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Abstract

As the lifetime of regional flux networks approach twenty years, there is a growing number of papers
that have published long term records (5 years or more) of net carbon fluxes between ecosystems and
the atmosphere. Unanswered questions from this body of work are: 1) how variable are carbon fluxes
on a year to year basis?; 2) what are the biophysical factors that may cause interannual variability
and/or temporal trends in carbon fluxes?; and 3) how does the biophysical control on this carbon flux
variability differ by climate and ecological spaces? To address these questions, we surveyed published
data from 59 sites that reported on five or more years of continuous measurements, yielding 544 site-
years of data.

We found that the standard deviation of the interannual variability in net ecosystem carbon exchange
(162 gC m™ y™) is large relative to its population mean (-200 g€ m™y™). Broad-leaved evergreen forests
and crops experienced the greatest absolute variability in interannual net carbon exchange (greater than
+/- 300 gC m™ y'!) and boreal evergreen forests and maritime wetlands were among the least variable
(less than +/- 40 gC m?y™).

A disproportionate fraction of the yearly variability in net ecosystem exchange was associated with
biophysical factors that modulated ecosystem photosynthesis rather than ecosystem respiration. Yet,
there was appreciable and statistically significant covariance between ecosystem photosynthesis and
respiration. Consequently, biophysical conditions that conspired to increase ecosystem photosynthesis
to from one year to the next were associated with an increase in ecosystem respiration, and vice versa;
on average, the year to year change in respiration was 40% as large as the year to year change in
photosynthesis. The analysis also identified sets of ecosystems that are on the verge of switching from
being carbon sinks to carbon sources. These include sites in the Arctic tundra, the evergreen forests in
the Pacific northwest and some grasslands, where year to year changes in respiration are outpacing
those in photosynthesis.

While a select set of climatic and ecological factors (e.g. light, rainfall, temperature, phenology) played
direct and indirect roles on this variability, their impact differed conditionally, as well as by climate and
ecological spaces. For example, rainfall had both positive and negative effects. Deficient rainfall caused
a physiological decline in photosynthesis in temperate and semi-arid regions. Too much rain, in the
humid tropics, limited photosynthesis by limiting light. In peatlands and tundra, excess precipitation
limited ecosystem respiration when it raised the water table to the surface. For deciduous forests,
warmer temperatures lengthened the growing season, increasing photosynthesis, but this effect also
increased soil respiration.

Finally, statistical analysis was performed to evaluate the detection limit of trends; we computed the
confidence intervals of trends in multi-year carbon fluxes that need to be resolved to conclude whether
the differences are to be attributed to randomness or biophysical forcings. Future studies and reports
on interannual variations need to consider the role of the duration of the time series on random errors
when quantifying potential trends and extreme events.
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Introduction

Scientists have been making direct, quasi-continuous and long term eddy covariance measurements of
net and gross carbon exchange between ecosystems and the atmosphere at solitary sites since the early
1990s (Black et al., 1996; Greco and Baldocchi, 1996; Saigusa et al., 2005a; Valentini et al., 1996; Wofsy
et al., 1993). This set of early studies was influential because it gave the community confidence that
eddy covariance measurements could be made on a quasi-continuous basis to produce annual budgets
of carbon and water fluxes between ecosystems and the atmosphere. Starting in the late 1990s, a set
of regional and global networks of eddy covariance flux measurements stations were formed, with the
launching of the Euroflux, AmeriFlux, AsiaFlux and FLUXNET networks (Aubinet et al., 2000; Baldocchi et
al., 2001; Yamamoto et al., 2005). Today, the sustained operation of many of these networks is
providing us with many time series exceeding a decade in length, and some that are approaching twenty
years in duration.

One of the overarching goals and aspirations of the flux networks was to collect time series long enough
to assess the biophysical factors that may cause interannual variability and/or detect temporal trends in
carbon fluxes. Until recently, too few of the time series from published eddy covariance study sites have
been long enough to separate natural variability and emerging trends from sampling and measurement
errors, as these sampling errors sum to the order of 20 to 50 gC m™ y™* (Elbers et al., 2011; Hollinger et
al., 2004; Richardson et al., 2007).

