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Abstract

This note reviews and presents the two dominant models of thermoelasticity
developed by (1) Peter Chadwick and (2) S.C.H Lu and Karl S. Pister. Both
models are widely used and cited in the literature but their differences are not
well delineated in a clear and accessible way. Here we briefly review the two
models using a unified notation and discuss and compare their basic properties
and behavior. We show that all Lu and Pister models can be written as Chadwick
model. However a Chadwick model does not fully specify a Lu and Pister model.
Additional (mild) assumptions must be made to convert a Chadwick model into
a Lu and Pister model. A model due to L. Anand is also presented to show its
conformity to both frameworks and to highlight is usefulness.

Keywords: thermoelasticity, finite deformation, isotropic materials, Lu and Pister
model, Chadwick model

SG dedicates this paper to Jörg Schröder on the occasion of his 60th birthday. Jörg
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1 Introduction

Finite thermoelastic formulations are dominated by the models of Chadwick (1974)
and Lu and Pister (1975).1 Both formulations appear to have near co-equal popular-
ity and it is instructive to understand their similarities and differences. The model
of Chadwick involves the construction of a model free energy based upon the selec-
tion of three functions: a reference temperature strain energy function, a reference
temperature internal energy function, and a heat capacity function. The model of Lu
and Pister also requires the selection of three functions: a thermal expansion func-
tion in terms of temperature (which is part of an assumed multiplicative split of the
deformation gradient, something not present in Chadwick’s model), a one-parameter
family of strain-energy functions (parameterized by temperature), and a function only
dependent on temperature. In what follows we present both models using a common
notation to unify ideas. To aid in the comparison, we also present an Anand (2023)
type free energy function – a free energy function characterized by a further separation
into isochoric and volumetric parts (see also Miehe, 1995).

The central question we address is, “When are the two modeling frameworks iso-
morphic?” Astonishingly, this fundamental question has not, to our knowledge, been
addressed even though these models have been in general user for the last 50 years. We
will see that Lu and Pister models are always expressible in the Chadwick framework
but Chadwick models do not have unique Lu and Pister counterparts. Additionally,
when the correspondence breaks down, it is related to the violation of the commonly
assumed physical assumptions of stress free reference states and isotropic deformation
under pure thermal loads for isotropic materials.

2 Generic thermoelasticity

The generic model for thermoelasticity (see e.g. Miehe, 1995) starts from a free-energy
function per unit reference volume

ψ(C, θ) , (1)

where C = F TF is the the right Cauchy-Green deformation tensor, F is the deforma-
tion gradient, and θ is the absolute temperature. The material response can be found
by considering the dissipation inequality for homothermal2 bodies (see e.g., Anand
and Govindjee, 2020, §5.3),

−ψ̇ − ηθ̇ + S :
1

2
Ċ ≥ 0 , (2)

where η is the entropy density per unit reference volume and S is the 2nd Piola-
Kirchhoff stress. Applying the Coleman and Noll (1963) argument, one immediately

1As of 2024/03/12 on Google Scholar, Chadwick’s paper has been cited 179 times and Lu and Pister’s
paper has been cited 161 times. We note in passing that, quite oddly, Lu and Pister (1975) does not appear
to be indexed on Web of Science as of this date.

2We restrict our attention to homothermal bodies simply for convenience and without any loss of
generality for the purposes at hand.
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finds that the material response is given as

S = 2
∂ψ

∂C
; η = −∂ψ

∂θ
. (3)

3 The Chadwick model

The Chadwick model is found via construction of a particular form for the free-energy
function (1). This is done by noting that the internal energy per unit reference volume
e = ψ + θη and by defining the reference temperature (θo) quantities

ψo(C) = ψ(C, θo) , ηo(C) = η(C, θo) , eo(C) = e(C, θo) , (4)

along with the material heat capacity (per unit reference volume and temperature)
c = ∂e/∂θ. In the above, ψo is properly referred to as the material’s strain-energy
density in the reference state – likewise for ηo and eo.

From the definition of the heat capacity and (3)2, note that

c =
∂e

∂θ
=
∂ψ

∂θ
+ η + θ

∂η

∂θ
= −η + η + θ

∂η

∂θ
= −θ∂

2ψ

∂θ2
. (5)

Equation (5) implies that

∂ψ

∂θ
(C, θ)− ∂ψ

∂θ
(C, θo) = −

∫ θ

θo

c(C, θ′)

θ′
dθ′ (6)

and thus

η = ηo +

∫ θ

θo

c(C, θ′)

θ′
dθ′ . (7)

Observing that ψ = e− θη, allows one to write

ψ = e− θηo − θ

∫ θ

θo

c(C, θ′)

θ′
dθ′ = e− θ

eo − ψo
θo

− θ

∫ θ

θo

c(C, θ′)

θ′
dθ′ . (8)

Replacing the internal energy with the expression e = eo +
∫ θ
θo
c(C, θ′) dθ′, results,

after some algebra, in Chadwick’s final construction

ψ(C, θ) =
θ

θo
ψo(C)−

(
θ

θo
− 1

)
eo(C) +

∫ θ

θo

(
1− θ

θ′

)
c(C, θ′) dθ′ . (9)

Equation (9) is the primary result of Chadwick (1974). It provides the form for
the free-energy of a thermoelastic material in terms of (a) the strain energy function
measured at a fixed reference temperature, (b) the internal energy function of the
material at the fixed reference temperature, and (c) the heat capacity of the material
as a function of deformation and temperature. It is interesting to note, that any and
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all non-linear thermal effects in material response must emanate from the last term
in this expression and in particular via the material’s heat capacity.

