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Peierls stress of a screw dislocation in a piezoelectric medium
Shaofan Lia) and Anurag Gupta
Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720

(Received 15 April 2004; accepted 7 July 2004)

In this letter, the Peierls-Nabarro(PN) model is extended to describe dislocation mobility in
piezoelectric materials. The Peierls stress of a screw dislocation in a piezoelectric material is
calculated based on the generalized PN model and linear piezoelectricity theory. ©2004 American
Institute of Physics. [DOI: 10.1063/1.1790030]

Piezoelectric materials have been extensively used to
manufacture thin films and other components in sensors,
transducers, integrated circuits, and various other electric de-
vices. There has been a keen interest to study the dislocation
mobility in piezoelectric materials.

Nevertheless, only a few analytical studies regarding dis-
location mechanics of piezoelectric materials have been re-
ported in the literature.1–5 Moreover, it seems to us that the
issues regarding the mobility of dislocations in such materi-
als have not been resolved. In this letter, an analytical ex-
pression for the Peierls stress in a piezoelectric crystal is
obtained.

Consider a piezoelectric screw dislocation in a hexago-
nal crystals6mmd. Assume that thex-y plane is the isotropic
basal plane and thez axis is the out-plane axis. Consider an
infinitely long screw dislocation with Burgers vectorbm ly-
ing along thez axis.

The dislocation mechanics in piezoelectric materials is
more complicated than the dislocation mechanics in purely
elastic media. In a piezoelectric medium, dislocations often
coexist with discontinuous charge distributions. Similar to
the dislocation representing displacement discontinuity, the
electrical potential discontinuity is represented by the electric
dipole. In this analysis, it is assumed that there is an electric
dipole vectorbe along thez axis.

For simplicity, we consider the following coupled anti-
plane strain and in-plane electric potential problem:

ux = uy = 0, uz = uzsx,yd, s1d

Ex = − f,xsx,yd, Ey = − f,ysx,yd, Ez = 0, s2d

wheref=fsx,yd is the electrical potential,Ei si =x,y,zd are
the electric-field components, andui si =x,y,zd are the dis-
placement components.

A set of nontrivial constitutive equations can be obtained
for the present purpose.4 For a hexagonal crystal of 6mm
class, they are given as

sxz= c44gxz− e15Ex, s3d

syz= c44gyz− e15Ey, s4d

Dx = e15gxz+ e11Ex, s5d

Dy = e15gyz+ e11Ey, s6d

wheresxz,syz are the two out-plane shear stresses,gxz,gyz
are the related shear strains,Dx,Dy are in-plane electrical
displacements, andc44, e15, e11 are shear elastic modulus,
piezoelectric coefficient, and dielectric constant, respectively.

Because the electrostatic charge equation is decoupled
with the stress equilibrium equation, the screw dislocation
solution has the same form as the classical Burgers’
solution,4

uz =
bm

2p
arctan

y

x
, s7d

f =
be

2p
arctan

y

x
, s8d

sxz= −
sc44bm + e15bedy

2psx2 + y2d
, s9d

syz=
sc44bm + e15bedx

2psx2 + y2d
, s10d

Dx =
s− e15bm + e11bedy

2psx2 + y2d
, s11d

Dy =
se15bm − e11bedx

2psx2 + y2d
. s12d

To extend the original Peierls-Nabarro(PN) model6,7 to
piezoelectric materials, we distribute a single mechanical dis-
location and a single electrical dipole along the glide plane,
such that the nonlocal dislocation system has an equivalent
displacement jumpw and an equivalent electric potential
jump w along the upper half of the crystalsy.0d with re-
spect to the lower halfsy,0d. These jumps are assumed to
result from the distribution of an infinitesimal dislocation,
bm8 , and an infinitesimal jump in electric potential,be8, respec-
tively. Such infinitesimal quantities are determined by the
following equivalency conditions:

bm8 = US ]w

]x
DU

x=x8
, be8 = US ]w

]x
DU

x=x8
, s13d

and

bm =E
−`

`

bm8 sxddx, be =E
−`

`

be8sxddx. s14da)Author to whom correspondence should be addressed; electronic mail:
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By doing so, we create a cohesive strip that connects two
perfect crystal half spaces. Comparing with the two perfect
crystal half spaces, the cohesive strip may be viewed as a
phase of alower order symmetry, because of the presence of
the topological defect and the biased charge distribution. As
an analog to Landau’s potential,8 it is then plausible to specu-
late that the excess free energy inside the cohesive strip
could be expressed by an even-order polynomial expansion
of someorder parameters.9 In an equilibrium state, these
order parameters may be proportional to nondimensional
misfit variables,w/bm and w /be. The stress and the electric
displacement field, caused by the misfit and derived from the
above-mentioned free energy will be an odd function of the
order parameters. In the spirit of original PN model, we as-
sume these fields by the following expressions:

syzsx,0d =
c44bm

2pd
sinS2pw

bm
D +

e15be

2pd
sinS2pw

be
D , s15d

Dysx,0d =
e15bm

2pd
sinS2pw

bm
D −

e11be

2pd
sinS2pw

be
D , s16d

whered is the width of dislocation. It should be noted that
the validness of the above assumption hinges on the fact that
the Taylor expansion of a sinusoidal function is a series of
odd order polynomials.

Using Eqs.(14) and (16) and considering the fact that
the smeared dislocation and the electrical dipole are along
y=0, we may obtain the stress fieldsyz and the electric dis-
placement fieldDy,

syzsx,0d =
c44

2p
E

−`

` bm8

x − x8
dx8 +

e15

2p
E

−`

` be8

x − x8
dx8, s17d

Dysx,0d =
e15

2p
E

−`

` bm8

x − x8
dx8 −

e11

2p
E

−`

` be8

x − x8
dx8. s18d

Comparing Eq.(19) with Eq. (21) and Eq.(20) with Eq.
(22), we obtain two nonlinear integral equations,

E
−`

` s]w/]xdx=x8

x − x8
dx8 =

bm

d
sinS2pw

bm
D , s19d

E
−`

` s]w/]xdx=x8

x − x8
dx8 =

be

d
sinS2pw

be
D . s20d

The solutions of these nonlinear integral equations are,

wsxd =
bm

p
arctan

2x

d
+

bm

2
, s21d

wsxd =
be

p
arctan

2x

d
+

be

2
. s22d

A standard procedure is now followed to calculate the total
misfit enthalpy generated by the dislocation-dipole system
and to obtain an analytical expression for the Peierls stress.10

Let a be the spacing of atomic planes inx direction (in
the absence of a dislocation). If the dislocation is translated
by u, then the planes at a positionna (wheren is an integer)
in the upper half of the crystal will be displaced with respect
to lower half bywsna−ud. Also the planes atna in the upper
half of crystal will then experience a potential shiftwsna
−ud, with respect to the lower half. The misfit enthalpy be-
tween a pair of atomic planes can be written as

dH = adE ssyzdgyz− DydEyd

= aE ssyzdw+ Dydwd

=
c44bma

2pd
E sinS2pw

bm
Ddw+

e15bea

2pd
E sinS2pw

be
Ddw

+
e15bma

2pd
E sinS2pw

bm
Ddw −

e11bea

2pd
E sinS2pw

be
Ddw

= dH1 + dH2 + dH3 + dH4. s23d

SummingdH1 from n=−` to +`, one has

H1sud =
c44bm

2 a

4p2d
o

n=−`

` H1 + cos 2Farctan
2sna− ud

d
GJ

=
c44bm

2

4p
+

c44bm
2

2p
exps− pd/adcosS2pu

a
D . s24d

The limit for wide dislocationssd/a@1d has been used
in the above calculation.10 Similarly, it may be found that

H4sud = −
e11be

2

4p
−

e11be
2

2p
exps− pd/adcosS2pu

a
D , s25d

which is the contribution due to the electric dipole distribu-
tion.

