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A B S T R A C T   

Background: The molecular effects of intermediate and long-term exposure to air pollution and temperature, such 
as those on extracellular microRNA (ex-miRNA) are not well understood but may have clinical consequences. 
Objectives: To assess the association between exposure to ambient air pollution and temperature and ex-miRNA 
profiles. 
Methods: Our study population consisted of 734 participants in the Normative Aging Study (NAS) between 1999 
and 2015. We used high-resolution models to estimate four-week, eight-week, twelve-week, six-month, and one- 
year moving averages of PM2.5, O3, NO2, and ambient temperature based on geo-coded residential addresses. The 
outcome of interest was the extracellular microRNA (ex-miRNA) profile of each participant over time. We used a 
longitudinal quantile regression approach to estimate the association between the exposures and each ex-miRNA. 
Results were corrected for multiple comparisons and ex-miRNAs that were still significantly associated with the 
exposures were further analyzed using KEGG pathway analysis and Ingenuity Pathway Analysis. 
Results: We found 151 significant associations between levels of PM2.5, O3, NO2, and ambient temperature and 82 
unique ex-miRNAs across multiple quantiles. Most of the significant results were associations with intermediate- 
term exposure to O3, long-term exposure to PM2.5, and both intermediate and long-term exposure to ambient 
temperature. The exposures were most often associated with the 75th and 90th percentile of the outcomes. 
Pathway analyses of significant ex-miRNAs revealed their involvement in biological pathways involving cell 
function and communication as well as clinical diseases such as cardiovascular disease, respiratory disease, and 
neurological disease. 

Abbreviations: mRNA, messenger RNA; miRNA, microRNA; EV-miRNA, extracellular vesicle miRNA; ex-miRNA, extracellular miRNA. 
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Conclusion: Our results show that intermediate and long-term exposure to all our exposures of interest were 
associated with changes in the ex-miRNA profile of study participants. Further studies on environmental risk 
factors and ex-miRNAs are warranted.   

1. Introduction 

The contribution of air pollution to clinical outcomes such as car-
diovascular disease, respiratory disease, neurological disease, and 
mortality has been extensively studied (Danesh Yazdi et al., 2021a, 
2021b; 2019; Di et al., 2017; Dockery et al., 1993; Klompmaker et al., 
2019; Shi et al., 2020; Ward-Caviness et al., 2021; Wei et al., 2020). 
Recent research has shifted some of the focus on the molecular effects of 
deleterious environmental exposures which may eventually manifest as 
clinical disease. These include studies of outcomes such as DNA 
methylation, telomere length, and inflammatory biomarkers (Baccarelli 
et al., 2009; Chuang et al., 2007; Plusquin et al., 2017; Rider and 
Carlsten, 2019; Wang et al., 2022; Xia et al., 2015). One area of rela-
tively newer interest has been the relationship between air pollution and 
microRNAs(Bollati et al., 2015; Chen et al., 2013; Danesh Yazdi et al., 
2023; Fossati et al., 2014a; Mancini et al., 2020; Pergoli et al., 2017). 

MicroRNAs (miRNAs) are short non-coding segments of RNA which 
have been identified as an important mechanism for the regulation of 
messenger RNA (mRNA) translation and/or stability (Bartel, 2004; 
Fabian et al., 2010; Roush and Slack, 2006; Saliminejad et al., 2019). 
MicroRNA are found both intracellularly and in extracellular spaces. 
Extracellular miRNAs (ex-miRNAs) can be found within extracellular 
vesicles (EVs) and outside of them as well. Ex-miRNAs, particularly 
EV-miRNAs, may also play a role in cell-to-cell communication and are 
of particular interest in research as they may serve as diagnostic or 
prognostic biomarkers (Saliminejad et al., 2019; Zhang et al., 2015). 