As presented, the Chadwick framework applies to all thermoelastic models as it
contains no assumptions beyond equilibrium thermodynamics. Put another way, all
thermoelastic models must be representable in the Chadwick form (9).

4 The Lu & Pister model

The Lu and Pister model3 also starts with free-energy function (1) and stress and
entropy response functions given by (3). The model however differs from the Chadwick
framework in that it employs a multiplicative split of the deformation gradient into
elastic and thermal parts, where only the elastic part gives rise to changes in the
material’s free energy. In particular Lu and Pister (1975) introduce the decompositon

F = F eF θ , (10)

where F θ = γ(θ)1 and γ(θ) dictates the material’s expansion with temperature. The
central assumption is then made that

ψ(C, θ) =W (Ce, θ) + h(θ) , (11)

where Ce = F T
e F e = γ−2C, W (·, θ) is a one-parameter family of strain-energies

indexed by temperature, and h(·) is an added function solely of temperature. Observe
that the stress and entropy relations are more specifically given by

S = 2
∂W

∂Ce
γ−2 ; η = 2γ−3γ′

∂W

∂Ce
: C − ∂W

∂θ
− ∂h

∂θ
. (12)

In this model the heat capacity and internal energy are implicitly defined. In
particular the heat capacity is given by the modestly complex expression

c = θ
∂η

∂θ

= −θ∂
2h

∂θ2
− θ

∂2W

∂θ2
+ 4γ−3γ′θ

∂2W

∂θ∂Ce
: C

− 4γ−6(γ′)2θC :
∂2W

∂Ce∂Ce
: C + 2(−3γ−4(γ′)2 + γ−3γ′′)θ

∂W

∂Ce
: C .

(13)

The internal energy is given by

e = ψ + θη =W − θ
∂W

∂θ
+ h− θ

∂h

∂θ
+ 2γ−3γ′θ

∂W

∂Ce
: C . (14)

3While this model is commonly attributed to Lu and Pister (1975), other researchers did explore aspects
of it earlier; see e.g. Stojanovitch (1969)

4



It should be noted that in this model, the modeler prescribes: (a) the unconstrained
thermal exansion via γ(θ), (b) the strain-energy indexed by temperature, and (c) the
purely thermal contribution h(θ).

Note, partial derivatives with respect to θ need to be computed at constant C
and not constant Ce! In Lu and Pister (1975) some of the expressions appear simpler
as they introduce a function W̄ (C, θ) ≡ W (Ce, θ) ≡ W (Cγ−2, θ) and instead of
derivatives of W with respect to θ at fixed C, they give expressions in terms of W̄ .
This has the effect of hiding the γ terms in (12)2 and (13).

5 Reconciliation of Models

For both the Lu and Pister and Chadwick models, there are three functional param-
eters required to fully define the free energy function and, consequently, the material
response. In order for the models to be consistent with one another, it would have to
be the case that the functions γ, W , and h can be determined (perhaps non-uniquely)
if c, ψo and eo are known, or vice-versa. Furthermore, it must be the case that any
derived functions agree with the physical reality the models purport to reflect.

5.1 All Lu and Pister models are Chadwick models

Since the Chadwick framework does not involve assumptions (beyond the standard
ones), all Lu and Pister models must be representable as Chadwick models. In fact
given a Lu and Pister model, it is easy to determine the Chadwick functions ψo, eo,
and c(C, θ). These are given by

ψo(C) =W (Ce,o, θo) + h(θo) (15)

eo(C) = ψo(C) + θoη(Ce,o, θo) , (16)

where Ce,o = γ−2(θo)C, the entropy function in (16) is given in (12)2, and the heat
capacity is as given in (13). Note γ(θo) is generally unity, so Ce,o = C in most
situations. Thus if one knows W , h, and γ, then there are explicit expressions to
compute ψo, eo, and c(C, θ) in the Chadwick formulation.

5.2 Are all Chadwick models Lu and Pister models?

Suppose one is given the Chadwick functions c, ψo, eo. By examining the forms of
(9) and (11), one can gain insight on potential forms of h and W . For instance,
since ψo and eo are functions of only C, the only potential contribution to h from
the terms in (9) containing these would come from any constants in the expressions.
Here, the notation ψ1, e1, kψ, ke, are introduced to denote the functions without
any constant terms and the constant terms from the functions, respectively. One can
also write c(C, θ) = c∗(C, θ) + c(θ), where c denotes the largest function of only θ
contained in c. For example, if I1 and I2 are the first and second invariants of C and
c = I1θ+ I2 θ

2 + θ+1, then c = θ+1 and c∗ = I1θ+ I2 θ
2. From this, it is immediate

that h is, at most
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h(θ) =
θ

θo
kψ −

(
θ

θo
− 1

)
ke +

∫ θ

θo

(
θ

θ′
− 1

)
c(θ′)dθ′ . (17)

It follows that W is at least

W (Ce, θ) =
θ

θo
ψ1(Ceγ

2(θ))−
(
θ

θo
− 1

)
e1(γ

2(θ)Ce)

+

∫ θ

θo

(
θ

θ′
− 1

)
c∗(Ceγ

2(θ′), θ′)dθ′ .

(18)

In (18), the fact that there are Ce and γ such that C = γ2Ce is implicitly assumed,
however below this assertion is proved explicitly. Note also that one could add any
function of only θ, say z(θ), to W , and still have a consistent free energy definition,
so long as one also adds −z(θ) to h.

