother,
and Pbranch. (The BINARY JUNIPR architecture is available at
[28] with example code.)
We began by pretraining the two JUNIPR models using

the original unary objective function of Eq. (4). We
followed the same training schedule as in [21], but scaled
down the number of epochs by a factor of 5 because this
data set is larger than the one used there. Pretraining took
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about five hours on a 16-core CPU server for each model.
After pretraining, we optimized the binary objective func-
tion of Eq. (7) using Adam with standard settings [29] and
the following batch-size schedule:

Schedule 1 epoch 5 epochs 10 epochs 10 epochs

batch size 10 100 1000 2000

This segment of training took 12 hours on a 16-core CPU
server. BINARY JUNIPR parameters were decided upon by
evaluating the AUC (area under the ROC curve) on the
validation set 10 times per epoch and choosing the model
that achieved the maximal AUC during the final 10 training
epochs. Note that different hyperparameters might be
appropriate for different applications.
In Fig. 1 we show the quark-versus-gluon Significance

Improvement Curve [30] (SIC), (εS=
ffiffiffiffiffi
εB

p
), achieved by

BINARY JUNIPR and compare it to recent results with
previous state-of-the-art discriminants: a CNN approach
based on jet images [3] (with architecture from [19]) and
particle flow networks [19]. One can see that BINARY

JUNIPR offers a small-but-significant advantage.
Quantitatively, BINARY JUNIPR achieves an AUC of
0.8986� 0.0004, as compared to 0.8911� 0.0008 for
particle flow networks, and 0.8799� 0.0008 for the
CNN. (Each reported number is the mean and semi-
interquartile range over 10 trainings.) Unary JUNIPR, trained
with Eq. (4), performs significantly worse than the other
methods, achieving an AUC of 0.6968� 0.0008. This
demonstrates the importance of training JUNIPR with the
binary objective function of Eq. (7) for classification.
As a second experiment, we trained and tested BINARY

JUNIPR for boosted top-jet identification. We used the same
architecture and training schedule that were optimized for
quark-versus-gluon discrimination. In doing so, we obtain a
sense of the performance one might expect from BINARY

JUNIPR without specialized hyperparameter tuning. The
training, validation, and test data for this experiment are

taken from [7]. We found that untuned BINARY JUNIPR

comes close to state-of-the-art top discrimination.
Specifically, JUNIPR achieves an AUC of 0.9810�
0.0002 as compared to 0.9819� 0.0001 attained using
particle flow networks [19], and 0.9848 reported for
ParticleNet [20]; all significantly outperform traditional
boosted top-tagging methods [31]. For a recent overview of
machine learning in top tagging, see [32].
Next we discuss the interpretability of JUNIPR models. As

discussed below Eq. (3), each component of JUNIPR’s
output has a well-defined physical meaning. Moreover,
the output is structured along a physically motivated binary
tree, defined by clustering the momenta in a jet. One can
thus decompose JUNIPR’s prediction, say PJ ðtopjjetÞ as in
Eq. (6), visually along the clustering tree. In Fig. 2, we
show the clustering tree for an easily classifiable top jet
drawn from the mixed top-QCD test set. In the figure, we
label the tth node with PðtÞðtopjjetÞ, i.e., the probability that
the jet is top type, given only the information present at
branching step t; this is computed with BINARY JUNIPR by
substituting Eq. (3) into Eq. (6). One can see, for example,
that the three-prong structure characteristic of t → Wþb →
ud̄b contributes to large PJ ðtopjjetÞ. Quantitatively, this
results in the two hard branchings, with PðtÞðtopjjetÞ ¼
0.72 and 0.71, dominating the prediction. By analyzing
such trees, one can develop intuition for which branchings
are most decisive in classifying different types of jets.
To be concrete, let us return to the BINARY JUNIPR model

used to create Fig. 1, which learned to discriminate quark
and gluon jets from PYTHIA. Much is already known about
the difference between quark and gluon jets: gluon jets are
known to be bigger, with larger multiplicity and larger
shape parameters such as mass and width [33,34].
Although many methods exist for quark-gluon discrimi-
nation, including other machine-learning approaches
[3,11], it is not clear how well these methods will work
on actual data. In particular, it is known that real gluon jets
are more similar to real quark jets than PYTHIA leads us to
believe [35]. In particular, it is the modeling of gluon jets
that seems most inaccurate. An alternative generator,
HERWIG, produces and gluon jets that are more similar
to its quark jets [36]. Thus, we also considered a secondary
challenge: determine how PYTHIA and HERWIG gluon jets
differ. To explore their differences, we trained a second
BINARY JUNIPR model to discriminate PYTHIA8.226 and
HERWIG7.1.4 gluon jets using 106 samples of each
from [27,37].
Figure 3 shows another visualization, complementary to