Several past studies have found associations between exposure to air 
pollution and other environmental risk factors and alterations in the 
miRNA profile of individuals (Bollati et al., 2015; Cecconi et al., 2022; 
Chen et al., 2022, 2020; Cong et al., 2022; Danesh Yazdi et al., 2023; 
Espín-Pérez et al., 2018; Fossati et al., 2014b; Krauskopf et al., 2019, 
2018; Li et al., 2020; Liu et al., 2019; Mancini et al., 2020; Motta et al., 
2016; Rodosthenous et al., 2018, 2016). However, very few studies have 
focused on ex-miRNAs or EV-miRNAs and most of those have looked 
only at short-term exposure to these pollutants (Chen et al., 2022, 2020; 
Danesh Yazdi et al., 2023; Krauskopf et al., 2019, 2018; Pergoli et al., 
2017). Very few have utilized multi-pollutant models to account for 
confounding by other exposures (Chen et al., 2020; Danesh Yazdi et al., 
2023; Rodosthenous et al., 2018). Moreover, while some have included 
ambient temperature as a covariate, most have not looked at this vari-
able as an exposure of interest (Chen et al., 2020, 2022; Cong et al., 
2022; Mancini et al., 2020; Motta et al., 2016; Pergoli et al., 2017). 
Furthermore, most of these studies were conducted in very small groups 
of individuals (Bollati et al., 2015; Cecconi et al., 2022; Chen et al., 
2022, 2020; Espín-Pérez et al., 2018; Fossati et al., 2014b; Krauskopf 
et al., 2018, 2019). 

To address these gaps, we conducted a study assessing the interme-
diate- and long-term effects of exposure to air pollutants - specifically 
PM2.5, nitrogen dioxide (NO2), and ozone (O3) - as well as ambient 
temperature on the ex-miRNA profiles of subjects in the Normative 
Aging Study (NAS) from 1999 to 2015. We hypothesized that these ex-
posures would be significantly associated with alterations in levels of ex- 
miRNA. We used a longitudinal quantile regression approach to examine 
this association. We then conducted pathway analyses to assess the 
potential biological consequences of changes in the counts of ex-miRNA. 

2. Materials and methods 

2.1. Study population 

NAS is a cohort established in 1963 which recruited male veterans 
living in the Greater Boston Area who had no chronic health conditions 
and utilized the services of the US Department of Veteran’s Affairs (VA). 
These individuals have been followed for the past six decades, with 
follow-up visits occurring every three to five years. The follow-up visits 
included physical exams, sample collection, and behavioral and health 
questionnaires. Greater detail about the NAS can be found elsewhere 
(Bell et al., 1966). Our study population included individuals who pro-
vided samples for analysis between 1999 and 2015 and lived in the 
contiguous United States during the study follow-up. 

The VA Boston Health Care System and Harvard TH Chan School of 
Public Health Institutional Review Boards approved this study. All 
participants provided written consent for inclusion in the cohort. 

2.2. Exposure assessment 

Our exposures of interest included intermediate to long-term expo-
sure to average ambient temperature and air pollutants, namely: PM2.5, 
NO2, and O3. Intermediate-term exposure was defined as moving aver-
ages of four weeks, eight weeks, and twelve weeks of exposure and long- 
term exposure was defined as moving averages of six months and one 
year of exposure. Levels of these exposures were assigned based on the 
participants’ geo-coded residential addresses from fine-scale high-reso-
lution spatiotemporal models. 

For air pollutants, the exposure models used predictors such as 
meteorological variables, chemical transport models, land use variables, 
and remote sensing data as input for three machine learners: a random 
forest, a gradient boosting machine, and a neural network. The pre-
dictions from the machine learning models were then incorporated into 
a geographically weighted generalized additive ensemble model which 
in turn generated the final predictions. Pollution levels were estimated 
on a daily temporal scale and a 1 km by 1 km spatial scale. These pre-
dictions were validated against monitored levels using ten-fold cross- 
validation. The cross-validated R2 for daily levels was 0.86 for PM2.5, 
0.79 for NO2, and 0.90 for O3. The cross-validated R2 for annual levels 
was 0.89 for PM2.5, 0.84 for NO2, and 0.86 for O3 (Di et al., 2019a, 
2019b; Requia et al., 2020). This air pollution data was modeled for the 
entire contiguous United States from 2000 to 2016. 

For observations from 1999, for which modeled levels were not 
available, we filled in missing values using data from monitors located at 
Countway Library at Harvard University in Boston, Massachusetts. First, 
we regressed modeled values of pollution levels at each address against 
monitored values and daily maximum temperature and daily minimum 
temperature for the year 2000 and extracted the regression coefficients. 
We then used Countway monitored values and temperature to predict 
address-specific levels for 1999. Predicted daily values were averaged to 
obtain levels for intermediate- and long-term moving averages. If 
Countway data was not measured on a particular date, it was considered 
to be missing. Moving averages with any missing days over that length of 
time were considered missing. The number of missing observations for 
each exposure time window is available in Table S1. 