The above demonstrates that a Chadwick model can possibly be converted to a Lu
and Pister model, but it does not uniquely define W or h; nor do the forms provide
the γ(θ) function in the Lu and Pister framework.

Claim 1 For any Chadwick functions ψo, eo, and c such that

ψ =
θ

θo
ψo(C)−

(
θ

θo
− 1

)
eo(C) +

∫ θ

θo

(
θ

θ′
− 1

)
c(C, θ′)dθ′ ,

and for any choice of γ(θ) such that γ > 0, there exists a curve Ce in Lin+ such that
C = Ceγ

2 and ψ(C, θ) =W (Ce, θ) + h(θ) for functions W and h as in (17) and (18).

Proof The main point to prove here is that Ce ∈ Lin+ and this follows trivially from the
assumptions γ > 0 and C ∈ Lin+. It does however remain to show that any arbitrary choice
of positive function γ is compatible with the given heat capacity function, c. First note,
c = −θ∂2ψ/∂θ2, where the partial derivative is taken with respect to a fixed value of C.
A quick examination of (17) and (18) indicates that the computation of −θ∂2(W + h)/∂θ2

at fixed C will recover c∗ + c as desired. Thus, compatible Lu and Pister functions can be
(non-uniquely) determined from any set of Chadwick functions, with γ being an arbitrary,
positive function. □

Remark 1 To determine γ explicitly, one needs to take into account physical restrictions on the
free energy function that both models must respect: for example, the fact that unrestrained
heating should be stress free. If no gamma satisfies the condition, then this would constitute
a counter example to a modified version of Claim 1 with this physical restriction imposed.
Given that the Lu and Pister formulation assumes the validity of the fact that unrestrained
heating is stress free, this would also constitute a counter-example to the Lu and Pister
formulation assuming this is the only restriction imposed.

6



5.2.1 Determining γ

As noted, the question of how to define γ cannot be answered by the provided ψo, eo,
and c functions alone. A physical argument is needed to derive this function. It is well
established that unrestrained heating should be a stress free process. Furthermore, all
deformation in this process is due to thermal effects, and hence it should be the case
that Ce = 1, and hence C = γ21. Setting the derivative of (9) with respect to C
equal to zero and substituting γ21 for C, we arrive at

θ

θo

∂ψo
∂C

(γ21)−
(
θ

θo
− 1

)
∂eo
∂C

(γ21) +

∫ θ

θo

(
θ

θ′
− 1

)
∂c

∂C
(γ21, θ′)dθ′ = 0 . (19)

Positive solutions to (19) for γ, if they exist, would constitute acceptable choices
for the needed third Lu and Pister function. However, if multiple such solutions exist,
then the implication of the choice of γ is that it also determines the curve Ce for given
C. The curve Ce is physically significant in that it represents the elastic portion of
the deformation at a given temperature and deformation C.

5.2.2 Implication of shifting W or h by a function of θ

As stated, W and h are only uniquely determined up to a function of θ assuming that
γ exists. The question of what happens when these functions are shifted by a function
of only θ naturally arises. It should be clear that there is no effect on any quantity that
is derived from ψ alone, as the sum of W and h must always agree with the ψ given
by the Chadwick functions, by construction. Hence, only quantities derived from only
W or h are affected by a shift in either.

Given that W represents the strain energy function for the material under an
isothermal process at a given temperature θ, a shift in W by a function of only θ
constitutes a constant shift in the strain energy function for any fixed temperature.
That is, if at a given temperature there is some restriction on the strain energy at
a certain value of Ce, this can be accommodated by a shift in W by a function
of theta (and a corresponding shift in h by the negative of the function added to
W ). For instance, if W (1, θ) is to be zero at each temperature, where W is W as
a function of C, then W can be adjusted accordingly by adding some function z(θ)
while simultaneously adjusting h by −z(θ) without compromising agreement with the
Chadwick free energy or consistency of the overarching thermoelastic theory.

Assuming that a shift in h is met with a corresponding shift in W as described,
then shifting h has no physical consequences. Indeed, the purpose of h in this context
is as a sort of adjustment to W , as a means of aligning the family of isothermal
strain energy functions with the thermoelastic Helmholtz free energy, as described by
Chadwick. It is important to note that choice of γ does not affect the definitions of
W and h as functions of C, as γ only appears as an argument of ψ1, e1, and c

∗ along
with Ce, and it is necessarily the case that C = γ2Ce. By the definitions of these
functions, W and h have no dependency on the choice of γ.
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5.2.3 Example: Finding γ for a particular model

Suppose a neo-hookean type Chadwick formulation, where

ψo(C) =
µo
2
(tr(C)− 3− 2 ln(J)) +

(
κo −

2

3
µo

)
1

4
(J2 − 1− 2 ln(J)) , (20)

eo(C) = 3κoαoθo ln(J) , (21)

c(C, θ) = co , (22)

where J = det[F ], (µo, ko) are the small-strain shear and bulk moduli of the material
in the reference state, αo is the material’s linear coefficient of thermal expansion, and
co is the material’s (constant) heat capacity. Such a choice is a not unimaginable form
as each term has an easy physical justification.

