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Abstract

Ferromagnetism and Superconductivity in Rhombohedral Trilayer Graphene

by

Haoxin Zhou

This work studies the Van Hove singularity induced novel electronic phenomena in

rhombohedral trilayer graphene, including magnetism and superconductivity. Rhom-

bohedral trilayer graphene is a two dimensional crystal where three layers of carbon

honeycomb lattice are stacked to form a rhombohedral lattice in its three dimensional

extension. The energy band structure of rhombohedral trilayer graphene features van

Hove singularities, saddle points in the energy band structure where the density of states

diverges. A perpendicular electrical field can be applied to induce an interlayer potential

and to open up an energy gap at the charge neutrality point. The gap opening modulates

the density of states profile, making the divergence at the van Hove singularity robust

against fluctuations from finite temperature and disorder effects. Like many other sys-

tems, the diverged density of states induces Fermi surface instability. On the one hand,

it drives spontaneous ferromagnetic polarization of the electron system into one or more

spin- and valley flavors. On the other hand, it allows the bounded states where elec-

trons couple into pairs to have significant lower energy than the normal ground states,

leading to superconductivity observable at the experimentally reached temperature. In

this work, we fabricated dual graphite-gated rhombohedral trilayer graphene van der

Waals heterostructures that allow cryogenic electrical transport measurement and pen-

etration field capacitance measurements. On these samples we systematically studied

the gate voltage modulated magnetic phase transitions and superconductivity. A rigid

band model is built that well captures the spin- and valley- phase transitions. For super-

ix



conductivity, we mainly focus on the phenomenology but also provide several possible

explanations. In addition to gate voltages, we can also induce a moiré potential to the

system by aligning the lattice of the rhombohedral trilayer graphene with the dielectric

material hexagonal boron nitride. We found that while the moiré potential only affects

the electronic phase diagram on a perturbative level, several novel phenomena including

the breaking of lattice symmetry is induced.
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Chapter 1

Introduction

1.1 High Density of States Physics

In general, electrons in crystal is an extremely complicated system. Since even the

collision of two electrons can already generate phenomena that is yet fully understood, it

is almost impossible to imaging a system with 1023 electrons mixed with similar numbers

of nuclei. However, if we limit our scope to the ”normal” condition on the surface of this

planet. the electrons actually behave in a quite organized and predictable way.

Because of the orders of magnitude difference between the electron and iron mass.

The kinetic energy of ions can be ignored when describing motions of electrons. (The

Born-Oppenheimer approximation). In addition, the electron-electron interaction can

usually be treated together with the lattice potential in a mean-field approach. With

these approximations, the crystal is treated as independent electrons moving in a periodic

potential. Bloch’s theorem states that the wavefunction of the electrons has the following

properties

ψ (r + R) = eik·Rψ (r) . (1.1)
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Introduction Chapter 1

Based on the Bloch’s Theorem, the energy band theory is built and can explain the

majority of electronic properties such as electrical conductivity, heat capacity, Hall effect

etc. In this picture, the Fermi-Dirac distribution, originated from the Pauli exclusion

principle, together with the energy band dispersion determines the ground states of the

electrons. The Coulomb interactions between electrons still exists, but the corresponding

energy scale is not large enough to alter the ground states of electrons in most cases.

The situation can be different when the energy of the electrons are not sensitive to

the lattice momentum, or ∇kE is small, this usually means the density of states (DOS)

D(E) ≡ dn

dE
=

∫
dS

1

|∇kE|
(1.2)

is large.

Such a system can host numerous electrons with nearly identical kinetic energy, the

Coulomb interactions will play an important role in determining the ground state. The

Stoner criterion states that when the product of the strength of electron-electron inter-

actions and the DOS at the Fermi surface is greater than one[1],

UDF(E) > 1 (1.3)

The electrons will have their spins spontaneously broken, inducing ferromagnetism. This

theory explains the ferromagnetism in transition metals like nickel, iron and cobalt. In

these metals the partially filled narrow d-band contributes a high density of states at the

Fermi surface[2].

Although electron-electron correlation is already complicated and interesting, a high

density of states can induce other effects. In the Bardeen–Cooper–Schrieffer (BCS) theory

2
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of superconductivity, the superconducting gap can be expressed as [3]

Tc = TF e
− 1

gDF (1.4)

Here g, TF are phenomenological parameters. The gap equation predicts that large

density at the Fermi surface helps increase the critical temperature for superconductivity

phase transition. When Tc is above the value the instrument can reach, the sample will

become a superconductor.

In many cases, the electron pairs are spin singlet and the spontaneous spin polarization

breaks the channel of superconductivity. In this case, the Stoner magnetism and BCS

superconductivity compete with each other. The phase diagram will be determined by

the details of the electron systems.

1.2 High density of states in two-dimensional elec-

tron systems

Novel phenomena such as electron magnetism has been observed in a variety of

two-dimensional electronic systems[4, 5, 6, 7, 8]. Two-dimensional electronic system

is a material where carrier electrons are trapped within a two-dimensional space, ei-

ther two-dimensional materials like graphene[9] or by creating an inversion layer at a

heterestructure[10]. A big advantage of two-dimensional electronic system is its tunabil-

ity. By applying a gate voltage, the carrier density, and therefore the Fermi energy can be

modulated. By fabricate two-dimensional materials into heterostructures, we can effec-

tively create new materials with completely different band structure. These techniques

allow us to engineer the electronic properties to induce high density of states physics.

Two approaches can be applied to induce high density of states at the Fermi surface.

3
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One way is to have a narrow band dispersion relation, like the d-band in ferromagnetic

metals. This can be easily achieved by applying a strong magnetic field that is perpen-

dicular to the sample plane to induce quantum Hall effect[11]. In this case, the energy

band of the system is reconstructed into Landau levels, whose energy is completely in-

dependent of momentum, when the Fermi surface is tuned so that one of the Landau

level is partially filled, the density of states is infinite without considering finite tem-

perature and disorder effects. This technique has been applied to many two dimensional

systems including both heterostructures and two-dimensional materials[11, 12] and inter-

action driven phenomena are observed, including quantum Hall ferromagnetism[13, 14]

and fractional quantum Hall effect[15, 16]. Superconductivity is not expected in quantum

Hall systems as the magnetic field required to induce quantum Hall effect is usually far

beyond the critical magnetic field of superconductivity. Nevertheless, the quantum Hall

system is still an rich system that is far from full understood and had broad potential

application such as topological computing.[17]

Apart from applying a strong magnetic field, for 2D materials, there is a new tech-

nique developed in the recent years that can generate flat dispersion relations at zero

magnetic field, which is to align two two-dimensional lattices with identical or similar

lattice structure to generate a Moiré pattern.[18, 19, 20] When two layers of graphene

are aligned with a small angle of around 1.1◦, the band structure of the system is re-

constructed, leading to an isolated band near the charger neutrality point with nearly

flat dispersion relation.[20] Experiments ([21, 22] has shown that when a gate voltage

is applied to have electrons fill one half, one quarter, or three quarters of the allowed

states, the electrons spontaneously break the spin- and valley- degeneracy to favor the

exchange interaction. This will open additional energy gaps and drive the system into

an insulating state. The mechanism is very similar to the origin of quantum Hall fer-

romagnetism, but since no magnetic field is needed and the time reversal symmetry is

4
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protected, it allows superconducting phases. They are indeed observed when a light dop-

ing is applied to the correlation induced insulating states. The observation has drawn

a lot of attention since the phase diagram of the graphene moiré superlattice is highly

similar to high-temperature superconductors. While the observed critical temperature

(around 1K) is far below the standard of ”high temperature” superconductor, the gate

tunability of the carrier density allows multiple phases in the same sample just by vary-

ing the gate voltage, unlike the high-temperature superconductor whose carrier density is

usually determined when the material is synthesized. In addition, graphene, even when

twisted, is still a cleaner and simpler electronic systems compared to cuperates, which

is formed with multiple elements and disorder is unavoidable during the synthesization

process. This allows systematic study of the electron paring mechanism and may help to

understand the not yet cleared mechanism of unconventional superconductivity.

While flat band dispersion guarantees high density of states, the latter occurs not

necessarily with a flat band in present. In Eq. 1.1, the integrand diverge at an extremum

of the dispersion relation. These extremal points are called Van Hove Singularities.[2] For

three dimensional crystal, the divergence of the intergrand will be compensated by the

integral and generate an unsmoothed point in the density of profile. In two dimensional

system, however, when the extrema of the dispersion relation is a saddle point, the density

of states profile will inherit the divergence. In this case, when the Fermi surface is tuned

near the Van Hove Singularity, a large DF is obtained. This approach to induce high

DOS is the start point of this work.

1.3 Rhombohedral trilayer graphene

Rhombohedral trilayer graphene is a two dimensional electron system where three

layers of graphene stacked to form a rhombohedral lattice. Trilayer graphene actually

5



Introduction Chapter 1

have another more stable phase, bernal-stacked trilayer graphene (or ABA-stacked tri-

layer graphene). The difference of stacking order gives very different electronic proper-

ties. The band structure of ABA-trilayer graphene is roughly an overlap of monolayer

graphene and bilayer graphene, with weak coupling between the two layers, while the

ABC-stacked trilayer graphene is a chiral generalization of monolayer graphene, with its

band structure significantly different from that of monolayer and bilayer graphene[23].

Way before the discovery of graphene, the rhombohedral stacking order was observed

in natural graphite by a series of X-ray diffraction experiments.[24, 25, 26, 27]. After

that, the energy band structure and other electronic properties of rhombohedral graphite

was systematically studied theoretically.[28, 29].

Since the isolation of graphite monolayers[9], the research focus has been switched

to graphite thin films and graphite surface states. Koshino et al[30] and Zhang et al[23]

built a six-band continuum model that well captures the low energy band structure of

the rhombohedral trilayer graphene. They found that the interlayer hopping significantly

alters the band structure in the low energy regime, inducing three pockets (usually called

the ”trigonal warping” effect) where the conduction and valance band touches. The

trigonal warping effect is crucial in determining the electronic property of rhombohedral

trilayer graphene because it induces Van Hove singularities between the energy band

pockets where the density of states diverges. Their work also predicted that an electric

field applied perpendicular to the rhombohedral trilayer graphene will open up an energy

gap, convert the system from a semimetal to a semiconductor. The opening of the energy

gap also flats the band bottom and therefore enhance the van Hove singularities, making

the divergence feature of DOS robust against temperature and disorder effects.

As mentioned in the previous section, a system with high density of states often host

novel phenomena originated from electron-electron correlation and other effects beyond

the band theory. Otani et al[31] studied the 0001 surface of rhombohedral graphite with

6
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first principle calculation and predicted spontaneous spin polarization. Similar investiga-

tion was also performed by Pamuk et al[32], in which they studied the possible magnetic

phase and charge density waves induced by exchange interaction. Zhang et al[33] and Xu

et al[34] predicted that the flat band bottom of rhombohedral graphite multilayer system

can host gapless surface states originated from electron-electron interactions. The sur-

face states is also comprehensively studied with density functional theory by Xiao et al in

2011[35]. This surface states have the potential to host a competing order of magnetism

and high temperature superconductivity.[36, 37, 38, 39, 40].

Despite the interest, experimental study of the system requires isolation of rhombo-

hedral trilayer graphene, which is challenging because the rhombohedral order usually

coexist with bernal stacking order in mechanical exfoliated flakes and the domains cannot

be distinguished by optical microscopy. Several techniques have been developed to iden-

tify the stacking order. The first one is spatial map of Raman spectrum [41, 42, 43, 44],

which is the techniques we used in this work. The advantage of Raman spectroscopy is

it does not require the surface to be exposed, so the spectrum can be taken even when

the trilayer graphene is encapsulated in other materials, which turns out to be conve-

nient for sample fabrication. Besides, no mechanical manipulation is applied during the

measurement which may relax the metal stable rhombohedral order. Since the Raman

spectroscopy is a far-field measurement, the spatial resolution is limited by the wave-

length of the laser. The near field Raman spectroscopy[45] may help to increase the

spatial resolution. In fact, a similar technique, the near-field infrared microscopy turns

out to have the ability to determine the stacking order of trilayer graphene[46]. Benefited

from the near-field measurement, a higher resolution is obtained compared to the Raman

spectroscopy. Since the measurement is performed with an atomic force microscope, in

situ probe manipulation of the sample is possible. Apart from optical probes, it is re-

ported by Asylum Research that scanning probe kelvin force microscopy can also be used

7
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to distinguish the stacking order of trilayer graphene.[47]. This technique gives similar

spatial resolution without the need of a complicated optical setup.

An alternative route to obtain rhombohedral trilayer/multilayer graphene is to di-

rectly synthesize the film with rhombohedral stacking order instead of search in mechan-

ically exfoliated samples.[48, 49, 50, 51, 52, 53] Although the sample quality and ability

to transfer is limited compared to mechanically exfoliated samples, experiments that re-

quire macroscopic sample area can only be performed on grown samples. Furthermore,

this may be the only option for industrial application.

The techniques developed for sample preparation made it possible for experimental

study of rhombohedral trilayer graphene. In 2011, Kumar et al[54] performed electrical

transport measurement on rhombohedral trilayer graphene samples and observed quan-

tum Hall effect. Since their samples have only one gate electrode, it is not possible to

control the electrical displacement field to modulate the band gap. Soon after this ob-

servation, the gate-tunable band gap was observed in dual-gated samples by Lui et al[55]

with infrared optical conductivity measurement (right after their development of the Ra-

man screening technique) and by Zhang et al[56] with electrical transport measurement.

With improved fabrication process, Zou et al[57] was able to apply a very large electrical

displacement field across the sample and found that the band gap saturates, consistent

with Hartree Fock calculations.

With the increased sample quality, phenomena beyond single-electron band theory

started to be observed in experiment. In 2014, Lee et al[58] fabricated suspended rhombo-

hedral trilayer graphene samples which effectively suppressed disorder effects. While not

straightforward, their observation, for the first time, show signature of electron-electron

correlation effect. Apart from electrical measurement, scanning tunneling microscopy[50,

59] and magneto-Raman spectroscopy[60] were also performed on rhombohedral graphene

trilayer and multiplayer. Both experiments show evidence of surface states with flat dis-
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persion relations. Recently, smoking gun observation electron-electron correlation was

made by Lee et al[61] and Shi et al[62], where the transport measurement shows hys-

teretic behaviors with both magnetic field and carrier density.

Apart from intrinsic rhombohedral trilayer and multiplayer graphene. A series of

experiment by Chen et al[8, 63, 64] show that by encapsulating rhombohedral trilayer

graphene with hexagonal boron nitride and have their lattice axis aligned, the morié po-

tential can open up an energy gap and induce isolated flat energy band. Features similar

to those in twisted graphene systems such as correlated insulating states, ferromagnetism

and signature of superconductivity are observed.

1.4 Outline of the rest chapters

In this work, I will discuss our experimental study of rhombohedral trilayer graphene

based on cryogenic electrical measurements. Chapter 2 discuss the theoretical tools we

used to model and explain the experimental observation, including the continuum model

and stoner type interaction terms. Chapter 3 discuss in detail the experimental tech-

niques we applied, including sample fabrication and electrical measurements. Chapter

4 and 5 discuss our main experimental results, the spin- and valley ferromagnetism and

superconductivity respectively. For ferromagnetism, simulation results from the Stoner

model is discussed in detail as it reproduces the major experimental phenomena. For

superconductivity, we do not have a clear explanation of the mechanism behind, and

therefore we only provide several possible explanations. This work also studied rhombo-

hedral trilayer graphene / hexagonal boron nitride superlattice system, which is discussed

in Chapter 6. Our experiments are far from comprehensive, we gave a brief summary of

our finds in Chapter 7 and also discuss briefly several promising future experiments.
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Chapter 2

Theoretical Background

2.1 Overview

This chapter discusses the theoretical models used to study the electronic properties

of rhombohedral trilayer graphene. The non-interaction band structure are calculated

with a six-band continuum model, which is obtained from tight-bind approximation and

expand the lattice momentum in the long-wave limit. We start from the monolayer

graphene case and then generalize to rhombohedral trilayer graphene. To study mag-

netism, we build a rigid band model to include electron-electron interactions.

2.2 Continuum Model

2.2.1 Monolayer Graphene

Graphene is a two-dimensional crystal of carbon[9, 65, 65, 66]. A carbon atom con-

tains four valence electrons, occupying the 1s-orbital and three 2p-orbitals (2px, 2py and

2pz). When forming graphene, like in graphite, the valence electrons undergo a sp2 -

hybridization. Three of the electrons forms three sp2 orbitals. These orbitals are paired
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among atoms to form stable covalence bonds, resulting in a honeycomb lattice. The other

electron does not form covalence bonds, it instead occupies the unhybridized pz orbital

that is perpendicular to the honeycomb lattice plane. These pz-orbitals of adjacent car-

bon atoms overlap and form a Π-orbital, in which electrons are itinerant and contribute

electrical conduction. Only electrons in the Π-orbital needs to be considered to build the

energy band model.