Considering the relation,

tan
pw

be
= tan

pw

bm
, s26d

one may find that

H2sud =
e15bmbe

4p
+

e15bmbe

2p
exps− pd/adcosS2pu

a
D ,

H3sud =
e15bmbe

4p
+

e15bmbe

2p
exps− pd/adcosS2pu

a
D .

FIG. 1. The Peierls stress in piezoelectric materials.
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The Peierls potential in the cohesive strip(or the total
misfit enthalpy) is

Hsud = o
i=1

4

H1sud =
1

4p
hc44bm

2 + 2e15bmbe − e11be
2j

·F1 + 2exps− pd/adcosS2pu

a
DG . s27d

The Peierls stress for a screw dislocation in a piezoelec-
tric crystal class is then obtained by finding the maximum
stress,

sP
pz= maxF 1

bm

]Hsud
]u

G . s28d

We therefore obtain

sP
pz= Sc44bm

a
+

2e15be

a
−

e11be
2

abm
DexpS−

pd

a
D , s29d

where the superscriptpz denotes the Peierls stress for piezo-
electric materials. Whenbe=0, we recover the classical
Peierls stress for a purely elastic crystal,10

sP
m =

c44bm

a
expS−

pd

a
D , s30d

where superscriptm denotes the Peierls stress for a purely
mechanical system(i.e., for whichbe=0).

Let

Xª

e15be

c44bm
, kª

c44e11

e15
2 . s31d

Then,

sP
pz

sP
m = 1 + 2X − kX2. s32d

We plot the ratio,sP
pz/sP

m, against the nondimensional vari-
ableX for some typical semiconductor piezoelectric materi-
als. The results are displayed in Fig. 1.

We notice from the figure that the ratiosP
pz/sP

m depends
on the ratiobe/bm for a particular semiconductor(see Table I
for material properties of some semiconductors). This im-
plies that depending on the magnitude of mechanical dislo-
cation and electrical dipole vector, the Peierls stress for the
considered piezoelectric material may increase or decrease
(with respect to mechanical Peierls stress), and therefore re-
sult in a decrease or increase of dislocation mobility. These
curves vary with material properties and will be different for
different piezoelectric materials.

As a second example we investigate the mobility of a
dislocation in a 180° domain-wall structure of a ferroelectric
material by using the modified Peierls-Nabarro developed in
this paper. We consider only those ferroelectric materials that
possess the symmetry of transversely isotropy, and thus we
can describe the above-mentioned structure by the same set
of field equations developed above. A slight modification is
required in calculating the total misfit enthalpy. Since the
piezoelectric coefficiente15 changes sign across the 180° do-
main wall, the interaction termsdH2 and dH3 will vanish
after being added along the two atomic planes. The other two
terms in the expression for total enthalpy remain unchanged
(they are independent of the piezoelectric coefficient). Fol-
lowing the usual algebra we can then obtain the expression
for the Peierls stress for the considered case as

sP
pz

sP
m = 1 −kX2. s33d

From Eq.(33), we conclude that unlike piezoelectric materi-
als, the presence of an electric dipole in a 180° domain-wall
structure of a ferroelectric material will always result in a
decrease of the Peierls stress and thus result an increase in
dislocation mobility. This is illustrated by plotting the Peierls
stress of BaTiO3 versus nondimensional electric dipole den-
sity, X, in Fig. 1.
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TABLE I. Material properties of some semiconductors(Ref. 11).

Compound
r (density)

s103 kg/m3d
e11

s10−9 F/md
c44

s1010 N/m2d
e15

sC/m2d

ZnS 3.98 0.0770b 2.28 −0.0638
ZnO 5.68 0.0757a 4.247 −0.48

BaTiO3 5.7 9.8722a 4.4 11.4

aConstant strain.
bConstant stress.
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