There are many possible climatic, physiological and ecological reasons why ecosystem-atmosphere
carbon fluxes may experience different degrees of interannual variability. To find the best and most
pertinent explanations for carbon flux variability, it is important to examine the modulation of the gross
flux components that are combined to form the net carbon flux. From first principles, we know that net
ecosystem carbon exchange of an ecosystem (Ng) consists of three constituent fluxes--gross
photosynthesis (assimilation), autotrophic (plant) respiration (R,) and heterotrophic (microbial) (R})
respiration.

Gross photosynthesis (G) of an ecosystem is sensitive to a different set of anomalous weather and
climate variability than ecosystem respiration (Frank et al., 2015). Weather and climatic based
explanations for year to year changes in carbon assimilation start with variability in clouds and
precipitation and their impact on such primary drivers of assimilation, such as light, temperature,
humidity deficits and soil moisture (Law et al., 2002; van Dijk et al., 2005; Yi et al., 2010). The
combination of clouds, rain/drought, sunlight, and humidity can interact to either promote or retard
photosynthesis. Wetter years will be associated with less sunlight, which may reduce photosynthesis,
compared to a baseline (Zeri et al., 2014). And, drier years will be associated with more sunlight, which
may increase photosynthesis up to a point; greater deficits in humidity and soil moisture will cause
stomatal closure and reduce photosynthesis (Reichstein et al., 2007; Wolf et al., 2016). Photosynthesis
responds to changes in temperature in a non-linear, quadratic fashion that is highly plastic (Baldocchi et
al., 2001; Way and Yamori, 2014); some warming increases photosynthesis, too much warming is
deleterious and the optimal temperature are known to acclimate with mean growing season
temperature. Temperature can also influence ecosystem photosynthesis through phenology (Baldocchi
et al., 2005; Richardson et al., 2010); the timing of phenological events is generally associated with
temperature sums (Kramer et al., 2000). Timing of leaf out affects the length of the growing season,
which in turn, can modulate seasonally-integrated photosynthesis (Gu et al., 2003). Plant and soil
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respiration, on the other hand, tends to: 1) increase exponentially with temperature, given sufficient soil
moisture (Atkin et al., 2005; Xu and Qi, 2001); 2) decline if soils are too dry or wet and 3) scale with
carbon inputs into the rhizosphere from plant photosynthesis (Baldocchi, 2008).

In some regions, seasonal variations in climatic drivers, rather than variations in mean annual climate
conditions, may be more important modulators in yearly summed carbon fluxes. For example, in cold
regions the presence or absence of snow can have major impact on the amount of soil respiration during
the winter (Monson et al., 2006a). In Mediterranean climate, the amount of rain during the spring
growing season is more important than annual precipitation (Allard et al., 2008; Ma et al., 2007; Thomas
et al., 2009); excess winter rain may run off and not contribute to the amount of water stored in the
rhizosphere.

There can also be a disproportionate effect of ‘hot moments’ on the annual sums of net carbon fluxes.
An analysis, using seven years of data from eight forested AmeriFlux sites, discovered that year to year
differences in annual carbon fluxes were best described by the number of hours that short term fluxes
exceeded a specified percentile (Zscheischler et al., 2016).

Year to year changes in the structural and functional traits of an ecosystem can also explain a significant
portion of interannual variability in net and gross carbon fluxes (Richardson et al., 2007; van Dijk et al.,
2005). For example, variations in leaf area index affect light capture and the surface area of the sources
and sinks. With regards to functional traits, changes in the nitrogen supply will alter photosynthetic
capacity and seasonally integrated photosynthesis (Reichstein et al., 2014). Changes in basal rates in soil
and root respiration can occur through differences in leaf litter fall (Granier et al., 2008) and
photosynthetic activity (Tang et al., 2005).

In the case of agriculture, management practices and cropping choices can be important factors that
modulate gross and net carbon fluxes (Baker and Griffis, 2009; Dold et al., 2017; Knox et al., 2016;
Suyker and Verma, 2010); the alternating choice of a C, (maize) vs C; (soybean) crop or decisions to
irrigate or whether or not to till the soils affects annually integrated carbon fluxes on a year to year
basis. For natural ecosystems, disturbance by fire, logging, insects and disease are other exogenous
factors that can introduce year to year variations in net and gross carbon fluxes (Amiro et al., 2010; Clark
et al., 2010; Dore et al., 2012; Frank et al., 2014).