The honeycomb lattice

The honeycomb lattice contains two inequivalent sites and therefore is not a Bravais

lattice. It can be treated as a triangular lattice with A- and B- sublattice sites (Fig.

2.1). The lattice constant is a = 0.246nm[66]. The basis of Bravais lattice vectors can

be represented as

a1 = (a, 0), a2 = (
1

2
a,

√
3

2
a), (2.1)

and the vector that connects sublattice A and its nearest neighbor is

δ1 = (
1

2
a,

a

2
√

3
), δ2 = (−1

2
a,

a

2
√

3
), δ3 = (0,− a√

3
) (2.2)

Tight-binding Approximation

Although the Π-electrons are itinerant in nature. The tight-binding approximation[67]

turns out to be a good approach to capture the energy band properties of graphene. De-

fine a†i (ai) and b†i (bi) as the creation(annihilation) operator of electrons on sublattice A

and B of the ith unit cell respectively, and consider only nearest neighbor hopping, the
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a1

a2

δ1

δ3

δ2

y

x

Figure 2.1: Crystal structure of monolayer graphene. Circles rendered in red and blue
represent the sublattice A and B respectively.

non-interacting Hamiltonian can be written as

H0 = γ0

∑
<i,j>

a†ibj + h.c.. (2.3)

where γ0 is the hopping integral of nearest sublattice sites and <> means the summation

only runs over terms when the ith and jth unit cells are nearest neighbors. H.c. means

Hermitian conjugate.

To calculate the dispersion relation, we transform from lattice space to the momentum

space by using

a†i =
1√
N
eik·ria†k, ai =

1√
N
eik·riak (2.4)
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where N is the total number of unit cells. Substituting 2.4 into 2.3,

H0 = γ0

∑
i=1,2,3

∑
k

e−ik·δia†kbk + h.c.

=

(
a†k b†k

) 0 γ0g(k)?

γ0g(k) 0


ak
bk


≡
(
a†k b†k

)
h(k)

ak
bk

 .

(2.5)

where

g(k) =
3∑
i=1

eik·δi (2.6)

The dispersion relation can be obtained by diagonizing h(k), which is

E(k) = ±γ0

√
3 + 4 cos

√
3

2
kxa cos

1

2
kya+ 2 cos kya

≡ ±γ0

√
3 + f(k)

(2.7)

where

f(k) = 4 cos

√
3

2
kxa cos

1

2
kya+ 2 cos kya (2.8)

The dispersion is plotted in Fig. 2.2a. The energy become zero for both of the two

bands when k = K = ( 2π√
3a
, 1) or k = K′ = ( 2π√

3a
,−1). The high symmetry points K and

K ′ are called the ”Dirac points”. Their locations in the reciprocal space are shown in

Fig. 2.2b.

Continuum limit

By fitting the tight-binding model with first principle calculations, the nearest hop-

ping integral γ0 is around 2.8eV[68]. When only low energy physics are considered, the
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K
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K
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K’ K’

Γ kx

ky

a b

Figure 2.2: Band structure of monolayer graphene. a, Energy band dispersion of the
monolayer graphene calculated from the tight-binding model.b, First Brillouin zone
of monolayer graphene.

electron excitations happen only near the Dirac points. In this case, the wavevector k

can be expanded around K and K ′ to simplify the model. Define q = k−K. Near the

K point,

g(k) =
3∑
i=1

ei(K+q)·δi

≈ −ie−iKxa
3a

2
(qx + iqy)

(2.9)

In the second line, only the linear term of q is kept. After ignoring a global phase factor,

the Hamiltonian

h(k) = h(K + q) = v0

0 π†

π 0

 (2.10)

where v0 =
√

3aγ0
2

is the Fermi velocity. π = px − ipy, π† = px + ipy.

Similarly, expanding k near the K ′-point gives

h(k) = h(K′ + q) = v0

 0 π

π† 0

 (2.11)
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Figure 2.3: Lattice structure of the rhombohedral trilayer graphene.

In the continuum limit, the Dirac points K and K ′ are treated as a discrete degree of

freedom with binary values. This degree of freedom is similar to the electron spin, called

the ”valley”. Strictly speaking, valley is not an intrinsic degree of freedom, instead, it

is a result of the dispersion relation. However, when the energy scale involved is much

smaller than γ0, such treatment is a good approximation.

2.2.2 Continuum Model of Rhombohedral Trilayer Graphene

The lattice structure of rhombohedral trilayer graphene is shown in Fig. 2.3a. It

is a chiral generalization of monolayer and Bernal bilayer graphene[23]. The previous

described tight-binding approach and small momentum expansion can be generalized

to build the Hamiltonian of rhombohedral trilayer graphene. Instead of having two

sublattices A and B, the rhombohedral trilayer graphene contains six sublattices in its

unit cell, A1, B1, A2, B2, A3 and B3, where A and B represent the sublattices of the

individual layers, like in the monolayer case, while the Arabic numbers 1, 2, 3 represent

the layers. The hopping between different sublattice sites (see Fig. 2.3c) needs to be

considered to give a precise description of the band structure.
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The tight-binding Hamiltonian can be written as

H0 =
∑
k

(
a†1,k b†3,k b†1,k a†2,k b†2,k a†3,k

)
h(k)



a1,k

b3,k

b1,k

a2,k

b2,k

a3,k


(2.12)

where an,k (a†n,k) and bn,k (b†n,k) are the annihilation (creation) operators of electrons on

layer n and sublattice A and B respectively, and

h(k) =



∆1 + ∆2 + δ 1
2
γ2 γ0g(k)? γ4g(k)? γ3g(k) 0

1
2
γ2 ∆2 −∆1 + δ 0 γ3g(k)? γ4g(k) γ0g(k)

γ0g(k) 0 ∆1 + ∆2 γ1 γ0g(k)? γ4g(k)?

γ4g(k) γ3g(k) γ1 −2∆2 γ0g(k)? γ4g(k)?

γ3g(k)? γ4g(k)? γ4g(k) γ0g(k) −2∆2 γ1

0 γ0g(k)? 0 γ4g(k) γ1 ∆2 −∆1


(2.13)

where g(k) follows the same definition in Eq. 2.6. γi’s are the hopping integral between

sublattices indicated in Fig. 2.3c. The hopping between sublattice A1 and A3, between B1

and B3 and between A1 and B3 are ignored. ∆1 is the potential difference between the top

and bottom layer. ∆2 is the difference between the potential of the central layer and the

mean-field potential of the outer layers. δ is the potential difference between coupled and

uncoupled sublattice sites. ∆1 can be controlled by applying a perpendicular electrical

displacement field. The rest parameters are listed in Table. 2.1. The parameter sets

were based on [69] and [70] with small change to fit the experimental data.
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γ0 γ1 γ2 γ3 γ4 δ ∆2

3.1 0.38 −0.015 −0.29 −0.141 −0.0105 −0.0023

Table 2.1: Values of tight binding parameters for rhombohedral trilayer graphene
used. All numbers are in unit of eV.

a b

Figure 2.4: Band structure of rhombohedral trilayer graphene calculated from the
continuum model. a, Band structure near valley K. b, Band structure near valley K ′.

Applying the small momentum expansion in Eq. 2.9 and define vi =
√

3a
2
γi, we

obtained the six-band continuum model of rhombohedral trilayer graphene near valley

K

h(k) =



∆1 + ∆2 + δ 1
2
γ2 v0π

† v4π
† v3π 0

1
2
γ2 ∆2 −∆1 + δ 0 v3π

† v4π v0π

v0π 0 ∆1 + ∆2 γ1 v0π
† v4π

†

v4π v3π
† γ1 −2∆2 v0π

† v4π
†

v3π
† v4π

† v4π
† v0π −2∆2 γ1

0 v0π
† 0 v4π γ1 ∆2 −∆1


(2.14)

The Hamiltonian near valley K ′ can be obtained by replacing kx with −kx in Eq. 2.14

The band dispersion relation can be obtained by numerically diagonalizing Eq. 2.14.

The basic procedure is to first discrete the kx and ky points in the momentum space. For

each discrete value of kx and ky, we calculate the eigenvalues of the (numerical) matrix
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h(k), which gives the energy of the six bands at (kx, ky). The result for ∆1 = 0 is shown

in Fig. 2.4. Only the two low energy bands are shown.

Near the K and K ′ points, the conduction and valence bands touch with each other

from three ”pockets”. The presence of the ”pockets” is called ”trigonal warping”[71, 72],

which is mainly contributed by the interlayer hopping between sites that are right on the

top and the bottom of each other. In between two adjacent pockets, there is a saddle

point. The saddle points play an important role in determine the electronic properties

rhombohedral trilayer graphene, which will be discussed in detail later.

2.2.3 Carrier Density, Density of States and Van Hove Singu-

larity

With the energy band dispersion relation known, we can calculate the energy depen-

dence of carrier density ne(E) and the density of states D(E). At finite temperature, the

energy E is replaced by the chemical potential µ.

The carrier density ne = Ne/A, where Ne is the number of carriers in the system, A is

the area. Ne can be calculated by summing up all the occupied states in the momentum

space. When the chemical potential is µ,

Ne =
∑
n

∑
k∈BZ

f (εn(k)) (2.15)

where

f (ε) =
1

e(ε−µ)/kBT + 1
(2.16)

is the Fermi-Dirac distribution function.

Numerical calculation of Ne requires to discretize the k points in the momentum

space. Although the k points are discrete in nature due to the finite size of the system,
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the typical grid size of numerical calculations are much larger than the actual grid size.

More precisely, suppose the sampling spacing of kx and ky are ∆kx and ∆ky, and the

length scale of the system is L, then

∆kx,∆ky �
1

L
(2.17)

The numerical discretization of k divides the momentum space into multiple cells C1,

C2,... each cell occupy an area of ∆kx∆ky. The k points in the momentum space can be

grouped based on which cell they belong to.

Ne =
∑
k∈BZ

f (ε(k))

=
∑

i

∑
k∈Ci

f (ε(k))

=
∑

i

Nif (ε(ki))

(2.18)

where in the last line, the value of ε(k) is replaced by the value of the sampled point

ε(ki). Ni is the number of k in Ci. Since the density of k points in the momentum space

is A/(2π),

Ni =
A

2π
∆kx∆ky (2.19)

Substituting Eq. 2.19 in to Eq. 2.18,

Ne =
∑
kix,kiy

∆kx∆ky
A

(2π)2
f (ε(ki)) (2.20)

and

ne =
Ne

A
=
∑
kix,kiy

∆kx∆ky
(2π)2

f (ε(ki)) (2.21)

Therefore, ne can be numerically calculated by summing the occupation probability for
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Figure 2.5: Density of states calculated from the six-band continuum model at ∆1 = 0.
a, DF as a function of chemical potential. b, DF as a function of carrier density ne.
Au.c. is the area of the unit cell.

all possible states in the discrete lattice momentum space.

The density of states at the Fermi surface DF can be calculated by taking the numer-

ical derivative of ne,

DF(µ) =
∆ne

∆µ
(2.22)

The calculated DF is shown in fig. 2.5, plotted as a function of the chemical potential,

and carrier density respectively. Without doping (ne = 0), DF = 0, which is a property

of semimetal. In the conduction and valence band, there is a peak in the density of states

profile, they are originated from the saddle points of the energy band.

Alternatively, DF can be calculated by convert the summation of k into an integral

1

A

∑
kx,ky

=
1

(2π)2

∫
dkxdky (2.23)

This is a good approximation for dense k-grids. By using Eqn. 2.23 in Eqn. 2.15, and

applying Stokes theorem,

DF (εn) =
1

4π2

∑
n

∫
Sn

dkxdky
|∇kε(k)|

(2.24)
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Here the intrinsic spin and valley degree of freedom are ignored. The integrand is singular

at the band extrema, where ∇kε(k) = 0. It can be proved that for a two-dimensional

system, the integral also diverges if the extrema is a saddle point, which is called a Van

Hove singularity[73]. The peaks in Fig. 2.5a and b are originated from the Van Hove

singularities.

2.3 Rigid-band Model of Interaction

The electron magnetism is a result of Coulomb interaction and cannot be captured

by the single-electron continuum model. A typical model to characterize magnetism is

the Hubbard model[74].

H =
∑
i,j

Ti,j
∑
σ

a†iσajσ +
1

2
U
∑
i

∑
σ=↑,↓

niσni−σ (2.25)

where σ labels the electron spin, and

niσ = a†iσaiσ (2.26)

is the electron density operator. In the Hubbard model, the first term is the single-

electron kinetic energy, expressed in the Wannier basis, and often treated with tight-

binding approximation. Tij is the hopping integral between different lattice sites. The

second term characterizes the electron-electron interaction, where U is a real parameter

that characterize the interaction strength. This term disfavors a state where two electrons

with opposite spin occupy the same lattice site. In rhombohedral trilayer graphene, the

electrons has both spin and valley degree of freedom. The Hubbard model needs to be
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extended to include four flavors.

H =
∑
i,j

Ti,j,αa
†
iαajα +

1

2
U
∑
i

∑
α 6=β

niαniβ, α, β = (K ↑, K ↓, K ′ ↑, K ′ ↓)

≡ H0 +H1

(2.27)

where we define the kinetic energy and interaction to be H0 and H1 respectively.

The Hubbard model is analytically unsolvable. Even numerical calculation is com-

plicated. We can apply approximation to simplify it. For H0, we apply tight-bind

approximation and continuum limit, as we did in the previous section. More specifically,

we replace H0 with Eq. 2.14 and Eq. 2.12. For H1, we first apply the random phase

approximation[75] which ignored the second-order terms of density fluctuation

H1 =
1

2
U
∑
i

∑
α 6=β

niαniβ

≈ 1

2
U
∑
i

∑
α 6=β

〈niα〉 〈niβ〉

=
1

2
UN

∑
α 6=β

〈nα〉 〈nβ〉 α, β = (K ↑, K ↓, K ′ ↑, K ′ ↓)

(2.28)

where in the second line, the density operators are replaced with its expectation values

(random phase approximation). In the third line, the lattice site indices are removed

because of the translational symmetry of the system. A further approximation can be

made by assuming the density of states is independent of interaction and carrier density,

which is called the rigid-band approximation.

H1 =
1

2
UN

∑
α 6=β

〈nα〉 〈nβ〉

≈ 1

2
UN

∑
α6=β

〈nα〉0 〈nβ〉0 α, β = (K ↑, K ↓, K ′ ↑, K ′ ↓)
(2.29)
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With the rigid-band approximation applied, the relation between chemical potential

and carrier density within each spin- and valley-flavor is independent of the interaction

and can be completely determined by the non-interaction band dispersion relation, as

discussed in the previous section. The problem to solve is: at a fixed total carrier density

n = nK↑ + nK↓ + nK′↑ + nK′↓, (2.30)

find a parameter set of (nK↑, nK↓, nK′↑, nK′↓), such that the total energy of the system

E =
∑
α

E0(µα) +
1

2
UN

∑
α 6=β

nαnβ (2.31)

is minimized and the constriction 2.30 is satisfied. The ground state of the system is

completely determined by the parameter set (nK↑, nK↓, nK′↑, nK′↓).

In Eq. 2.31, the density nα and total kinetic energy E(µα) is completely determined

by the energy band dispersion relation.

nα =

∫ µ

0

D(ε)dε (2.32)

E(µα) =

∫ µ

0

εD(ε)dε (2.33)

Although the interaction in the rigid-band model is deeply simplified, it turns out to

be good enough to capture the magnetic phase transitions in the rhombohedral trilayer

graphene. And the minimized computation scale allows for thoroughly exploration of the

parameter space. The model 2.31 implicitly assumes the interaction preserved the SU(4)

spin- and valley- rotation symmetry, in which case the four spin- and valley- flavors are

equivalent. The model can be generalized to situations where the SU(4) symmetry is not
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preserved.

H1 =
N

2

∑
α 6=β

Uαβnαnβ (2.34)

where nα and nβ is still calculated using Eq. 2.32, but the interaction strength is different

depending on the spin- and valley-flavor involved[76, 77].
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Experimental Techniques

3.1 Overview

This chapter discusses the experimental techniques applied to fabricate and mea-

sure the rhombohedral trilayer graphene devices. To identify and isolate the metastable

rhombohedral trilayer graphene domains, the Raman spectroscopy and atomic force

microscope-based cutting is used. The Van der Waals heterostructure is assembled with

a dry transfer technique. The transistor geometry is then formed with plasma etching

and metal deposition. Fig. 3.1 shows the procedure of device fabrication. The device is

characterized by measuring the gate-tuned capacitance and resistance at low tempera-

ture. The magneto-resistance measurement and Shubnikov de Haas oscillation analysis is

well utilized to resolve the Fermi surface and magnetic ordering. The following sections

will discuss these techniques in details.

