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Abstract

Social organisms often show collective behaviors such as group foraging or movement. Collective

behaviors can emerge from interactions between group members and may depend on the behav-

ior of key individuals. When social interactions change over time, collective behaviors may change

because these behaviors emerge from interactions among individuals. Despite the importance of,

and growing interest in, the temporal dynamics of social interactions, it is not clear how to quantify

changes in interactions over time or measure their stability. Furthermore, the temporal scale at

which we should observe changes in social networks to detect biologically meaningful changes is

not always apparent. Here we use multilayer network analysis to quantify temporal dynamics of so-

cial networks of the social spider Stegodyphus dumicola and determine how these dynamics relate

to individual and group behaviors. We found that social interactions changed over time at a con-

stant rate. Variation in both network structure and the identity of a keystone individual was not

related to the mean or variance of the collective prey attack speed. Individuals that maintained a

large and stable number of connections, despite changes in network structure, were the boldest

individuals in the group. Therefore, social interactions and boldness are linked across time, but

group collective behavior is not influenced by the stability of the social network. Our work demon-

strates that dynamic social networks can be modeled in a multilayer framework. This approach

may reveal biologically important temporal changes to social structure in other systems.

Key words: collective behavior, dynamic network, multilayer network, multiplex, social stability, Stegodyphus

Organisms interact with one another when they cooperate, fight,

communicate, mate, move, or forage together. Social interactions

can change over time, that is, they are dynamic. These dynamics

may emerge from social processes, changes in the external environ-

ment, or other processes (Pinter-Wollman et al. 2014). A useful way

of studying social interactions is social network analysis (Whitehead

1997; Whitehead and Dufault 1999; Croft et al. 2008). A dynamic

network approach can reveal how social interactions change over

time and how different factors lead to the formation and dissolution

of relationships. Dynamic network analysis can uncover the effect of

changes to the network structure on group-level processes such as

the transmission of information and disease (Blonder et al. 2012;

Hobson et al. 2013; Pinter-Wollman et al. 2014; Fisher et al. 2017).

However, it is not always clear at what temporal scale these chang-

ing networks should be sampled and analyzed. Ideally, we would

study social networks at the same temporal scale as the biological

dynamics we are interested in. Constructing social networks at a

longer temporal scale than the biological process would miss the dy-

namics of the biological process, whereas studying social networks

over a shorter timescale than a meaningful change in the biological

process would provide information that is invariant or uninforma-

tive (Haddadi et al. 2011; Blonder et al. 2012; Farine 2017; Fisher
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et al. 2017). We, therefore, need techniques to identify the temporal

scale at which biologically meaningful change occurs in social net-

works, which may provide insights on the mechanisms that underlie

the observed changes.

A potential approach to examining the dynamics of social net-

works is to use a multilayer network approach, in which each layer

is a network at a particular time point (Finn et al. 2019). Multilayer

networks (Kivelä et al. 2014) have the potential to provide numer-

ous insights in the study of ecology, evolution, and behavior by inte-

grating the full range of social interactions and associations that

organisms engage in (Pilosof et al. 2017; Silk et al. 2018; Finn et al.

2019). When representing the dynamics of social interactions as a

multilayer network, each layer represents the network at a particular

time point and interlayer edges link individuals to themselves in ad-

jacent time points. One can calculate measures such as the Jaccard

index (Jaccard 1901) as a measure of the similarity between adjacent

time points (see Supplementary Figure S1), but this does not neces-

sarily indicate whether the network is stable over time or if substan-

tial change has occurred. Measuring the multilayer network

“reducibility” (De Domenico et al. 2015a) can test whether different

layers of a multilayer network represent similar patterns of social

interactions, and if they do, whether we can reduce redundancy by

aggregating similar networks into a single layer. If social dynamics

are stable over time, all layers will contain the same pattern of inter-

actions and therefore will be redundant, justifying the collapse of

the network into fewer layers or even into a single layer. If the net-

work is instead highly dynamic, then each layer will contain differ-

ent patterns of interactions, and so aggregating layers will hide

processes that happen at the timescale on which the layers were

sampled (see Chan et al. 2013 for an example of different social dy-

namics at different time points). The reducibility of a network,

therefore, indicates the maximum temporal scale at which change

occurs and provides a relative measure of the change versus stability

of a network over the time frame studied.