Long term carbon flux measurements are needed to capture the rare extreme events that may have a
detrimental or beneficial impact on an ecosystem (Frank et al., 2015). To capture information on the
occurrence of rare droughts or variability in rain associated with £/ Nino and La Nina one may need 7
years of data, or more (Chen et al., 2009b; Wharton and Falk, 2016). Time since disturbance can also
cause long term fluxes to differ on a year by year basis, as the greening of the landscape will cause
photosynthesis to outpace respiration after x number of years (Amiro et al., 2010; Odum, 1969). Legacy
effects can modulate year to year carbon fluxes, especially in wetlands and grasslands. For example,
years with excessive vegetation will produce plenty of dead standing mass which will compete with live
vegetation the next year for photons (Ma et al., 2016; Rocha et al., 2008). There also may be legacy
effects following the return to normal conditions after an excessive drought if there is much plant, stem,
shoot or root mortality.

Superimposed on the decadal record are trends in carbon dioxide and temperature, as the Earth
experiences global change (Keenan et al., 2013; Schimel et al., 2015). Before we can detect whether or
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not there are emerging trends in net ecosystem fluxes based on these chronic forcings we must
understand the sources of natural variability and whether or not measurement uncertainty is greater or
less than certain figures of merit. Finally, the duration of the time series must exceed a certain time
threshold to be able to reduce measurement and sampling errors to an acceptable level and to be able
to separate measurement and sampling errors from climatic and ecological sources of variation (Keenan
etal., 2012).

Today, we are reaching a milestone where a large and diverse number of eddy covariance studies have
been operating for more than a decade; more than 250 sites have been operating for 10 or more years
(Chu et al., 2017; Pastorello et al., 2016). Subsequently, a growing and critical number of studies have
been published in the peer review literature documenting the results from these long-term flux
observations. Hence, we are at a juncture when this literature merits distillation and review. This
review is intended to provide guidelines for future synthesis studies on interannual variability that are
expected to be generated by the newest version of the FLUXNET database (Pastorello et al., 2016).

To perform this review, we harvested information from the suite of published carbon flux studies that
report on long term measurements; they ranged between 5 and 18 years in duration. We divided the
review into three sections. Part one is a panoramic view of interannual variability, which was
conducted by examining the complied dataset as an ensemble. Here we address the following
guestions: how variable is net ecosystem carbon exchange (N¢) and its constituent components, gross
ecosystem photosynthesis (G) and ecosystem respiration (R.), on quasi-decadal time scales?; To what
degree is interannual variability in net ecosystem carbon exchange imposed by modulation of ecosystem
photosynthesis, and respiration, or by random noise and errors associated with the summation of hourly
fluxes to annual time scales?; and do legacy or lag effect arise when looking at the lag autocorrelation
functions of long time series? In part two, we examine lessons learned about interannual variability by
dividing the database into major climate and ecological groups. In this section we address such
guestions as: which biophysical (weather vs ecological) forcings are most responsible to year to year
variations in net and gross carbon fluxes?; do the controlling biophysical factors differ by climate and
ecological space?; and where is year to year variability in N¢ the greatest and least?. In part three, we
draw upon the lessons learned and synthesize the findings. We ask if the published data records are
long enough to detect trends given uncertainty in long term measurements? And, if so are temporal
trends in carbon fluxes in a warmer world with more CO, detectable?

Methods and Data

Data used in this analysis are derived from an updated compilation of published data (Baldocchi, 2003;
Baldocchi, 2008) that used the eddy covariance method to measure net ecosystem exchange (Ng).
Negative values for net ecosystem exchange indicate a loss of carbon from the atmosphere, and a gain
by the ecosystem. The interpretation of net ecosystem exchange was predicated on the inference of
gross canopy photosynthesis (G) and ecosystem respiration (R.) on annual time scales. Values of G and
Re were derived from conditional sampling of net carbon fluxes during day and night periods.  For this
analysis, we assigned positive signs for the values of G and R, so N¢ equals R, minus G. As we write this
review, the literature database has 1781 site years of data published, recorded from more than 270
locations world-wide.