Taking partial derivatives, one obtains:

∂ψo
∂C

=
µo
2
(1−C−1) +

(
κo −

2

3
µo

)
1

4
(J2C−1 −C−1) , (23)

∂eo
∂C

=
3

2
κoαoθoC

−1 , (24)

∂c

∂C
= 0 . (25)

Substituting (23)-(25) into (19), noting that in this case J = γ6, one obtains

µoθ

2θo
(1− γ−2)1+

(
κo −

2

3
µo

)
θ

4θo
(γ4 − γ−2)1+

(
1− θ

θo

)(
3

2
κoαoθoγ

−2

)
1 = 0 ,

(26)

and after multiplying through by γ2 one gets

µoθ

2θo
(γ2 − 1)1+

(
κo −

2

3
µo

)
θ

4θo
(γ6 − 1)1+

(
1− θ

θo

)(
3

2
κoαoθo

)
1 = 0 . (27)

Solving (27) for γ amounts to solving the equation Aγ6 + Bγ2 + C = 0, with

A =
(
κo − 2

3µo
)

θ
4θo

, B = µoθ
2θo

, and C = −µoθ
2θo

−
(
κo − 2

3µo
)

θ
4θo

+
(
1− θ

θo

) (
3
2κoαoθo

)
.

Clearly, this polynomial is analytically solvable with the transformation x = γ2. Notice
that B and A are necessarily positive for materials with positive Lamé constants(
κo − 2

3µo > 0, µo > 0
)
. For such materials, Descartes’ rule of signs (see, e.g. Conte

and de Boor, 1980, §3.6) states there will always be a positive solution for γ for any θ
such that C is negative. However, in the regime where θ ≈ 0, it must be the case that C
is positive, and by Descartes’ rule of signs, there will be no positive, real solutions for
γ. Given that most materials have a positive first Lamé constant, this constitutes an
example where there is no consistent Lu and Pister formulation for a given Chadwick
model (at least for all admissible temperatures).
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When there are to be temperatures where γ cannot be defined, one could argue that
the starting free energy function is not admissible within that range of temperatures,
as the deformation of an isotropic material under unconstrained heating (cooling)
should be a uniform expansion (contraction). Put another way, if one requires that the
deformation of an isotropic material under isothermal heating should be of the form
F = ζ1 for some positive scalar ζ for all θ, it follows that, for such materials, any
Chadwick model is only admissible in the range of temperatures for which a positive
solution to (19) exists. That is, a Chadwick model is admissible in a given temperature
range if and only if a Lu and Pister function γ can be defined for the that range.

These examples motivate the following claim, the proof of which should be obvious
at this point.

Claim 2 Given a Chadwick free energy and assuming

1. unconstrained thermal expansion is stress free, and
2. unconstrained thermal expansion has a deformation gradient of the form F =
γ(θ)1, where γ is positive, then

the Chadwick free energy function is admissible for all θ if and only if it is reconcilable with
a Lu and Pister free energy function.

5.2.4 Example: A free energy function with a γ > 0 , ∀θ ≥ 0

Consider the following form of the Neo-hookean strain energy presented by Anand
(2023), based on the findings of Treloar (1975):

ψ(C, θ) =
3

2
µ(λ

2 − 1) +
1

2
κo(ln J)

2 − 3κoαo(ln J)(θ − θo)

+ co(θ − θo)− θco(ln θ − ln θo) ,
(28)

where λ
2
= 1

3 tr(J
−2/3C) and κo, αo, and co are the (linear) bulk modulus, coefficient

of thermal expansion, and specific heat (respectively). This free energy function is
applicable for small to moderate values of λ. In general, the material properties in
this model would be functions of temperature and deformation, but here they are
taken to be positive constants. µ = NkBθ is taken to be the temperature dependent
shear modulus, where N is the number of polymer chains per unit reference volume
(taken to be independent of temperature and deformation here) and kB is Boltzmann’s
constant. Here, we define µo = NkBθo to be the reference linear shear modulus for
the material. Indeed, linearization of this free energy function yields the typical stress
strain relationship in linear isotropic thermal elasticity. It is important to note that
the basis of this model is the idea that the free energy can be decomposed into a
part depending only on the isochoric part of the deformation, J−1/3F , and a part
depending only on the volumetric part, J . It is easy to see that the Chadwick functions
for this free energy are

ψo =
3

2
µo(λ

2 − 1) +
1

2
κo(ln J)

2 , (29)
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eo = 3κoαoθo(ln J) +
1

2
κo(ln J)

2 , (30)

c = co . (31)

Following the procedure of section 5.2.1, we take partial derivatives to achieve

∂ψo
∂C

=
1

2
κo(ln J)C

−1 +
1

2
µoJ

−2/3

(
I(4s) − 1

3
C−1 ⊗C

)
: 1 , (32)

∂eo
∂C

=
3

2
κoθoαoC

−1 +
1

2
κo(ln J)C

−1 , (33)

∂c

∂C
= 0 , (34)

where I(4s) is the symmetric 4th order identity tensor. Letting C = γ21, J = γ3, it
can be seen after plugging (32)-(34) into (19) that

1

2
µγ−2(1− 1

3
(3γ2)γ−21)− 3

2
κoαo(θ − θo)γ

−21+
1

2
κo ln γ

3γ−21 = 0 . (35)

Simple algebra then yields

γ(θ) = exp [αo(θ − θo)] , (36)

which is the unique, positive, solution to gamma for this free energy function. Note
that this is exactly the form of gamma proposed in Lu and Pister (1975). Although
the functions W and h that can be constructed in this case are non-unique, natural
choices arise following the procedure at the beginning of section 5.2 if one desires that
W be zero when F = 1 for all temperatures θ:

W (Ce, θ) =
3

2
Go(λ

2 − 1) +
1

2
κo(ln J)

2 − 3κoαo(ln J)(θ − θo) , (37)

h(θ) = co(θ − θo)− θco(ln θ − ln θo) , (38)

where F = γ(θ)F e and γ is as defined in (36). Here, (36)-(38) are fully consistent with
(29)-(31).