Whether the social networks of groups are stable or dynamic can

influence the way in which the groups function. Social network

structure can influence group dynamics such as collective prey cap-

ture (Hunt et al. 2019) and the cohesion of group movement (Bode

et al. 2011; Rosenthal et al. 2015). Meanwhile, groups with stable

social relationships (e.g., stable dominance hierarchies) are less sus-

ceptible to infighting and membership change (Beisner et al. 2015).

Without quantitative measures of network stability, it is difficult to

assess how changes to interactions relate to other aspects of a

group’s phenotype such as efficiency to complete a collective task.

The challenges in estimating the relationship between temporal

changes in interactions and other group-level outcomes are further

compounded by the fact that replication of experimental observa-

tions at the level of the group is required, but seldom achieved.

A group’s collective behavior might be determined by a leader, a

dominant, or older individual, or an individual with an extreme

phenotype (Sih and Watters 2005) often referred to as a “keystone

individual” (Modlmeier et al. 2014). For example, elephant groups

with older matriarchs are more likely to find seldom used waterholes

(Foley et al. 2008), respond differently to unfamiliar individuals,

and have higher calving success per female than groups with young

matriarchs (McComb et al. 2001). In a dynamic social network, the

identity of a keystone individual could change over time. Changes in

the identity of the keystone individual might lead to changes in

group behavior. Furthermore, if regularly changing the keystone in-

dividual disrupts group dynamics, then group behavior may be sub-

stantially altered in groups with a changeable keystone individual

compared with groups in which the identity of the keystone is

stable.

An individual’s centrality in a network may relate to its influence

on the collective behavior of the group. For example, grey reef

sharks Carcharhinus amblyrhynchos that have shorter mean associ-

ation durations with others are more likely to act as leaders (Jacoby

et al. 2016). In a dynamic social network, the centrality of each indi-

vidual may change over time and the mean or variation of the cen-

trality value may represent an important social trait that indicates

the individual’s influence on the group. Multilayer network analysis

allows one to calculate measures of network centrality that integrate

information across time points (Silk et al. 2018; Finn et al. 2019).

When the layers in a multilayer network represent different kinds of

interactions, measures of centrality that account for connections

within and between layers can identify different individuals as cen-

tral compared with “monolayer” measures that only account for a

single type of interaction, or measures of centrality based on aggre-

gates of all layers (Finn et al. 2019). The same could be true for tem-

poral networks analyzed in a multilayer framework; measures of

centrality that integrate across all layers may highlight different indi-

viduals as being highly central, and therefore more influential com-

pared with approaches based on a single network layer.

To examine the impact of network temporal dynamics on indi-

vidual and collective behaviors we analyzed freely available data on

temporal networks in multiple groups of the social spider

Stegodyphus dumicola. We asked: 1) Is the time scale of change in a

social network slower, faster, or equivalent to the time scale on

which interactions were measured? 2) Does the stability of the net-

work, and/or the consistency of the identity of a keystone individual

in a group, relate to collective behavior? 3) Do different measures of

an individual’s network position over time relate to the mean or

variability of an individual’s potential influence on collective prey

attack speed?

Materials and Methods

We used an existing dataset on social interactions of individually

identified social spiders (Pinter-Wollman 2020) associated with

Hunt et al. (2019). These data were previously used by Keiser et al.

(2017) to examine global network structures (density and modular-

ity) and Hunt et al. (2018, 2019) to determine the relationship be-

tween social interactions and both individual and collective

behaviors. None of these studies used a multilayer network ap-

proach to examine temporal dynamics. In short, the data we used

comprised 24 experimental groups of 10–11 adult female S. dumi-

cola, whose resting interactions were observed 3 times a week for

6.5 weeks resulting in 19 interaction networks per group. Hunt et al.

(2019) defined an interaction as a physical contact between any

body parts of 2 spiders while stationary in the retreat web (see also

Keiser et al. 2017; Hunt et al. 2018). Interactions were recorded as

either present or absent (i.e., the network at each time point was bin-

ary). Resting interactions can influence the spread of cuticular bac-

teria (Keiser et al. 2016) and the speed prey attack (Hunt et al.

2019).

Multilayer network

To construct a multilayer network from the resting interaction data,

we connected the 19 interaction networks from the 19 different time

points for each of the 24 groups by linking individuals to themselves

in adjacent time points. Interlayer edges were therefore present only
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between adjacent time points. All networks were symmetrical, that

is, both edges A1! B1 and B1! A1 were present. Inter-layer self-

edges were also symmetrical, so both edges A1! A2 and A2! A1

were present.