To produce daily and annually integrated carbon fluxes, missing values of the respective flux
components were filled with data-derived, empirical algorithms (Reichstein et al., 2005). The most
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prominent gap filling methods used by the scientific community include artificial neural networks, look-
up tables or mean diel patterns (Falge et al., 2001; Moffat et al., 2007).

Because G and R, are derived from N; there has been some concern about errors from spurious
correlation (Lasslop et al., 2010; Vickers et al., 2009). In a previous paper, we addressed this topic by
testing the hypothesis that separate day/night and dormant/growing season sampling of carbon fluxes
reduces spurious correlation when gross carbon fluxes are computed on annual time scales. Using data
from a suite of FLUXNET field sites, we found that spurious correlations between derived gross carbon
fluxes and net carbon exchange are generally small and most of the correlations between G and R, at
annual time scales were statistically true (Baldocchi et al., 2015). For background, we present the
statistical distribution of annual sums of net and gross carbon fluxes in the database. Figure 1 shows the
histogram of the published annual sums of net ecosystem exchange of carbon dioxide. This histogram
indicates that ninety-five percent of the data resides between -748 and 482 gC m™ y'. The mean of the
distribution is -153 g€ m™ y™* and its standard deviation is 289 gC m?y™.

FLUXNET Literature

0.06
0.05 7 mean=-152.90 gC m?y"
Std. Dev = 289.01
0.04
w“
©
o
0.03
0.02
N m
0.00 +—=—1= ‘I‘ i |||I||||
-1500 -1000 1000 1500

Ng (gC m?y")

Figure 1 Histogram of published values of net ecosystem carbon exchange, N¢, derived from annual long
studies using the eddy covariance method. The histogram is based on 1781 site years of data. The y axis
represents the probability density function, pdf.

Histograms for data associated with gross ecosystem photosynthesis (G) and ecosystem respiration (R.)
are shown in Figure 2. Figure 2a shows that ninety-five percent of the data for G reside between 176
and 2919 gC m™ y ™ and that the histogram possesses a mean equal to 1294 gC m™ y™ and a standard
deviation equal to 684 gC m™2y™. Figure 2b shows that ninety-five percent of the data for R. are
confined between 219 and 2511 gC m™y'. This distribution possesses a mean of 1117 gCm?y*and a
standard deviation of 578 gC m™y™. With the majority of flux sites in the temperate zone, these
histograms tend to have long tails, and are biased from an under representation of measurements in the
tropics which have larger values of G and R, (Beer et al., 2010).
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Figure 2 a) Histograms of published values of ecosystem photosynthesis (G) at annual time scales,
reported in the literature; b) histogram of published values of ecosystem respiration (R.) at annual time
scales, reported in the literature. These gross carbon fluxes were derived from eddy covariance
measurements of net ecosystem carbon exchange. The y axes represent the probability density
function, pdf.

For this analysis, we drew on data from 59 study sites that reported 5 or more years of flux data,
yielding 544 site years of data (Table 1). This dataset comprised of 5 studies with 15 or more years
reported; the longest published study has 18 years of observations (Froelich et al., 2015). We also
analyzed 18 studies with ten to 15 years of data and 36 studies with 5 to 10 years of data. The cut-off at
5 years may be viewed as arbitrary, but given that the majority of relatively long term studies are of this
duration it is worth including these studies for the sake of this review. Later in the paper we will address
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the question ‘how long is long enough?’, with regards of the detection limit of year to year variations in
annual carbon fluxes from random noise.

Panoramic View of Interannual Variability

The first query of the long-term database is: how variable are net and gross carbon fluxes on a year to
year basis? If variability is low, we may have ample information to describe the carbon balance of
these ecosystems. But, if interannual variability is great, we may need longer datasets to capture and
explain the sources of this temporal variation.