5.2.5 Criterion to guarantee existence of admissible solutions

The above example motivates the following claim regarding a subset of Chadwick free
energy functions that will always yield an admissible γ function.

Claim 3 Isotropic materials with free energy functions of the form

ψ(C, θ) = ψI(C) + (θ − θo)Pn +Qm + h(θ) (39)

where ψI is an isotropic function of the isochoric part of C, viz. invariants of C = J−2/3C,
and P and Q are polynomials of ln J of order n and m, respectively, will yield positive
solutions to (33), provided that the polynomial (θ − θo)P

′
n(x) + Q′

m(x) = 0 has a solution
that is real for all values of θ.
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Proof First, notice that for isotropic materials, ∂ψI/∂C evaluated at C = γ21 will be zero.
This follows from the chain rule and the observation that for such C the derivative ∂C/∂C
will be a scalar multiple of the standard deviatoric projector, which ends up being double
contracted with a scalar multiple of the identity. What remains of (19) is (θ − θo)P

′
n(x) +

Q′
m(x) = 0. Then, if xo(θ) is a solution to this equation that is real for all values of θ, we have

γ = exp

[
1

3
xo(θ)

]
(40)

is an admissible solution (after noting that J = γ3 for the assumed deformation). □

Here the polynomials Pn and Qm are not necessarily arbitrary; they must be
admissible, such that eo(C) → ∞ as J → 0 and eo(C) → ∞ as J → ∞. While for
higher orders it may not be trivial or even possible to determine if there is an explicit
solution for x that is real for all values of θ ≥ 0, it is readily apparent per the example
given in (28) that if n = 1 and m = 2, there will always exist a unique solution.
Furthermore, this claim demonstrates that, for Anand type free energy functions, the
existence of a solution to (19) depends only on the form of the volumetric part of the
free energy.

6 Closing comments

The thermoelasticity models of Lu and Pister (1975) and Chadwick (1974) are seen to
be specified in different manners. The framework of Chadwick requires the measure-
ment/specification of the strain energy function at a chosen reference temperature,
the determination of the internal energy at the reference temperature as a function of
deformation, and the determination of the material’s heat capacity as a function of
temperature and deformation. The best means to accomplish these latter two points
is somewhat unclear but can certainly be accomplished via regression against a vari-
ety of thermomechanical processes – for example the ones illustrated in Appendix C.
The specification of the Lu and Pister model requires the measurement of the strain
energy of the material indexed by temperature. Additionally one must specify the
unconstrained thermal expansion of the material as a function of temperature. Once
this has been done, the remaining “h(·)” function can be found once the heat capacity
of the material is known as a function of temperature and deformation – a nontrivial
exercise and one also needed in the Chadwick model.

The physical response of the three models using the forms most cited in the litera-
ture results in quite similar behavior for constrained pressure changes during heating,
isothermal stress-strain response, and adiabatic heating during deformation. Only the
linear expansion during unconstrained heating differs for the common specifications
of the models when looking at large temperature excursions, but with appropriate
choices this could be changed. Evidence to this effect can be found in Appendix C.

It should be observed that in the commonly used forms the Lu and Pister model
has a heat capacity that is dependent on temperature and deformation, whereas the
Chadwick model is often used with a constant heat capacity (though the model itself
is not restricted at all to this case). The constant heat capacity assumption appears
largely as a consequence of the difficulty of measuring the heat capacity simultaneously
as a function of deformation and temperature.
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Overall, it seems that since stress-strain measurements are relatively common, and
doing so at a variety of temperatures is not too burdensome, that the Lu and Pister
model may be slightly easier to specify, once the free thermal expansion response
has been determined. Notwithstanding the Chadwick framework has the advantage of
only requiring the stress-strain response at a fixed temperature. This is compensated
for by requiring the determination of the internal energy at the fixed temperature
as a function of deformation – a step which has a classically known (but somewhat
involved) experimental protocol (see, e.g. Treloar, 1975, Chap. 2). Both models require
the complicated step of determining the material’s heat capacity as a function of both
deformation and temperature – a task whose difficulty should not be underestimated.

Lastly we note that given any Lu and Pister model, its Chadwick counterpart is
easily specified via algebraic operations. The reverse is not as straightforward, as Lu
and Pister functions cannot be uniquely determined. In fact, if the condition that
unrestrained heating be stress free is rightfully enforced, then some seemingly reason-
able free energy functions that can be described with the Chadwick model cannot be
described by the Lu and Pister model for all temperatures. However, if the further
restriction is to be imposed that unconstrained heating of an isotropic material must
yield a deformation of the form F = ζ1 for some positive scalar ζ, then the fact that
the model cannot be described by a Lu and Pister model within, say, a given temper-
ature range implies that the Chadwick free energy is actually inadmissible within that
temperature range. Thus, the two models must be reconcilable analytically for a free
energy function to be deemed admissible. Noting this, extra care must be taken when
specifying a Chadwick model to ensure that it is admissible over a desired range of
temperatures. This is not an issue for a Lu and Pister and Anand constructions sat-
isfying Claim 3. Of the free energy functions given here, Anand’s free energy function
(or generalizations of it) would then be preferable in most circumstances given that it
has the added benefit of being easier to specify.