Collective behavior

The measure of collective prey attack was the groups’ latency to re-

spond to vibrations on their capture web, a commonly used assay for

quantifying colony prey attack in social spiders (Hunt et al. 2019;

Lichtenstein et al. 2019). Hunt et al. (2019) used a custom-made vi-

bratory device based on an Arduino board (described in Pinter-

Wollman et al. 2017b; Hunt et al. 2019; Wright et al. 2019) to vi-

brate a 1 cm�1 cm piece of paper to mimic a struggling prey animal

(Hedrick and Riechert 1989). The latency until the first spider

touched the paper was recorded as the “latency to attack.” The trial

continued until spiders attacked the paper or until 600 s elapsed. If no

spider attacked the paper by 600 s, the latency to attack was set to

600. For more details on procedures, see Hunt et al. (2019). Each

group was tested once per week, after every 3 recordings of resting

interactions, giving 6 measures of collective predation behavior.

Boldness measures

In S. dumicola, the presence of bold individuals (those that resume

movement quickly after a simulated predation threat) can increase

how quickly colonies collectively attack prey (Keiser and Pruitt

2014), and therefore increase the mass a colony gains (Lichtenstein

et al. 2017). Boldness is therefore a predictor of an individual’s influ-

ence on colony collective behavior. The measure of boldness of indi-

viduals is the time in seconds for a spider to move one body length

after experiencing a puff of air from an infant nose cleaning bulb (see

Riechert and Hedrick 1993; Hunt et al. 2019). Faster times indicate

greater boldness. In isolation, boldness is highly repeatable (r¼0.63;

Keiser et al. 2014) but in a social setting, boldness is dynamic and

depends on the boldness of individuals that one recently interacted

with (Hunt et al. 2018). Boldness was measured once before groups

were set up, and once a week thereafter, after every 3 recordings of

resting interactions, giving 7 measures of boldness per individual (un-

less the individual died during the study, see Supplementary Figure

S2, mean number of measures per individual¼ 6.20, SD¼ 1.31).

As noted above, these data have been previously analyzed and

published (Keiser et al. 2017; Hunt et al. 2018, 2019). There is some

overlap in question between the previous and the current study, as

Hunt et al. (2018) looked at change in the networks over time but

they did not consider the timescale of network stability.

Furthermore, Hunt et al. (2019) related the boldness of the keystone

individual to its number of connections. However, we related the

boldness of all individuals to their number of connections and ask a

series of questions about temporal stability that was not explored by

Hunt and colleagues. Finally, our approach uses a completely differ-

ent and novel methodology in the form of multilayer network ana-

lysis. Therefore, the current study extends previous work, both in

terms of the questions asked and the methodology used.

Data analysis

Q1. Assessing the reducibility of multilayer networks
To determine social structure stability and the time scale over which

changes in the group social networks happen (Q1), we assessed the

structural reducibility for each group (De Domenico et al. 2015a) in

the R package “muxViz” (De Domenico et al. 2015b). The reduci-

bility analysis gives a measure of the difference in patterns of inter-

actions in the multilayer network with 1) all layers, 2) versions of

the network with gradually more and more layers aggregated, and

3) a network where all layers have been aggregated into one (the

“fully aggregated network”). Reducibility determines whether

aggregating 2 or more layers can be carried out without a loss of

variation, or whether layers need to be kept distinct to maximize the

amount of variation in a given multilayer network. “Variation” is

defined here as the Von Neumann entropy of the network, which is

an extension of the Shannon information entropy, from information

theory, to measure the mixedness of a network (see Supplementary

Materials and De Domenico et al. 2015a for more information).

When considering temporal dynamics, an unchanging social net-

work can be reduced to the aggregate of all layers without obscuring

differences among layers, whereas reducing the multilayer network

of a highly dynamic group would lead to a loss in the observed vari-

ation in the system (a lower Von Neumann entropy). We performed

the reducibility analysis for each group and determined the optimum

number of layers that needed to be retained for each group to main-

tain the largest amount of variation, and the rate of loss of variation

due to aggregating layers. We predicted that some layers could be

aggregated without the substantial loss of variation, but otherwise

had no specific predictions. Note that when individuals die (which

occurred in all social groups, see Supplementary Figure S2) there

will be fewer interactions in the network, necessarily giving a lower

Von Neumann entropy. Furthermore, smaller networks might be

more similar to one another than networks with more individuals,

so the likelihood to lose variation when aggregating 2 networks

decreases as networks shrink in size.