Fig. 2, of exploring how JUNIPR discriminates. The top row
of Fig. 3 shows how JUNIPR separates PYTHIA quarks from
PYTHIA gluons, and the bottom row shows how JUNIPR

separates PYTHIA gluons from HERWIG gluons. In the
middle column, the overall probability that JUNIPR uses
for discrimination is decomposed into branching steps t,
averaged over all jets of the given class. From this, we see

FIG. 1. Significance improvement (εQ=
ffiffiffiffiffi
εG

p
) as a function of

εQ for quark-gluon discrimination. BINARY JUNIPR is compared to
a particle flow network [19], a CNN using jet images [19],
constituent multiplicity, and unary JUNIPR.
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that near t ¼ 20–50 there is roughly three times the quark-
gluon discrimination power per branching step as for
t ¼ 1–10. This echoes the well-known fact that multiplicity
allows one to separate quark and gluon jets better than
perturbatively calculable observables sensitive to only the
first few splittings [33]. The lower-middle plot shows that
differences in PYTHIA and HERWIG gluon jets are more
uniformly spread over branching steps.
Not only can JUNIPR break discrimination power down

into branching steps; JUNIPR can further decompose clas-
sification probability into components at each branching.

These components are displayed in the right column of
Fig. 3; there are discrete components, such as whether
branchings should end, as well as the energy z and angles θ,
ϕ, δ of the branching itself. While multiplicity (Pend) is the
main driver of performance for quark-gluon discrimination,
the angle θ also contributes significantly over a wide range
of branchings, echoing the importance of jet width in this
context. For the PYTHIA-HERWIG task, both the angle θ and
energy fraction z play a significant role in discrimination on
early branchings, and multiplicity becomes important on
later branchings.
It is interesting that a significant fraction of the difference

betweenPYTHIAandHERWIG results fromthewayenergyand
angles are distributed early on in the clustering trees. Early
branchings are controlled primarily by perturbative elements
of the simulated parton showers. This suggests that a
substantial portion of the difference between PYTHIA and
HERWIG gluon jets may be driven by the parton-shower
implementations, rather than exclusively by themodeling of
nonperturbative effects. To gain further insight into the
importance of nonperturbative effects like hadronization
in discrimination, JUNIPR could be upgraded to include
quantum numbers of final state particles—a straightforward
next step.
In [21], JUNIPR was introduced as a new framework for

unsupervised machine learning in particle physics that
prioritizes interpretability. Given a jet, i.e., a set of
momenta, JUNIPR learns to compute the probability of that
jet, i.e., how consistent the distribution of momenta is with
the training data. In this Letter, we used the same
probabilistic framework as in [21], but we augmented
the training to learn subtle differences between two

FIG. 2. BINARY JUNIPR tree for jet drawn from mixed top-QCD
test set. BINARY JUNIPR predicts “top” with high probability:
PJ ðtopjjetÞ ¼ 0.99. Each node is labeled with the probability that
the jet is top type, given only the information at that branching.
Planar angles correspond to 3D opening angles between clustered
momenta, and color corresponds to energy. The final factor
corresponding to the tree’s true end is not shown: PðnÞ ¼ 0.52;
see Eq. (2).

FIG. 3. Quark-gluon (top row) and PYTHIA-HERWIG discrimination (bottom row) with BINARY JUNIPR. Here we will refer to quark jets
and PYTHIA jets as “signal,” and to gluon jets and HERWIG jets as “background.” The left column shows the binary probability with which
JUNIPR predicts each jet is a signal jet. The middle column breaks these probabilities down by branching step in the clustering tree.
Specifically, the plots show the ratio of PtðsignaljjetÞ, averaged over signal jets in the numerator and background jets in the denominator.
The right column breaks these ratios down further by branching component.
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samples, an enhancement we call BINARY JUNIPR. We
demonstrated both its effectiveness and interpretability,
using quark-gluon jets, boosted top jets, and
Monte Carlo generator dependence as examples. It is
satisfying that demanding interpretability does not lead
to a loss in effectiveness: BINARY JUNIPR discriminates at
levels competitive with the best machine-learning methods
available.
While these case studies were all simulation based, there

is a straightforward path to repeating these exercises on
collider data. Although real data do not come with truth
labels, there are established methods for working with
mixed samples [38,39] that can be adapted to JUNIPR

without much modification. Then one could use a data
or simulation BINARY JUNIPR model to understand defi-
ciencies in simulations. One could also use insights derived
from BINARY JUNIPR trees to judge whether predictions
should be trusted experimentally (was information below
experimental resolution deemed important?) or to design
new calculable observables (sensitive to previously over-
looked decisive branchings). Having interpretable methods
opens the door to whole new approaches to understanding
data from particle colliders.
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