UC Irvine UC Irvine Electronic Theses and Dissertations

Title

Synergizing Fe2O3 nanoparticles on single atom Fe-N-C to achieve NO3RR to NH3 at industrial partial current densities

Permalink https://escholarship.org/uc/item/4k28g7th

Author Sun, Baiyu

Publication Date

2023

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, IRVINE

$\label{eq:synergizing Fe_2O_3} Synergizing \ Fe_2O_3 \ nanoparticles \ on \ single \ atom \ Fe-N-C \ to \ achieve \ NO_3RR \ to \ NH_3 \ at \ industrial \ partial \ current \ densities$

THESIS

submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in Material Science and Engineering

by

Baiyu Sun

Thesis Committee: Professor Plamen Atanassov, Chair Associate Professor Iryna Zenyuk Assistant Professor Stacy Copp

© 2023 Baiyu Sun

TABLE OF CONTENTS

	Page
LIST OF FIGURES	ii
LIST OF TABLES	iv
ACKNOWLEDGEMENTS	v
ABSTRACT OF THE THESIS	vi
INTRODUCTION	1
METHOD	5
Catalyst synthesis	5
Physical Characterizations	6
Electrochemical Experiments	7
Product Detection	10
RESULTS	11
Physical Characterizations	11
Electrochemical Characterizations	22
CONCLUSION	31
SUPPORTING INFORMATION	32
REFERANCES	40

LIST OF FIGURES

Figure 1	AC-HAADF-STEM images of the $\gamma\text{-}Fe_2O_3$ based catalysts	11
Figure 2	TEM images of the $\gamma\mbox{-}Fe_2O_3$ nanoparticles supported on XC72 and Fe-N-C	12
Figure 3	XRD pattern of the γ -Fe ₂ O ₃ nanoparticles	13
Figure 4	Physical characterization of Co ₂ O ₃ /Fe-N-C	13
Figure 5	Physical characterization of RuO _x /XC72	14
Figure 6	Raman spectra and deconvolution for the catalyst supports	14
Figure 7	Local chemical environment of the $\gamma\mbox{-}Fe_2O_3$ nanoparticle catalysts	16
Figure 8	XPS of the Fe-N-C support	19
Figure 9	Deconvoluted XPS spectra for γ-Fe ₂ O ₃ /Fe-N-C	20
Figure 10	Deconvoluted XPS spectra for γ -Fe ₂ O ₃ /XC72	21
Figure 11	Electrochemical NO ₃ RR performance of γ -Fe ₂ O ₃ based catalysts	22
Figure 12	Determination of the electrochemically active surface area for the $\gamma\mbox{-}Fe_2O_3$	3 24
Figure 13	Optimizing the γ -3xFe ₂ O ₃ /Fe-N-C catalyst loading	25
Figure 14	Electrochemical NO ₃ RR performance of the optimized γ -3xFe ₂ O ₃ /Fe-N-C	26
Figure 15	Investigation of the pre-reduction step and durability study	28
Figure S1	Electrochemical characterization of $RuO_x/XC72$ and $Co_2O_3/Fe-N-C$	32
Figure S2	TGA evaluation of the weight percent of Fe	32
Figure S3	Control studies to confirm the origin of the N	33
Figure S4	Constant potential electrolysis on the support materials	34
Figure S5	Constant potential electrolysis of Fe_2O_3 on XC72 and Fe-N-C	34
Figure S6	Constant potential electrolysis on $\gamma\text{-}Fe_2O_3/\text{Fe-N-C}$ with different loadings	35
Figure S7	Calibration curves with 1M KOH and various concentrations of \ensuremath{NH}_3	36
Figure S8	UV-Vis curves for the detection of \ensuremath{NH}_3 over XC72 and Fe-N-C	37
Figure S9	Detection of NH3 over $\gamma\text{-}Fe_2O_3/XC72$ and $\gamma\text{-}Fe_2O_3/Fe\text{-}N\text{-}C$	37

Figure S10	UV-Vis curves for the detection of NH_3 for loading study	38
Figure S11	STEM images of the $\gamma\text{-}3xFe_2O_3/\text{Fe-N-C}$ after the durability test	39

LIST OF TABLES

Table 1Literature summary of NO3RR performance

Page

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my research advisor, my committee chair, Professor Plamen Atanassov who cares deeply about students and always be there when I need him. Without his guidance and help, this thesis would not have been possible.

I sincerely would like to thank my committee members, Professor Iryna Zenyuk and Professor Stacy Copp for supporting me to finish my thesis. Their valuable opinions make this thesis a better one.

In addition, I would like to thank PhD candidate Eamonn Murphy and Dr. Yuanchao Liu for tutoring me in the lab and helping me finish my research.

This research is funded by the Advanced Manufacturing Office program of the US Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), and the funding is provided to Sandia National Laboratories (AOP 34920). Sandia National Laboratories (SNL) is a multi-mission laboratory that is managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., under contract DE-NA-0003525 for the U.S. DOE's National Nuclear Security Administration. The opinions expressed in the thesis are not necessarily those of the U.S. DOE or the United States Government. I would like to acknowledge the use of facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which receives partial support from the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center (DMR-2011967).

ABSTRACT OF THE THESIS

Synergizing Fe₂O₃ nanoparticles on single atom Fe-N-C to achieve NO₃RR to NH₃ at industrial partial current densities

by

Baiyu Sun Master of Science in Material Science and Engineering University of California, Irvine, 2023 Professor Plamen Atanassov, Chair

Nitrate reduction reaction in an electrochemical system has recently supplied us with a new pathway to generate ammonia for a post-carbon world. However, the low current density and yield rate as shown in relevant studies limit the NO₃RR process. In this thesis, we developed a new catalyst system consisting of γ-Fe₂O₃ nanoparticles supported on atomically dispersed Fe-N-C. By combining the activity of both the nanoparticles and single atom sites, we were able to achieve an ultrahigh NO₃RR activity, with a maximum partial current density of 1.95 A/cm², a Faradaic efficiency for NH₃ of 100%, and an NH₃ yield rate of over 9 mmol hr⁻¹ cm⁻². Our result of XPS after electrochemical experiments demonstrates the importance of a pre-reduction activation step to generate exposed Fe⁰ sites from the γ-Fe₂O₃ (Fe³⁺) and durability study reveals the robustness of the catalyst, maintaining a current of -1.4 A cm⁻², a near unity FE_{NH3} over 24 hours at highly reductive potentials. These findings highlight the potential of active particle-active support systems to enhance NO₃RR performance and achieve industrially relevant current densities.

vi

INTRODUCTION

Ammonia plays a key role in modern human society. It is well-known as the biggest source of nitrogen for the growth of plants. About 80% of the ammonia produced in industry is used in agriculture as fertilizer. In addition to its use as a refrigerant gas and for water purification, ammonia finds application in various industries, such as the production of plastics, explosives, fabrics, pesticides, dyes, and other chemicals. Ammonia is a frequently used component in both domestic and industrial cleaning products. However, industrial cleaning solutions typically contain higher levels of ammonia, which can result in severe skin irritation and burns if not handled with caution.¹ A hundred years ago, the discovery of Haber-Bosch process made it possible to produce ammonia at an industrial level which significantly advanced the development of modern agriculture but in the meantime cause the biggest disturbance of the nitrogen cycle. This process involves utilizing natural gas or coal to create H₂ through steam reforming and obtaining the N₂ from air by cryogenic process. The formation of ammonia from the reaction between N₂ and H₂ will happen under high temperatures exceeding 400°C and pressures exceeding 200 bar for efficiency, resulting in significant operational costs for the necessary equipment and plant. Ammonia production is currently responsible for $\sim 1.0\%$ of global greenhouse gas emissions or about 1.4% of global CO₂ emissions.²

To lower the total cost and greenhouse byproduct including CO₂ resulted from the Haber-Bosch process, many studies of electrochemical di-nitrogen(N₂) reduction to ammonia have been conducted and shown a new possible carbon-neutral pathway toward ammonia. However, the evidence of the direct N₂ reduction to ammonia with aqueous electrolytes is still unclear. ^{3,4} As an alternative, more and more researchers have transferred their interest to electrochemical nitrate reduction to ammonia for its relatively high selectivity. Additionally, nitrate can be easily accumulated from three sources: the combustion of fossil fuels, fertilizer-intensive agriculture and NO₃⁻⁻containing waste from industrial sources.^{5,6} The uptake of nitrate from natural environment poses a significant risk to human health and may cause methemoglobinemia and nitrate is also known as a carcinogen.⁷ Therefore,

nitrate reduction to ammonia can not only be served as an ideal replacement of Haber-Bosch process in the future, alleviating the emit of greenhouse gas, but also facilitate the cycle of N-species in nature.