25



Experimental Techniques Chapter 3

c

d

a b

e

f

g

h

Trilayer graphene Few-layer graphite hBN hBN SiO2 PPC film Metal electrodes

Figure 3.1: Procedure of device fabrication

3.2 Sample Fabrication

3.2.1 Preparation of the Trilayer Graphene Flakes

Mechanical Exfoliation

The trilayer graphene flakes are prepared by exfoliating bulk graphite crystal with

tapes. The flakes are then transferred onto a silicon chip with a 285 nm thick dry-grown

silicon dioxide layer on the surface. The layer number of a flake can be roughly identified

from an optical micrograph. A typical example is shown in Fig.3.2, where the exfoliated

flakes contain monolayer, bilayer and trilayer parts.

Raman Spectroscopy

While the layer numbers can be identified from the optical image, the stacking order

is not distinguishable. We identify the stacking order with Raman spectroscopy[41, 42,
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trilayer
monolayer

bilayer

Figure 3.2: Optical micrograph of a typical exfoliated graphene flake on a silicon chip
with 285 nm dry oxide layer on the surface. The layer numbers can be identified by
the optical contrast. The scale bar represents 10 µm.

43, 44].

Raman scattering is the inelastic scattering of photon by matter. During this process,

part of the photon energy is absorbed by the matter. For crystals, the absorbed energy is

in the form of lattice vibration, or phonons. Therefore, the energy difference of incident

and reflected photons is determined by the phonon modes of the crystal. This energy

difference is usually represented by Raman shift, the wave vector difference of incident

and reflected light.

Fig. 3.3 shows the typical Raman spectrum of monolayer, bilayer and (bernal-stacked)

trilayer graphene, measured with an excitation wavelength of 488nm. The most promi-

nent features of the spectrum two major peaks. One of them is at around 1580cm−1,

usually named the ’G-band’. The other is at around 2750cm−1, named ’G’-band’ or

’2D-band’. There are other weak peaks at different Raman shift, and have been stud-

ied in details. Both the G-band and 2D-band are originated from the phonon modes of

graphene lattice[78].

The G-band corresponding to a two-fold degenerated in-plane transverse optical mode
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Figure 3.3: Raman spectrum of graphene measured with 488nm excitation.a, Layer-de-
pendence of the Raman spectrum. b, Raman spectrum of ABA- and ABC-stacked
trilayer graphene near the 2D-band.

and longitudinal optical phonon mode at the Γ-point of the phonon band Brillouin zone.

The 2D-band has a more complex origin. It is a second-order process that is contributed

by a combination of the transverse optical mode and an inter-valley scattering. Peak-

fitting analysis has shown that the 2D-band contains multiple peaks that have similar

energy. In multi-layer graphene, the relative intensity of these peaks is affected by the

stacking order. This provides an approach to identify the rhombohedral domains from

mechanically exfoliated trilayer graphene flakes.

Fig.3.3b shows the Raman spectrum of ABA- and ABC-stacked trilayer graphene

near the 2D-band. The 2D-peak of ABC-stacked trilayer graphene exhibits a stronger

asymmetry compare to that of the ABA-stacked trilayer graphene.

The mechanically exfoliated trilayer graphene usually contains both ABA- and ABC-

domains. To identify these domains, a spatial map of the Raman spectrum is necessary.

The spacial map can be realized by placing the sample on a step motor-driven XY-

stage and measuring the Raman spectrum for each point on the sample. After that, the

peak maxima of the 2D-band is extracted for each point. Fig. 3.4 shows the result on an

trilayer graphene flake. The optical image of the flake is shown in Fig. 3.4a. The spatial
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Figure 3.4: Mapping the stacking orders.a, Optical micrograph of a trilayer graphene
on silicon/silicon oxide substrate. b, Raman spectrum map of the flake in panel a.
The color scale represents the Raman shift value at which the 2D-band reaches the
maximal intensity. The scale bar is 10µm in both panels.

map of the Raman spectrum is shown in Fig. 3.4b, where we use color to represent the

peak position of the 2D-band. The blue and yellow region corresponds to the ABC- and

ABA- stacked domain respectively. The sample contains both type of stacking order,

which is the case for most trilayer graphene flakes prepared by mechanical exfoliation.

Atomic Force Microscope Cutting

As mentioned before, the ground state of trilayer graphene is in ABA-stacking, while

the ABC-stacked phase is a metastable state. Therefore, carefulness must be taken to

manipulate the ABC-stacked trilayer graphene.

While the ABC-domains are metastable. The domain walls between the ABA- and

ABC-domains are unstable and tends to move under perturbation. Therefore, samples

contains domains walls are more likely to relax to the stable ABA-phase during the fab-

rication process. To overcome this problem, we cut the trilayer graphene flakes to isolate

the ABC-domains. The conventional technique to cut the micrometer-scaled material

is to pattern the material with photoresist/electron-beam resist and etch with corrosive

chemicals or plasma. This is not ideal in our situation since the resist will contami-
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Figure 3.5: Schematics of AFM cutting based on anodic oxidation. a, cutting with a
d.c. voltage applied on the probe. The sample needs to be electrically connected to
the ground. b, cutting with an a.c. voltage. No electrical connection to the sample is
required since it is capacitively coupled to the doped silicon layer.

nate the surface of the trilayer graphene flakes and induce disorder. We instead use a

lithography free approach: cut the flake with an atomic force microscope (AFM) probe.

Previous works have shown that when an d.c. voltage is applied between the graphene

sample and the AFM probe that is close to the sample surface, an electrical-chemical

reaction will occur between the water absorbed on the tip end and the graphene and

form graphene oxide. The graphene oxide is further removed by the probe as the probe

is moving across the sample. In this way, a trench is made along the path of the AFM

probe.[79, 80, 81, 82, 83] A schematic of this technique shown in Fig.3.5. This technique

has been applied to fabricate graphene tunneling junctions.

However, this technique requires electric access to the graphene. The mechanically

exfoliate graphene samples are deposited on a silicon dioxide layer, which is an insulator.

Electrical access to the graphene flakes required patterning metal electrodes to the flake.

An alternative techniques have recently been developed to solve this problem, which is

to replace the d.c. voltage with an a.c. voltage[84]. (Fig. 3.5b. Since the trilayer

graphene is capacitively coupled to the doped-silicon substrate, a current can go through

the graphene even no electrical connection is directly made to the graphene flake.

The actual experiment was performed on a dimension Icon AFM with SCM-PIT-V2
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probe. The front side of the probe is coated with a platinum/iridium alloy coating layer

which is electrically conductive. When cutting the sample, the tip is engaged to the

sample in contact AFM mode. An a.c. voltage with 10V amplitude and 10kHz frequency

is applied on the tip. The a.c. voltage is generated by an internal oscillator of the AFM

controller, but may also be generated by an external instrument. Since the reaction is

between graphene and water absorbed on the probe apex. A humidity control is required

if the relative humidity of the environment is below 50%. Usually higher humidity gives

better results, but also increase the risk of electrical breakdown of the piezo scanner. In

practice, we control the humidity within the range of 50% to 80%. While cutting, the tip

is moving at a speed of 300 nm/s. Although the trench can be made with higher speed

(> 1µm/s), it turns out that it increases the chance for the ABC-domains to relax to the

ABA-phase. The width of the trench made is usually 50 nm to 100 nm wide.

Fig. 3.6 shows a typical result of AFM cutting. The exfoliated trilayer (a) graphene

sample is firstly checked with Raman spectroscopy to locate the ABC-stacked domains

(b). Multiple trenches are made within the ABC-stacked domains by AFM cutting so

that the regions labeled with numbers 1,2,3 are purely in ABC-stacking order(c). For

sufficiently large samples, the ABC-domains are usually divided into several regions to

increase the chance of preserving the stacking order after fabrication.

An interesting fact is that the AFM cutting technique does not make reliable elec-

trical isolation, especially when the trench is not a straight line. This is not an issue

for our purpose since a trench can effectively remove the domain walls even if it does

not completely electrically isolate the regions it separated. Carefulness must be taken,

however, when this technique is used for other purposes such as forming complicate gate

structures.

31



Experimental Techniques Chapter 3

1
2

3

a b c

Figure 3.6: Isolating the ABC domains by AFM cutting. a, Optical micrograph of a
trilayer graphene sample. The scale bar represents 10µm. b, Raman spectrum map
of the sample in a. The approximate scan range is indicated by blask dashed lines in
a. The sample has both ABA- and ABC- stacked phases. The blue region is the ABC
domain. The scale bar represents 10µm. c, Optical micrograph of the same sample
in a after AFM cutting. The trenches are visible under the microscope and divides
the sample into multiple pieces. The regions labeled 1,2,3 are within the ABC-phase
determined by the Raman spectroscopy and will be used to fabricate devices. The
scale bar represents 10µm.

3.2.2 Preparation of the Van der Waals Heterostructures

In order to electrically tune the carrier density and apply interlayer potential, the

RTG needs to be fabricated into a heterostructure[85] with gate electrodes on both sides.

The gates need to be close to but electrically isolated from the RTG. This can be achieved

by separate the gates from the RTG with a hexagonal boron nitride (hBN) layer. This

technique is developed by Dean et al[86] and since then are widely used in the two-

dimensional material community.

The hBN is a layered material with a band gap of 5.95eV. It shares similar crystal

structure to graphite. Each layer forms a honeycomb lattice with boron and nitrogen

atoms sit on the A- and B- sublattice sites. The lattice constant of hBN is 2.504Å, close

to the value of graphite. Experiment has shown that the disorder effects of graphene and

its multilayer can be significantly suppressed by putting the graphene layer on top of

hBN or encapsulate the graphene layer with two hBN layers. This makes hBN an ideal

dielectric material for the RTG devices.
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The gates need to be made from electrically conductive material, so than an voltage

can be applied on it. The conventional technique is to deposit metal on top of the

dielectrics. The metal, however, usually induce disorder to the system and makes it

challenging to probe electrical properties of the graphene layer with small energy scale

such as fractional quantum Hall effect. This can be improved by replacing the metal gates

with multilayer graphite gates, which can be obtained by mechanical exfoliation, same as

RTG. Unlike metal, the gate electrodes formed by multiplayer graphite is a single-crystal

with flat surface in the atomic scale. Comparison of capacitance measurement on metal-

gated and graphite-gated bilayer graphene devices has shown significant improvements

from the graphite gates. The thickness of graphite gates is typically chosen between 5 nm

to 10 nm. The gates need to be thick enough so that it shows good metallic nature. This

is important for capacitance measurement where the density of states variation of the

gates can induce additional signal, especially when a strong magnetic field is applied. For

transport measurement, however, such effect is not obvious and even monolayer graphene

gates give good results. On the other hand, a thick gate increase the difficulty in device

fabrication because it takes longer to etch and requires thicker metal electrodes to make

electrical contacts.

With few-layer graphite gates and hBN dielectric, the cross-section structure off the

heterostructure is shown in Fig. 3.7.

The heterestructure is assembled by transferring the exfoliated flakes with polypropy-

lene carbonate (PPC) film[87], which is a polymer that can stick to graphene and hBN

flakes with Van der Waals force. The PPC film is mounted on a microscope slide and

using polydimethylsiloxane (PDMS) as an elastic substrate. The basic structure of the

pickup slide assembly is shown in Fig. 3.8.

The conventional procedure is to assemble the heterostructure from top to bottom.

The hBN on the top is picked up first, followed by the top graphite gate layer, the
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Figure 3.7: Cross-section of the dual-graphite gated RTG heterostructure.
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Figure 3.8: PPC film pickup side. Scale bar represents 1 cm.
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Figure 3.9: Procedure of Van der Waals heterostructure fabrication

second hBN layer, the RTG flake, the third hBN layer, etc. This procedure, while

straightforward, is not good for making samples with RTG.

As mentioned before, the ABC-stacked order of trilayer graphene is a metastable

state. During the transfer process, shear force will be applied to the materials. The

external force will have a chance to convert the RTG to ABA-stacking order even if the

ABC-domains are isolated. To increase the rate of success, the mechanical manipulation

of the RTG layer need to be minimized. If the heterestructure is assembled from the top

layer to the bottom layer, the RTG layer will need to be transferred multiple times to

pick up the layer under it. In practice, the ABC- stacking order is almost impossible to

survive this process.

To address this problem, we developed a two-step process to assemble the heterostruc-

ture. The main idea is to divide the heterostructure into two parts, fabricate them sep-

arately and finally assemble the two parts together. The process is schematically shown
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in Fig. 3.9.

Bottom Part Preparation

The first step is to assemble the heterostructure below the RTG, which is two hBN

layer with a few-layer graphite layer (which eventually become the bottom gate of the

device) encapsulated in between. During this process, the surface in direct contact to

the PPC film is contaminated while the other side of the stack remains pristine. Since

the upper face of this stack will directly touch the RTG, we need to flip the stack upside

down to have the pristine surface facing up[88, 89]. This is realized by peeling off the

PPC film (together with the tap holding it) from the pickup slide assembly after all

the three layers are picked up, then flip the film/stack upside down and deposit onto the

substrate. After the film landed, the substrate is heated to 150◦C to soften the PPC film,

so it is jointed to the substrate. The sample is subsequently annealed at 375◦C under

vacuum (< 10−5Torr) for two hours, during which the PPC film will decompose, leaving

the hBN/graphite/hBN stack to land onto the substrate. The upper surface remains

intrinsic as it does not directly contact with organic solvents or polymers.

Top Part Preparation

The second step is to assemble the upper part of the heterostructure. The stack is

assembled following the conventional procedure, which is to subsequently pick up the

layers from top to bottom. However, additional effort is needed to prevent the RTG from

relaxation.

Firstly, the pickup slide assembly is made with a 3 mm diameter PDMS pads. The

large diameter reduces the curvature of the PPC film and therefore reduced the mechan-

ical stress applied to the flakes being picked up. On the other hand, a small curvature

increases the difficulty of manipulation. So for general purpose, PDMS pads with 2
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Figure 3.10: PPC pickup slide assembly used for general purpose (top) and for picking
up RTG. A large diameter of the PDMS is used for RTG to reduce the curvature of
the PPC film and therefore reduce mechanical stress applied on RTG.

mm diameter is ideal for applications when mechanical stress is not a problem. (E.g.

fabrication of the bottom part)

Secondly, alignment between the pickup slide and the exfoliated flakes also turns out

to be important. When assembling the top part, the hBN layer on the top needs to be

large enough to cover the RTG flake. We align the corner of the top hBN with the touch

down center, while aligning the RTG to a region that is close to the touchdown center.

In this way, minimum tension is applied to the RTG sample while manipulation of the

film by changing the sample’s temperature is still possible.

With part A and B fabricated, Part A is transferred onto top B. During the whole

process, the RTG flake is only transferred once, this minimized the chance of relaxation.

Even with all the efforts made, the chance for RTG to convert to ABA-stacking order

is still considerably high. One potential improvement that can be made is to optimize the

direction from which the shear force is applied to the RTG sample during the transfer,

which has been studied by a recent work[90]. It is shown that the shear force applied to a
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Figure 3.11: Alignment between the heterostructure and the pickup slide.

specific direction will more likely to convert the stacking order. To avoid this, the lattice

orientation of the RTG is measured by Raman spectroscopy, and then the pickup slide

and the sample is properly aligned so that the shear force is applied from a direction in

which the RTG is most stable.

3.2.3 Fabrication of the Dual-gated Transistor

With the Van der Waals heterestructure assembled and transferred, the next step is

to etch the sample into the proper device geometry and to make electrical contact to the

conductive layers for measurement. But before that, it is better to re-check the stacking

order of the trilayer graphene flakes. This can be done by taking the Raman spectrum

of the encapsulated RTG.

While the presence of hBN does not interfere to the Raman signal from RTG since the

spectrum of hBN does not have a peak with similar energy to the 2D-peak of graphene,

the few-layer graphite gates does since the spectrum of trilayer graphene and multi-layer

graphite is nearly identical. Therefore, the Raman spectrum can only be taken inside

regions where the RTG and graphite gates do not overlap. To make this possible, proper
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Figure 3.12: Procedure to Measure the Raman spectrum of encapsulated RTG. a,
Layout of the heterostructure. Part of the RTG needs to not overlap with the bottom
gate. b and c, etch of the top hBN layer and top gate, after which a window is
opened where the RTG flake is the only conductive layer. d, Measuring the Raman
spectrum through the window. e, optical image of a sample with the etched windows.
The boundary box indicates the range in which the Raman spectrum is measured. f.
Spatial map of the Raman spectrum of the sample in e.

design of layout of the Van der Waals heterestructure is required.