We inspected the anomalies from the annual mean of each of the 59 time-series and plotted the
histogram. For net ecosystem carbon exchange, the histogram was non-Gaussian (Figure 3); its
distribution was peaked and positively skewed. The statistics for this distribution of anomalies
possessed a standard deviation equal to 162 gC m™y™, a skewness equal to 0.833 and a kurtosis equal
to 12.5. Ninety-five percent of the data were bound between -317 and 328 gC m™”y".  Given the
population mean of N, around -200 g€C m?y™ (Figure 1), we conclude that the interannual variability of
net ecosystem carbon exchange is very large. The high variability of net carbon fluxes has implications
the uncertainty bounds of data used to benchmark carbon cycle models and on setting the probability
distribution of priors used for Bayesian models (Zobitz et al., 2011).

Yearly Anomalies in NE

60

Counts
w
o
Il
T

20 B

10 1 r

0 0m M : ! | ﬂl‘\lﬂ I|-|I'I

-750 -500 -250 0 250 500 750 1000
Ng(t) - Ng (gCm2y)




250
251
252

253
254
255
256
257
258
259
260

261

Figure 3 Histogram of yearly anomalies in net ecosystem carbon exchange from the literature data pool
of 544 site years of data. Anomalies were computed with regards to the annual mean of each time
series in the database.

Variations in Ng can be due to large excursions in G or R, or some combination of the two. In Figure 4a
we examine the histogram of yearly anomalies in mean annual fluxes of gross photosynthesis. The
standard deviation of interannual anomalies in G was 230 gC m™ y, which was equivalent to 17.8% of
population mean of G (Figure 2a). The skewness was -0.326, and its kurtosis was 8.51. Ninety-five
percent of the interannual anomalies in the histogram for anomalies in G ranged between -475 and 468
gCm™?y™'. Incomparison, 95% of the anomalies in R., showed in Figure 4b, ranged between -243 and
308 gC m™2y™. This distribution possessed a standard deviation of 137 gC m™?y, which was equivalent
to 12.6% of population mean of R, (Figure 2b). The skewness was 0.472, and its kurtosis was 5.75.
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Figure 4 Histogram of yearly anomalies in a) gross primary production, or photosynthesis (G) and b)
ecosystem respiration, R.. These data are derived literature data pool of 454 site years of data.
Anomalies were computed with regards to the mean of each time series in the database.

The next question we explore are the degrees that the variances of inter-annual variations in N¢ are
associated with variances in G or R.,? We can define the variance in net ecosystem exchange (N¢) as the
sum of the variance in gross canopy photosynthesis (G) and ecosystem respiration (R.), minus two times
the covariance between G and R, (Lasslop et al., 2010):

2 _ 2 2
Oy, =0 +0, —2cov(G,R,) (1

In addition, one can express the covariance between G and R, as a product of the respective standard
deviations and the correlation coefficient (rgge)

coV(G,R)=G'R,"'=1;, 0,0, (2

The interpretation of the sources of variance in Ng can be complicated by how the constituent terms
add, covary and subtract with one another.

Normalizing the population of the mean of the constituent variances in Equation 1 we find that the
variance in G is about twice the variance of N¢ and that the variance in R. is about 76% of the variance of
2 2
o (e
Ng; zG equaled 2.038 and —

>—equaled 0.767. The covariance between G and Re interact to reduce

Oy, Oy,
=2, 2 OGOR,

2
Ng

the variance in N¢ by about 176%; the term, , equaled-1.763. From these ratios one can
conclude that the direct contribution of the variance in G on the variance in Ng was about 2.65 times
greater than the impact of the variance in R..

We dive deeper into the database by examining the relationship between the variances in Ng, computed
for each site, and the terms in Equation 1 (Figure 5). The slope of the linear regression between the
variances of G and N¢ (0.794) was greater than the slope between the variances of R, and N¢ (0.58).
Moreover, a lower portion of the variance in N was explained by the variance in R (r*=0.276) than by
the variance in G (r* = 0.620). While we conclude that a greater fraction of the variance in N is
explained by the variance in G than the variance in R, it is clear that the magnitude of the variance of N
was conditional on the values of the variances of G and R.. For example, when the variance in N was
relatively low (e.g. 1000 gC> m™ y) the variance in G equaled 1487 gC* m™ y? and the variance in R,
equaled 271 gC* m™ y2. When the variance in N¢ was at the midpoint of the data population (27,844 gC
m™y?), the variance in G was 98,198 gC> m™ y2 and the variance in R, was 83,246 gC* m™ y2. Finally,
variance in N¢ equaled 38,125 gC* m™ y> when these variance terms were identical (145,989 gC*> m™ y?).