Catalyst	рН	[NO₃ ⁻] (M)	FE _{NH3} (%)	l (mA/cm²)	ј _{№Н3} (mA/cm²)	Potential (V <i>vs.</i> RHE)	CEE (%)	Reference
RuNi/NF	14	1.000	97.0	1020	989.4	-0.60	29%	
RuNi/NF	14	1.000	100.0	415	415.0	-0.20	39%	
CuNi Alloy	14	0.100	99.0	50	49.5	-0.15	40%	
Ru nanocluster	14	1.000	96.0	125	120.0	-0.20	37%	
Cu@C	14	0.100	98.0	210	205.8	-0.70	28%	
Cu-NBs-100	14	0.100	95.0	303	288.0	-0.15	38%	
γ-Fe ₂ O ₃ /Fe-N-C	14	0.160	98.7	301	297.0	-0.40	34%	This work
γ-Fe ₂ O ₃ /Fe-N-C	14	0.160	100.0	620	620.0	-0.60	30%	This work
γ-Fe ₂ O ₃ /Fe-N-C	14	0.160	95.5	966	922.0	-0.80	26%	This work
γ -Fe ₂ O ₃ /Fe-N-C	14	0.160	97.4	1402	1366.0	-1.00	24%	This work
γ-Fe₂O₃/Fe-N-C	14	0.160	100.0	1953	1952.8	-1.20	23%	This work
Fe-N-C CoP/TiO ₂	13	0.100	98.4	33	32.5	-0.70	28%	
nanoarray	13	0.100	87.5	85	74.4	-0.50	28%	
Pd nanoparticles	13	0.020	35.0	4	1.5	-0.20	14%	
CoOx nanosheets	13	0.100	93.4	3	2.8	-0.30	34%	
Ni3B@NiB2.74	13	0.100	100.0	65	65.0	-0.30	36%	
Co ₃ O ₄ - CoVac	13	0.100	92.0	130	110.0	-0.60	28%	
Cu-N-C	13	0.100	84.7	64	54.2	-1.00	21%	
	7	0.250	02.4	45	12.0	0.70	200/	
	(LICI)	0.250	92.1	15	13.8 20 F	-0.70	30%	
	/	0.036	93.9	33	30.5	-0.64	25%	
NI(OH) ₂	/	0.024	90.4	25	22.6	3.67 V (Cell)	13%	
Co doped Fe/Fe ₂ O ₃	/	0.006	85.0	20	17.0	-0.75	22%	
CoP nanorings	/	0.050	97.1	20	19.4	-0.50	28%	
Fe-N-C	/	0.500	/5.0	35	26.3	-0.66	20%	
O-Cu-PICDA	/	0.005	86.0	12	10.3	-0.40	27%	
TiO ₂ -OV	7	0.001	85.0	8	6.8	-0.97	20%	
PdX-NCs	7	0.005	96.1	7	6.7	-0.70	25%	
Fe ₂ O ₃ NA	7	0.100	69.8	125	87.2	-0.90	17%	
Ir nanotubes	1.1	1.000	83.0	3	2.3	0.06	25%	
pCuO-10	1	0.050	69.0	140	96.6	-0.50	14%	
TiO ₂	0.77	0.400	82.0	27	22.0	-1.00	13%	

Table 1. Literature summary of NO₃RR performance. Reports in alkaline, neutral and acidic media are shaded in blue, green and orange, respectivley.

Nitrate reduction to ammonia requires the transfer of 8e⁻ and can occur through various reaction pathways, including NO₂, NO₂⁻, NO, N₂O, N₂, NH₂OH, NH₃, and NH₂NH₂.^{8,9,10} With the goal of achieving industrial significance, a rational design of highly selective and active catalyst for NH₃ are needed to prevent the produce of other undesired byproducts. One of the main competitions is nitrite (NO₂⁻) whose produce can be suppressed by the alkaline electrolyte (pH 13-14) and during the meantime NO₃RR in Table 1 always shows the highest Faradaic Efficiency (FE_{NH3}) and yield rates (Yield_{NH3}).¹³⁻¹⁵

$$NO_3^- + 6H_2O + 8e^- \rightarrow NH_3 + 9OH^- (E^0 = 0.69 V vs. RHE; pH = 14)$$

Another competition is the process of reducing NO₃⁻ to N₂ which involves the coupling of two nitrogen atoms and may require the presence of two adjacent active sites, commonly found in Rh⁻ or Cu⁻based metal catalysts.^{11,12} Here our strategy is the use of atomically dispersed metal-nitrogen-carbon (M-N-C) support where the metal atoms are dispersed into isolated single atoms (nitrogen and carbon atoms). The N-N coupling pathway that leads to the formation of nitrogen can be hindered because of the absence of an active neighboring site. Consequently, the selectivity for NH₃ production could be enhanced.¹⁶

Our previous research, along with additional studies, has demonstrated that atomically dispersed Fe-N-C is a highly effective catalyst for NO₃RR, achieving FE_{NH3} greater than 90%.¹⁷⁻¹⁹ Expanding on our prior research utilizing atomically dispersed Fe-N-C, to achieve a high partial current density and Faradaic efficiency of ammonia, we have developed a novel γ -Fe₂O₃/Fe-N-C catalyst through an nanosized active-catalyst/active-support system. The electron transfer between the γ -Fe₂O₃ nanoparticles and M-N-C may lead to more favorable intermediate adsorption energies, thereby increasing the performance of the catalyst system. Moreover, it is believed that the M-N₄ active site can alter the electronic structure of the adjacent carbon, enhancing the stability of the nanoparticles. This approach has resulted in exceptional performance in NO₃RR to NH₃, the γ -Fe₂O₃/Fe-N-C catalyst demonstrates a potential independent behavior on the FE_{NH3} (~100%) between - 0.4 to -1.2 V vs. RHE, while increasing the j_{NH3} up to nearly 2 A cm⁻² (at a Yield_{NH3} of more than 9 mmolNH3 hr⁻¹ cm⁻²). XPS analysis after electrolysis indicates that the pre-reduction activation step is important in achieving the best NO₃RR performance in our experiments,

as it generates highly active and exposed Fe⁰ sites. A durability test was also conducted, which demonstrated that the optimized γ -Fe₂O₃/Fe-N-C catalyst could maintain a FE_{NH3} between 90-100% when operating at a current of 1.4 A cm⁻² for over 24 hours. These results illustrate the effectiveness of utilizing an active-catalyst/active-support system.

METHOD

Catalyst synthesis

Synthesis of Fe-N-C

The Fe-N-C active support, with atomically dispersed atoms, was synthesized using the sacrificial support method (SSM). Initially, a catalyst mixture containing 6.25 g of nicarbazin, 1.25 g of OX-50 (Evonik), 1.25 g of LM150 (Cabot), 0.5 g of stöber spheres (prepared in-house), and 0.6 g of iron (III) nitrate was mixed and dispersed in water through sonication for 30 minutes. The resulting catalyst slurry was then dried under continuous stirring at 45°C for 24 hours. Afterwards, the partially dried slurry was transferred to an oven and dried completely at 45°C for 24 hours. The catalyst mixture was subsequently subjected to ball milling at 45 Hz for 60 minutes. Following that, the milled catalyst powder underwent pyrolysis in an atmosphere consisting of 5% H₂ and 95% Ar for 45 minutes at a temperature of 975°C. The pyrolyzed catalyst was then ball milled again at 45 Hz for 1 hour before being treated with a concentrated HF (18M) solution for 96 hours. This etching process aimed to remove the silica support and any remaining nanoparticles. The etched catalyst was washed with deionized (DI) water and filtered until reaching a neutral pH, after which it was dried. A second pyrolysis was carried out under a 10% NH₃ and 90% N₂ atmosphere at 950°C for 30 minutes. Subsequently, the catalyst underwent a third round of ball milling at 45 Hz for 1 hour.

Synthesis of γ -Fe₂O₃/Fe-N-C

The γ -Fe₂O₃ nanoparticles were synthesized on the support Fe-N-C by organic solvent synthesis method. To begin, Fe-N-C power weighing 44.8 mg and 0.2 mmol Fe(acac)₃ were subjected to sonication for 30 minutes in 40 mL of benzyl ether. Subsequently, the mixture was deaerated by purging it with N₂ for a duration of 30 minutes. The temperature was then raised to 100°C, followed by the addition of 400 µL of oleylamine and 200 µL of oleic acid, and the temperature was maintained for 10 minutes. Afterward, the temperature was further increased to 180°C, and 1 mL of tert-Butyllithium was introduced into the mixture,

which was then held at that temperature for 10 minutes. The temperature of the mixture was then elevated to 210°C and maintained the temperature for 45 minutes. Subsequently, the catalyst mixture was subjected to centrifugation and washed with ethanol prior to drying.