Ambient temperature was derived from the gridMET model. This 
model estimated daily levels of maximum and minimum ambient tem-
perature across the United States from 1998 to 2015 on an approxi-
mately 4 km by 4 km scale (Abatzoglou, 2013). We averaged the 
maximum and minimum values to obtain average ambient temperature 
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levels for each day. 

2.3. Outcome measurement 

Our outcome in this study was the ex-miRNA profile of participants 
in NAS. The process for extracting and sequencing the RNA data has 
been more extensively described elsewhere (Eckhardt et al., 2022). 
Participants provided fasting blood samples during their follow-up visits 
which were centrifuged to separate the plasma layer and subsequently 
stored at − 80 ◦C. Samples were thawed, centrifuged, and filtered prior 
to processing. Plasma/Serum Circulating and Exosomal RNA Purifica-
tion Kits, Slurry Format (Norgen Biotek Corp, Canada) were used to 
isolate RNAs from the samples (Gandhi et al., 2017; Laurent, 2015). 
Sequencing was done in accordance with procedures described previ-
ously on a HiSeq2500 system. (Srinivasan et al., 2019). The small 
RNAseq libraries were made using the NEBNext® Small RNA Library 
Prep Set for Illumina® (Multiplex Compatible). Data were mapped using 
the exceRpt Small RNA-seq Pipeline for exRNA Profiling on the Gen-
boree Workbench (http://genboree.org/site/exrna_toolset/). The pa-
rameters used for the mapping included a minimum read length of 15 
with no mismatches allowed and default settings for all other parame-
ters. Samples were further removed if they failed library preparation 
(<10,000 total input reads) or had low miRNA reads (<100,000 total 
miRNA reads). Similar sequences that did not identify a unique miRNA 
were collapsed into a single category. If multiple samples were collected 
from the same individuals on the same visit day and both samples were 
processed, ex-miRNA counts were averaged to obtain final values. 
Ex-miRNA values were reported as counts per million. We only included 
ex-miRNAs in the analyses that were detectable in at least 40% of our 
total samples. This left us with 567 ex-miRNAs for analysis. 

2.4. Covariate data 

Covariate data were obtained by self-report and questionnaires 
collected during the follow-up visits. We included as covariates partic-
ipant characteristics such as: age, body mass index (BMI), physician- 
diagnosed diabetes, maximum number of years of education, cigarette 
smoking status (ever smoked: yes/no), cumulative pack-years of smok-
ing, and drinking behavior (at least two drinks a day: yes/no). We 
further adjusted for sequencing batch pool to capture batch effects. For 
the model using a one-year moving average as exposure, we adjusted for 
secular long-term trends by including a linear year term. For all other 
models, we adjusted for secular long-term trends by including the 
number of days since January 1st, 1995. This date was chosen arbitrarily 
to precede the beginning of the follow-up. Moreover, we adjusted for 
seasonality by including the sine and cosine of the day of the year in the 
model. 

2.5. Statistical analysis 

We used a longitudinal quantile regression approach to examine the 
exposure-outcome relationship. A quantile regression is advantageous in 
this case as it is not subject to the distributional assumptions of other 
models which may not be met by miRNA distributions and is robust to 
the presence of outliers. Since we had repeated measurements from the 
individuals in our study, we employed a longitudinal approach that 
approximates a random intercept for each person. The equation for our 
model was as follows: 

E(Qij)= β0 + β1Xij + β2Cij + δi + εij  

Where Qij is the quantile of interest for the ex-miRNA of interest in in-
dividual i in measure made during visit j, Xij is a vector of exposures, Cij 
is a vector of covariates, δi is a random intercept approximation by in-
dividual, and εij is the residual. We ran a separate model for each moving 
average which included all exposures in the same model to adjust for 

potential confounding by co-pollutant. We looked at the 10th, 25th, 
50th, 75th, and 90th quantiles of each ex-miRNA. Standard errors were 
calculated using a bootstrap approach with 1000 iterations. To account 
for multiple comparisons, we adjusted the p-values obtained for each 
regression using a false discovery rate (FDR) approach and the number 
of ex-miRNAs studied. 