12



References

Anand, L., Govindjee, S.: Continuum Mechanics of Solids. Oxford University Press,
Oxford, U.K. (2020)

Anand, L.: Introduction to Coupled Theories in Solid Mechanics. Unpublished course
notes (2023)

Conte, S.D., Boor, C.: Elementary Numerical Analysis. McGraw-Hill, New York, NY
(1980)

Chadwick, P.: Thermo-mechanics of rubberlike materials. Philosophical Transactions
of the Royal Society of London Series A 276, 371–403 (1974)

Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat con-
duction and viscosity. Archive for Rational Mechanics and Analysis 13, 167–178
(1963)

Lu, S.C.H., Pister, K.S.: Decomposition of deformation and representation of the free
energy function for isotropic thermoelastic solids. International Journal of Solids
and Structures 11, 927–934 (1975)

Miehe, C.: Entropic thermoelasticity at finite strains. Aspects of the formulation
and numerical implementation. Computer Methods in Applied Mechanics and
Engineering, 243–269 (1995)

Reif, F.: Fundamentals of Statistical and Thermal Physics. Waveland Press, Long
Grove, IL (2009)

Stojanovitch, R.: On the stress relation in non-linear thermoelasticity. International
Journal of Non-Linear Mechanics 4, 217–233 (1969)

Treloar, L.R.G.: The Physics of Rubber Elasticiy, 3rd edn. Oxford University Press,
Oxford, U.K. (1975)

Appendix A Concrete Chadwick example

As a concrete example of a Chadwick-style model let us consider a compressible neo-
hookean material whose reference temperature strain-energy density is given by

ψo(C) =
µo
2
(trC − 3− 2 lnJ) +

(
κo −

2

3
µo

)
1

4
(J2 − 1− 2 lnJ) , (A1)

where J = detF and (µo, κo) are the small-strain shear and bulk moduli of the
material in the reference state.4 We will further assume that the reference internal

4This latter point can be seen by considering the expression for the Cauchy stress along with the two
deformations F = 1+γe1⊗e2 and F = (1+ϵv/3)1, (γ, ϵv) ≪ 1, which results in σ ≈ γµo(e1⊗e2+e2⊗e1)
and σ ≈ κoϵv1, respectively.
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energy only depends on the Jacobian determinant

eo(C) = 3κoαoθo ln J , (A2)

where αo is the material’s linear coefficient of thermal expansion. Lastly we will assume
that the material’s heat capacity is a constant, co, so that the third term in (9) is
given as ∫ θ

θo

(
1− θ

θ′

)
c(C, θ′)︸ ︷︷ ︸

=co

dθ′ = co

(
θ − θo − θ ln

(
θ

θo

))
. (A3)

This assumption is not physically correct for temperatures which are low with respect
to the material’s Debye temperature where one expects a non-linear decrease to zero
with temperature (see e.g., Reif, 2009, §10.2).

A.1 Stress and entropy expressions

With the assumed functions the material response functions are easily at hand. The
entropy is given as

η(C, θ) = −∂ψ
∂θ

= −ψo(C)− eo(C)

θo
+ co ln

(
θ

θo

)
. (A4)

The Cauchy stress σ = FSF T /J is given as

σ =
θ

θo

µo
J
(b− 1) +

(
θ

θo

(
κo −

2

3
µo

)
1

2

(
J − 1

J

)
− 3

κoαo
J

(θ − θo)

)
1 . (A5)

A.2 Constrained heating

For this model during constrained heating, where b = 1 and J = 1, one sees that

σ = −3κoαo(θ − θo)1 , (A6)

which corresponds to the simplest thermoelastic response of a material.

A.3 Unconstrained heating

At the other limit, when σ = 0 during heating, one finds that the deformation is given
by

F = J
1
31 , (A7)

where J is found by solving the non-linear relation

0 =
θ

θo

µo
J
(J

2
3 − 1) +

(
θ

θo

(
κo −

2

3
µo

)
1

2

(
J − 1

J

)
− 3

κoαo
J

(θ − θo)

)
. (A8)

Observe that the linear expansion is not simply given by J
1
3 − 1 = αo(θ − θo).
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Appendix B Concrete Lu & Pister model

As a concrete example of a Lu and Pister model let us consider again a compressible
neo-hookean material, where

W (Ce, θ) =
θ

θo

µo
2
(trCe − 3− 2 lnJe) +

(
κo −

2

3

θ

θo
µo

)
1

4
(J2
e − 1− 2 lnJe) . (B9)

We will assume that

γ(θ) = 1 + α(θ − θo) . (B10)

We also assume h(θ) = co

(
θ − θo − θ ln

(
θ
θo

))
. Note that the meaning of µo and κo are

that they are the small-strain shear and bulk modulus in the reference state. However
co is not the material’s complete heat capacity due to a deformational coupling.

B.1 Stress and entropy expressions

For our assumed model, the Cauchy stress is given by

σ =
θ

θo

µo
J
(bγ−2 − 1) +

(
κo −

2

3

θ

θo
µo

)
1

2

(
Jγ−3 − 1

Jγ−3

)
1 . (B11)

The entropy relation is given as

η = co ln

(
θ

θo

)
− 1

θo

µo
2
(trCγ−2 − 3− 2 ln(Jγ−3)) +

µo
6θo

(J2γ−6 − 1− 2 ln(Jγ−3))

+ γ′γ−3

(
θµo
θo

(trC − 3
1

J
γ2) +

(
κo −

2

3

θ

θo
µo

)
3

2

(
J2γ−4 − 1

J
γ2

))
.