Q2. Relating the stability of group network structure

and the identity of its keystone individual to collective

behavior
To determine the impact of social stability on collective behavior

(Q2), we calculated a group’s stability as the difference in Von

Neumann entropy between the full multilayer network (with no ag-

gregation) and the fully aggregated network for each group (here-

after “relative entropy”). Higher values indicate there was more

variation among layers over time, and so less stability (more details

are given in Supplementary Materials). We view this variation as a

latent variable of “social stability,” which is present at all times,

even if the actual changes in the network are only realized at later

time points. We then related relative entropy to the mean attack

speed and the coefficient of variation (“CV”; SD/mean) of attack

speed of the group. We used a Spearman’s rank correlation, as the

variables were non-normal and could not satisfactorily be trans-

formed toward normality. We predicted that more stable groups

(lower relative entropy) would attack prey more quickly (lower

mean latency) and at more consistent speeds (lower CV), resulting in

positive correlations between a group’s relative entropy and mean

and CV of attack speed.

To determine how the stability of the identity of the keystone in-

dividual in a group influenced collective behavior (Q2—second

part), we first defined the keystone individual in each group in each

week as the individual with the highest boldness score in that group

(Pinter-Wollman et al. 2017b). If all group members scored a 0 for

boldness on a certain week, then no individual was assigned as the

keystone for that week (N¼26 out of 168, 15.5%). We then
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counted how often each individual was defined as a keystone for a

given group across the 6 weeks. Our measure of the stability of the

keystone’s identity is the highest of these counts for each group. For

example, if one individual had the highest boldness in 2 weeks, and

4 different individuals had the highest boldness in the other weeks,

the group would be assigned a score of 2. If a group had a different

keystone individual each week, it was assigned a score of 1. Scores

ranged from 1 to 3 because no individual maintained a keystone

position for more than 3 weeks. We compared the mean and the CV

of prey attack speed among groups with keystone stabilities of 1, 2,

or 3 with a Kruskal–Wallis test, because the distributions of the re-

sponse variables were non-normal and could not be satisfactorily

transformed toward normality. Pinter-Wollman et al. (2017a) found

that replacing the keystone individual in groups of S. dumicola does

not reduce prey attack speed, and so we predicted that groups with

more stable keystone individuals would not necessarily have faster

mean attack speeds or less variable attack speeds.

Q3. Relationship between an individual’s network

position and its influence on group behavior
Our final analysis aimed to measure the relationship between an

individual’s potential influence on the network (boldness) and dif-

ferent measures of social connectivity (Q3). As a measure of net-

work centrality analogous to overall connectedness in monolayer

networks, we calculated the mean of each individual’s degree (num-

ber of unique connections) for each time point it was alive. We then

calculated the CV for each individual of these degree scores as a

measure of the variability of their network centrality. To determine

the integrated centrality of an individual, accounting for their pos-

ition in all layers simultaneously, we calculated the eigenvector ver-

satility (EV) for each individual in muxViz. This measure of

centrality accounts for both an individual’s direct connections and

its indirect connections, and considers connections across all layers,

giving a measure of how well-connected an individual is across all

layers (see De Domenico et al. 2015b for further details). For our

measures of influence on group behavior, we calculated both an

individual’s mean boldness and the CV of its boldness across the 7

measures of boldness. Because being the “boldest” individual in a

group depends on the boldness of others (Hunt 2018), we used a

relative ranking for both boldness and centrality scores when exam-

ining the concept of social influence rather than the absolute values

of these traits. To create a ranking for each of the individual-level

measures (3 network metrics and 2 behaviors), we subtracted the

group means for the measure from the individuals’ values.