2
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Figure 5 The regression between the variance in net ecosystem exchange (N¢) and gross photosynthesis
(G) and ecosystem respiration (R.). Regression coefficients are for the log transform of log(y)=b(0) + b(1)

log(x).

The degree with which anomalies in G and R, covary with one another, as expressed in Equation 2, is
inspected in Figure 6. If the correlation between G and R, is small, then the third term on the right-
hand side of Equation 1 may be small. Conversely, if the correlation between G and R. is great, this third
term can offset sources of variance with the individual terms. Anomalies in R, are about 42% as large as
anomalies in G. Moreover, there was a larger than expected degree of decoupling between anomalies
in G and R, as the coefficient of determination (r’) indicates that only 49% of the variation in R, are
explained by G.
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Figure 6 Examination of the covariance between ecosystem photosynthesis (G) and respiration (R.).
Plotted here are the yearly anomalies with the long term means of the data.

With longer datasets, we can inspect the degree of year to year coupling between G and R, that spans a
spectrum of climates and ecosystem types (Figure 7), dG/dt and dR:/dt. We observe a positive slope
between year to year changes in G and R., which is consistent with an earlier report using a smaller data
set consisting of shorter time series (Baldocchi, 2008). In sum, conditions that will cause G to increase
from year 1 to year 2 will be accompanied by a proportional, but smaller (49%), increase in R..
Conversely, conditions that lead G to decrease from year 1 to year 2 will be associated with a
compensating decrease in R.. Hence, interannual variations in N¢ have the potential to be more
sensitive to climate and weather anomalies that drive photosynthesis than respiration. This is a key
lesson in searching for attributions causing variations in Nz under extreme climate events.
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Figure 7 Relation between year to year changes in gross ecosystem photosynthesis (dG/dt) vs ecosystem
respiration (dR./dt). The slope of the population is 0.494, the intercept is -1.137 and r* equals 0.552, N =
398. Color codes indicate data points from each study.

Contained within Figure 7 are four sets of data where year to year changes in R, were equal or greater
than year to year changes in G. The evergreen conifer forests in the Pacific northwest (Wind River,
Campbell River), a deciduous beech forest in Denmark, and a grassland in North Carolina, which was in
the initial stage of post agricultural succession, fell into this category. Also noteworthy were data from
two other grasslands that had slopes close to one. These included a grassland in California and a
sphagnum, grass bog in Scotland. Signals emerging from these data suggest that sites associated with
two functional types (evergreen, humid conifer forests and grasslands) may be more vulnerable to
switching from being carbon sources to sinks with further perturbations in carbon fluxes from factors
like climatic and environmental change.

With regards to weather and climate, we know there is some degree of persistence in the system; there
is a high likelihood that today’s weather will be the same tomorrow, and next year (Rybski et al., 2006).
The next question we ask is to what degree is there persistence in net carbon fluxes, from one year to
the next. We can investigate this by calculating and plotting the lag autocorrelation coefficients for each
of the detrended time series (Figure 8).

We see several types of behavior. Overall, it took between one-half to five years for the lagged
autocorrelation coefficients to cross zero. Of this population, we found one set of sites that became
negatively (< -0.5) correlated with itself after a one-year lag; these correlation coefficients are
significantly different than zero, as determined from the 95% confidence interval of a random time
series. The implication of these negative lag correlation coefficients indicates a highly oscillatory
behavior in the net carbon fluxes from year to year. Sites in this category included an alpine meadow, a
sub-tropical forest, evergreen oak woodlands, a grassland, temperate evergreen forests and a deciduous
forest. The third feature in Figure 8 relates to decadal time scales. We found that the lag correlations
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were generally not significantly different from zero, as detected by the band of the 95% confidence
interval that was produced by a random time series. So, at this time we are unable to detect any world-
wide variability in carbon fluxes that are at the time scales of El Nino’s and La Nina’s. Only one case
experienced a relatively strong negative autocorrelation at the time scale of a decade; this occurrence
was from the 18 year long record at the deciduous forest in Ontario, Canada. Its ten-year lag
autocorrelation equaled -0.28, which was just inside the associated value of the 95% confidence interval
(-0.29).