2.6. Pathway analysis 

We further examined significant relationships, defined as adjusted p- 
values <0.05 using pathway analysis. We linked significant ex-miRNA in 
each exposure time window to relevant genes and biological pathways 
using the Kyoto Encyclopedia for Genes and Genomes (KEGG) Pathway 
Analysis run through the DIANA-miRPath version 3 web application 
(Vlachos et al., 2015). We then looked at relevant mRNA targets, 
pathways, and clinical diseases using the MicroRNA Target Filter tool in 
QIAGEN’s Ingenuity Pathway Analysis Software (QIAGEN Inc., 
https://digitalinsights.qiagen.com/IPA) (Krämer et al., 2014). 

All data cleaning and statistical analysis were done in R Statistical 
Software (Version 3.6.3). The “rqpd” package was used to run the sta-
tistical models (Koenker and Bache, 2014). 

3. Results 

3.1. Study population characteristics 

The characteristics of the study population have been previously 
reported and are shown in Table 1(Danesh Yazdi et al., 2023). After 
sequencing, we had 1508 samples from 734 individuals in the study. The 
cohort is fairly homogeneous; most are white and elderly. Across visits, 
about fifteen percent of participants had a physician diagnosis of dia-
betes and approximately nineteen percent reported drinking at least two 
drinks per day. Over two-thirds were former or current smokers with an 
average of fifteen years of education and a BMI of 28.0 kg/m2. We had at 
least two samples from two-thirds of the subjects. Sixteen observations 
had missing covariate data. Any observations with missing exposure or 
covariate data were dropped from the final analyses. 

3.2. Exposure distribution and characteristics 

Table 2 shows the exposure distribution of the twelve-week moving 
average. The exposures appear to be approximately normally distrib-
uted. Mean values for the twelve-week moving average of PM2.5, NO2, 
O3, and temperature are 9.63 μg/m3, 23.50 ppb, 35.23 ppb, and 285.34 
K (12.19 ◦C), respectively. These represent fairly low values of these 
pollutants. The correlation between the twelve-week moving averages 
of the exposures is shown in Fig. 1. The correlations ranged from weak 
(− 0.04) to medium (0.57). 

3.3. Regression results 

We found a total of 151 significant results between our exposures of 
interest and our outcomes. Of these, there were134 significant re-
lationships between our exposures of interest and 82 unique ex-miRNAs, 
with some showing significant results in multiple quantiles. The distri-
bution of significant associations of the exposure time windows and 
quantiles is shown in Fig. 2a and b. Most of the significant results we 
found were for O3, PM2.5 and temperature. For PM2.5 and temperature, 
these were largely concentrated between the 6-month and 1-year time 
windows. For O3, most of the significant effects were between 8 and 12 
weeks. In terms of quantiles of the outcome most of the associations to 
be significant were between O3, PM2.5 and temperature and the 75th and 
90th percentiles. NO2 represented a much smaller portion of the sig-
nificant results. NO2 was associated with significant effects during the 1- 
year exposure time window and the 90th percentile of the ex-miRNA 
outcomes. Of all the significant relationships, 78 ex-miRNA levels 
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Table 1 
Study population characteristics.  

Variable All Visits (N=1508) Visit 1 (N=734) Visit 2 (N=460) Visit 3 (N=254) Visit 4 (N=58) Visit 5 (N=2) 

Age (years), mean ± SD 74.7 ± 6.9 72.7 ± 6.9 75.6 ± 6.3 77.9 ± 6.2 78.7 ± 6.0 81 ± 5.7 
Body Mass Index (kg/m2), mean ± SD 28.0 ± 4.1 28.2 ± 4.1 27.8 ± 4.2 27.6 ± 4.0 27.5 ± 4.4 26.0 ± 0.08 
Education (years), mean ± SD 15.0 ± 2.9 15.0 ± 2.9 15.2 ± 2.9 15.1 ± 2.9 15.2 ± 3.0 14.0 ± 2.8 
Diabetes, n (%) Yes 227 (15.1%) 102 (13.9%) 71 (15.4%) 47 (18.5%) 7 (12.1%) 0 (0%) 