To assess how the different measures of network position are

related to each other, we estimated the pairwise correlations be-

tween the 3 network position measures (relative mean degree, rela-

tive CV of degree, and relative EV). We expected that mean degree

and EV would be positively correlated as they both represent general

tendencies to be central in a network. We had no prior expectation

as to how CV of degree would relate to mean degree or EV. To then

relate these individual network measures to individual boldness

measures (Q3), we correlated each network measure with each of an

individual’s relative mean boldness and its relative CV of boldness,

giving 6 correlations. For all correlations, we used Spearman’s rank

correlations. Previous studies on S. dumicola have found no correl-

ation between the boldness of individuals and their number of con-

nections (Keiser et al. 2016; Hunt et al. 2019) and so we predicted

no association between the mean or the CV of degree and mean

boldness. We did however predict that individuals with a higher

mean and CV of degree would have a more variable boldness, as

individual boldness scores depend on previous social interaction

partners (Hunt et al. 2018), therefore many different social interac-

tions could give more variable boldness scores. As we expected EV

and mean degree to be positively correlated, we expected EV to have

similar relationships with the mean and CV of boldness as mean

degree.

To account for the nonindependence of network data (Croft

et al. 2011), we conducted permutations to determine the statistical

significance of the observed correlation between individual behav-

iors and network measures. We permuted node labels, maintaining

edges because we were interested in the relationship between the so-

cial position of individuals and their attributes. Using these permuta-

tions, we obtained distributions of 1,000 correlations between

boldness scores and network measures. If the q of the observed cor-

relation was greater or smaller than 97.5% of the randomized val-

ues, we concluded that the observed correlation was significantly

different from 0.

Results

In total, there were 4,605 interactions, 192 6 23.8 (mean 6 SD)

interactions per group and 242 6 45.6 interactions per time point

across all groups, giving an average of 10.1 6 4.65 per group per

time point. Fewer individuals were alive at later time points

(Supplementary Figure S2), giving fewer interactions at later time

points (Supplementary Figure S3). The rate of interactions per

individual did not decline substantially over time (Supplementary

Figure S4).

Q1. Reducibility of temporal networks
The reducibility analysis revealed that, in the majority of groups, all

layers should be retained because aggregating layers reduces relative

entropy. Therefore, observing the interactions of spiders every 2–3

days is a temporal scale that can capture changes in social interac-

tions. All but 2 groups showed a peak in relative entropy at 19 (the

maximum) layers and a largely linear decrease as layers were in-

creasingly aggregated together (Figure 1). The linear decline in vari-

ation indicates that no one layer is more different from the other

layers than any other layer. Two groups (BR10-9 and BR3-5)

showed peaks of in relative entropy at a degree of aggregation of 1,

that is, 2 layers of the 19 could be aggregated. Figure 2a shows net-

work plots for the 19 time points for 1 of these groups (BR10-9),

and Figure 2b shows a dendrogram illustrating the similarity of dif-

ferent network layers for this group. Equivalent plots for the other

group showing a redundancy of layers (BR3-5) are shown in

Supplementary Materials (Supplementary Figures S8 and S9).

Q2. Effects of the stability of the group and its keystone

individual on collective behavior
Groups that had more variable networks (those with a larger differ-

ence between the fully aggregated network and the multilayer net-

work with no aggregation) did not have different mean attack

speeds compared with less dynamic groups (Figure 3A; Spearman’s

rank correlation: q ¼ �0.092, P¼0.690), or higher or lower CVs of

attack speed (Figure 3B; Spearman’s rank correlation: q ¼ �0.107,

P¼0.653). Groups that had the same keystone individual for 1, 2,

or 3 weeks did not have different mean attack speeds

(Supplementary Figure S5a; Kruskal–Wallis test: H¼0.602, df ¼ 2,

P¼0.740) or higher or lower CVs of attack speed (Supplementary

Figure S5b; Kruskal–Wallis test: H¼0.289, df ¼ 2, P¼0.866).
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Note that one group never attacked the stimulus, and another group

only attacked it once, giving 23 and 22 records for mean and CV of

latency to attack, respectively.

Q3. Individual-level versatility and behavior
The different measures of centrality represented somewhat different

aspects of sociality as they were not perfectly correlated. Relative

mean degree and relative CV of degree were strongly negatively cor-

related (Figure 4A; Spearman’s rank correlation: q ¼ �0.806,

P<0.0001), whereas relative EV was positively related to relative

mean degree (Figure 4B; Spearman’s rank correlation: q¼0.439,

P<0.0001) and much less so to relative CV of degree (Figure 4C;

Spearman’s rank correlation: q ¼ �0.115, P¼0.088) see

Supplementary Figure S6 for histograms that contrast the random-

ized and observed values.