1 detrended time series

N autocorrelation

_0.8 1] 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Lag-time (years)

Figure 8 Lagged auto-correlation function for net ecosystem exchange at the 59 sites listed in Table 1.
Each line denotes results from time series of one site study. To detect if the lag correlation values were
significantly different from zero we performed a set of auto-correlation computations on a set of
random numbers of progressive lengths (5 to 18). From these computations, we computed the 95%
confidence intervals of lag correlations from an repeated ensemble (5000) of calculations, as shown with
the red lines.

Lessons Learned from Ecological and Climate Regions

In this section, we divide the database into the dominant ecological and climatic regions of the world.
We then distill which set of climate/ecological forcings and circumstances are responsible for driving
carbon flux interannual variability in these regions. We also inspect the data to determine if any trends
in carbon fluxes are being detected in our changing world? One of the lessons to emerge from the
following analysis will be that there are a variety of explanations for interannual variability of carbon
fluxes, and they differ region by region.
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Boreal Evergreen Forests

Boreal evergreen forests thrive in the circumpolar latitude belt between 50 and 70 degrees of North
America, Scandinavia, and Asia. They comprise of trees on the order of 10 m tall and establish canopies
that possess a leaf area index on the order of 3to 4 m’ m? (Bonan and Shugart, 1989; Luyssaert et al.,
2007).

Across the boreal forest, the interannual standard deviation of net carbon fluxes was relatively modest,
less than 50 gC m? y! (Dunn et al., 2007; llvesniemi et al., 2009; Richardson et al., 2007; Soloway et al.,
2017; Ueyama et al., 2014), compared to data from many other climate and ecological spaces shown in
Figure 5 and Table 1.

In Finland, links between climate and year to year variability in net and gross carbon fluxes were not
clear and only explained a small fraction of the variability in annual net ecosystem exchange (llvesniemi
et al., 2009). However, the start of the growing season was best associated with air temperature and
the end of the growing season was best described by day length (Suni et al., 2003). In contrast, an
analysis of 15 years of data from a boreal deciduous and an evergreen forest in Saskatchewan and
Manitoba, Canada, respectively, revealed that interannual variability in net carbon exchange was best
explained by the interval of the dates in autumn when net carbon uptake and gross ecosystem
photosynthesis ceased, a period called the ‘autumn interval’ (Wu et al., 2012). At these Canadian sites,
there was no significant relationship between net carbon uptake and the spring interval between when
ecosystem photosynthesis and net carbon uptake commenced. Another analysis of data from the
mature (160 year-old) black spruce forest, in Manitoba, Canada, revealed the net ecosystem carbon
exchange switched back and forth from being a carbon source or sink (Dunn et al., 2007; Soloway et al.,
2017). In general, year to year variations in net carbon exchange were attributed to variations in air
temperature, soil moisture, water balance and summer solar radiation. More specifically, warming and
thawing of the soil caused ecosystem respiration to lag ecosystem photosynthesis. In these wet and
cold boreal ecosystems, a shallow water table would suppress respiration and favor photosynthesis,
causing the system to be a small carbon sink. Converse conditions would cause the ecosystem to be a
carbon source.

For a boreal spruce forest growing in Alaska, interannual variation in net carbon exchange was forced
mainly by changes in ecosystem respiration, which was being pushed by autumnal warming (Ueyama et
al., 2014). At the southern fringe of the boreal zone, in Maine, United States, 40% of the variance in net
ecosystem exchange was due to environmental drivers and 55% was due to biotic factors (Richardson et
al., 2007).