Synthesis of γ -Fe₂O₃, Co₃O₄ and RuO_x supported on XC72

The Fe, Co and Ru based nanoparticle supported on XC72 was analogous to the γ -Fe₂O₃/Fe-N-C. Fe-N-C power was replaced by the same amount (44.8 mg) of XC72 carbon power with the 0.2 mmol of Co(acac)₂ and Ru(acac)₂ being added in the mixture respectively.

Physical Characterizations

Transmission electron microscopy (TEM) was conducted using a JEOL JEM-2100F to examine the samples. For atomic resolution imaging, aberration-corrected scanning transmission electron microscopy (AC-STEM) and energy dispersive X-ray spectroscopy (EDX) were performed on a IEOL ARM300CF operating at a 300 keV accelerating voltage. To investigate the valence state of γ -Fe₂O₃ nanoparticles and atomically dispersed Fe sites, atomic resolution electron energy loss spectroscopy (EELS) was carried out using a Nion UltraSTEM200 microscope equipped with a cold field emission gun (FEG), C3/C5 aberration correction, and a high-energy resolution monochromated EELS system (HERMES). To minimize beam damage on the atomically dispersed metal-nitrogen coordination, an accelerating voltage of 60 keV was utilized for EELS data collection. The energy dispersion was set to 0.29 eV per channel with an exposure time of 500 ms per pixel. Background subtraction in the spectra was achieved using a power-law function, and denoising was performed using the multivariate weighted principal component analysis (PCA) routine in Digital Micrograph software. Spectra smoothing was accomplished using the Savitzky-Golay method with a 15-point window in Origin software. For analysis of the Fe valence state in energy loss near edge structure (ELNES), spectra from different Fe scanning areas were summed and averaged to enhance the signal-to-noise ratio.

The surface valence and chemical bonds of the catalysts were analyzed by X-ray photoelectron spectroscopy (XPS) using a Kratos AXIS Supra spectrometer equipped with a monochromatic Al Kα source. A pass energy of 160 eV was used for survey spectra, ranging from 1400 eV to 5 eV with a step size of 1 eV. No charge neutralization was applied during the analysis. The XPS data were processed and analyzed using CasaXPS software, with calibration performed using the C 1s sp³ peak at 284.8 eV. Linear backgrounds were applied to the C 1s and N 1s spectra, while Shirley backgrounds were used for the N 1s and Fe 2p spectra. An asymmetric 50% Gaussian / 50% Lorentzian function was employed for the analysis of sp² carbon, while a 70% Gaussian / 30% Lorentzian function was used for other data. X-ray diffraction (XRD) patterns were obtained using a Rigaku Ultima-III powder X-ray diffractometer to examine the crystal phase of the catalysts. The iron metal content in the catalysts was quantified using thermogravimetric analysis (TGA) performed on a Netzsch TG 209 F1 Libra instrument. To quantify the graphitic and amorphous content in the XC72 and Fe-N-C catalyst supports, Raman spectra were acquired using an InVia, Renishaw Corp., UK system.

Electrochemical Experiments Preparation of the working electrode

A carbon paper electrode (AvCarb MGL 370, Fuel Cell Store) was utilized as the working electrode, which was cut to a geometric surface area of 0.25 cm² (0.5 x 0.5 cm). To enhance the hydrophilicity and remove the PTFE layer on the electrode, an oxygen plasma treatment and acid treatment with 0.5 M H₂SO₄ were employed. For the preparation of the catalyst ink, 5 mg of catalyst, 680 μ L of isopropanol, 300 μ L of MilliQ water, and 20 μ L of a 5 wt% Nafion solution were combined. The Nafion solution was probe sonicated for 1 minute, followed by 30 minutes in a sonication bath. The catalyst ink was then drop cast onto the electrode. During the study, the catalyst loading on the electrode was optimized by varying the amount of catalyst ink that was drop cast.

Electrochemical nitrate reduction

Customized glass H-cells (Adams & Chittenden) were used to conduct electrochemical tests, with a Celgard 3401 membrane (as received) separating the cells. A three-electrode system was employed, consisting of a carbon paper electrode with catalyst as the working electrode, a reversible hydrogen electrode (Gaskatel) as the reference electrode, and a graphite rod as the counter electrode. For the NO₃RR (nitrate reduction reaction) tests, an alkaline electrolyte solution was utilized, comprising 1M potassium hydroxide (KOH) with 0.16M potassium nitrate (KNO₃). Prior to the electrochemical testing, the electrochemical cell was purged with N₂ gas (research grade 99.9995% - PraxAir) for 30 minutes at a flow rate of 80 sccm. During the NO₃RR, N₂ gas was continuously purged at a flow rate of 30 sccm. Control experiments were conducted using only 1M KOH + N₂ gas to confirm that the catalyst was not active for N₂ reduction to ammonia, thus confirming the inertness of N₂ in the system.

In the NO₃RR tests, the working and counter electrolyte volumes were 30 mL and 25 mL, respectively. Chronoamperometric (CA) tests were performed for a duration of 15 minutes under vigorous stirring. Prior to CA measurements, the electrode underwent activation through a pre-reduction step at -1.5 V vs. RHE (reversible hydrogen electrode) for 90 seconds. Linear sweep voltammetry was carried out by cathodically sweeping from 0.5 to - 1.0 V vs. RHE at a scan rate of 5 mV/s. The electrochemically active surface area (ECSA) was determined by varying the scan rate between 20-100 mV/s in the range of 0.60-0.75 V vs. RHE. To evaluate the durability of the catalyst, a 24-hour test was conducted in eight segments of 3 hours each. An electrolyte reservoir with a volume of 250 mL was connected to the cathodic chamber of the H-cell using peristaltic pumps, ensuring continuous circulation throughout the electrolysis process. This large circulating reservoir prevented the buildup of produced NH₃ (ammonia) from reaching excessive levels within the cell. After each 3-hour segment, all the electrolyte was pumped back into the external reservoir, sampled, and then refreshed for the subsequent 3-hour segment.

Isotopic (K¹⁵NO₃) nitrate reduction

To verify that the nitrogen (N) detected in the produced NH₃ originated specifically from the KNO₃ feed and not from other sources such as the N-doped catalyst support or N₂ gas contamination, an NO₃RR experiment was conducted using isotopically doped K¹⁵NO₃. In this experiment, a 1M KOH electrolyte solution containing 0.16M K¹⁵NO₃ was utilized. The isotopically labeled ¹⁵NO₃RR reaction took place at a potential of -1.0 V vs. RHE for a duration of 15 minutes. Following the reaction, the electrolyte was sampled and subjected to quantification using ¹H NMR (proton nuclear magnetic resonance). This analysis allows for distinguishing between isotopically labeled ¹⁵NH₃, which results in a doublet signal, and the standard ¹⁴NH₃, which produces a triplet signal. By observing the NMR spectra, it becomes possible to confirm the origin of nitrogen in the produced ammonia.

Calculation of the yield and faradaic efficiency

The yield rate of ammonia (Yield_{NH3}) from the NO₃RR is calculated from Eq. 1.

$$Yield_{NH_3} = \frac{c_{NH_3} * V}{M w_{NH_3} * t * A_{electrode}}$$
 1

The Faradaic efficiency for NH_3 , FE_{NH3} , is calculated from Eq. 2

$$FE_{NH_3} = \frac{n * F * c_{NH_3} * V}{M w_{NH_3} * Q}$$
 2

Where c_{NH3} is the concentration of NH_3 in the working chamber (mg/mL), V is the volume of the working chamber (30 mL), the molar mass of ammonia, Mw_{NH3} is 17.031 g/mol, t is the electrolysis time (0.25 hours) and $A_{electode}$ is the area of the working electrode (0.25 cm²). n is the number of electrons transferred (8e⁻ for NO₃⁻ to NH₃), F is Faraday constant (96,485 C) and Q is the charge passed during the electrolysis (C).

Product Detection

To detect and quantify NH₃ in typical NO₃RR (nitrate reduction reaction) tests, an ultraviolet-visible (UV-Vis) spectrophotometer (Shimadzu, UV-2600) was employed. The indophenol blue method was utilized for NH₃ detection. In this method, 2 mL of electrolyte (or diluted electrolyte) was mixed with 2 mL of solution A (1M NaOH, 5 wt% salicylic acid, and 5 wt% sodium citrate), 1 mL of solution B (0.05M NaClO), and solution C (1 wt% sodium nitroferricyanide). The mixture was incubated in the dark at room temperature for 1 hour. The maximum absorbance was measured at approximately 655 nm, and the NH₃ concentration was determined using respective calibration curves. Calibration curves with 1M KOH and various concentrations of NH₃ are provided in Figure S7.