The layout we used is shown in Fig. 3.12a. The RTG is aligned with the bottom gate

so that part of the RTG flake is outside the range of the bottom gate. Although same

arrangement can be made for the top gate, it is not necessary since the top layers can

be removed by etch process. The top gate is instead usually formed by a graphite flake

with large area so that it convert the entire region of RTG. This reduces the complexity

of assembling the heterestructure.

In order to measure the Raman spectrum of RTG, part of the top gate needs to
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be removed, which can be achieved by xenon difluoride (XeF2) vapor etch followed by

oxygen (O2) plasma etch, which selectively etches hBN and graphite respectively. After

the etch process, a window is opened, allowing measuring Raman spectrum of the trilayer

graphene to confirm the stacking order. While the spectrum map can only be done within

the range of the etch window, an isolated trilayer graphene flake usually has a uniform

(either ABA- and ABC-)stacking order. Therefore, an isolated flake that remains in

ABC-stacking order within the etched window usually remains in ABC-stakcing order

in the entire region. While not accurate, the information obtained from the Raman

spectrum significantly speed up the fabrication process.

After the stacking order is confirmed, the sample is etched by inductively coupled

plasma of trifluoromethane and oxygen mixture to form the transistor geometry. A metal

layer of 3 nm chromium/15 nm palladium/150 nm gold is deposited onto the sample in

an electron-beam evaporator to form electrical contact.

During the fabrication process, the masks used for all etch and metal deposition

process is polymethyl methylate (PMMA) with molecular weight of 950k. The mask is

prepared by spin-coat the 8% PMMA solution in anisole at a speed of 4000 rpm, followed

by baking the sample at 180C◦, which produces a PMMA layer of around 900 nm thick.

For etch process, although thin layers of hard mask such as hydrogen silsesquioxane

(HSQ) and aluminum usually gives higher resolution. These materials can generate large

surface tension and increase the risk of relaxation of the ABC-stacking order of trilayer

graphene.

3.3 Electrical Measurement

Two types of measurement were applied to study the electronic properties of RTG.

One is to measure the resistance of the samples, or transport measurement. The advan-
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tage of transport measurement is its simple instrument setup and minimal perturbation

applied to the system. Only a tiny a.c. current (as low as 0.5nA) with low frequency

(<50Hz) is driven through the sample and aggressive low pass filtering can be applied to

reduce the electron temperature. This allows phenomena with very small energy scale to

be detected. The downside of transport measurement is the complex origin of resistance.

Transport phenomena are usually complicated and affected by multiple facts. Apart from

the intrinsic properties of the system such as density states, other facts such as disorder,

size of the sample and edge states may alter the transport sample resistance as well. The

complex origin makes it difficult to link the experimentally measured resistance to phys-

ical quantities that is directly calculated from theoretical models. Therefore, in addition

to resistance measurement, we measure a different quantity, the capacitance between the

top and bottom gates, or penetration field capacitance. Unlike the complicated trans-

port phenomena, penetration field capacitance can be linked to theoretical calculated

quantities by a simple relation.

Cp =
1

2c0

∂µ

∂n
=

1

2c0

κ (3.1)

where κ is called the inverse electronic compressibility (or ”incompresibility” in some

literatures). It characterizes how much chemical potential is changed as a unit amount of

electronics per area are adiabatically added to the system. In the non-interactive picture,

κ is the inverse of density of states at the Fermi surface (1/DF), which can be directly

calculated from the theoretical energy band model, as discussed in Chapter 2. In Eq.

3.3, the constant c0 is the averaged geometric capacitance factor

c0 =
1

2
(cT + cB) (3.2)
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where cT (cB) is the capacitance between the top (bottom) gate and RTG when RTG is

treated as ideal metal (DF =∞).

On the other hand, measuring the penetration capacitance is technically more difficult

than resistance. The main reason is that the sample capacitance is much smaller than

the capacitance of the instrument (or ”parasitic capacitance”). Special technique must

be applied to obtained high enough sensitivity. We will discuss the details later but the

consequence is it is impossible to maintain low electron temperature while measuring the

penetration field capacitance.

To study RTG, we combine both techniques to overcome the drawbacks of them.

3.3.1 Transport Measurement

The transport measurement is performed following the conventional technique, in

which we apply a four-wire configuration to remove the contact resistance. A Stanford

SR860 lock-in amplifier is used as the excitation source and voltmeter. A Stanford

SR560 voltage preamplifier is used to preamplify the voltage signal. The frequency range

used is from 10Hz to 50Hz, usually chosen based on the noise spectrum so minimized

instrumental noise is achieved. Since the sample resistance is quite small, we excite the

sample with a constant current. The amplitude varies from 0.5nA to 10nA depending on

the purpose of the measurement.

Hall Resistance

The geometry of the devices we fabricated have four electrical contacts. All of them

are on one side of the sample. This allows conventional measurement of the longitudinal

resistance Rxx, which means the direction of the voltage drop detected is parallel to the

current flow. This type of measurement is schematically shown in Fig. 3.12 a and b.
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Figure 3.13: Transport measurement configuration. a and b, Measurement of Rxx, c
and d, Measurement of Rxy.

However, sometimes we do need to measure the Hall resistance, in which the voltage

drop detected is perpendicular to the current flow. The device geometry makes direct

measurement of Rxy not possible. To address this problem, we measure the resistance in

the two configurations shown in Fig. 3.13c and d (denoted as R1
xy and R2

xy). Based on

Onsager relation[91], the difference of the measured resistance is the Hall resistance Rxy.

Rxy = R1
xy −R2

xy (3.3)

Shubnikov de Haals Oscillation

One of the transport measurement techniques we used to study the Fermi surface

geometry is Shubnikov de Haals (SdH) Oscillation. In which we measure the longitudinal

resistance Rxx as a function of a magnetic field that is perpendicular to the sample (B⊥).

The magneto resistance will show periodic feature in 1/B. Since the electrons cycle

around the Fermi contours, the area A surrounded by the electron’s trajectory can help

to determine the shape of the Fermi surface. The area A is related to the oscillation

frequency f by

f =
h

2πe
A (3.4)
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When a system has a simple Fermi surface, the frequency of resistance oscillation is pro-

portional to the area of the Fermi surface. When complex Fermi surface (such as annular

Fermi surface), the oscillation of magneto resistance will be a superposition of multiple

harmonic oscillations. Analyzing the oscillation component in frequency space by per-

forming Fourier transform will reveal the Fermi surface geometry. The SdH oscillation is

heavily used in this work since the Fermi surface configuration is complex and directly

affect the magnetic ordering. The details will be discussed in later chapters.

3.3.2 Penetration Field Capacitance Measurement

As mentioned before, the capacitance of the sample is usually orders of magnitude

smaller than the parasitic capacitance, making it challenging to detect. To address this

problem, we measure the capacitance with an a.c. capacitance bridge circuit with an

in-situ amplifier serving as an impedance transformer.

The circuit diagram is shown in Fig. 3.14a. One of the gates of the RTG device

is connected to one electrode of a reference capacitor whose capacitance is a constant.

Two a.c. voltage with the same frequency and relative phase locked are applied on the

other gate of the RTG sample as well as the other electrode of the reference capacitor.

(donated Ṽexe
iφex and Ṽrefe

iφref respectively). The voltage between the sample and the

reference capacitor (denoted Ṽb )is monitored.

The whole capacitance bridge need to designed into a compact module to load into

the cryostat. The module needs to be separated from external wires with large impedance

so that the parasitic capacitance is minimized. To realize this, a high electron mobility

transistor (HEMT) is mounted close to the sample, so that Ṽ0 can be monitored without

introducing low impedance wires to the capacitance bridge. Although the transistor gate

still needs to be biased, the bias voltage can be applied through a 100MΩ resistor to
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Figure 3.14: Capacitance bridge circuit. a, Circuit diagram. b, actual sample that is
loaded into the cryostat.
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ensure high impedance. The d.c. level of the top gate can be shifted with a bias tee, so

that the d.c. and a.c. voltage can be applied on the gate at the same time. In order

to match the impedance, a capacitor with the same capacitance value as the bias tee is

connected between the a.c. voltage source and the reference capacitor. A d.c. voltage

is also applied on the RTG layer, so that the device can act like a dual-gated transistor

without changing the bottom gate voltage (which is fixed to bias the HEMT). In order

to drive the HEMT, a source drain bias voltage (50mV to 100mV) is also required. This

introduces a source-drain current. This current is usually orders of magnitude larger

than the current flowing through the RTG sample and contributes a significant amount

of Joule heating, limiting the electron temperature and making it impossible to probe

phenomenon that only visible at ultra-low temperature. In the actual measurement, there

is no significant change of the sample property when the nominal sample temperature is

below 300mK, which indicates the base electron temperature is around 300mK when the

transistor is powered up.

To measure the capacitance, the first step is to balance the capacitance bridge, which

is done by changing Ṽref and φref to zero Ṽ0. In this case, assume φex = 0,

V x
ref

V y
ref

 =
Vex

Cref

−Cs

Ds

 (3.5)

where Cs is the capacitance of the RTG sample. The impedance of the sample also

has resistive component, this is characterized by the ”dissipation” Ds = 1/ (Rsω). ω is

the angular frequency of the a.c. voltage. Eq. 3.3.2 allows calculation of the sample

capacitance with Cref known.

Balancing the capacitance bridge is a time-consuming procedure. To speed up mea-

surement, the balancing is not performed at every point in the measurement parameter
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space. Instead, balancing is only performed at a fixed point and the capacitance at other

points are calculated by measuring V0 and assuming linear response. When off balance,

V0, Ṽex, Ṽref can be linked by a linear transformation

Ṽ0 = MṼref + Ṽoffset (3.6)

where

M = A

cos θ − sin θ

sin θ cos θ

 (3.7)

and

Ṽoffset = Ṽex

Cs cos θ +Ds sin θ

Cs sin θ −Ds cos θ

 (3.8)

The parameters A and θ in M can be calculated by using the value of Cs and Ds in

balance. When off balance, CS and Ds can be calculated from Eq. 3.8.

Convert measured values to κ

Although the absolute value of Cs can be obtained from the experiment based on

the analysis above and κ is immediately calculated. Two facts prevents this in the

actual experiment. First, the accurate determination of Cref is impossible. The reference

capacitor in the experiment is made by scratching the deposited metal patterns, which

is usually a couple of femto farrar. The small capacitance makes it difficult to obtain the

accurate value. Second, the capacitance bridge can never be perfectly balanced, this will

give an offset that becomes important when the actual change of cs is small.

With the above two reasons, the quantity directly measured in the actual experi-

ment is M = (Cp + Cparasitic)/Cref , where Cp is the capacitance between the top and

bottom gate, Cref is the capacitance of the reference capacitor, Cparasitic is the par-
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asitic capacitance of the instrument. The inverse compressibility is related to Cp by

Cp = CtCb

Ct+Cb+κ−1 ≈ κCtCb[92], where Ct(b) is the geometric capacitance between the top

(bottom) gate and the trilayer graphene. To obtain κ, M is measured at two extremes,

denoted M∞ and M0. M∞ corresponds to when the trilayer graphene is a good metal,

and is achieved by applying a large out-of-plane magnetic field and tuning the Fermi level

within a partially filled Landau level. M0 corresponds to when the trilayer is incompress-

ible, which can be achieved by applying a large displacement field D while keeping the

carrier density ne = 0. In the former case Cp = 0, therefore M∞ = Cparasitic/Cref . In the

later case, Cp = (M0 −M∞)Cref = CtCb

Ct+Cb
. From the equations above, κ = 1

2C
M−M∞
M0−M∞ ,

where the averaged geometric capacitance C = (Ct + Cb)/2 can be obtained by linear

fitting of the carrier density ne, which is known for fixed Landau level filling providing a

calibration standard.
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Chapter 4

Stoner Ferromagnetism

4.1 Overview

In this chapter, we discuss the van Hove singularities induced spontaneous ferromag-

netic polarization of the electron system into one or more spin- and valley flavors. By

measuring penetration field capacitance on the dual graphite-gated van der Waals het-

erostructures, we find a cascade of density- and electronic displacement field tuned phase

transitions marked by negative electronic compressibility when an electrical displace-

ment field D (or effectively, an interlayer potential) is applied across the sample, this is

experimentally realized by varying the static voltage applied on the two gates. The tran-

sitions define the boundaries between phases in which quantum oscillations have either

four-fold, two-fold, or one-fold degeneracy, associated with a spin and valley degenerate

normal metal, spin-polarized ‘half-metal’, and spin and valley polarized ‘quarter metal’,

respectively. For electron doping, the salient features of the data are well captured by a

phenomenological Stoner model that includes a valley-anisotropic Hund’s coupling, likely

arising from electron-electron interactions at the scale of the graphene lattice. For hole

filling, the single particle band structure features a finite-density van Hove singularity,
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Figure 4.1: Black: inverse compressibility measured at D = 0. Blue: inverse com-
pressibility calculated from the single particle, six-band continuum model.

and we observe a richer phase diagram featuring a delicate interplay of broken symmetries

and transitions in the Fermi surface topology.

Most of the experiment discussed in this chapter is from Zhou, et al, Half and quarter

metals in rhombohedral trilayer graphene, arXiv:2104.00653 (2021), although some most

recent observations are also discussed.

4.2 Inverse compressibility at zero displacement field

Although most of the magnetic phase transitions are observed at finite D, I would

like to discuss the D = 0 case first. In this regime, effects of the electron-electron

interaction is not significant and can serve as a good calibration standard to constrict

model parameters.

Fig. 4.1 shows the comparison of κ obtained by penetration field capacitance mea-

surement and theoretical calculation from the six-band continuum model. Apart from

the peaks at the charge neutrality points, the features at around ne = −1.2× 1012cm−2

and ne = 0.4 × 1012cm−2 are also predicted by the model, corresponding to the change

of Fermi surface topology. The shape of the Fermi contours are schematically shown as
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insets.

To further confirm the Fermi surface geometry, we measured the longitudinal magneto-

resistance to analyze the Shubnikov de Haas oscillations, which is shown in Fig. 4.2. The

original data is shown in panel a. For a fixed density, we perform fast Fourier transform

of the Rxx vs 1/B ⊥ result to analyze the frequency component which is shown in panel

b. Here, the y axis is the frequency of 1/B⊥ normalized by the total carrier density.

fν =
f1/B

neh/e
(4.1)

For simple Fermi surfaces, the inverse of fν represents the degeneracy of electrons. When

the system is heavily doped with electrons and holes, the strongest peak is at fν = 1/4,

which is consistent with the four-fold spin- and valley- degeneracy. At low electron/hole

density, a peak appears at fν = 1/12 instead of 1/4, indicating a twelve-fold degeneracy.

The additional three-fold degeneracy comes from the presence of three isolated pockets

in the band structure shown in Fig. 2.4 when the Fermi surface is close to the charge

neutrality point, sometimes named ”gully” in literature.

In both the four-fold and twelve-fold degenerated phases, the oscillations also shows

addition peaks at fν that are integer multiples of 1/4 and 1/12, which are the harmonics

of the base oscillation frequencies, originated from multiple cyclotron motions of the

electrons.

Between the hole-doped 4-fold degenerated and 12-fold degenerated regions, there

is an intermediate phase where a pair of oscillation is presented and the normalized

frequency fν of the oscillations has dependency on the total carrier density ne, while the

difference of the two frequency is fixed at 1/4. These features indicate the Fermi surfaces

has annular geometry, where the high-frequency and low-frequency modes corresponds

to the inner and outer Fermi contours. Since the carriers of the inner and outer Fermi
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Figure 4.2: Shubnikov de Haas oscillation at D = 0. a, Rxx vs ne and B⊥ measured
at D =0. b, Fast Fourier transform of data in a, the range of B⊥ chosen is 0.02T
to 1T. Data are plotted as a function of fν = fB/(φ0ne), where fB is the oscillation
frequency (measured in Tesla) and φ0 = h/e is the magnetic flux quantum. fν can be
interpreted as the fraction of the total Fermi surface area enclosed by a given orbit.
The multiple phases are schematically represented by the Fermi contours on the top.

52



Stoner Ferromagnetism Chapter 4

E 
(m

eV
)

0.1-0.1

0

-40

20

0
k⋅a0

0 0.8
ρ (eV-1⋅Au.c

-1
.)