No 1281 (84.9%) 632 (86.1%) 389 (84.6%) 207 (81.5%) 51 (87.9%) 2 (100%) 
Alcohol consumption (≥2/Day), n (%) Yes 286 (19.0%) 136 (18.5%) 91 (19.8%) 43 (16.9%) 15 (25.9%) 1 (50%) 

No 1222 (81.0%) 598 (81.5%) 369 (80.2%) 211 (83.1%) 43 (74.1%) 1 (50%) 
Smoking, n (%) Never 482 (32.0%) 224 (30.5%) 153 (33.3%) 81 (31.9%) 23 (39.7%) 1 (50%) 

Current or Former 1019 (67.6%) 504 (68.7%) 306 (66.5%) 173 (68.1%) 35 (60.3%) 1 (50%) 
Smoking pack-years, mean ± SD 20.0 ± 24.6 21.3 ± 26.6 19.2 ± 23.5 18.6 ± 21.5 16.6 ± 20.4 10.0 ± 14.1 
Race, n (%) White 1468 (97.3%) 713 (97.1%) 448 (97.4%) 247 (97.2%) 58 (100%) 2 (100%) 

Black 24 (1.6%) 14 (1.9%) 7 (1.5%) 3 (1.2%) 0 (0%) 0 (0%) 
Hispanic White 12 (0.8%) 5 (0.7%) 4 (0.9%) 3 (1.2%) 0 (0%) 0 (0%) 
Hispanic Black 3 (0.2%) 1 (0.1%) 1 (0.2%) 1 (0.4%) 0 (0%) 0 (0%)  

Table 2 
Twelve-week moving average exposure distribution.  

Variable Minimum 10th Percentile 25th Percentile Mean Median 75th Percentile 90th 
Percentile 

Maximum 

PM25 (μg/m3) 3.24 6.79 8.05 9.63 9.55 11.08 12.68 22.19 
NO2 (ppb) 2.16 10.40 15.92 23.50 23.51 31.21 36.34 48.53 
O3 (ppb) 12.93 21.98 28.56 35.23 36.58 42.43 45.59 64.14 
Temperature (K) 268.28 273.33 278.08 285.34 286.27 292.56 294.74 302.63  

Fig. 1. Correlations between 12-week moving averages of exposures of interest.  
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were up-regulated and 56 were down-regulated. The full results can be 
found in Table S2. 

All intermediate-term O3 exposures were associated with significant 
upregulation of miR-194–5p in at least one studied quantile. All inter-
mediate and long-term temperature exposures were associated with 
significant downregulation in miR-576–3p in at least one quantile. 
Moreover, long-term temperature exposures were also significantly 
associated with miR-5189–5p, miR-4306, miR-4750–5p, and miR-4504 
in at least one quantile. On the other hand, long-term PM2.5 exposures 
were associated with miR-15 b-3p, miR-576–5p, and miR-5187–5p in at 
least one quantile (see Fig. 3). 

For NO2, there were no ex-miRNAs significantly associated with all 
intermediate-term or long-term exposure time windows. 

3.4. KEGG pathway analysis 

The unique pathways associated with ex-miRNAs found to be 

significantly associated with exposure levels can be found in Table 3. 
These pathways relate to cell functions and signaling as well as disease 
states such as cancer. The KEGG pathways found to be significant for 
each exposure time window can be found in Tables S3–S7. 

3.5. Ingenuity Pathway Analysis results (IPA) 

The IPA found 718 experimentally validated associations between 32 
of our ex-miRNAs and mRNA targets. The full results can be found in 
Table S8. The miRNA-mRNA relationships were further used to identify 
potential pathways and clinical diseases. The ex-miRNAs we found to be 
significantly associated with our exposures were linked to numerous 
diseases including but not limited to cancer, cardiovascular disease, 
respiratory disease, neurological disease, and endocrine disorders. 

For example, of the nine ex-miRNAs which were significantly asso-
ciated with intermediate and long-term exposure time windows, two ex- 
miRNAs (miR-5189–5p and miR-4306) were found in the IPA to be 

Fig. 2. Number of Unique Significant miRNAs Associated with Each Exposure by A) Time Window and B) Quantile.  
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associated with mRNAs linked to several disease states including but not 
limited to those shown in Fig. 4 (cardiovascular disease, respiratory 
disease, neurological disease). 