For the detection of isotopic ammonia (15 NH₃), 1 H NMR (proton nuclear magnetic resonance) spectroscopy was utilized. In this method, 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (DSS) was chosen as the internal standard, and Dimethylsulfoxide-d6 (DMSO) was used as the locking solvent. The NMR spectra were obtained using a Bruker CRYO 500 MHz spectrometer, consisting of a solution containing 580 µL of electrolyte, 25 µL of DMSO, 20 µL of 3M H₂SO₄, and 75 µL of 6 mM DSS. A solvent suppression method was employed to minimize the signal of H₂O, resulting in improved resolution. The spectrum was processed using Topspin 4.0.8 software.

RESULTS

Physical Characterizations

STEM and TEM

Figure 1. AC-HAADF-STEM images of the γ -Fe₂O₃ based catalysts. (a) STEM of the γ -Fe₂O₃ catalyst supported on XC72 carbon scale bar is 50 nm, with its corresponding EDS mapping scale bar is 5 nm. (b) Atomic resolution STEM showing the γ -Fe₂O₃ spinel structure, scale bar is 2 nm. (c) Schematic representation of the γ -Fe₂O₃ spinel crystal structure. (d) Atomic resolution STEM image of the atomically dispersed Fe-N-C catalyst support, with its corresponding EDS mapping, scale bar is 2 nm. (e) Atomic resolution STEM image showing the γ -Fe₂O₃ nanoparticles supported on the atomically dispersed Fe-N-C, scale bar is 5 nm. (f) EDS mapping of the γ -Fe₂O₃/Fe-N-C catalyst, scale bar is 50 nm.

Figure 2. TEM images of the γ -Fe₂O₃ nanoparticles supported on (a) Fe-N-C and (b) XC72-Vulcan carbon. Showing a well-controlled sub-5 nm particle size and homogenous distribution of the γ -Fe₂O₃ nanoparticles.

Figure 1a given by the HAADF-STEM and figure 2 given by the TEM show that the wellcontrolled γ -Fe₂O₃ nanoparticles are made under 5 nm while being distributed on the supports evenly. Furthermore, the corresponding elemental mapping in Figure 1a shows a homogeneous distribution of Fe, O, and C in the γ -Fe₂O₃/XC72 catalyst. The γ -Fe₂O₃ nanoparticles possess a spinel structure, as seen in the aberration-corrected HAADF-STEM image in Figure 1b. To further elucidate the γ -Fe₂O₃ spinel crystal structure, Figure 1c depicts a schematic of the structure, where the central Fe atom is surrounded by a ring of Fe atoms in various planes, as observed in the STEM image. The atomic dispersion of Fe and N-doping in the Fe-N-C support is verified by the high-magnification STEM image and EDS mapping in Figure 1d. Then the γ -Fe₂O₃ nanoparticles are synthesized on the Fe-N-C support, Figure 1e confirms that the atomic dispersion of the Fe-N-C support is still retained, as single-atom Fe-N-C and γ -Fe₂O₃ nanoparticles are observed simultaneously. Additionally, Figure 1f shows the corresponding EDS mapping of the γ -Fe₂O₃/Fe-N-C catalyst, which confirms the presence of nitrogen, carbon and iron from the Fe-N-C support.

X-ray diffraction and Raman spectroscopy

Figure 3. XRD pattern of the γ -Fe₂O₃ nanoparticles. (a) γ -Fe₂O₃ supported on Fe-N-C (red) and XC72 (black), where the spectra match closely to the γ -Fe₂O₃ reference spectra. (b) XRD pattern of the γ -Fe₂O₃ with varying precursor loadings.

Figure 4. Physical characterization of Co_2O_3 /Fe-N-C. (a-c) TEM images from low mag to high mag (d) XRD pattern of the Co_2O_3 / Fe-N-C, matching well with the Co_2O_3 reference.

Figure 5. Physical characterization of $RuO_x/XC72$. (a-c) TEM images from low mag to high mag (d) XRD pattern of RuO_x nanoparticles, matching well with the Ru reference.

Figure 6. Raman spectra and deconvolution for the catalyst supports (a) XC72 and (b) Fe-N-C, with the calculated I_D/I_G ratio.

The catalyst's crystal structure was analyzed using X-ray diffraction, which confirmed the formation of Fe₂O₃ in the γ phase, as shown in Figure 3a. Figure 3b presents the XRD patterns of catalysts with varying Fe nanoparticle loadings. All patterns exhibit a perfect match with γ -Fe2O3 and also display an observable increase in peak energy corresponding to higher loading. To provide a basis for comparison, Co₂O₃/XC72 and RuO_x/XC72 catalysts

were also synthesized using similar methods and characterized using TEM and XRD (Figure 4-5). The TEM images clearly demonstrate the successful incorporation of Co and Ru nanoparticles onto both Fe-N-C and XC72 supports. These nanoparticles, ranging from approximately 2 to 5 nm in size, are evenly distributed across the supports. Additionally, the distinct hierarchical porous structure of the Fe-N-C support is observed. The corresponding XRD patterns exhibit a strong match to the Cu2O3 and Ru references, providing confirmation of the presence of Cu2O3/Fe-N-C and RuOx/XC72. Furthermore, Raman spectroscopy was utilized to investigate the graphitic content of both the Fe-N-C and XC72 catalyst supports. The nearly equal intensity ratio of the D/G peaks, as illustrated in Figure 6, indicates a comparable level of defects in the carbon structure. This implies that the graphitization in Fe-N-C and XC72 is similar.

EELS, XAS and XPS

Figure 7. Local chemical and coordination environment of the γ -Fe₂O₃ nanoparticle catalysts. (a) AC-STEM image and EELS spectra locations on the γ -Fe₂O₃/Fe-N-C catalysts, scale bar is 2 nm. (b) EELS spectra of the Fe-L_{3,2} edges of the γ -Fe₂O₃ nanoparticle (top) and atomically dispersed Fe-N_x sites (bottom). (c) EELS spectra comparing the energy loss of the Fe-L_{3,2} edge of the γ -Fe₂O₃ supported on Fe-N-C or XC72. XAS data for the γ -Fe₂O₃ catalysts supported on both Fe-N-C and XC72 (d) XANES spectra (e) EXAFS spectra with the corresponding references (f) N *1S* XPS spectra (g) Fe *2p* XPS spectra. (h) Comparison of the Fe *2p* XPS spectra for the γ -Fe₂O₃ catalyst supported on Fe-N-C or XC72.

Various spectroscopic techniques including atomic resolution electron energy loss spectroscopy (EELS), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) were conducted to assess the chemical state of the γ -Fe₂O₃/Fe-N-C catalyst and investigate how the electronic structure would be different from the previous one resulting from interactions between the Fe-N-C support and γ -Fe₂O₃ nanoparticles. EELS was employed to investigate the valence state of single atom Fe and γ -Fe₂O₃ sites. Figure 7a shows the locations (1 and 2 for γ -Fe₂O₃ particle and 3 and 4 for single atom Fe) where EELS spectra were obtained. Both spectra exhibit Fe-L_{3,2} edges; however, the single atom Fe has a lower energy loss and a reduced L₃/L₂ white line ratio (peak spacing of 12.4 eV) than γ -Fe₂O₃ (13.2 eV), as shown in Figure 7b. These results suggest that the single atom Fe has an oxidation state lower than Fe³⁺, consistent with previous research indicating an oxidation state of approximately Fe^{2.6+} for Fe-N-C. The analysis of γ -Fe₂O₃ nanoparticles showed an oxidation state of Fe³⁺, consistent with the XPS results in Figure 9 and 10. To investigate the potential interactions between nanoparticles and single atoms that could influence the electronic structure of the catalyst, atomic resolution EELS was employed. Comparison of the Fe- $L_{3,2}$ edges of the γ -Fe₂O₃ nanoparticles supported on Fe-N-C and XC72 showed a minor shift in energy loss of 0.1 eV, as presented in Figure 7c. However, various experimental conditions and deviation in the different spectroscopy method can also bring such slight shift which necessitates extreme caution and is reliant on the system.²⁰ Therefore, supplementary research was conducted to further examine possible interactions between the nanoparticle and single atom.