0 meV
20 meV

0.4

a b

-20

Figure 4.3: a, Band structure of rhombohedral trilayer graphene with an interlayer
potential ∆1 = 0 (black) and 30 meV (blue) calculated from the six-band continuum
model (see S.I.). Here a0=.246nm is the graphene lattice constant. b, Corresponding
single-particle density of states ρ versus energy at zero temperature. Au.c. is the area
of the unit cell.

surfaces are electrons and holes respectively, the difference of the two frequencies represent

the normalized total carrier density, which is fixed at 1/4, corresponds to 4-fold spin-

and valley-degeneracy, same as the phase at higher density with simple Fermi surface

topology. The SdH oscillations give consistent results with the calculation from the

continuum model. The results indicate the Coulomb interactions do not dominate the

electronic properties at D = 0.

4.3 Displacement field-tuned Magnetic Phase Tran-

sition

An import property of RTG is that the energy band structure has significant depen-

dence on the interlayer potential ∆1. This means the band structure can be modulated

by applying an electrical displacement field D. Fig. 4.3 shows the band structure and

corresponding density of states of RTG calculated with ∆1=0 and ∆1=20meV respec-
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Figure 4.4: False-color plot of the inverse compressibility as a function of displacement
field and carrier density.

tively. RTG is a semi metal at ∆1=0 and becomes a semiconductor with an energy gap

at finite ∆1. Although less significant, the trigonal warping effect, and therefore the Van

Hove Singularity, still exist. The density of states profile at ∆1=20meV shows enhanced

peaks at the band top/bottom of the valence/conduction band as shown in Fig. 4.3.

Fig. 4.3 shows the inverse compressibility measured at zero magnetic field and base

temperature. At all values of D, the inverse compressibility has a maximum at charge

neutrality, consistent with the Dirac nodes (for D = 0) or displacement field induced

band gap (for |D| > 0) expected from the single particle band structure.

At finite D, the experimental κ features multiple regions of near constant compress-

ibility separated by boundaries where κ is strongly negative. (See also linecuts in Fig.

4.5.) Negative compressibility is generally associated with electronic correlations[93],
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Figure 4.5: Inverse compressibility as a function of displacement field and carrier
density at D =0.46V/nm (a) and -0.46V/nm (b).

Figure 4.6: False-color plot of the inverse compressibility as a function of displacement
field and carrier density calculated from the six-band continuum model.
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Figure 4.7: False-color plot of the inverse compressibility as a function of displacement
field and carrier density for electron doping. a, B⊥=0. b, B⊥=1T.

and may arise at first order phase transitions characterized by phase separation. For

electron doping, the high |D| phase diagram appears to consist of three distinct phases

at low, intermediate, and high density separated by first order phase transitions, while

for hole doping (ne < 0) the phase diagram is more complex. In both cases, however,

negative compressibility features develop at finite |D| and evolve towards higher |ne| with

increasing |D|.

As a comparison, the κ vs ne and D is also calculated from the continuum model,

shown in Fig. 4.6. While it matches the experimental data well at D = 0, the emerged

features at finite D observed in experiment have no correspondence in the calculated

results, further prove the interactive nature of those features.

From Fig. 4.4, we can see that κ is invariant with the sign change of D, which is

consistent with the symmetry of the device geometry. On the other hand, the systems

exhibits significant particle-hole asymmetry, which is a property that is already reflected

by the band structure.(see Fig. 4.3a and Fig. 2.2). We will discuss the phase diagram of
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the conduction band first since it is simpler.

Since the phases separated by negative compressibility features are not qualitatively

different in the data, we perturb the system with a perpendicular magnetic field and

the nature of competing phases is immediately revealed by finite magnetic field mea-

surements, shown for electron doping in Fig. 4.7b for a magnetic field B⊥ = 1T applied

perpendicular to the sample plane. At this field, energy gaps between Landau levels

are easily visible as peaks in the inverse compressibility, while the phase boundaries are

only slightly altered relative to the zero magnetic field case. As is evident in Fig. 4.7b

the phase transitions observed at B = 0 separate regions of contrasting Landau level

degeneracy. In the high density phase, the Landau levels have the combined four-fold

degeneracy of the spin and valley flavors native to graphene systems; similarly, at low ne

and low D, a 12-fold symmetry emerges due to additional degeneracy of local minima

in the strongly trigonally warped Fermi surface[94, 70]. However, in the intermediate

and low-density phases, respectively, the degeneracy is reduced to two-fold and one-fold.

This trend is evident in low-magnetic field magnetoresistance oscillations in the three

regimes, Fourier transforms of which are shown in Fig. 4.8. The loss of degeneracy is

consistent with a zero magnetic field phase diagram which contains two distinct phases

that spontaneously break the combined spin- and valley isospin symmetry. In this pic-

ture, the intermediate density phase consists of two degenerate Fermi surfaces at B⊥ = 0,

constituting a ‘half-metal’ as compared to the normally four-fold degenerate graphene,

while the low-density phase has a single Fermi surface and is thus a ‘quarter-metal.’
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Figure 4.8: Fourier transform of Rxx(1/B) at D = −0.43 V/nm and the indicated
values of ne, expressed in units of ×1012cm−2. Data are plotted as a function of
fν = fB/(φ0ne), where fB is the oscillation frequency (measured in Tesla) and
φ0 = h/e is the magnetic flux quantum. fν can be interpreted as the fraction of
the total Fermi surface area enclosed by a given orbit.

4.4 Stoner Ferromagnetism

To better understand the mechanisms leading to the rich magnetic phase diagram

observed, we study a four-component Stoner model discussed in Chapter 2.

E =
∑
α

E0(µα) +
1

2
UN

∑
α 6=β

nαnβ (4.2)

Here A, Au.c. are the area of the sample and unit cell respectively, α and β index the

four spin- and valley flavors, and nα and µα are the density and chemical potential for

a given flavor α. The first term, with E0(µα) =
∫ µ

0
ερ(ε)dε, where ρ(ε) is a density of

states per area, accounts for the kinetic energy, and is minimized by occupying all flavors

equally. The second term accounts for the effect of exchange interactions, whose strength

is parameterized by a constant energy U and which we assume to be symmetric within

the spin- and valley isospin space. The exchange energy is minimized when fewer flavors

are occupied.

The calculation is firstly performed to find a combination of nα to minimize the

total energy (details discussed in Chapter 2, an example is shown in Fig. 4.9a, which is
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Figure 4.9: Stoner magnetism. a, Partial densities of each spin-valley flavor density
calculated from the Stoner model at a fixed interlayer potential of 20 meV. b, Inverse
compressibility at B = 0 calculated from the Stoner model described in the main text
with U = 30 eV, J = −9 eV. Inset: Same results with U = 30 eV, J = 0.

calculated with ∆1=20eV.). Then κ is obtained with numerical derivative.

The inverse compressibility calculated within this model (Figure 4.9b) captures sev-

eral key features of the experimental data. First, the model produces a cascade of sym-

metry broken phases in which the degeneracy of the Fermi surface is reduced (Fig. 4.9a).

Moreover, the phase transitions separating these phases follow trajectories in the ne−D

plane very similar to those observed experimentally. This dependence can be directly

related to the evolution of the band-edge van Hove singularities, which cause the Stoner

criterion for ferromagnetism to be satisfied at ever higher |n| with increasing |D| as more

states accumulate near the band edge.

However, the model deviates significantly from the experimental data, predicting a

three-fold degenerate phase that is not observed. The spurious phase can be traced

to the artificial SU(4) symmetry of interactions within these models. More accurately,

the internal symmetry group of rhombohedral trilayer graphene consists of SU(2) spin

59



Stoner Ferromagnetism Chapter 4

0 0.5 1
ne (1012cm-2)

n α
(1

012
cm

-2
)

0
0.1

0.2

0.3

a

nK ,↑
nK’,↑
nK ,↓
nK’,↓

0 0.5 1
0

10

20

30

∆ 1
 (m

eV
)

ne (1012cm-2)

b

5

15

25

κ (eV⋅Au.c.)
0 50

Figure 4.10: Stoner magnetism with anisotropic interaction. a, Partial densities of
each spin-valley flavor density calculated from the Stoner model at a fixed interlayer
potential of 20 meV. b, Inverse compressibility at B = 0 calculated from the Stoner
model described in the main text with U = 30 eV, J = −9 eV.

conservation, charge conservation, time reversal, and the lattice symmetries. Within this

lower symmetry group, a variety of interactions that are anisotropic within the spin-

and valley-space are allowed, particularly Hund’s-type couplings which favor phases with

particular broken spin and/or valley symmetries (see S. I.).

This problem has been considered in the context of spontaneous symmetry breaking

in graphene quantum Hall ferromagnets[95, 77], taking the form of an intervalley spin

exchange coupling that favors the formation of a canted antiferromagnetic state at charge

neutrality. Motivated by this observation, we introduce a flavor anisotropy of the form

Φ′/A = JAu.c. (nK↑ − nK↓) (nK′↑ − nK′↓) . (4.3)

which is an example of Eq. 2.3. For J > 0, this term favors opposite spin polarization

in the two valleys, as is thought to occur in graphene quantum Hall ferromagnets, while
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for J < 0 this term corresponds to a Hund’s coupling and favors valley unpolarized,

spin ferromagnetic ground states. The phase diagram including this term—which is

independent of the sign of J , is shown in Fig. 4.10 for U = 30 eV, with |J |/U = 0.3.

To constrain the precise broken symmetries in the half- and quarter-metal phases, we

study the evolution of the phase transitions in an in-plane magnetic field, which couples

primarily to the electron spin through the Zeeman effect. The resulting change in density

at which a given transition occurs is directly proportional to the difference in Zeeman

energy between the two competing phases, making tilted fields a sensitive probe of relative

spin polarization. As shown in Fig. 4.11a, Zeeman energy favors the half-metal over the

fully symmetric—and necessarily spin unpolarized—state. Moreover, the phase transition

density shows a cusp at B‖ = 0, implying an energy difference that is linear in B‖ as

expected for a ferromagnetic half metal with a divergent spin susceptibility at B = 0. In

contrast, the transition between half- and quarter metal is unaffected by B‖ as expected

for identical–and presumably full—spin polarization in both phases. Measurements of

the Hall effect (Figs. 4.11b) show anomalous Hall effect in the quarter-metal phase but

no corresponding effect in the half-metal. This is expected due to the contrasting Berry

curvatures in the two valleys, which cancel for valley unpolarized states but may give

rise to an intrinsic anomalous Hall effect for valley polarized states[96]. Taken together,

we conclude that the quarter metal is spin- and valley polarized while the half-metal is

spin polarized but valley unpolarized. Interestingly, this implies a ferromagnetic Hund’s

coupling (J < 0), in contrast to the quantum Hall ferromagnet in mono- and bilayer-

graphene[97].
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Figure 4.11: Order of symmetry breaking. a, Partial densities of each spin-valley
flavor density calculated from the Stoner model at a fixed interlayer potential of 20
meV. b, Inverse compressibility at B = 0 calculated from the Stoner model described
in the main text with U = 30 eV, J = −9 eV.

4.5 Ferromagnetism and Fermi surface topology in

the valence band

As compared to electron doping, hole-doped rhombohedral trilayer shows a consider-

ably more complex phase diagram, as is seen in the B⊥ = 1 T magneto capacitance data

shown in Fig. 4.12b. The contrast between the phase diagrams of the valence and con-

duction bands can be related to the single particle band structure, which differs markedly

between the two. Most importantly, in the valence band the density of states diverges at

a finite density n∗e ≈ −5 × 1011cm−2, which corresponds to the merger of three disjoint

Fermi pockets at low hole density into a single annular Fermi surface. At still higher |ne|,

the small electron pocket centered at each corner of the Brillouin zone disappears, lead-

ing to a step discontinuity (see Fig. 4.1b). As a result, density-driven phase transitions

in the valence band may be of several general types. First, as in the conduction band

isospin symmetries may break, reducing the degeneracy of the Fermi surface. In addi-

tion, Lifshitz transitions in the topology of the Fermi surface, which are already evident
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Figure 4.12: False-color plot of the inverse compressibility as a function of displace-
ment field and carrier density for hole doping. a, B⊥=0. b, B⊥=1T.

in the single particle band structure, may occur. Finally, the nonmonotonic dependence

of density of states on ne may favor states with partial isospin polarization, analogous

to conventional ferromagnets, and allowing for Lifshitz transitions of a second type in

which new Fermi surfaces are nucleated in previously unoccupied spin/valley flavors.

To disentangle these phases experimentally, we measure the resistivity as a function

of perpendicular magnetic field and ne and plot the Fourier transform of Rxx(1/B) in

Figs. 4.13 with frequencies normalized to that corresponding to the total carrier density.

Peak position thus indicates the fractional share of the total electrons enclosed by a

given Fermi contour. At the highest values of |ne|, a single peak (and its harmonics) is

visible at fν = 1/4, consistent with four Fermi surfaces each enclosing an equal share

of the total density. As ne crosses the threshold of ne ≈ 1.7 × 1012 cm−2 in Fig. 4.13c

(corresponding to the step in compressibility highlighted in Figs. 4.1) the frequency of

the quarter-density peak begins to grow, and a second peak emerges at low frequency.

We interpret this as indicating a Lifshitz transition where a small electron Fermi surface

is nucleated in the middle of the (now annular) Fermi sea, precisely as predicted by the

single particle band structure.
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Figure 4.13: SdH oscillation at hole doping. a and b Rxx vs ne and B⊥ at
D = 0.23V/nm and D = 0.40V/nm respectively. c, Fourier transform of quantum os-
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Fermi contours in density domains distinguished by their quantum oscillations. d, As
in panel c, but for D = 0.40 V/nm.
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Figure 4.14: Hysterestic transport. a, Low magnetic field Hall resistivity measured
at D = 0.43V/nm at two values of ne. Hysteretic anomalous Hall effect is observed
in the valley-polarized quarter metal, but not in the valley unpolarized half metal. b,
Detail of the phase boundary between the quarter metal and symmetric low-density
state. c, Resistivity measured as a function of D across this boundary. The transition
is strongly first order, showing hysteresis as a function of applied gate voltages.

Upon further lowering of |ne| towards zero, a sudden transition in the quantum os-

cillations is observed near ne ≈ −1.15× 10−12 in Fig. 4.13c. This threshold corresponds

to a subtle but visible low κ feature in Fig. 4.1. On the low |ne| side of the transition,

the oscillation frequencies are less well-defined, but show spectral weight concentrated

most prominently at fν slightly less than 0.5 and at very low frequencies. These features

are consistent with a Stoner-type transition to a partial isospin polarized (PIP) phase,

with majority and minority charge carriers in two distinct pairs of isospin flavors. These

contours continuously evolve until the fν of the high frequency peak converges to 1/2,

whereupon the low frequency peak disappears, consistent with a Lifshitz transition from

the PIP phase into a half-metal. Remarkably, this pattern repeats itself as the density

is lowered further, as shown in Fig. 4.13d: the simple half-metal transitions into an

half-metal with an annular Fermi sea, then to a PIP phase with one majority and one

minority flavor, then into a simple quarter metal and then into an annular quarter metal

before isospin symmetry is restored at the lowest densities. At these very low densities,

each isospin flavor hosts three Fermi pockets, leading to observed oscillation frequencies

near fν = 1/12.
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Figure 4.15: In-plane magnetic field dependence of the phase boundaries. a, κ vs ne

and B‖ at D =0.37V/nm, which covers the phase boundary between a 4-fold degen-
erate phase and a 1-fold degenerate phase. b, Same as a, measured at D = 0.33V/nm,
which covers a phase boundary between a 1-fold degenerate phase with a simple Fermi
surface and a 1-fold degenerate phase with annular Fermi surface. c, Rxx vs ne and
B‖ at D =0.37V/nm, which covers a phase boundary between a 4-fold degenerate
phase and a 2-fold degenerate phase.

As for the electron side, many of these transitions show characteristic B‖-dependence

(Fig. 4.15)) that allow us to confirm the spin- and valley-polarizations of the half- and

quarter-metal states, which we find to be similar to those on the electron side. We note,

however, that transitions involving the PIP phases do not generally show simple linear-in-

B‖ behavior; combined with the complexity of the finite B⊥ magnetoresistance suggests

that these domains may harbor multiple PIP phases.

4.6 Phase transition in the 1x phase at hole doping

As mentioned in the previous section, the complexity of the phase diagram at hope

doping can originate from the complicated Fermi surface and the presence of PIP phases.

However, even for phases with simple and identical Fermi surfaces, the spin- and valley

can still form different ordering. This is the case for the hole-doped phase where both

spin- and valley- degeneracy are lifted, and the Fermi surface is circular.