4. Discussion 

Our study looked at the association between intermediate- and long- 
term exposure to air pollutants and ambient temperature and changes in 
the ex-miRNA profile of participants in the Normative Aging Study. We 
found all our exposures were associated with changes in the ex-miRNA 
profiles of our subjects. Most of the significant results were due to O3, 
temperature and PM2.5. Most significant associations were found for 
intermediate-term exposure to O3, long-term exposure to PM2.5, and 
both intermediate and long-term exposure to ambient temperature. 
Furthermore, most of the significant results were found for the 75th and 
90th percentiles indicating a need to examine the full distribution of the 
outcome and not simply the mean or median. The ex-miRNAs we found 
to be significant were further examined in pathway analyses. KEGG 
pathway analysis indicated that our results may reflect changes in cell 
function and communication as well as disease states such as cancer. The 
IPA results revealed miRNA-mRNA relationships which may be linked to 
numerous disease states such as cancer, cardiovascular disease, respi-
ratory disease, neurological disease, and endocrine disorders. 

Some of our results were comparable to previous studies while others 
were not. A small pilot study conducted among 22 participants in NAS 
found long-term exposure to PM2.5, particularly 6-month and 1-year 
moving averages, to be associated with alterations in several EV- 
miRNAs. Six-month moving averages were associated with the up- 
regulation of EV-miRNAs: miR-126–3p, miR-19b-3p, miR-93–5p, miR- 

Fig. 3. Change in quantiles of ex-miRNA levels (counts per million) for each unit change in exposure for ex-miRNAs significantly associated with exposure across 
multiple time windows. 

Table 3 
KEGG Pathways Associated with Significant miRNAs.  

Name of KEGG Pathway 

ECM-receptor interaction Transcriptional mis-regulation in cancer 
Prion diseases Melanoma 
Fatty acid metabolism Bacterial invasion of epithelial cells 
Fatty acid biosynthesis Renal cell carcinoma 
Cell cycle Oocyte meiosis 
Viral carcinogenesis Small cell lung cancer 
Proteoglycans in cancer Focal adhesion 
Hepatitis B RNA transport 
Hippo signaling pathway Bladder cancer 
Adherens junction Endometrial cancer 
Lysine degradation Thyroid hormone signaling pathway 
p53 signaling pathway PI3K-Akt signaling pathway 
Chronic myeloid leukemia Signaling pathways regulating pluripotency of 

stem cells 
FoxO signaling pathway Ubiquitin mediated proteolysis 
Colorectal cancer Non-small cell lung cancer 
Glioma Neurotrophin signaling pathway 
TGF-beta signaling pathway Shigellosis 
Pathways in cancer Spliceosome 
Prostate cancer Prolactin signaling pathway 
Protein processing in endoplasmic 

reticulum 
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 

Steroid biosynthesis Endocytosis 
Pancreatic cancer   
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223–3p, and miR-142–3p. One-year moving averages were associated 
with the up-regulation of EV-miRNAs: miR-23a-3p, miR-150–5p, miR- 
15a-5p, miR-191–5p, let-7a-5p (Rodosthenous et al., 2016). Mean-
while, in our study, we did not find significant changes in levels of 
miR-126–3p, miR-223–3p, miR-142–3p, miR-23a-3p, miR-191–5p, and 
let-7a-5p. We did find an up-regulation of miR-19b-3p associated with 
exposure to the 8-week moving and 12-week average of O3, and an 
up-regulation of miR-15a-5p with exposure to the 12-week moving 
average of O3 and downregulation with exposure to 4-week and 1-year 
moving averages of PM2.5. Moreover, we observed a downregulation of 
miR-93–5p and miR-150–5p associated with exposure to the one year 
moving average of PM2.5. Another pilot study conducted in the same 
population looking at both long-term PM2.5 and black carbon in 
multi-pollutant models found significant associations for 6-month 
exposure to PM2.5 and EV-miRNAs let-7g-5p, miR-1246, miR-126–3p, 
miR-142–3p, miR-150–5p, miR-15a-5p, miR-199a/b, and miR-223–3p. 
One-year exposure to PM2.5 was significantly associated with 
EV-miRNAs: 130a-3p, miR-142–3p, miR-199a/b, miR-223–3p, and 
miR-23a-3p. None of the EV-miRNAs were associated with black carbon 
after correction for multiple comparisons (Rodosthenous et al., 2018). 
We did not find a significant association between any of our exposures 
and let-7g-5p, miR-1246, miR-126–3p, miR-142–3p, miR-199a-5p, 
miR-199b-5p, miR-199a-3p/miR-199b-3p, miR-223–3p, miR-130a-3p, 
miR-23a-3p. We did find a downregulation of miR-150–5p in associa-
tion with one-year exposure to PM2.5 while this study found an upre-
gulation. We also found an upregulation of miR-15a-5p with exposure to 
the 12-week moving average of O3 and down-regulation with exposure 
to intermediate and long-term PM2.5 while this study found an upre-
gulation. In a study of 55 healthy steel workers in Northern Italy, 
long-term exposure to PM mass and PM metals were associated with 
changes EV-miRNA levels. This study found PM10 and coarse particles 
(defined as PM10-PM1) to be associated with miR-21 (using adjusted 
p-values of <0.05). Among PM metals, aluminum was associated with 
changes in miR-21, cadmium was associated with miR-200c, lead and 
zinc were associated with miR-181b, and zinc was also associated with 
miR-9 (Pavanello et al., 2016). In our study we did not find significant 
effects for any of these EV-miRNAs. The differences seen in the results 