(B12)

B.2 Constrained heating

Under constrained heating b = 1 and J = 1, one sees for this model that

σ =

(
θ

θo
µo(γ

−2 − 1) +

(
κo −

2

3

θ

θo
µo

)
1

2

(
γ−3 − 1

γ−3

))
1 . (B13)

This expression looks a fair bit different from the Chadwick expression (A6) but for
relevant material properties can be numerically quite similar.

B.3 Unconstrained heating

At the other limit, when σ = 0 during heating, one finds that the deformation is given
by

F = J
1
31 = γ1 = (1 + αo(θ − θo))1 , (B14)
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The linear expansion is simply given by αo(θ− θo). Thus in the Lu and Pister (1975)
framework it is much easier to impose the free expansion behavior in comparison to
the Chadwick (1974) framework, cf. (A8).

Appendix C Comparing the models

In this section we detail numerical examples to give a sense of the numerical and
functional behavior of the two specific models presented in Appendices A and B, as
well as the Anand model. They have a great deal of similarity to each other even
though they differ in the details of their expressions and it is instructive to understand
how the behave over a wide range of inputs. Assuming the statements in Claim 2 are
enforced, the Chadwick model presented is inadmissible at low temperatures. However,
given that the model is admissible for temperatures one would reasonably encounter
for many real materials, it would still be a reasonable model to use. By looking at
numerical examples we can gain an appreciation for the similarity or lack thereof
between the models when they are utilized in their common forms as outlined above.

For material properties we will use αo = 3.4×10−4 K−1, µo = 1 MPa, κo = 1 GPa,
and θo = 300 K. These do not correspond to any particular material but are reasonable
for various silicone rubbers. Note that for these values, the Chadwick model proposed
is valid only for temperatures greater than 36 K, since there are no positive solutions
to γ below this temperature. Additionally, for the Anand model, we assume that the
temperature dependent shear modulus at the reference temperature is equal to the
linear shear modulus. For a heat capacity model we will consider co = 1000 JK−1kg−1.

As examples we will consider the following 6 processes:

1. The pressure during fully constrained heating.
2. The (linear) thermal expansion J1/3 − 1 during heating.
3. Temperature changes during adiabatic uniaxial and pure shear deformation.
4. The stress-stretch behavior at various temperatures for uniaxial and pure shear

deformations.
5. The entropy-stretch behavior at various temperatures for uniaxial and pure shear

deformations.
6. The heat capacity-stretch behavior at various temperatures for uniaxial and pure

shear deformations.

C.1 Functional expressions

As noted, given a Lu and Pister model specification, it is possible to compute the
Chadwick base functions ψo, eo, c. For our concrete example, we see that

W (Ce,o, θo) =
θo
θo

µo
2
(trCe,o − 3− 2 lnJe,o) +

(
κo −

2

3

θo
θo
µo

)
1

4
(J2
e,o − 1− 2 lnJe,o)

=
µo
2
(trC − 3− 2 lnJ) +

(
κo −

2

3
µo

)
1

4
(J2 − 1− 2 lnJ) ,

(C15)
which exactly matches the usual Chadwick reference density, i.e. (A1).
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For the reference internal energy implied by the usual Lu and Pister model we see
that

eo = ψo + θoηo

=
µo
2
(trC − 3− 2 lnJ) +

(
κo −

2

3
µo

)
1

4
(J2 − 1− 2 lnJ)

+ θo

[
− 1

θo

µo
2
(trC − 3− 2 lnJ) +

µo
6θo

(J2 − 1− 2 lnJ)

+α

(
µo(trC − 3

1

J
) +

(
κo −

2

3
µo

)
3

2

(
J2 − 1

J

))]
= κo

1

4
(J2 − 1− 2 lnJ) + θoα

[
µo(trC − 3

1

J
) +

(
κo −

2

3
µo

)
3

2

(
J2 − 1

J

)]
,

(C16)
a relation that is a fair bit more complex that the usual Chadwick expression (A2).

A similar situation holds for the heat capacity which is built into the Lu and Pister
model. In particular, it is certainly not a constant.

For the Anand (2023) free energy (28), the Cauchy stress is given as

σ =
Go
J

[(
J−2/3

)(
B − 1

3
tr(B)1

)]
+
κo
J
(ln J − 3αo(θ − θo))1 . (C17)

Here, the reference free energy is given in (30), and the entropy is

η(C, θ) = 3κoαo(ln J) + co(ln θ − ln θo)−
3

2
Nkb(λ

2 − 1) . (C18)

Similar to the Chadwick material, the heat capacity for the Anand model is assumed
constant.

C.2 Constrained and free heating

In both the Chadwick and Anand models, the pressure during constrained heating is
given by (A6) – a linear relation. For the Lu and Pister model, it is given by (B13) –
a nonlinear expression. For our concrete models, however, the differences are seen to
be relatively minor as seen in Fig. C1(left)

For unconstrained temperature changes, the linear thermal strain is given by
J1/3−1. For the Chadwick model, one needs to solve the nonlinear relation (A8) for J
for given temperatures. This can be effectively accomplished using Newton’s method;
though care needs to be taken that the initial iterate is large enough to ensure conver-
gence. For the reconcilable Anand model, γ has already been calculated analytically
as an exponential in (36). In the Lu and Pister model, the specification of γ(θ) directly
gives this information. For our concrete models, Fig. C1(right), one sees rather dif-
ferent model responses once one considers large thermal changes. For small thermal
changes, the models are quite similar.
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Fig. C1 Fully constrained pressure changes during thermal changes (left). Linear thermal expansion
during unconstrained thermal changes (right).