Some measures of centrality related to boldness, but others did

not. An individual’s relative EV was not related to either its relative

mean boldness (Figure 5A; Spearman’s rank correlation: q¼0.018,

P¼0.898) or the relative variability of its boldness (Figure 5B;

Spearman’s rank correlation: q¼0.013, P¼0.820). Individuals

with relatively more connections had higher relative mean boldness

(Figure 5C; Spearman’s rank correlation: q¼0.144, P¼0.030), but

did not have relatively more variable boldness (Figure 5D;

Spearman’s rank correlation: q¼0.108, P¼0.154). Individuals

with relatively more variable connections had lower relative mean

boldness (Figure 5E; Spearman’s rank correlation: q ¼ �0.135,

P¼0.032), but we did not detect a significant relationship between

variability of connections and relative variability of boldness

(Figure 5F; Spearman’s rank correlation: q¼�0.106, P¼0.150).

See Supplementary Figure S7 for histograms that contrast the

randomized and observed values.

Discussion

We examined how temporal dynamics of social interactions over

40 days, modeled as multilayer networks, relate to both collective

and individual behaviors. First, we found that the temporal scale of

change in the network was atmost 2–3 days and could occur over

shorter timescales (Q1). Second, we found that the amount of

change each network underwent over time did not relate to the

mean or the variability in collective attack speed (Q2). Furthermore,

and congruent with previous work (Pinter-Wollman et al. 2017b),

consistency in the identity of the keystone individual did not relate

to either mean or variability of prey attack speed. When examining

individual level attributes (Q3), we found that bolder individuals,

who influence colony collective attack speed, had a higher mean and

less variable number of connections. However, an individual’s vari-

ability in boldness was not related to any of our network measures,

and a multilayer measure of network centrality was not related to

an individual’s mean or variability in boldness. Taking a multilayer

approach to temporal network analysis, therefore, uncovered some

novel insights, as well as recapturing results obtained in other

studies.

We found that the temporal multilayer networks constantly

changed at a time scale of 2–3 days. Note that our analysis sets the

upper limit for time scale that is worth considering; it is possible

that meaningful change is occurring at even shorter time scales. The

multilayer networks therefore should not be aggregated into static

networks because each time point possesses unique patterns of social

interactions. We conclude this because, for 22 of the 24 multilayer

networks, we observed a largely linear decline in the relative entropy

as we aggregated network layers compared with keeping a multi-

layer network with each time point distinct (Figure 1). (De

Domenico et al. 2015a) found a reducibility pattern similar to the

one we observed in a scale-free network that had an increasing per-

centage of edges (from 5% to 95%) randomly swapped to create

new layers. The similarity of our reducibility analysis findings to

those from a randomized procedure does not necessarily indicate

that spiders are interacting at random, but it does mean that random

interactions could explain the patterns we observed. The lack of set

patterns of interactions shows that spiders do not possess preferred

associates (e.g., Gero et al. 2015). The networks of groups in which

some aggregation was supported (Figures 2; Supplementary Figures

Figure 1. The change in relative entropy in the multilayer network as layers gets aggregated in the reducibility analysis. Each line represents 1 of the 24 groups.

Complete multilayer networks are on the left of the plot and completely aggregated networks are on the right. Twenty-two groups showed an approximately lin-

ear decline in relative entropy with increasing layer aggregation, suggesting that all networks are approximately equal in their variability. For 2 groups (dashed

lines), aggregating 2 layers was supported as it did not lead to reduced relative entropy. These were time points 11 and 13 for group BR3-5, and time points 8 and

13 for group BR10-9.
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Figure 2. (A) Interaction networks for group BR10-9. Points represent individuals and lines represent social interactions. Time points are plotted left to right, top

to bottom, so the 1st row is the 1st–5th time points, the 2nd row are time points 6–10, and so on, with the time point number shown above each network. (B)

Similarity among different time points of the group BR10-9. In the correlation matrix, each cell represents the similarity between 2 layers, with darker shades indi-

cating more dissimilar networks. Layers 17–19 are considerably dissimilar to the rest of the network. The dendrogram on the x-axis demonstrates that these later

time points are clustered separately compared with the rest of the network.
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S8 and S9) show that there is similarity in network structure among

the networks that can be aggregated. We recommend examining the

reducibility of multilayer networks to determine if there are redun-

dant layers before aggregating all or some of them. We also note

that assessing reducibility on 24 networks each with 19 layers

involves testing many times partly aggregated networks against a

fully aggregated network, and so there is perhaps the possibility of

some false positives. We, therefore, encourage the development of

null expectations of network redundancy given various rates of

change in social interactions over time.