may be due to numerous factors including but not limited to: differences 
in population characteristics, sample size, extraction approaches, 
sequencing approaches, statistical methods, and model specification. 
Furthermore, many of the studies we compared our results to looked at 
only EV-miRNAs while we looked at ex-miRNAs which include 
EV-miRNAs as well as other extracellular miRNAs. 

KEGG pathway analyses revealed several biological pathways 
related to our ex-miRNAs that affect disease states such as cancer as well 
as important biological functions such as cell function and communi-
cation. Changes in fatty acid metabolism have been linked to cardio-
myopathies and changes in cardiac function (Fillmore et al., 2014; 
Lopaschuk et al., 2010). Alterations in fatty acid metabolism have also 
been linked to neuroinflammation, neurodegeneration, and demyelin-
ation (Bogie et al., 2020). Similarly, changes in fatty acid synthesis may 
play a role in neuroinflammation and neurogenesis (Bogie et al., 2020). 
Adherens junctions are junctions connecting cells to one another and are 
found throughout the body. Dysfunction in adherens junctions may lead 
to arrythmias in the heart and have been associated with inflammatory 
bowel disease (Mehta et al., 2015; Nesterova et al., 2020). 

Our study had several limitations. Our exposure assignment relied on 
predictive models. While these models had high validation metrics, 
there is still potential for measurement error. We expect this error to be 
non-differential. Recent studies suggest the direction of bias is likely 
downward (Wei et al., 2022). There was some missing air pollutant data 
for 1999, particularly for the long-term moving averages. The lack of 
significant results may be due to the smaller sample size for those ana-
lyses. Furthermore, our cohort is fairly homogenous and composed 
mainly of elderly white men. As such, the generalizability of our results 
may be limited, though our results can be more easily compared within 
this group. Moreover, we only looked at ex-miRNAs that were detectable 
in at least forty percent of our samples, restricting the number of 
ex-miRNAs we were able to study. As with any epidemiological study, 
there is also a risk of residual confounding by unmeasured confounders. 

Our study also possessed several strengths. Our cohort included in-
dividuals who have been extensively followed-up, and the multiple 
observations for each person is a plus as within person variability is less 
than between person variability, providing more power. We used a 

Fig. 4. IPA Analysis Results: mRNA Targets for miR-5189–5p and miR-4306.  
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longitudinal quantile regression which accounted for both repeated 
observations from some individuals and the potential non-normal dis-
tribution of the outcomes. We used multiple types of pathway analyses 
to further examine the biomedical implications of our results. We 
assessed numerous exposure time windows to better capture the full 
impact of exposure to each pollutant and temperature. Our results 
require further examination in larger populations with greater de-
mographic variability for more definitive conclusions. 

Our study demonstrated that exposure to environmental risk factors, 
particularly O3, PM2.5 and ambient temperature, are associated with 
changes in the ex-miRNA profile of participants in the Normative Aging 
Study. Further epidemiological studies in larger, more diverse pop-
ulations are needed to better understand the relationship between these 
exposures and ex-miRNAs. 
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