Fig. 4.16 shows the inverse compressibility near the ”simple” 1x phase. With an

1T out-of-plane magnetic field applied (Fig. 4.12), this region shows no spin- and valley
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ment field and carrier density for hole doping near the spin- and valley- symmetry
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degeneracy, therefore the naive assumption would be that the entire region is spin- and

valley-polarized state. However, as shown in Fig. 4.16, this region has actually two

separated phases, which we named ”α-phase” and ”β-phase” respectively. The phase

boundary is blurry but distinguishable, and become sharp with an in-plane magnetic

field applied.

From (ref), with both spin- and valley- symmetry broken, there are three possible

phases: the spin- and valley- polarized phase (an example is 〈K, ↑〉), the spin-polarized

intervalley coherent phase (an example is 〈K, ↑〉+ eiθ 〈K ′, ↑〉), and the spin valley-locked

intervalley coherent phase (an example is 〈K, ↑〉+eiθ 〈K ′, ↓〉). For the above three phases,

only the first one is valley-polarized, and only the last one is spin-unpolarized. The α-

and β-phase is probably two of them.

The signature of valley-polarization is anomalous Hall effect and magneto hysteresis

as no long-range magnetic ordering is possible for spin-polarized phases in the absence of

spin-orbit interaction. Therefore, we measured the Hall resistance across the two phases,

shown in Fig. 4.16. The β-phase shows a typical anomalous Hall effect with hysteresis.

This immediately reveal the nature of the β-phase: a spin- and valley- polarized state,

similar to the 1x phase at electron doping. Contrary to the β-phase, the α-phase does

not show an obvious anomalous Hall effect or magneto hysteresis, although the response
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of the Hall resistance to magnetic field still deviates from the norm Hall effect. The

non-linear response is similar to multi-band system, where electrons from more than one

band contribute to the Hall resistance.

The result from measurement of Hall effect shows that the β-phase is spin- and

valley-polarized, while the α-phase belongs to one of the other two phases, where the

valley-degree of freedom forms inter-valley coherent state. This is also consistent with

the magneto-resistance measurements result shown in Fig. 4.17a. A valley-polarized

phase has finite orbital magnetic moment and therefore favored by out-of-plane magnetic

field.

On the other hand, Fig. 4.17b shows that an in-plane magnetic field favors the α-

phase. Since the β-phase has already the largest possible spin-polarization. The response

to in-plane magnetic field can only be an orbital effect. In multilayer graphene system, the

interlayer hopping allows circular motion of electrons perpendicular to the sample plane.

This cyclotron motion will generate a magnetic moment that is parallel to the sample
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plane. Given that this effect is usually smaller or comparable to the Zeeman effect. The

alpha-phase is more likely to be a spin-polarized intervalley coherent state. Both the α-

and β- phases are spin-polarized, but the intervalley coherent state has a larger in-plane

orbital magnetic moment and therefore favored by a large in-plane magnetic field.

Puzzle still remains for the nature of the two phases. On the one hand, the mechanism

for an intervalley coherent state to gain more in-plane magnetic moment compared to

a valley-polarized phase is not obvious. On the other hand, the classification of spin-

valley- nondegenerated state into three phases is only accurate when the Fermi surface is

within an energy gap. For metallic state, there are more flexibility for electrons to occupy

specific states in the momentum space to, for example, maximize orbital magnetization.

These phenomena are beyond Stoner’s theory.
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4.7 Hartree-Fock model

The content of this section is from Zhou, H et al, Half and quarter metals in rhom-

bohedral trilayer graphene, arXiv:2104.00653 (2021). The content is mainly contributed

by Tobias Holder and Erez Berg.

To test the robustness of the results obtained from the simple Stoner model, we

perform a more detailed Hatree-Fock analysis of the cascade of spin and valley symmetry-

breaking transitions as a function of density. We begin with the Hamiltonian H0 in Eq.

4.7, and add to it a screened Coulomb interaction

Hc =
1

2

∑
α,β,i,j

∫
d2rd2r′U(|r − r′|)ψ†iα(r)ψ†jβ(r′)ψβj(r

′)ψiα(r), (4.4)

where α, β = 1, . . . , 4 runs over the spin and valley indices, i, j = 1, . . . , 6 label the two

sublattices and three layers (this is the six-dimensional space in which H0 is written),

and ψ†jα(r) creates an electron at position r, sublattice/layer j, and spin/valley α. The

interaction is taken to be U(r) =
∫

d2q
(2π)2

U(q)eiq·r, where

U(q) =
2πe2 tanh qd

εq
, (4.5)

corresponding to screening by two symmetric metallic gates at a distance d above and

below the system (ε is an effective dielectric constant, which includes the HBN and the

screening from the remote bands of the trilayer graphene).

The screened Coulomb potential is assumed to depend only on the local density of

electrons, and does not depend on any of the internal indices (such as spin and valley).

This type of interaction is expected to dominate when the average distance between

charge carriers is much larger than the inter-atomic spacing, as is always the case in our

system. Later, we will include phenomenologically the effects of short-distance interac-
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tions that may depend on the spin and valley indices.

We treat the Hamiltonian H = H0 + Hc within the Hartree-Fock approximation.

To this end, we use a variational quadratic Hamiltonian Hvar to generate a variational

state, and minimize the variational free energy over the parameters of Hvar. In order to

simply the calculation, we restrict the variational state in several ways: 1. All the bands

away from the Fermi level are “frozen”, i.e., we do not allow the variational Hamiltonian

to mix the active (partially filled) band with the completely filled or completely empty

bands; 2. We allow only states that preserve the separate spin and valley conservation

symmetries of the Hamiltonian. The first simplification is justified as long as the remote

bands are separated from the active band by a sufficiently large gap. Most crucially, it

requires the displacement field to be sufficiently large compared to the magnitude of the

Coulomb interaction. The second simplification omits the possibility of states that break

the valley conservation symmetry spontaneously by occupying states that are coherent

superposition of the two valleys. We leave the study of such states to future theoretical

work.

The blue curves in Fig. 4.19 show representative results for the variational Hatree-

Fock free energy per electron as a function of the electronic density of different types of

spin– and valley–polarized states, measured relative to the symmetric state (where all

the spin and valley flavors are populated equally). As in the Stoner model, the states

labelled by l = 1, 2, 3 are states in which l spin or valley flavors are populated, and the

other 4− l flavors are empty. The results are qualitatively similar to those of the Stoner

model, in that the system undergoes a cascade of first-order transitions upon increasing

the density from the charge neutrality point, according to the sequence (1,2,3,4). Qual-

itatively similar results are also obtained for other values of the displacement field ∆1

and for a hole-doped system.

In order to match the experiment, where the l = 3 state is not observed, we need to
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consider interaction terms beyond the long-range Coulomb interaction [Eq. (4.4)] which

is SU(4) symmetric in spin and valley space. Interactions at ranges of the order of a

few lattice constants (either Coulomb or phonon-mediated) can depend on the spin and

valley indices of the electrons. We model these short-range terms as

HA =
Ũ

2

∫
d2r : (nK + nK′)

2 : +
Ṽ

2

∫
d2r : (nK − nK′)2 : +J̃

∫
d2r :σK · σK′ :, (4.6)

where nK(r) and nK′(r) are the local densities of electrons in the two valleys. The opera-

tors σK(r), σK′(r) are the local spin densities, defined as σK(r) =
∑

s1,s2
ψ†Ks1(r)σs1,s2ψKs2(r)

(and similarly for σK′), where σs,s′ are Pauli matrices acting in spin space, and ψ†Ks is

the creation operator for electrons at valley K and spin s =↑, ↓ in the active band that

crosses the Fermi level (which we project to in our calculation). Normal ordering of an

operator Ô is denoted by :Ô :. The Ũ term is a local spin and valley-isotropic interaction,

Ṽ parameterizes the difference in the local interaction strength between electrons of the

same valley and electrons in different valleys, and the J̃ term is a spin-exchange Hund’s

rule coupling between electrons of different valleys. Eq. (4.6) is the most general contact

(zero-range) interaction term between electrons in the active band, which is compatible

with all the symmetries of the problem.

Our parameterization of the short-range interactions is related to that used by Kharitonov [77]

in modeling the spin and valley polarization of electrons in the zero Landau levels in

graphene,

HA =

∫
d2r
[uz

2
:(ψ†τ zψ)(ψ†τ zψ) : +u⊥ : (ψ†τ+ψ)(ψ†τ−ψ) : +H.c.

]
, (4.7)

where τ are Pauli matrices that act in valley space and ψ† = (ψ†K↑, ψ
†
K↓, ψ

†
K′↑, ψ

†
K′↓), by

the following relations: Ũ = −u⊥
4

, Ṽ = uz − u⊥
4

, J̃ = −u⊥
2

.
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Figure 4.19: Free energy f per electron as a function of electron density, measured rela-
tive to that of a spin and valley-symmetric state, fsym. The blue curve shows the result
of a calculation with only a long-range, spin and valley-symmetric screened Coulomb
interaction (Eq. (4.4)). The red curve was obtained by including also an interaction
of the form (4.6) with J̃ = −0.03U(q = 0) (see Eq. (4.5)), Ũ = Ṽ = 0. The top
(bottom) panel shows results for a displacement field of ∆1 = 20meV (∆1 = 40meV),
respectively. The label l indicates the number of populated spin and valley flavors.
The effective dielectric constant was taken to be ε = 8, and the distance to the metallic
gates is d = 150a0, where a0 is the unit cell size of graphene. The calculations were
performed at a low but finite temperature, T = 0.2 meV.
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We have explored the Hartree-Fock phase diagram of the system including the short-

range interaction term (4.6) for a few parameter sets, leaving a complete mapping of

the phase diagram for future work. The red curves in Fig. 4.19 show the free energy as

a function of electronic density with an additional ferromagnetic Hund’s rule coupling

of strength J̃ = −0.03U(q = 0) (with U(q) given by Eq. (4.5)). The other parameters

in Eq. 4.6, Ũ and Ṽ , were set to zero. As can be seen in the figure, this value of the

Hund’s coupling is sufficient to completely suppress the l = 3 phase, in agreement with

the experiment. Since J̃ < 0, the region labelled by l = 2 is a valley-unpolarized, spin-

polarized phase; this phase is favored by the J term compared to the l = 3 region, causing

the disappearance of the latter phase. For |J̃ | < 0.03U(0), the l = 3 region reappears.

The l = 2 region has the same spin polarization per electron as the l = 1 region, in

agreement with experiment (see Figs. 4.7 and 4.12 of the main text).

The l = 3 region can also be suppressed by increasing Ṽ while keeping Ũ = −Ṽ , which

increases the repulsion between electrons in the same valley relative to the repulsion

between electrons of opposite valleys. However, even for Ṽ as strong as 0.25U(q = 0),

the l = 3 region is not completely eliminated. Thus, within our model, we conclude

that the inter-valley Hund’s rule coupling J̃ is much more effective than the Ṽ term in

suppressing the l = 3 region.

The anisotropic interaction terms that are necessary to suppress the 3-fold region

in our calculations originate from lattice scale Coulomb repulsion or electron-phonon

coupling. The natural scale for such terms can be estimated as
∫ a0

0
d2re2/(εr) = 2πe2a0/ε,

where a0 = 0.246 nm is the graphene unit cell size and ε is an effective dielectric constant,

taken for simplicity to be identical to that used in the long-range Coulomb interaction

(4.5). Since we have used d = 150a0 ≈ 40 nm in our calculations, the short-range

interactions are naively estimated to be of the order of 0.5% − 1% of U(q = 0). The

Hund’s rule term needed to suppress the l = 3 region is of this order of magnitude
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(although somewhat larger).

It is interesting to note that the current experiment strongly suggests that the 2-

fold region is fully spin polarized, indicating that J̃ < 0. In contrast, in the ν = 0

quantum Hall insulator in both monolayer and bilayer graphene, experiments indicate

that the ground state is a valley-unpolarized, nearly spin-unpolarized state (a “canted

antiferromagnet” [98, 99]), corresponding to J̃ > 0. The difference between the two may

come from the strong renormalization of the short-range anisotropic interactions from

remote bands, which may be very different in our system than in monolayer and bilayer

graphene in the quantum Hall regime.
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Superconductivity

5.1 Overview

Owing to the instability of Fermi liquids to arbitrarily weak attractive interactions[100],

most elemental metals become superconducting at sufficiently low temperatures. How-

ever, some metals become magnetic instead. In these systems, time reversal symmetry

is spontaneously broken, suppressing conventional superconducting pairing that relies on

the degeneracy of Kramer’s pairs. The competition between magnetism and supercon-

ductivity can be understood from the point of view of the density of states: high density

of states simultaneously favors superconductivity[101] and magnetism[1], with the ground

state determined by the relative strength of the effective attractive interaction—typically

mediated by phonons—and inter-electron Coulomb repulsion. In other situations, for

example in heavy-fermion compounds[102], magnetism and superconductivity may be

cooperative. In this scenario, magnetic fluctuations may themselves mediate attractive

interactions between electrons[103], typically resulting in superconductivity with pairing

symmetries other than s-wave.

In this chapter we discuss the observation of superconductivity in rhombohedral tri-
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layer graphene (RTG) on the cusp of an isospin symmetry breaking transition. The

crystal structure of RTG is shown in Fig. 2.2a. As in other honeycomb carbon systems,

near zero doping the Fermi surfaces are localized to the two inequivalent valleys at the

corners of the hexagonal Brillouin zone. Of relevance for isospin symmetry breaking, the

valley provides an internal degree of freedom in addition to the electron spin. In the

absence of an applied perpendicular displacement field D, the nonineracting electronic

structure[72, 23] of RTG is described by three Dirac crossings in each valley (see Fig.

2.3b). At finite carrier density ne ≈ 1012cm−2, these Dirac pockets merge at a saddle-

point van Hove singularity, where the density of states diverges (2.5). At finite D the

Dirac cones become gapped, and the van Hove singularities are enhanced in magnitude.

Experimentally, RTG hosts a cascade of transitions at finite doping[61, 104] where one or

more of the spin- and valley symmetries spontaneously breaks. These instabilities appear

to be generic to rhombohedral graphite[62], and are predicted to apply to Bernal bilayer

graphene as well[105].

Most content of this chapter is from Zhou, H. et al., Superconductivity in rhombohedral

trilayer graphene.“ arXiv:2106.07640 (2021).

5.2 Superconducting phenomenology in RTG

The main result of this chapter is summarized in Fig. 5.1, which shows a false-color

plot of the longitudinal resistivityRxx as a function ofD and ne. We observe three distinct

superconducting states at these densities, which render in bright cyan on the color scale

of Fig. 5.1e and which we denote SC1, SC2 and SC3. All states show nonlinear transport

signatures typical of superconductivity at sufficiently low temperatures (see Figs. 5.2 and

additional data in Fig. 5.3).

Fitting the nonlinear voltage to a Berezinskii–Austerlitz–Thouless model[106, 107]
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Figure 5.1: Resistivity as a function of electron density ne and perpendicular displace-
ment field D measured at base temperature.

gives TBKT = 106mK for SC1, TBKT = 16mK for SC3 while for SC2 TBKT appears to be

just below the base temperature of our measurement system (see Fig. 5.4).

Notably, both superconducting states occur near transitions in the normal state resis-

tivity associated with a change in the degeneracy of the Fermi surface—in other words,

superconductivity occurs at a symmetry breaking transition. To better understand this

connection, we measure quantum oscillations at low magnetic fields B⊥ < 1T (Fig. 5.5a)

in the density range spanning SC1 at fixed D = 0.4V/nm. Several oscillation periods are

visible across this range, indicating complex Fermi surfaces. To understand these data

more quantitatively, we plot the Fourier transform of Rxx(1/B⊥) as a function of fν , the

oscillation frequency normalized to the total carrier density (Fig. 5.5b). fν corresponds

to the fraction of the total Fermi sea area enclosed by the Fermi surface generating the

peak. Three regions of qualitatively different quantum oscillation spectra are visible. At

extreme right, a single peak at fν = 1/2 indicates two equal area Fermi surfaces each
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Figure 5.2: Temperature and current dependence of the differential resistivity dV/dI
measured at the points in the n−D plane indicated in Fig. 5.1.

enclosing half the total Fermi sea. We associate this regime with a spin polarized, valley

unpolarized “half-metal’ state[104] with a simply connected Fermi sea in each valley. At

the extreme left of the plot, several oscillation peaks with density dependent frequencies

are visible. These correspond to the inner- and outer boundaries of an annular Fermi

sea with the full four-fold spin- and valley-degeneracy (and harmonics). Intermediate be-

tween these two phases, the oscillation spectrum is more complex, including both strong

peaks at fν . .5 as well as at fν < .1. We identify this regime with one or more partially

isospin polarized (PIP) phases, where the system has broken one of the spin- or valley

symmetries but is not completely polarized into two isospin components. Comparing

the quantum oscillation spectrum to base temperature transport measurements at B=0

(Fig. 5.5) shows that SC1 occurs within the symmetric, annular phase and adjacent to

the boundary with the PIP phase.