The highest entropy representation of the networks was in their

full multilayer form, that is, without any aggregation. These findings

are similar to other studies of multilayer networks of social animals

in which the layers represent different social situations rather than

different time points (Smith-Aguilar et al. 2019) found that interac-

tions among Geoffroy’s spider monkeys Ateles geoffroyi in the social

situations of aggression, contact, association, embrace, grooming,

and proximity were not redundant when represented as different

layers in a multilayer network, and so the layers should not be col-

lapsed into a single network. Perhaps as the number of studies of

multilayer networks of animal social interactions increases, we will

find conditions in which layers can or should be aggregated. For

example, when comparing protein–protein networks of different

species, for example, Mus musculus and Candida albicans; De

Domenico et al. (2015) found that some layers could be aggregated,

but in other species (e.g., Caenorhabditis elegans) aggregation of

layers would lead to the loss of relative entropy. In the 2 groups, we

identified redundant layers there were 3 or 4 time points (17–19 and

16–19) that were distinct from the rest of the layers (Figures 2;

Supplementary Figures S8 and S9). These 2 groups experienced a

fundamental change in their network size around these times—the

number of individuals was reduced from 9 individuals in Week 5 to

2 or 3 individuals in Week 7. The number of individuals in a net-

work typically influences its structure and changes to group size not

surprisingly altered network structure to produce a series of layers

that were different from the rest of the layers. The reducibility ana-

lysis, therefore, pinpointed observations that are distinct from

others. In addition, there was a positive correlation between the

number of individuals that died in a group and the group’s entropy

score (Spearman’s rank correlation, q ¼ 0.57, S¼982, P¼0.003).

The ability of the reducibility analysis to identify such changes sug-

gests that this analysis could be used to identify times when funda-

mental changes occur in a social group, for example, transitions

between states, or tipping points (Flack et al. 2005; Flack et al.

Figure 3. Relationship between network variability (defined as the difference in Von Neumann entropy between the fully aggregated network and the network

with all layers maintained) and collective prey attack. (A) Network variability shows no relationship with mean latency to attack prey for all groups. (B) Network

variability shows no relationship with variation in latency to attack prey for all groups. Each point is a social group, N¼23 in (a) and 22 in (B).

Figure 4. Relationship between measures of centrality. (A) Relative CV of degree and relative mean degree, (B) relative mean degree and relative EV, and (C) rela-

tive CV of degree and relative mean degree. Lines of best fit are drawn when there was a statistically significant correlation between the 2 variables. Each point is

an individual spider, N¼ 241.
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2006; for a review see Pruitt et al. 2018). Applying these methods to

more time series of social network data, especially some that under-

go fundamental changes, will help determine if indeed reducibility

analysis is a general way with which to detect gross change in pat-

terns of social interactions.

The stability of the social structure of a group did not relate to ei-

ther the mean or the variance in prey attack speed. Hunt et al.

(2019), who analyzed the same set of observations, found that it

was only the social network immediately before the trial that influ-

enced prey capture rather than interactions 2 or 4 days before the

prey capture trial (Hunt et al. 2019). Here we further demonstrate

using reducibility analysis that group social networks are constantly

changing in S. dumicola. This strengthens the conclusion that this

species lacks a consistent network structure that determines groups’

attack speed, but instead that group attack speed is contingent on

the social network properties only immediately prior to a prey cap-

ture event. It remains to be determined what processes underlie the

changes in interaction patterns over time. Using these data, Hunt et

al. rejected the hypothesis that social interactions are influenced by

the boldness of interacting individuals. However, other processes,

Figure 5. Relationships between relative mean boldness and (A) EV, (C) relative mean degree, and (E) relative CV of degree; and between relative CV of boldness

and (B) EV, (D) relative mean degree, and (F) relative CV of degree. Lines of best fit are drawn when there was a statistically significant correlation between the 2

variables. Each point is an individual spider, N¼241.
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such as movement patterns and the spatial constraints imposed by

the nest structure that influence these movements may determine

which individuals interact with one another (Pinter-Wollman

2015a, 2015b; Pinter-Wollman et al. 2017a). The stability of the

identity of the keystone individual did not influence prey attack.