The chemical state of Fe in both the Fe-N-C support and γ -Fe₂O₃ nanoparticles was investigated using X-ray absorption near edge structure (XANES) of the Fe K-edge (ca. 7120 eV), as shown in Figure 7d. The Fe K-edge XANES spectra for the Fe-N-C lies near the FeO standards, indicating an Fe oxidation state close to Fe²⁺. For γ -Fe₂O₃, the XANES spectra matches the γ -Fe₂O₃ standard well, confirming that Fe nanoparticles with an oxidation state of Fe³⁺ were made. The electronic interactions between γ -Fe₂O₃ and Fe-N_x sites were examined by comparing the rising edge and pre-edge for both the γ -Fe₂O₃/XC72 and γ -Fe₂O₃/Fe-N-C, but shows meaningless changes in the energy, suggesting that the changes in coordination or chemical state of γ -Fe₂O₃ caused by electronic interactions with Fe-N_x sites would not give even small energy shifts. Fourier transformed extended X-ray absorption fine structure (FT-EXAFS) was employed to investigate the local coordination of the Fe species, as shown in Figure 7e. In the Fe-N-C support, a single dominating peak was observed at low bond distances (ca. 1.5 Å), indicating Fe-N/O coordination, which was further supported with the N 1s XPS spectra of the Fe-N-C catalyst, confirming Fe-N_x

coordination. For γ -Fe₂O₃, two dominating peaks were observed in both catalyst supports. One at a low bond distance (ca. 1.5 Å), which matches the Fe-O (and Fe-N from the support) coordination, and another at a larger bond distance (ca. 2.6 Å), which matches the Fe-Fe coordination in γ -Fe₂O₃.

XPS analysis was utilized to study the chemical environment and coordination of the Fe species. The N 1s spectra for the γ -Fe₂O₃/Fe-N-C catalyst in Figure 7f confirmed the presence of Fe-N_x coordination, as well as pyridinic and pyrrolic N-moieties, which are characteristic of the Fe-N-C support. Figure 8 shows XPS analysis for the Fe-N-C support. The oxidation state for the γ -Fe₂O₃ was found to be Fe³⁺ for all the supports as evidenced by the deconvoluted Fe 2p spectra in Figure 7g, further supporting the results from EELS and XANES analyses. Deconvoluted spectra of the C 1s, O 1s, N 1s, and Fe 2p for γ -Fe₂O₃/Fe-N-C and γ -Fe₂O₃/XC72, is shown in Figures 9 and 10, respectively. The Fe 2p spectra in Figure 7h displays that the binding energy of γ -Fe₂O₃/Fe-N-C shifts about 0.2 eV to the right when compared to the γ -Fe₂O₃/XC72. Although some recent research of nanoparticle-single atoms shows similar energy shift,^{21~23} it should be noted that processing and calibration-induced shifts (often caused by features in the C 1s spectrum) can easily bring a shift of 0.2 eV especially for the different nature of carbon in various catalyst supports.²⁴

Figure 8. XPS of the Fe-N-C support. (a) Deconvoluted N *1s* spectrum showing the presence of the nitrogen moieties and formation of the Fe-N_x moiety. (b) C *1s* spectrum showing the formation of C-N_x species and a mixture of sp² and sp³ carbon. (c) Fe *2p* spectrum showing the presence of Fe-N_x and oxidized nitrogen species.

Figure 9. Deconvoluted XPS spectra for γ -Fe₂O₃/Fe-N-C, (a) C *1s*, (b) N *1s*, (c) O *1s* and (d) Fe *2p*. The C 1s spectrum reveals the presence of both graphitic and amorphous carbon in nearly equal amounts, consistent with the Raman spectrum shown in Figure 6. The N 1s spectrum closely matches the N 1s spectra observed in the bare Fe-N-C support, indicating that Fe-N_x moieties are still present even after the reduction of Fe₂O₃ nanoparticles on the support. The O 1s spectrum indicates the existence of lattice oxygen, as expected in the production of Fe₂O₃ nanoparticles (Fe-O). The Fe 2p spectrum confirms that Fe is in a Fe³⁺ oxidation state.

Figure 10. Deconvoluted XPS spectra for γ -Fe₂O₃/XC72, (a) C 1s, (b) O 1s and (c) Fe 2p. The C 1s spectrum shows that XC72 support is more graphitic than the Fe-N-C support. The O 1s spectrum confirms the existence of lattice O which is anticipated in the formation of Fe₂O₃ nanoparticles (Fe-O). The Fe 2p spectrum indicates Fe present in a Fe³⁺ oxidation state.

In this section, we synthesized and extensively characterized a γ -Fe₂O₃/Fe-N-C catalyst. While we cannot entirely dismiss the likelihood of electronic interactions between the γ -Fe₂O₃ nanoparticles and Fe-N_x sites that may enhance NO₃RR performance because we did not identify any such interactions spectroscopically. Nonetheless, both the nanoparticles and single atoms of the γ -Fe₂O₃/Fe-N-C catalyst supply numerous exceptionally active NO₃RR sites which operate together to increase the NO₃RR performance.

Electrochemical Characterizations

Investigation of the factors that affect the performance of catalyst

Figure 11. Electrochemical NO₃RR performance of γ -Fe₂O₃ based catalysts and supports in 1M KOH + 0.16M KNO₃ electrolyte. (a) Linear sweep voltammetry at a scan rate of 5 mV/s. Chronoamperometry measurements for 15 min at applied potentials from -0.20 to -1.20 V vs. RHE, the red line is γ -Fe₂O₃/XC72 and the green line is γ -Fe₂O₃/Fe-N-C. (b) comparing XC72 vs Fe-N-C catalyst supports, (c) comparing γ -Fe₂O₃/Fe-N-C vs. γ -Fe₂O₃/XC72. (d) TEM images of increasing γ -Fe₂O₃ loadings supported on Fe-N-C, the scale bar is 20 nm. Electrochemical characterization of γ -Fe₂O₃/Fe-N-C with varying γ -Fe₂O₃ loadings, (e) Linear sweep voltammetry at a scan rate of 5 mV/s and (f) Chronoamperometry measurements for 15 min at applied potentials from -0.20 to -1.20V vs. RHE with a catalyst loading on the carbon paper of 0.2 mg cm⁻². The corresponding chronoamperometry measurements and UV-Vis NH₃ quantification are given in Figure S4-S10.

Figure 11a shows the findings of Linear Sweep Voltammetry (LSV) experiments conducted in 1M KOH + 0.16M KNO₃ electrolyte to assess the NO₃RR activity of different catalyst supports, such as blank carbon paper, XC72, Fe-N-C, and γ -Fe₂O₃ nanoparticles supported on XC72 and Fe-N-C. Note in this work all potentials are reported versus the reversible hydrogen electrode, RHE. The metal-free carbon support (blank carbon paper) exhibits a slightly positive shift in the reaction onset potential (-0.59 V vs. RHE), indicating limited NO₃RR performance. The use of Fe-N-C catalyst support results in a significant positive shift in the reaction onset potential (-0.34 V). The addition of γ -Fe₂O₃ nanoparticles further shifts the reaction onset potential positively to -0.14 V, regardless of the support used. Additionally, at more cathodic potentials, the current density for the γ -Fe₂O₃/Fe-N-C is the highest which might be the result of additional activity provided by the active Fe-N_x sites in the Fe-N-C support (or the interactions between the γ -Fe₂O₃ nanoparticles and atomically dispersed Fe-N_x sites, creating more favorable adsorption energies for reaction intermediates)

To evaluate the performance of the catalyst support towards the NO₃RR, chronoamperometry measurements were carried out at potentials ranging from -0.20 to -1.20 V, as shown in Figure 11b and 11c. The XC72 support shows negligible activity until -0.8 V and achieves a maximum FE_{NH3} of 55%. In contrast, the active Fe-N-C support demonstrates superior activity, maintaining a FE_{NH3} of approximately 80% above -0.20 V, with a maximum of 90% at -0.40 V and a maximum Yield_{NH3} of 2.9 mmol_{NH3} hr⁻¹ cm⁻² (j_{NH3} = 620 mA/cm² at -1.20 V), outperforming other reported Fe-N-C catalysts for the NO₃RR.^{13,19} The addition of γ -Fe₂O₃ nanoparticles enhances the FE_{NH3} (after -0.20 V) and significantly improves the Yield_{NH3} over the potential range, reaching a maximum of 6 mmol_{NH3} hr-1 cm⁻² (j_{NH3} = 1,265 mA/cm²). Furthermore, γ -Fe₂O₃/Fe-N-C demonstrates increased FE_{NH3} and Yield_{NH3} over the potential range compared to γ -Fe₂O₃/XC72. Notably, γ -Fe₂O₃/Fe-N-C maintains a FE_{NH3} of 90-95% over the potential range, highlighting the catalysts' potential independent NH₃ selectivity, resisting the continuous Hydrogen Evolution Reaction (HER) even at highly applied potentials.