The appearance of superconductivity so close to a symmetry breaking phase transition

opens the possibility of an unconventional superconducting state. A characteristic of

many unconventional superconductors is their fragility with respect to disorder, due to

the inapplicability of Anderson’s theorem[108]. Disorder in superconductors is quantified
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by the ratio of the coherence length (ξ) to the mean free path (`), d = ξ0/`, with

the superconductivity destroyed when d ≈ 1 for unconventional superconductors[109].

To assess d in RTG, we study the magnetoresistance of both the superconducting and

normal states.

Fig. 5.6 show the dependence of SC1 on the out-of-plane magnetic field B⊥. The

critical BC⊥ is in the 10mT range. Within Ginzburg-Landau theory, BC⊥ is related[110]

to the coherence length by 2πξ2 = φ0/B
C
⊥ , where φ0 is the superconducting flux quantum.

As a result, ξ ≈ 150− 250nm for SC1. ` may be estimated from the Drude conductivity

R ≈ h
e2

1
4kf `

where h is Planck’s constant, e is the elementary charge, kf is the Fermi wave

vector. Taking kf =
√
πne ≈ .25nm−1 and a normal state resistance of R ≈ 20Ω produces

an estimate of ` ≈ 1µm, considerably larger than ξ and implying d . 0.2. However, this

estimate for ` is comparable to the lateral dimensions of our device, calling into question

the validity of the Drude approach[87]. In fact, qualitative features suggest ` may be

considerably longer. Fig. 5.7a show a circuit schematic for measuring the nonlocal

magnetoresistance, which has been used to detect transverse electron focusing in other

graphene heterostructures[111, 112]. Measured data in the regime of SC1 (Fig. 5.7b)

show a pronounced feature near B⊥ ≈ .1T , consistent with transverse electron focusing
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between the contacts, which are separated by a pitch of L ≈ 2.3µm. This feature–which

is observed across all densities in our device (Fig. 5.7)—suggests ` & πL/2 ≈ 3.5µm.

Taking this estimate for ` gives a disorder parameter d ∼ .05. These estimates place the

superconductivity firmly in the clean limit, where unconventional superconductivity may

be expected to survive.

To further explore the properties of SC1, we show the response to an in-plane magnetic

field in Fig. 5.8a. The in-plane critical field B‖C is several hundred millitesla, more

than one order of magnitude larger than B⊥C consistent with the 2D nature of the

superconductivity. To explore the mechanism for the magnetic field induced breakdown

of superconductivity, Fig. 5.8b shows the dependence of both TBKT and T1/2 on B‖. The
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data are well fit by the relation TC/T
0
C = 1−

(
BC‖/B

0
C‖

)2

for a superconductor limited

by Pauli paramagnetism[113, 114], where B0
C‖ and T 0

C describe the T=0 critical field and

B‖ = 0 critical temperature, respectively. For both fits, we find µBB
0
C‖/(kBT

0
C) = 1.7,

close to the values 1.23 predicted by weak coupling BCS theory without accounting

for the Coulomb repulsion or finite temperature effects. We thus conclude that the B‖

dependence is likely compatible with a conventional spin-singlet order parameter.

In contrast, the phenomenology of SC2 is not compatible with conventional spin-

singlet pairing. As is evident from the quantum oscillations shown in Figs. 5.9, SC2

emerges from a two-fold degenerate annular Fermi sea associated with a spin-polarized

half-metal[104].

While the low TC of SC2 complicates quantitative analysis of the kind presented for

SC1, signatures of SC2 persist to very large values of B‖, with BC⊥ and the critical current

nearly unchanged for B‖ as high as 1T (Figs. 5.11). Taking a conservative estimate of

50mK for T 0
C and 1T for B0

C‖, SC2 violates the Pauli limit by more than one order of

magnitude, consistent with a spin-polarized superconductor.
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For attractive interactions of finite range, such as arise from electron phonon interac-

tions, pairing potentials are attractive in all angular momentum channels. The potential

is strongest in the s-wave channel, favoring conventional spin-singlet pairing in normal

metals. In the spin-polarized half-metal regime where SC2 occurs, electrons with reversed

spin are separated energetically from the ground state by the exchange energy, which at

several meV[104] is at least two orders of magnitude larger than observed superconduct-

ing gaps. Spin-singlet pairing is thus energetically precluded. The unique properties of

graphene nevertheless allow for superconductivity from conventional pairing mechanisms.

Most importantly, the negligible spin-orbit coupling endows the spin-polarized half-metal

with spinless time-reversal symmetry, which guarantees degeneracy between electrons in

opposite valleys but with the same spin even in the absence of inversion symmetry. The

smaller TC of SC2 relative to SC1 is consistent with pairing in a higher angular momen-

tum channel by the same interaction. One natural order parameter, proposed for moire

systems with similar symmetries, is the spin-triplet, valley singlet 〈ĉ†k↑ĉ
†
−k,↑〉[115, 116].

This form of superconductivity shares many similarities with conventional superconduc-

tors, most notably protection from intra-valley scattering by smooth disorder potentials.
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5.3 Discussion

The common features shared by SC1 and SC2 suggest several possible mechanisms,

both conventional and all-electronic.

Most obviously, the appearance of superconductivity near symmetry breaking phase

transitions suggests that fluctuations of the proximal ordered state may play a role in

pairing[103]. The plausibility of this picture hinges on the nature of the transition.

Experimentally, the sudden jump in quantum oscillation spectra observed near the su-

perconductors is suggestive of a first order transition. In this case, fluctuations might be

suppressed. However, the resistivity of the normal state changes only gradually across the

transition, contrasting with other isospin transitions studied in the same sample that are

strongly first order[104]. Measurements of the thermodynamic compressibility[104] sim-

ilarly do not show strong negative compressibility where superconductivity is observed,

allowing for the possibility of a continuous transition.

The nature of the proximal ordered state also plays a key role in fluctuation me-
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diated superconductors, with different orders producing attraction in different pairing

channels[103]. In RTG, in-plane field measurements show that the PIP phase proximal

to SC1 is likely spin-unpolarized (Fig. 5.12). To match the experiment, then, a theory

of fluctuation mediated superconductivity for SC1 should produce an apparently Pauli-

limited superconductor from fluctuations of a spin-unpolarized isospin ordered state–a

strong constraint.

Alternatively, superconductivity and symmetry breaking may arise in close proximity

from unrelated mechanisms[40, 117]. Within BCS theory, the superconducting transition

temperature in the antiadiabatic limit[3] applicable to low-density electron systems is

approximated by

TC = TF e
−1/λ (5.1)

where the Fermi temperature TF ≈ 50K in the regime of interest and λ = gρ is the

dimensionless coupling constant characterizing attractive interactions, which depends on

the coupling constant g and the density of states. For a density independentg—as ex-

pected for phonon mediated attraction, for example—-superconductivity is observed at
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temperature T when ρ exceeds ρSC = 1
g log(TF /T )

. This approach has been used to predict

superconductivity in rhombohedral graphite[118]. However, high density of states also

favors symmetry breaking, with the boundary between ordered and disordered states de-

fined by the Stoner criterion, ρFM > 1/U where U parameterizes the Coulomb repulsion.

As ρ increases—as occurs in our experiment as |ne| is reduced—one of two scenar-

ios obtains. For ρFM < ρSC , the Stoner criterion is satisfied first, and the Fermi liquid

becomes magnetic. As a result, ρ decreases, the Kramers degeneracy is lifted, and super-

conductivity is not observed. Conversely, if ρFM > ρSC , superconductivity is observed.

However, as the density of states is further increased above ρFM , the system nevertheless

becomes magnetic. In this case the domain of superconductivity is bounded from below

by ρSC and from above by ρFM . Superconductivity occurs at the cusp of a magnetic

transition, precisely as observed, despite the lack of a causal link between the two.

Bolstering the case for this scenario is the fact that both superconductors arise at the

threshold of a magnetic transition but are predominantly within the disordered phase;

quantities such asBC‖ andBC⊥ rise gradually as the isospin symmetry breaking transition

is approached before rapidly collapsing at the transition itself. However, a key question

remains as to whether this picture is consistent with the seemingly narrow range of ne

over which superconductivity is observed. For example, SC1 occurs over a density range

∆n/n ≈ 5%. Comparing the maximum TC ≈ 100mK to our estimated base temperature

of 30-40mK, we estimate ∆TC/TC ≈ 0.6 − 0.7 over this same range. For this to be

accounted for entirely by a change in λ, ∆λ/λ ≈ .1, about twice as large as expected

from single-particle calculations of the density of states. More detailed calculations (for

instance, accounting for both the Coulomb repulsion and finite temperature effects[119])

may assess whether this quantitative discrepancy is significant.

In both phonon- and fluctuation-mediated superconductors, high temperature trans-

port typically shows signs of electron scattering by the same neutral modes that mediate
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the superconductivity[120]. We find no sign of enhanced high temperature scattering, at

least up to 20K (Fig. 5.12). A mechanism for superconductivity—albeit not usually in

the s-wave channel—that does not invoke soft modes was given by Kohn and Luttinger

based on the intrinsic instability of the Fermi liquid[121]. While thought to occur only at

experimentally inaccessible temperatures and disorder strengths in most materials, it has

been proposed[122] that in semiconductor quantum wells with two occuppied subbands,

this effect may be enhanced. Given the similarity between a two subband system and

the annular Fermi seas we describe above, combined with the exceptionally low disorder

in RTG, exploration of such mechanisms may be warranted.

In closing, we comment on the possible relationship between the superconductiv-

ity reported here and that observed in moiré systems. In RTG aligned to hexagonal

boron nitride, the moire potential only weakly perturbs the underlying isospin symmetry

breaking[104]. The ne and B‖ dependence of the signatures of superconductivity observed

in that system[64] would appear to be most consistent with SC2. Twisted bilayer[123]

and twisted trilayer[124, 125] have different microscopic symmetries; however, they share

several features with RTG including enhanced density of states and isospin symmetry

breaking. We conjecture that the superconductivity observed in all graphene systems

has the same basic origin.
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Chapter 6

Effects of a Moiré Potential

6.1 Overview

Since the lattice structure of graphene and hBN is nearly identical, when the graphene

and hBN layer have their lattice nearly aligned, a Moiré pattern is created, where is

roughly a period feature with the period larger than those of the graphene and hBN

lattices. This effect is schematically shown in Fig .6.2a.

Quantitatively, the wavelength of the Moiré superlattice can be expressed as

λ =
(1 + δ)a

2(1 + δ)(1− cosφ) + δ2
, (6.1)

where δ is the difference of the lattice constant, θ is the relative angle between the two

lattice. For graphene (monolayer or multilayer) and hBN, when the two lattice is perfectly

aligned (θ=0), the maximum λ ≈14 nm is reached. The presence of Moir’e pattern will

alter the energy band structure. The long wavelength of the Moiré pattern will open

energy gaps at a moment k = 2π/λ. With λ = 14nm, the energy gap is near the band

top/bottom of RTG where the energy is not sensitive to momentum. In this case, an
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Figure 6.1: Formation of Moiré superlattice. a, schematic of the Moir’e superlattice
when two honeycomb lattices with a small lattice constant mismatch is aligned to
each other. b, Schematic band structure of RTG with(bottom) and without(top) a
Moir /’e superlattice.

isolated flat energy band is formed (See Fig. 6.4 for a schematic illustration.), which can

usually induce strongly correlated electron phenomena.

Part of the results discussed in this chapter is from H. Zhou, T. Xie, A. Ghazaryan, T.

Holder, J. Ehrets, E. M. Spanton, T. Taniguchi, K. Watanabe, E. Berg, M. Serbyn, A. F.

Young. “Half and quarter metals in rhombohedral trilayer graphene.“ arXiv:2104.00653.

(2021)

6.2 Effects of the Moiré Potential

Recently, manifestations of strong interaction have emerged in rhombohedral trilay-

ers aligned to hexagonal boron nitride at densities comparable to the phase transitions

reported here[63, 64, 8]. In these devices, insulating states have been observed at filling

ν = −1 and −2 of the superlattice unit cell, including an incipient Chern insulator at

ν = −1. These experimental findings were interpreted as resulting from polarizing an
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Figure 6.2: Effect of a moiré superlattice potential. a, κ measured in sample B
where the lattice of the rhombohedral trilayer graphene is aligned to that belonging
to one of the encapsulating hBN crystals. b, Schematic illustration of the formation
of insulating states. Dashed lines indicate Lifshitz transitions described in Fig. 4.12
and blue regions indicate domains of half- and quarter metal states in the absence of
the moiré potential.

emergent flat band into one or more valley and spin flavors.

Although these observations can be attributed to the presence of isolated flat bands, it

is interesting to reexamine this picture in light of our finding that rhombohedral graphite

spontaneously breaks spin and valley symmetry in the absence of a moiré potential,

which amounts to quantifying the difference between moiré superlattice and non-moiré

superlattice trilayer devices.

We address this question directly by measuring the inverse compressibility data in a

rhombohedral trilayer device aligned to one of the encapsulating hexagonal boron nitride

layers, but that has otherwise identical geometry to the unaligned device presented in

Fig. 6.3a. We find the negative compressibility features associated with Stoner tran-

sitions nearly unchanged in the aligned, Moiré device. The primary difference is the
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Figure 6.3: Origin of the symmetry breaking insulating states. a, Schematic band
structure of RTG in the absence of Moiré potential and electron-electron interaction.
b, Schematic inverse compressibility in the ne and D parameter space corresponding
to a. c, Same as a, with interaction considered. The red and blue represent symmetry
breaking energy band. d, Same as b, with interaction included. e, Same as a, with
a Moiré potential present. An energy gap opens up at the border of the superlattice
Brillouin zone. f, Same as b, with a Moiré potential included. g, Same as a, with
both interaction and a Moiré potential present. The interplay of symmetry breaking
and Moiré potential induces multiple isolated symmetry breaking flat bands at specific
Fermi level, resulting in symmetry breaking insulating states. h, Same as b, with both
interaction a Moiré potential included.

appearance of incompressible states at commensurate fillings ν = ±1,±2 of the moiré

unit cell. The relationship between these insulators and the underlying symmetry break-

ing in non-moiré devices is depicted schematically in Fig. 6.3a, where we overlay the

phase boundaries measured in intrinsic trilayers with the domain of stability of the com-

mensurate, incompressible states in moiré patterned trilayers. Evidently, incompressible

states emerge whenever the superlattice filling is divisible by the degeneracy of the Fermi

surface at the same ne and D absent a moiré. The effect of the moiré can thus be under-

stood as a perturbation that does not qualitatively alter the correlated electron physics

already present in the parent trilayer.

This mechanism is schematically illustrated in Fig. 6.4, where we ”virtually” turn
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on and off the Moiré potential and electron-electron interaction and see how the energy

dispersion and inverse compressibility will change. Without the Morié potential and in-

teraction (Fig. 6.4a and b), the conduction and valence band can be calculated from the

continuum model. In this case, the inverse compressibility profile shows only features

from the charge neutrality point and the Lifshitz transition, as calculated by the con-

tinuum model in Fig. 4.6. If the interaction is considered in intrinsic RTG, we reach

a situation we discussed in detail in Chapter 4. In this case, when the Fermi surface is

shifted to a position to meet the Stoner criterion, spontaneous symmetry breaking hap-

pens and the energy band split into a multiple bands. In this case, additional features

show up in the inverse compressibility profile (Fig. 4.6c). In a situation when a Moir’e

potential exists, but interaction is not strong, an energy gap opens up at k = ±2π
λ

but

no spontaneous breaking will happen. In this case, an isolated flat band is induced from

both the conduction and valence band, and a feature of an incompressible state is ex-

pected in the κ vs ne and D profile at both electron and hole doping. (Fig. 6.4e and f.)

When both interaction and Moiré potential exist, the interplay of the two facts will allow

multiple isolated flat band at proper carrier density (Fig. 6.4g) and therefore multiple

incompressible states are expected to exist (Fig. 6.4h).

Our results show that rhombohedral graphene is an ideal platform for well controlled

tests of many-body theory, and reveal magnetism in moiré materials[7, 91, 8, 126] to be

fundamentally itinerant in nature.