This result agrees with previous studies showing that experimentally

changing the identity of the keystone individual does not affect prey

attack speeds (Pinter-Wollman et al. 2017b). In other systems,

where other members of a group may not be able to assume the role

of a keystone easily (if the keystone possesses a hard-to-obtain

phenotype such as unique knowledge; McComb et al. 2001; Brent

et al. 2015), stability in the identity of the keystone individual may

be much more important.

We found a positive relationship between boldness and number

of social associations. This finding is opposite to the relationship be-

tween boldness and social interactions in eastern grey kangaroos

Macropus giganteus (Best et al. 2015) and 3-spined sticklebacks

Gasterosteus aculeatus (Pike et al. 2008). Stegodyphus dumicola

tend to assort negatively by boldness, that is, bolder individuals as-

sociate with less bold individuals (Keiser et al. 2016). Given that

bold individuals are much less common than shy individuals (Pinter-

Wollman et al. 2016), this skewed boldness distribution will result

in bold individuals having many shy individuals to associate with,

giving them a high degree. The association between boldness and

variance in degree that we observed likely reflects the same process,

because degree is negatively correlated with variance in degree. The

positive relationship between boldness and degree may facilitate the

influence of bold individuals on colony collective behavior. Note

that Keiser et al. (2016) did not find a relationship between boldness

and degree in 9 groups of 10–30 S. dumicola. However, their groups

comprised subadults rather than the adults used in our study, and

subadults are more plastic in their social behavior than adults (Hunt

et al. 2019). Hunt et al. (2019) did not find a relationship between

the boldness of the keystone individual and its degree in the same set

of observations analyzed here. However, we used all individuals to

test for an association between boldness and degree, whereas Hunt

et al. (2019) focused only on the boldest individual in each group.

Therefore, the larger sample size we used could have led to our stat-

istically significant but weak relationship, which might suggest only

a modest biological importance for this relationship.

We did not detect an association between EV and individuals’

boldness scores. This was despite EV being correlated with mean de-

gree, which was itself associated with mean boldness. The lack of a

significant relationship suggests that EV captures a different aspect

of social behavior compared with mean degree, and perhaps an as-

pect that does not relate to an individual’s influence on the group.

Finn et al. (2019) identified several ways in which multilayer net-

work analysis can provide additional insights to monolayer network

analysis in animal behavior (see also Pilosof et al. 2017 for ecologic-

al networks). However, it should not be surprising that some multi-

layer network measures do not provide the best representation of

some aspects of a system. For example, analyzed the same set of

observations we analyze here using stochastic actor-oriented models,

a tool for analyzing temporal networks (Fisher et al. 2017), and

obtained a separate set of insights that we could not reach using a

multilayer network analysis. On the other hand, we estimated meas-

ures of whole-network stability that Hunt et al. did not, and related

those to measures of group collective action. The range of findings

goes to show that social interactions are highly multidimensional

and that there is not a single analysis technique that can extract all

possible insights from a given set of data. We stress that not every

network analysis needs to be multilayer, but considering a multi-

layer approach to network analysis, including the analysis of tem-

poral networks, might be beneficial for certain systems and

questions.
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Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y et al., 2014.

Multilayer networks. J Complex Netw 2:203–271.

Lichtenstein JLL, Fisher DN, McEwen BL, Nondorf DT, Calvache E et al.,

2019. Collective aggressiveness limits colony persistence in high- but

not low-elevation sites at Amazonian social spiders. J Evol Biol 32:

1362–1367.

Lichtenstein JLL, Wright CM, Luscuskie LP, Montgomery GA, Pinter-

Wollman N et al., 2017. Participation in cooperative prey capture and the

benefits gained from it are associated with individual personality. Curr Zool

63:561–567.

McComb K, Moss C, Durant SM, Baker L, Sayialel S, 2001. Matriarchs as

repositories of social knowledge in African elephants. Science 292:491–494.

Modlmeier AP, Keiser CN, Watters JV, Sih A, Pruitt JN, 2014. The keystone

individual concept: an ecological and evolutionary overview. Anim Behav

89:53–62.

Pike TW, Samanta M, Lindström J, Royle NJ, 2008. Behavioural phenotype

affects social interactions in an animal network. Proc Biol Sci 275:

2515–2520.
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