Of course different functional choices in the models would allow the two models
to match in this response. But we only consider the choices commonly cited in the
literature, as this is how these models would be näıvely applied in practice.

C.3 Adiabatic temperature changes during uniaxial and pure
shear deformations

During adiabatic deformation, the entropy is considered to be constant (isentropic
deformation). For the Chadwick model, one can solve (A4) for the temperature given
the deformation. Note that in uniaxial deformation C = diag(λ1, λ2, λ2). The trans-
verse stretch λ2 is determined from (A5) by enforcing the transverse stresses to be
zero. For convenience, we specify the axial stress value and solve for λ1 from (A5).
Thus in total three nonlinear equations in three unknowns need to be solved. This
is accomplished again using Newton’s method. During pure shear, it is noted that
C = diag(λ1, λ2, 1) and the 2-direction stress is zero. For the Lu and Pister model we
employ the same procedure, now using (B11) and (B12). The solution procedure is
the exact same for the Anand free energy using (C17) and (C18).

The results are shown in Fig. C2. It is seen that all models return very similar
results for both modes of deformation.
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Fig. C2 Adiabatic temperature changes during deformation. Uniaxial deformation (left). Pure shear
deformation (right).

C.4 Isothermal stress-stretch response during uniaxial and
pure shear deformations

To compute isothermal stress-stretch response for the Chadwick model one needs to
evaluate (A5) where the transverse stress is taken as zero. This is efficiently done using
Newton’s method as described above for both uniaxial and pure shear deformations.
For the Lu and Pister model, the exact same procedure is used with (B11). Again, the
procedure is the same for the Anand free energy with (C17).

The results are shown in Fig. C3. It is seen that all models produce very similar
results for both modes of deformation.

C.5 Isothermal entropy-stretch response during uniaxial and
pure shear deformations

To compute isothermal entropy-stretch response for the Chadwick model one follows
the procedure as outlined for computing stresses and utilizes the computed deforma-
tion state to evaluate (A4). For the Lu and Pister model, the exact same procedure
is used but with (B12). Again, the procedure is the same for the Anand free energy
with (C18).

The results are shown in Fig. C4. It is seen that all models produce very similar vari-
ations with respect to deformation for both modes of deformation. However at lower
temperatures, numerical differences occur. Notwithstanding, qualitatively the models
are quite similar with respect to their entropy response as a function of deformation.
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Fig. C3 Stress-stretch response at various temperatures. Solid lines = Lu and Pister. Dashed lines
= Chadwick. Dotted lines = Anand. Uniaxial deformation (left). Pure shear deformation (right).

0 2 4

Stretch λ1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
n
tr
o
p
y
(M

P
a
/
K
)

Uniaxial extension response

θ/θo = 0.6

θ/θo = 0.8

θ/θo = 1.0

θ/θo = 1.5

θ/θo = 2.0

0 2 4

Stretch λ1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
n
tr
o
p
y
(M

P
a
/
K
)

Pure shear response

θ/θo = 0.6

θ/θo = 0.8

θ/θo = 1.0

θ/θo = 1.5

θ/θo = 2.0

Fig. C4 Entropy-stretch response at various temperatures. Solid lines = Lu and Pister. Dashed lines
= Chadwick. Dotted lines = Anand. Uniaxial deformation (left). Pure shear deformation (right).
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Fig. C5 Heat capacity-stretch response at various temperatures. Solid lines = Lu and Pister. Dashed
lines = Chadwick. Dotted lines = Anand. Uniaxial deformation (left). Pure shear deformation (right).

C.6 Isothermal heat capacity-stretch response during
uniaxial and pure shear deformations

To compute heat capacity along isothermal deformation paths one can use the results
of the preceding section and compute the derivative with respect to temperature,
followed by a multiplication by temperature.

The results are shown in Fig. C5. In the Chadwick and Anand models, the heat
capacity we assumed was constant, and the computation bears that out. Independent
of temperature or deformation state the heat capacity does not change.

For the Lu and Pister model, one sees a response that indicates that under exten-
sion, the heat capacity is largely constant but that there are strong variations in
compression and with respect to temperature. It is also noted that the built-in cou-
plings to deformation are providing negative contributions to the heat capacity. The
other oddity of the Lu and Pister model is that the simple heat capacity formula-
tion we are using is decreasing with an increase in temperature in contradiction to
expectations from statistical physics. Thus the h(θ) expression should be adjusted to
compensate for this. Note, however, that doing so will come at the expense of the
numerical matching seen in many of the prior comparison tests.

C.7 Reference internal energy-stretch response during
uniaxial and pure shear deformations

To compute the reference internal energy for the given deformation paths we only
need evaluate (A2), (30), and (C16).
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Fig. C6 Reference internal energy-stretch response at various temperatures. Solid lines = Lu and
Pister. Dashed lines = Chadwick. Dotted lines = Anand. Uniaxial deformation (left). Pure shear
deformation (right).

The results are shown in Fig. C6. For all models with these deformation paths, the
internal energy is largely constant at each temperature, though in compression some
non-linear variations are apparent. Each model shows similar qualitative behavior with
respect to temperature, though numerical values do differ.
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