After confirming the superior performance of the γ -Fe₂O₃/Fe-N-C catalyst, a study was conducted to determine the optimal amount of γ -Fe₂O₃ loading by adjusting the Fe(acac)₃ loading during catalyst synthesis, which would further enhance the NO₃RR activity. TEM images in Figure 11d showed that the γ -Fe₂O₃ site density increased as the loading was increased, with slight agglomerate formation beginning at $3x \gamma$ -Fe₂O₃ and significant agglomerate formation at $4x \gamma$ -Fe₂O₃, reducing the catalytically active surface area. The optimal γ -Fe₂O₃ loading was observed in the NO₃RR performance and calculated ECSA

(Figure S12). The optimal loading was found to be $3x \gamma$ -Fe₂O₃, which resulted in the most positive onset reaction potential and highest current density across the potential range, as seen in the LSV's in Figure 11e and chronoamperometry in Figure 11f. Additionally, the $3x \gamma$ -Fe₂O₃/Fe-N-C catalyst demonstrated the highest FE_{NH3}, maintaining around 95-100% from -0.40 to -1.20 V, with the highest Yield_{NH3} at all potentials, reaching a maximum of 8.3 mmol_{NH3} hr⁻¹ cm⁻² (j_{NH3} = 1,785 mA/cm²). Meanwhile the $3x \gamma$ -Fe₂O₃/Fe-N-C catalyst showed the highest FE_{NH3} and Yield_{NH3} at all potentials, whereas the $4x \gamma$ -Fe₂O₃ suffered from significant agglomerate formation, leading to reduced j_{NH3} and FE_{NH3}.

Figure 12. Determination of the electrochemically active surface area (ECSA) for the γ -Fe₂O₃ with increasing Fe precursor loading, via capacitance measurements. (a) CV as a function of scan rate from 20 mV/s and 100 mV/s between 0.6 and 0.76 V *vs.* RHE. (b) Current differences as a function of scan rate. (c) ECSA for the γ -Fe₂O₃ nanoparticles by Fe precursor loading.

Figure 13. Optimizing the γ -3xFe₂O₃/Fe-N-C catalyst loading on the carbon paper electrode. (a) LSV of the catalyst loadings between 0.2 – 10 mg/cm² from 0 to -1.0 V *vs.* RHE, evaluating the observed current response (b) zoomed region between 0 and -0.3 V *vs.* RHE looking at the reaction onset potential. From the LSV, the catalyst loadings of 0.5 and 1.0 mg/cm² achieve the highest current response and earlier reaction onset potential. (c) Maximum current at a potential of -0.5 V *vs.* RHE and reaction onset potential as a function of catalyst loading.

To further increase the catalyst performance and j_{NH3} , an optimal catalyst loading study on the carbon paper was conducted here. Different volumes of the ink $3x \gamma$ -Fe₂O₃/Fe-N-C were dropped on the carbon paper electrode so that a final catalyst loading between 0.2 – 10.0 mg/cm² was attained. LSV was utilized to investigate the activity of different catalyst loadings as shown in Figure 13 a-c. The results demonstrated that increasing the catalyst loading from 0.2 to 1.0 mg/cm² led to an increase in the maximum current and a positive shift in the reaction onset potential. However, no further improvement was observed between 0.5 and 1.0 mg/cm², and the activity reduced as the catalyst layer became too thick after 1.0 mg/cm², with the lowest performance observed at 10.0 mg/cm². Figure 13c provides a comparison of the reaction onset potential and maximum current at -0.5 V. Based on these results, the optimal catalyst loading was determined to be 0.5 mg/cm², resulting in an onset potential of approximately -0.13 V and a current density of 520 mA/cm² at -0.50 V. Therefore, the optimal catalyst is the $3x \gamma$ -Fe₂O₃/Fe-N-C with a loading of 0.5 mg/cm², and the following electrochemical results discussed in this thesis apply these conditions unless explicitly stated otherwise.

Investigation of the optimal NO₃RR and Comparison with literatures

Figure 14. Electrochemical NO₃RR performance of the optimized γ -3xFe₂O₃/Fe-N-C catalyst with a 0.5 mg/cm² catalyst loading on the carbon paper electrode in a 1M KOH + 0.16M KNO₃ electrolyte. (a) Optimized FE_{NH3} and Yield_{NH3} as a function of applied potential. (b) Comparison of NO₃RR performance in the current literature, evaluating the cathodic energy efficiency vs. j_{NH3} . Full details and references for each reported NO₃RR system are provided in Table 1.

After determining the optimal loading of γ -Fe₂O₃ and catalyst on the carbon electrode, chronoamperometric measurements were conducted to evaluate the 3x γ -Fe₂O₃/Fe-N-C catalyst's performance in an H-cell configuration. As shown in Figure 14a, the catalyst demonstrates consistent FE_{NH3} levels above 95% across the potential range of -0.40 to - 1.20 V, showcasing its potential-independent nature towards NH₃ selectivity. The system reached a maximum Yield_{NH3} of 9.2 mmol hr⁻¹ cm⁻² (j_{NH3} = 1,950 mA/cm²) still with nearly 100% FE_{NH3}. To compare the catalyst's performance with the current NO₃RR literature, Figure 14b presents the cathodic energy efficiency, CEE (assuming no overpotential for the anodic oxygen evolution reaction) vs. j_{NH3}. Larger circles represent higher concentrations of NO₃⁻, often resulting in increased performance, while colors are used to designate acidic,

neutral, or alkaline media. The CEE and JNH3, which depend on FENH3 and applied potential and total current, respectively, offer a comparison beyond just the FE_{NH3} or Yield_{NH3}, which are influenced by the reaction conditions and applied potential. The contours in Figure 14b represent the product of (CEE x j_{NH3}), indicating the effective current towards NH₃, with performance increasing towards the top right corner of the figure. It is evident from Figure 14b that the NO₃RR typically exhibits low energy efficiencies (maximum 40%) at a relatively high jNH3 as the result of the high thermodynamic reaction onset potential (0.69 V vs. RHE, pH=14). Thus, to reach a desirable jNH3, more cathodic potentials (ca. -0.40 to -0.80 V) are typically required. Most NO₃RR performances reported in the literature show limited jNH3, less than 100 mA/cm², or employ costly PGM metals to achieve higher jNH3, which brings more obstacles to the wide use for industries. However, the $3x \gamma$ -Fe₂O₃/Fe-N-C catalyst system (red circles) can achieve high current densities even at mildly reductive potentials, with a cathodic energy efficiency of around 33% and a maximum jNH3 of 1,950 mA/cm² at near 100% FE_{NH3} between -0.40 to -1.20 V. The potential-independent nature of NH₃ selectivity in the $3x \gamma$ -Fe₂O₃/Fe-N-C system significantly surpassed the performance of other current NO₃RR catalyst systems in the literature.

Investigation of the Fe oxidation state during the pre-reduction step and electrolysis & durability study

Figure 15. Investigation of the electronic state of Fe during the pre-reduction step and electrolysis and durability study of the γ -3xFe₂O₃/Fe-N-C. (a) Fe 2p XPS spectra (b) O 1s XPS spectra (c) 24-hour electrolysis at -1.0 V *vs.* RHE in 1M KOH + 0.16M KNO₃ electrolyte. AC-STEM to look at the stability of the γ -Fe₂O₃ nanoparticles and atomically dispersed Fe sites (d) the pristine catalyst (as a catalyst ink, drop cast on a carbon paper electrode) and (e) after the 24-hour electrolysis. All scale bars are 5 nm.

Before conducting the NO₃RR measurements, a pre-reductive activation step was carried out, which was found to have a significant positive impact on the catalyst's activity. This step involved applying a highly reductive constant potential of -1.5 V vs. RHE for 90 seconds. XPS analysis was utilized on the catalyst-coated electrode following the prereduction step to examine the chemical state of the now highly active γ -Fe₂O₃. After the pre-reduction activation, the electrode was dried under N₂ and stored in a tightly sealed vial purged with N₂ for immediate transport to the XPS facility. To account for any possible slight re-oxidation of the surface Fe during transportation, spectra were taken before and after surface etching with Ar plasma (repeated 3 times) until no further changes in the Fe 2p spectra were observed (note that the spectra remained constant after the first surface etching). Figure 15a presents the Fe 2p spectra of the y-3xFe₂O₃/Fe-N-C catalyst on an asprepared electrode and an independent electrode following the pre-reduction activation step. The as-prepared electrode exhibits a single peak characteristic of γ -Fe₂O₃, indicating an Fe³⁺ oxidation state (as observed in Figure 7g). In contrast, it is expected that the Fe 2p spectra shows difference after the pre-reduction activation step. The Fe⁰ is obviously formed (around 707 eV) along with a shift in the peak apex, representing the formation of more reduced Fe species. Moreover, there is a broader area as shown at higher binding energies (approximately 715.5 eV), corresponding to the satellite peaks from Fe²⁺ species.²⁵ Similarly, the 0 1s spectra provide evidence of a decreased concentration of lattice Fe-O after the pre-reduction step, indicating the formation of Fe⁰ and other Fe species with lower oxidation states. It is interesting to note that Figure 15c, which illustrates a 24-hour constant potential NO₃RR electrolysis at -1.0 V, shows no significant change in the observed current density (or NH₃ selectivity). However, post-electrolysis XPS measurements of the Fe 2p spectra in Figure 15b reveal further reduction of the Fe³⁺ species to reduced Fe⁰. This suggests that although more Fe³⁺ is reduced to Fe⁰ during the electrolysis, it does not result in further improvement of the NO₃RR performance. During the pre-reduction step, surface Fe^{3+} species are reduced to Fe^{0} , while non-participating bulk Fe species remain in a more oxidized state. Throughout the NO₃RR electrolysis, the oxidized state of the bulk Fe gradually decreases, but this does not have an impact on the NO_3RR activity. Based on this analysis, it can be concluded that Fe^{3+} sites, although active for the NO₃RR, are less active than Fe⁰ sites. Therefore, to maximize the NO₃RR performance, it is crucial to perform a pre-reduction step to convert Fe³⁺ sites to Fe⁰, which significantly enhances the activity.