6.3 Symmetry Breaking Insulating States

In crystalline systems incompressible gapped states can only occur at commensurate

fillings of the lattice. The moiré superlattice is qualitatively important in that it allows

for gapped states at carrier densities that can be reached by electrostatics gates, and we
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Figure 6.4: Magnetic field response of the insulating states. a, Inverse compressibility
versus carrier density and out-of-plane magnetic field at D = 0.52 V/nm measured in
sample B. b, same as c measured at D = -0.57 V/nm. c, Rxy versus B⊥ measured at
ne = −0.52× 1012 V/nm, D = −0.47 V/nm.

observe several classes of commensurate gapped states driven by electron interaction in

our high quality samples. Gapped states are classified by two quantum numbers, s and t,

which respectively encode the number of electrons per lattice site and the Chern number,

which is linked to the quantized Hall conductivity. We classify gaps by the resulting

trajectories in the ne-B⊥ plane, ν = tnφ + s, where nφ is the number of magnetic flux

quanta per unit cell. Consistent with prior work, we find that commensurate insulators

at ν = −1 and ν = −2 states are topologically trivial for D > 0, with (s, t) = (−1, 0)

and (−2, 0), respectively (see Fig. 6.5b). In contrast, the ν = −1 insulators is nontrivial

for D < 0 (Fig. 5.4a). Our high resolution data allow us to observe a close competition

between robust t = −2 and t = −3 Chern insulators for s = −1. At high magnetic

field, these states occur at different densities, and high inverse compressibility peaks are

observed corresponding to both trajectories. As B⊥ tends to zero and the states converge

to the same density, the t = −2 state wins the energetic competition, consistent with

transport data (see Fig. 6.5 and Ref. [8]).
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Figure 6.5: Penetration field capacitance data as a function of ne and D. Filling
factors of some incompressible states are marked on the top axis.

6.4 Charge Density Waves at fractionally filled Moiré

Bands

As shown in Figure 6.5d, we also observe a number of features at fractional filling

of the Moiré superlattice bands. These states are all found to have t = 0 in the low

B⊥ limit, and occur at ν = s = 1/3, 1/2, 2/3.... The regime where these states are

observed corresponds within single particle band structure models to a regime where an

unusually flat topologically trivial flat band is partially filled[127]. We interpret them

as generalized Wigner crystals, in which electron repulsion leads to commensurate filling

of the Moiré potential, breaking the superlattice symmetry. Similar states have been

reported in transition metal dichalcogenide heterobilayers[128, 129]

6.5 Incompressible States under Magnetic Field

As mentioned in Chapter 4, the anisotropic nature of the valley degree of freedom

allows different magnetic phases even when the spin and valley degeneracy is fixed. For
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Figure 6.6: Magnetic field induced phase transitions at commensurate fillings. a, Pen-
etration field capacitance as a function of ne and B⊥ measured at D =0.82V/nm. The
filling factors are marked on the top axis. b, Same as a, measured at D =0.89V/nm.

example, when both spin- and valley-degeneracy is lifted, the ground state could be spin

and valley polarized phase, a spin polarized intervalley coherent phase or a spin-valley

locked intervalley coherent phase. Phase transitions have been observed in intrinsic RTG.

In presence of a Moiré superlattice, the insulating states at commensurate fillings

are likely to inherit the complex magnetic ordering of the spin- and valley- symmetry

breaking phases. Transitions between these insulating states are expected under the

change of density, displacement field and external magnetic field.

Unlike the intrinsic RTG, where such phase transition are observed at hole-doping.

Similar phenomena are not observed in the Moiré potential-induced insulating state at
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hole-doping. This is not surprising since these insulating states only span a narrow range

of D in the parameter space. Even if multiple phases exists in the symmetry broken

region, the insulating states only belongs to a single magnetic ordering.

Instead, with a very large displacement field applied, phase transitions are observed at

the insulating states at electron-doping when varying the out-of-plane magnetic field.(Fig.

6.6). At ν = 1, the inverse compressibility goes across a minimum as the out-of-plane

magnetic field increases from zero, indicating a phase transition. As B⊥ favors phases

with large orbital magnetic moment, it is likely the insulator is only spin-valley polarized

at finite B⊥. At zero B⊥, it is instead a valley-coherent insulator.

Similar features are also observed at other insulating states with integer or fractional

filling of the Morié band. And the phase transitions are sensitive to the electrical dis-

placement field applied.

The carrier density at which the insulating states appear is not sensitive to the mag-

netic field, this further proves that the nature of these states are charge density waves

where the lattice symmetry is broken, instead of fractional Chern insulators. Neverthe-

less, an insulating state near ν = 2/3 corresponding to a chern number of 1 emerges as

B⊥ increases from zero, and then disappear above around 3T. The nature of this state

is yet fully understood.

These observations indicate that while the Moiré potential only perturbatively couple

to the RTG in a global picture, the subtle change of the electronic properties can introduce

new physics that is completely different from the intrinsic RTG.
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Summary and Outlook

In this work, we studied in detail the electronic properties of RTG. We developed a

process to fabricate dual-gated trilayer graphene transistors while maintaining the metal

stable ABC-stacking order. The process integrates multiple experiment techniques in-

cluding Raman spectroscopy, atomic force microscope manipulation and Van der Waals

heterostructure fabrication.

With the sample fabricated, we performed electrical measurement including both

penetration field capacitance and transport measurement, taking the advantage of both

measurement techniques. We observed spontaneous spin- and valley- symmetry breaking

which originates from electron-electron interactions. At electron doping, a rigid band

model with Stoner type interaction is build and well captures most observed features. At

hole doping, the interplay of magnetic phase transition and Lifshitz transition compli-

cated the phase diagram. The Shubnikov de Haas oscillation analysis is applied to probe

the Fermiology of these phases.

Near some phase boundaries of magnetic transition, three superconductive phases

are observed, with maximal critical temperature of around 100mK. Magnetic field re-

sponse indicate they have different paring symmetry. Magnetic focusing ex far from
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fully understood. The Stoner model captures the major magnetic phase transitions on a

phenomenological level, but the mechanism behind the unique Hunds’s coupling remains

unclear. Besides, the detailed spin- and valley-structure within a symmetry-breaking

phase is not captured by the Stoner model.

The observation of ferromagnetism and superconductivity shows that the stucturally-

simple RTG is actually a complex and interesting electronic system. Unlike the moiré

system, which is an unstable state and usually contains small domains, RTG’s metastable

nature makes it possible to be spatially uniform and consistent among different samples.

These features reduce the difficulty of modeling and understanding the electronic behav-

ior.

On the other hand, our understanding of the magnetism and superconductivity is far

from complete and worth further investigation.

On the theory side, the challenging part of effectively modeling the itinerant electrons

in RTG is to take the electronic screening effect into consideration, which is not relevant

when the system is an insulator, but become important when the system is metallic and

has a Fermi sea. Either the rigid band model or the Hartree-Fock model failed to treat this

effect properly. This could explain the always existing 3-fold degenerated phase in Hartree

Fock calculations. A proper way to treat electronic screening will hopefully explain the

observed phase diagram and the unique Hund’s coupling from a more fundamental level

and potentially explain the origin of superconductivity.

Apart from potential improvement on theory, several future experiments will also be

helpful to understand the superconductivity and magnetism.

One experiment is to control the strength of Coulomb interaction by gate screening.

In presence of a gate, the itinerant electron will form dipoles with its image charged

induced by the gate. The Coulomb interaction between electrons are actually dipole-
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Figure 7.1: Schematic of gate screening. The itinerant electrons in RTG and their
image charge generated by the gate form dipoles. The actual Coulomb interaction
between electrons are actually dipole-dipole interactions.

dipole interactions. The potential energy of the two dipoles is

V (r) = − 2p2

4πε0r3
(7.1)

where p = ed is the dipole moment and d is the distance between the electron and its

image charge.By changing the thickness of the hBN layer between the RTG and the

gate, we are effectively changed d, and therefore the interaction strength is modulated.

When very thin (less than 5 nm) hBN layers are used, the Coulomb interaction will be

effectively screened. This will set a higher bar for the Stoner criterion to be met and

therefore enhance the superconductivity phase if it is phonon-mediated. However, if the

superconductivity is a purely electronic effect. Effective screening of Coulomb interaction

is likely to suppress the superconductivity phase. Therefore, this experiment will provide

solid information of the origin of the superconductivity.

As an alternative approach, since the Coulomb interaction can be tuned by not only

gate screening but also dielectric screening. By replacing the hBN layer with other

materials, such as transition metal dichalcogenide or metal oxide, the effective interaction

may also be modulated.

The second possible experiment is to generalize the investigation to a more general

rhombohedral stacked multilayer system, such as ABCA-stacked four layer graphene.

ABC-trilayer graphene and ABCA-stacked four layer graphene share similar band struc-
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ture and density of states, although the trigonal warping effect is more significant in

the latter case. On the one hand, a systematic investigation of the relation of magnetic

ordering and low energy band structure may reveal how the local orbital magnetization

in the k-space will affect the magnetic ordering and induce phase transitions (such as the

α−β-phase transition discussed in Chapter 4. On the other hand, since supercondutivive

phases tend to appear within a phase with annular Fermi surfaces, an enhanced trigonal

warping effect may help to stabilize the superconductivity phase.

As a different system, the simplest chiral generalization of graphene, the bernal-

stacked bilayer graphene[130], which has similar band structure but weaker trigonal warp-

ing effect, may also be worth investigating. Although bernal bilayer graphene has been

widely studied both theoretically[131] and experimentally[132, 133], most of them were

focusing on its transport properties under a strong magnetic field – the quantum Hall

effect[98, 134, 135]. Low-field properties under large electrical displacement field, where

magnetic phase transition and superconductivity may occur, is yet carefully investigated.

The third possible experiment is to build gate-defined lateral junctions. Since both

ferromagnetism and superconductivity exist in RTG, and they can be simply induced

by altering the gate voltages. If a complex gate structure is built so that the carrier

density and displacement field of different parts of RTG can be independently tuned, a

gate-defined ferromagnet/superconductor lateral junction can be built, which may be a

potential platform to induce Majorana fermions.

Finally, apart from gating, inducing spin-orbital coupling to the system by making

RTG/transition metal dichalcogenide heterostructures[136] may also be interesting. Pre-

vious work[137] has shown that the superconductivity in twisted bilayer graphene can

be enhanced by introducing spin-orbital coupling effect, a similar effect may also occur

in RTG. More fundamentally, the expected observation will provide information whether

the superconductivity in intrinsic RTG and that in graphene Moiré systems share the
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same origin.

Besides conventional electrical transport measurement, other experimental probes

such chemical potential measurement[138], SQUID on tip local probes[139] may reveal

more information of the magnetic and superconducting ordering of rhombohedral trilayer

graphene.
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Appendix A

Procedure of Sample Fabrication

Step1: Assemble the bottom part: pick up first hBN

with PPC film at 40 ◦C

Step2: Assemble the bottom part: pick up bottom gate

at 45 ◦C

Step3: Assemble the bottom part: pick up second hBN

at 50 ◦C
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Step4: Flip transfer: align the flipped PPC film to the

substrate, engage at 40◦C, then heat up to 150 ◦C to

flatten the PPC film.

Step5: Anneal the sample at 375 ◦C for two hours under

vacuum (< 10−4Torr)

Step 6: Assemble the top part: pickup first hBN with

PPC film at 40 ◦C

Step 7: Assemble the top part: pickup top gate at 45

◦C

Step 8: Assemble the top part: pickup second hBN at

50 ◦C
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Step 9: Assemble the top part: slowly pickup graphene

trilayer at 40 ◦C. Do not move the pickup slide when

finished

No picture saved

Step 10: Transfer the top part onto the bottom part:

Align the two heterostructure at 40 ◦C. Increase the

temperature by 0.5◦C steps before the stack is fully de-

posited, then by 1.0◦C steps until the sample reach 150

◦C. Then slowly raise the pickup slide to detach it from

the sample.

Step 11: Rinse the sample in acetone for 1 min then in

Isopropanol for 10 sec to remove PPC residue. Blow dry

with a 15psi nitrogen gun.
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Step 12: Spincoat PMMA 950 A8 at 4000rpm for 60sec.

Bake on a hotplate at 180 ◦C for 90 sec. Expose the etch

windows with electron beam at a dose of 500µC/cm−2

in an FEI Sirion SEM with NPGS module. Develop

the sample in a cold (< 11◦C) mixture of deionized wa-

ter/isopropanol with the volume ratio of 3:1 for 60 sec.

Etch the sample in XeF2 in a Xetch. (2 Torr in the ex-

pansion chamber, 5 cycles, with 20 sec etch time for each

circle). Etch the sample with oxygen plasma in a Tech-

nics PEII Asher. (Pressure of oxygen: 300mTorr, RF

power: 100W, etch time: 180 sec). The sample is then

ready to be inspected with the Raman spectrometer.

Step 13: Soak the sample in acetone for 5 min with the

sample mounted vertically to remove PMMA and liftoff

the fluorinated polymer residue on the top. Then rinse

with isopropanol for 30 sec.

Step 14: Repeat the spincoat lithography procedure

in step 11 with an area dose of 300µC/cm−2 to

350µC/cm−2. A smaller than usual dose is used so that

the fine feature of the etch mask can be preserved.
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Step 15: Etch to form the device geometry. Etch is

done in a Panasonic E640 inductively coupled plasma

etcher. Recipe: CHF3 flow: 40 SCCM. O2 flow: 4

SCCM. Chamber pressure: 0.5 Pa. Chamber temper-

ature: 95◦C. RF source power: 100W. RF bias power:

100W. Etch is stopped when the conductive layer of the

devices are completely isolated.

Step 16: Repeat step 13 to strip off PMMA and liftoff

off the fluorinated polymer coating. Squeezing acetone

onto the sample with a squeeze bottom is sometimes

necessary to effectively remove the residues.

Step 17: Repeat step 11 to pattern the electrodes. Fine

pattern parameters: spot size 1, 600µC/cm−2. Coarse

pattern parameters: spot size 5, 500µC/cm−2. A larger

than usual dose is used to improve the result of metal

liftoff.
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Step 18: Preparation etch of the metal/sample interface.

Etch in step 15 usually generate a vertical profile, which

is not ideal for making edge contact. Therefore, a second

etch in a Panasonic E640 is applied. Recipe: CHF3

flow: 40 SCCM. O2 flow: 4 SCCM. Chamber pressure:

0.5 Pa. Chamber temperature: 95◦C. RF source power:

200W. RF bias power: 30W. Etch is stopped when the

conductive layers are exposed. This etch generates an

edge profile with a slope.

Step 19: Metal deposition. 3 nm chromium, 15 nm

palladium and 150 nm gold is deposited in sequence

right after the etch in step 18 in a CHA SEC-600-RAP

electron-beam evaporator. A vacuum of < 2×10−6 Torr

is reached before the deposition. Deposition rate: 1.

Chromium: manual control, start from zero and ramp

to 3 Å/sec in 5 sec. 2. Palladium: 1 Å/sec. 3. Gold: 2

Å/sec.

Step 20: Etch to isolate layers that are in electrical con-

tact. The step can be skipped if the heterestructure is

properly designed. The etch is done with the same recipe

in step 15 and is stopped when the necessary layers are

etched through.
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[36] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, High-temperature surface
superconductivity in topological flat-band systems, Physical Review B 83 (June,
2011) 220503. Publisher: American Physical Society.
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C. Struzzi, R. T. Weitz, A. A. Zakharov, S. Forti, and C. Coletti, Synthesis of
large-area rhombohedral few-layer graphene by chemical vapor deposition on
copper, Carbon 177 (2021) 282–290.

[54] A. Kumar, W. Escoffier, J. M. Poumirol, C. Faugeras, D. P. Arovas, M. M.
Fogler, F. Guinea, S. Roche, M. Goiran, and B. Raquet, Integer Quantum Hall
Effect in Trilayer Graphene, Physical Review Letters 107 (Sept., 2011) 126806.

116



[55] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an
electrically tunable band gap in trilayer graphene, Nature Physics 7 (Dec., 2011)
944–947.

[56] L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, The experimental
observation of quantum Hall effect of l=3 chiral quasiparticles in trilayer
graphene, Nature Physics 7 (Dec., 2011) 953–957.

[57] K. Zou, F. Zhang, C. Clapp, A. H. MacDonald, and J. Zhu, Transport Studies of
Dual-Gated ABC and ABA Trilayer Graphene: Band Gap Opening and Band
Structure Tuning in Very Large Perpendicular Electric Fields, Nano Letters 13
(Feb., 2013) 369–373.

[58] Y. Lee, D. Tran, K. Myhro, J. Velasco, N. Gillgren, C. N. Lau, Y. Barlas, J. M.
Poumirol, D. Smirnov, and F. Guinea, Competition between spontaneous
symmetry breaking and single-particle gaps in trilayer graphene, Nature
Communications 5 (Dec., 2014) 5656.
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