For practical use of the catalyst-active support systems, it is vital to maintain the enhanced INH3 over an extended period. Hence, a 24-hour durability study was undertaken at -1.0 V using a 1M KOH + 0.16M KNO₃ electrolyte. To avoid excessively high NH₃ concentrations in the electrolyte and prevent NH₃ loss in the gas phase, the electrolysis was divided into eight segments, each lasting 3 hours. Moreover, a modification was implemented in the system to ensure continuous electrolyte circulation. Peristaltic pumps were employed to connect an external reservoir to the working chamber, enabling a constant volume of 250 mL of working electrolyte. After every 3-hour segment, the electrolyte was sampled and refreshed to maintain optimal conditions for the study. Figure 15c presents the current density, FE_{NH3}, and Yield_{NH3} of the catalyst system over the 24-hour duration at -1.0 V. The results show that the γ -3xFe₂O₃/Fe-N-C catalyst maintains a current density of approximately -1.4 A/cm^2 , with FE_{NH3} ranging between 90-100% and a high Yield_{NH3} of approximately 6 mmol hr⁻¹ cm⁻². This shows that the γ -3xFe₂O₃/Fe-N-C catalyst can sustain its ultrahigh NO₃RR performance, achieving near 100% FE_{NH3} and resisting the HER even at highly reductive potentials. To investigate any potential alterations in the structure of γ -Fe₂O₃ nanoparticles and the nature of atomically dispersed Fe sites, atomic resolution STEM imaging was conducted before and after electrolysis. Figure 15d reveals the presence of γ -Fe₂O₃ nanoparticle spinel structure alongside atomically dispersed Fe sites in the Fe-N-C support. The pristine catalyst is the catalyst powder sonicated off from the carbon paper without electrolysis. Figure 15e is the post-electrolysis STEM images of the γ -3xFe₂O₃/Fe-N-C catalyst following the 24-hour electrolysis at -1.0 V. Although a slight increase in the size of γ -Fe₂O₃ nanoparticles caused by particle coarsening is observed, the overall structure of the catalyst remains predominantly unaltered. This indicates that minor physical changes do not have a detrimental impact on the observed NO₃RR performance during the 24-hour electrolysis (Figure 15c). Upon closer inspection at higher magnification, it becomes apparent that both the γ -Fe₂O₃ nanoparticles and the atomically dispersed Fe sites are well-preserved, affirming the durability of these active catalyst components even under highly reductive potentials. This highlights the versatility of these catalyst systems, which can effectively operate under many kinds of conditions.

CONCLUSION

In this thesis, we have developed an active particle-active support catalyst system, y-Fe₂O₃/Fe-N-C, which successfully increased the performance of the Fe-based catalyst for the nitrate reduction to ammonia both at the nanoparticle and single atom level. We synthesized the sub-5 nm nanoparticles with a spinel structure on the atomically dispersed Fe-N-C which was confirmed by STEM and relevant EDS analysis. The Fe-N_x sites of the Fe-N-C and the phase γ -Fe₂O₃ of the nanoparticles are further confirmed by the EELS, XAS and XPS. We emphasize the utmost caution is necessary when assessing potential chemical interactions between single atom sites and nanoparticle species to avoid mistakenly attributing minor spectral shifts to such interactions. A lot of electrochemical characterizations are also conducted to evaluate the performance of the y-Fe₂O₃/Fe-N-C catalyst system. The optimized y-3xFe₂O₃/Fe-N-C catalyst exhibited ultrahigh NO₃RR activity, achieving an impressive Yield_{NH3} of 9 mmol hr⁻¹ cm⁻² at a FE_{NH3} of 100%, with j_{NH3} reaching up to 1.95 A/cm^2 . Notably, the γ -Fe₂O₃/Fe-N-C catalyst demonstrated a unique characteristic of being independent of the applied potential, maintaining high FE_{NH3} levels and effectively suppressing the HER even at highly reductive potentials. This remarkable behavior enabled the catalyst to sustain high JNH3 values at near unity FENH3. XPS analysis further unveiled the significance of the pre-reduction activation step in enhancing the NO₃RR performance by reducing surface sites from Fe³⁺ to Fe⁰. A durability study conducted over a 24-hour period at a highly reductive potential of -1.0 V demonstrated the durability of both the γ-Fe₂O₃ nanoparticles and the single atom Fe-N_x sites. Throughout the study, the catalyst system maintained a high j_{NH3} of 1.4 A/cm² and a FE_{NH3} ranging from 91% to 100%. This research introduces a pioneering catalyst system that combines active particles and active support, leveraging multiple active sites at both the nanoparticle and single atom scale. The synergistic effect of these active sites significantly enhances the NO₃RR activity, enabling the conversion of NO₃⁻ to NH₃ at current densities (1.95 A/cm²) for industrial applications.

SUPPORTING INFORMATION

Figure S 1. Electrochemical characterization of RuO_x/XC72 and Co₂O₃/Fe-N-C. (a) LSV of the RuO_x/XC72 in both 1M KOH and 1M KOH with 0.16M KNO₃ from 0.2 to -1.0 V vs. RHE. An early onset potential is observed at ca. 0.05 V vs. RHE (earlier than either γ -Fe₂O₃ or Co₂O₃), however, the RuO_x is quickly out competed by the HER (with significant bubble formation observed during the reductive sweep). (b) LSV of the Co₂O₃/Fe-N-C in both 1M KOH and 1M KOH with 0.16M KNO₃ from 0.2 to -1.0 V vs. RHE. An onset potential of ca. -0.3 V vs. RHE is observed (indicating a delayed onset potential compared to γ -Fe₂O₃/Fe-N-C).

Figure S 1. TGA evaluation of the weight percent of Fe when changing the $Fe(acac)_3$ precursor in the synthesis, 1x and 3x precursor loading.

Figure S 2. Control studies to confirm the origin of the N in the detected NH₃ originates from the nitrate feed and not from contamination or decomposition of the Fe-N-C support. (a) Constant potential electrolysis in 1M KOH without the addition of nitrate from -0.2 to -1.2 V vs. RHE. (b) UV-Vis detection of the electrolyte after electrolysis over all potentials, showing the absence of NH₃. (c) ¹H NMR spectra showing the presence of only ¹⁵NH₃ after electrolysis with 1M KOH and 0.16M isotopically labeled K¹⁵NO₃ at -1.0 V vs. RHE for 15 min. (d) Faradaic Efficiency and Yield rate of the K¹⁵NO₃ and K¹⁴NO₃ electrolyte.

Figure S 3. Constant potential electrolysis on the support materials. (a) XC72 and (b) Fe-N-C in 1M KOH + 0.16M KNO₃ at potentials of -0.2 to -1.2 V vs. RHE for 15 min each.

Figure S 4. Constant potential electrolysis of Fe₂O₃ on XC72 and Fe-N-C. (a) γ -Fe₂O₃/XC72 and (b) γ Fe₂O₃/Fe-N-C in 1M KOH + 0.16M KNO₃ at potentials of -0.2 to -1.2 V *vs.* RHE for 15 min each.

Figure S 5. Constant potential electrolysis on γ -Fe₂O₃/Fe-N-C with different γ -Fe₂O₃ loadings. (a) γ -Fe₂O₃/Fe-N-C and (b) γ -2xFe₂O₃/Fe-N-C, (c) γ -3xFe₂O₃/Fe-N-C and (d) γ -4xFe₂O₃/Fe-N-C in 1M KOH + 0.16M KNO₃ at potentials of -0.2 to -1.2 V vs. RHE for 15 min each.

Figure S 6. Calibration curves with 1M KOH and various concentrations of NH_3

Figure S 8. UV-Vis curves for the detection of NH₃ (*ca.* 655 nm) for the constant potential NO₃RR electrolysis in 1M KOH + 0.16M KNO₃ over (a) XC72 and (b) Fe-N-C at potentials of 0.2 V to -1.2 V vs. RHE for 15 min each. Samples were diluted to fall within the calibration curves.

Figure S 9. UV-Vis curves for the detection of NH₃ (*ca.* 655 nm) for the constant potential NO₃RR electrolysis in 1M KOH + 0.16M KNO₃ over (a) γ -Fe₂O₃/XC72 and (b) γ -Fe₂O₃/Fe-N-C at potentials of 0.2 V to -1.2 V *vs.* RHE for 15 min each. Samples were diluted to fall within the calibration curves.

Figure S 10. UV-Vis curves for the detection of NH₃ (*ca.* 655 nm) for the constant potential NO₃RR electrolysis in 1M KOH + 0.16M KNO₃ over (a) γ -Fe₂O₃/Fe-N-C and (b) γ -2xFe₂O₃/Fe-N-C, (c) γ -3xFe₂O₃/Fe-N-C and (d) γ -4xFe₂O₃/Fe-N-C at potentials of 0.2 V to -1.2 V vs. RHE for 15 min each. Samples were diluted to fall within the calibration curves.

Figure S 11. Darkfield and corresponding brightfield STEM images of the γ -3xFe₂O₃/Fe-N-C after the durability test at -1.0 V *vs.* RHE for 24 hours. After the electrolysis, slight coarsening of the iron nanoparticles is observed. The used catalyst loaded carbon paper electrode was sonicated in IPA to remove some of the catalyst for imaging.

REFERANCES

(1) The Facts About Ammonia.

https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammoni a_general.htm#:~:text=Ammonia%20is%20a%20colorless%20highly,clear%2C%20c olorless%20liquid%20under%20pressure

- (2) Brown, T. (2016). Ammonia production causes 1% of total gobal GHG emissions. Ammonia industry. https://ammoniaindustry.com/ammonia-production-causes-1-percent-oftotal-global-ghg-emissions/.
- (3) Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A.; Statt, M. J.; Blair, S. J.; Mezzavilla, S.; Kibsgaard, J.; Vesborg, P. C. K.; Cargnello, M.; Bent, S. F.; Jaramillo, T. F.; Stephens, I. E. L.; Nørskov, J. K.; Chorkendorff, I. A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature 2019, 570 (7762), 504–508. https://doi.org/10.1038/s41586-019-1260-x.
- (4) Choi, J.; Suryanto, B. H. R.; Wang, D.; Du, H. L.; Hodgetts, R. Y.; Ferrero Vallana, F. M.; MacFarlane, D. R.; Simonov, A. N. Identification and Elimination of False Positives in Electrochemical Nitrogen Reduction Studies. Nat. Commun. 2020, 11 (1), 1–10. https://doi.org/10.1038/s41467-020-19130-z.
- (5) V. A. Niemann, P. Benedek, J. Guo, Y. Xu, S. J. Blair, E. R. Corson, A. C. Nielander, T. F. Jaramillo, W. A. Tarpeh. Co-designing Electrocatalytic Systems with Separations to Improve the Sustainability of Reactive Nitrogen Management. ACS Catalysis 2023, Article ASAP.
- (6) Wenjie Luo, Shilu Wu, Yingyang Jiang, Peng Xu, Jinxuan Zou, Jinjie Qian, Xuemei Zhou, Yongjie Ge, Huagui Nie, Zhi Yang. Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters. ACS Applied Materials & Interfaces 2023, 15 (15), 18928-18939. https://doi.org/10.1021/acsami.3c00511
- (7) Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D.-H.; Tan, C.-S.; Ding, Y.; Wu, J.; Lum, Y.; Dinh, C.-T.; Sinton, D.; Zheng, G.; Sargent, E. H. Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys Via Tuning of Intermediate Adsorption. J. Am. Chem. Soc. 2020, 142, 5702– 5708, DOI: 10.1021/jacs.9b13347
- (8) Katsounaros, I., Ipsakis, D., Polatides, C. & Kyriacou, G. Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim. Acta 52, 1329–1338 (2006).
- (9) Dortsiou, M. & Kyriacou, G. Electrochemical reduction of nitrate on bismuth cathodes. J. Electroanal. Chem. 630, 69–74 (2009).

- (10) Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eightelectron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).
- (11) Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. & Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B 236, 546–568 (2018).
- (12) Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 9, 7052–7064 (2019).
- (13) Li, P.; Jin, Z.; Fang, Z.; Yu, G. A Single-Site Iron Catalyst with Preoccupied Active Centers That Achieves Selective Ammonia Electrosynthesis from Nitrate. Energy Environ. Sci. 2021, 14 (6), 3522–3531. https://doi.org/10.1039/D1EE00545F.
- Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A. W. M.; Xu, L.; Shi, Y.; Du, Y.; Hao, W.; Wong, P. K.; Wang, J.; Dou, S. X.; Zhang, L.; Yu, J. C. Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters. J. Am. Chem. Soc. 2020, 142 (15), 7036–7046. https://doi.org/10.1021/jacs.0c00418.
- (15) Hu, Q.; Qin, Y.; Wang, X.; Wang, Z.; Huang, X.; Zheng, H.; Gao, K.; Yang, H.; Zhang, P.; Shao, M.; He, C. Reaction Intermediate-Mediated Electrocatalyst Synthesis Favors Specified Facet and Defect Exposure for Efficient Nitrate-Ammonia Conversion. Energy Environ. Sci. 2021, 14 (9), 4989–4997. https://doi.org/10.1039/d1ee01731d.
- (16) Wu, ZY., Karamad, M., Yong, X. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Commun 12, 2870 (2021). https://doi.org/10.1038/s41467-021-23115-x
- (17) Murphy, E.; Liu, Y.; Matanovic, I.; Guo, S.; Tieu, P.; Huang, Y.; Ly, A.; Das, S.; Zenyuk, I.; Pan, X.; Spoerke, E.; Atanassov, P. Highly Durable and Selective Fe- and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO 2 – Pathways. ACS Catal. 2022, 12 (11), 6651–6662. https://doi.org/10.1021/acscatal.2c01367.
- (18) Murphy, E.; Liu, Y.; Matanovic, I.; Huang, Y.; Ly, A.; Guo, S.; Zang, W.; Yan, X.; Zenyuk, I.; Spoerke, E.; Atanassov Plamen. Elucidating Electrochemical Nitrate and Nitrite Reduction over Atomically Dispersed Transition Metal Sites. (Submitted) No. 2.
- (19) Wu, Z.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F.; Kim, J. Y.; Xia, Y.; Heck, K.; Hu, Y.; Wong, M. S.; Li, Q.; Gates, I.; Siahrostami, S.; Wang, H. Electrochemical Ammonia Synthesis via Nitrate Reduction on Fe Single Atom Catalyst. Nat. Commun. 2021, 12 (1), 2870. https://doi.org/10.1038/s41467-021-23115-x.

- (20) Tan, H.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G. Oxidation State and Chemical Shift Investigation in Transition Metal Oxides by EELS. Ultramicroscopy 2012, 116 (2012), 24–33. https://doi.org/10.1016/j.ultramic.2012.03.002.
- (21) Liang, L.; Jin, H.; Zhou, H.; Liu, B.; Hu, C.; Chen, D.; Wang, Z.; Hu, Z.; Zhao, Y.; Li, H. W.; He, D.; Mu, S. Cobalt Single Atom Site Isolated Pt Nanoparticles for Efficient ORR and HER in Acid Media. Nano Energy 2021, 88 (May), 106221. https://doi.org/10.1016/j.nanoen.2021.106221.
- (22) Gao, J.; Zhou, X.; Wang, Y.; Chen, Y.; Xu, Z.; Qiu, Y.; Yuan, Q.; Lin, X.; Qiu, H. J. Exploiting the Synergistic Electronic Interaction between Pt-Skin Wrapped Intermetallic PtCo Nanoparticles and Co-N-C Support for Efficient ORR/EOR Electrocatalysis in a Direct Ethanol Fuel Cell. Small 2022, 18 (25), 1–9. https://doi.org/10.1002/smll.202202071.
- (23) Wang, F.; Liu, X.; Jiang, B.; Zhuo, H.; Chen, W.; Chen, Y.; Li, X. Low-Loading Pt Nanoparticles Combined with the Atomically Dispersed FeN4 Sites Supported by FeSA-N-C for Improved Activity and Stability towards Oxygen Reduction Reaction/Hydrogen Evolution Reaction in Acid and Alkaline Media. J. Colloid Interface Sci. 2023, 635, 514–523. https://doi.org/10.1016/j.jcis.2022.12.160.
- (24) Greczynski, G.; Hultman, L. X-Ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 2020, 107 (July 2019), 100591. https://doi.org/10.1016/j.pmatsci.2019.100591.
- Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257 (7), 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051.