Disturbance also plays a role in interannual variation of carbon fluxes in the boreal region (Amiro et al.,
2010; Goulden et al., 2011). Following recovery from logging, a boreal forest in Canada will continue to
be a carbon source for 10 years. Afterwards, it becomes carbon neutral and later a carbon sink
(Coursolle et al., 2012).

None of these long-term studies identified the presence or absence of winter snow as a modulating
factor, explicitly. However, Monson et al. (2006b) reported that winter respiration of an alpine forest,
which is an elevated version of a boreal forest, depends upon the state of the snow pack. Soil
temperatures are colder when the snow pack is shallow, which reduces soil respiration. And, a recent
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regional analysis inferred that a decrease in winter respiration from declining snow pack explains an
enhancement in the carbon sink of northern forests (Yu et al., 2016).

Temperate Evergreen Forests

Temperate evergreen forests span a wide range of climate and soil conditions and are often intensively
managed (Jarvis and Leverenz, 1983). On average, temperate evergreen forests maintain closed
canopies with high leaf area indices (7 +/- 3 m®> m™), tall trees (20 +/- 12 m) and large amounts of
standing biomass (14,934 +/- 13,562 gC m?)(Luyssaert et al., 2007). Temperate evergreen forests living
in the humid Pacific northwest of North America possess some of the greatest biomass, highest leaf area
index and the longest living trees. Conifer forests in the southern United States and Europe are
intensively managed and logged at specific time intervals. Hence, long term carbon fluxes often include
additional variability due to disturbance (Bracho et al., 2012; Dore et al., 2012). In addition, evergreen
forests, with longer growing seasons, tend to grow on poorer soils, compared to deciduous forests.

There exist two sets of long term carbon flux studies in the wet humid, temperate zone of western
North America (Krishnan et al., 2009; Wharton and Falk, 2016). One nine year study in British Columbia
over a relatively young (58 year old) Douglas fir (Pseudotsuga menziesii) forest concluded that the major
drivers of interannual variability of annual carbon fluxes were annual and spring air temperatures and
water deficits during the late summer and autumn (Chen et al., 2009b; Krishnan et al., 2009). This forest
was a strong net carbon sink (-356 +/- 51 gC m™y™). The other study presented 13 years of data from an
old age Douglas fir forest (Wharton and Falk, 2016). The net carbon budget was near zero, -32 +/- 84 gC
m™y. The interannual variability of net ecosystem exchange of the old Douglas fir forest growing in
Washington was 64% greater than that of the younger forest growing in British Columbia. With this
comparison, we start to see evidence for the effect of stand age on interannual variability of carbon
fluxes of these temperate rain forests.

While the Pacific northwest is wet and receives ample rainfall, it experiences relatively dry summer
growing seasons (Lassoie et al., 1985). Hence, year to year differences in net carbon exchange are
strongly affected by spring temperature and late summer water deficits (Chen et al., 2009b; Krishnan et
al., 2009). On a seasonal basis, light explained 85% of the variability in monthly ecosystem
photosynthesis and temperature explained 91% of the variation in monthly ecosystem respiration. In
sum, net carbon exchange was highest when precipitation was normal and air temperature was
‘optimally’ warm and lowest during the warmest and driest years. Variability of net and gross carbon
fluxes in this region are closely linked to the El Nino-Southern Oscillation (ENSO), and the Pacific North
American (PNA) and Pacific Decadal Oscillations; the old-age forest was a stronger sink during the
favorable climate conditions of La Nina and was either a source or near neutral during El Nino years
(Wharton and Falk, 2016).

Ponderosa pine (Pinus ponderosa) thrive in semi-arid mountain regions from east side of the Cascade
mountains in Oregon, through the Sierra Nevada mountains of California and Nevada and into northern
Arizona. The carbon budget of these forests is often disturbed by fire and logging. Two sets of studies
have produced long term records on net and gross carbon exchange of these forests (Dore et al., 2010;
Thomas et al., 2009). In both instances year to year variations in net ecosystem exchange, as quantified
by the standard deviation, were on the order of 100 gC m™?y, indicating a highly variable ecosystem.
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For a 90 years old ponderosa pine stand in Oregon, mean net ecosystem carbon exchange was -464 +/-
116 gC m? y™* over seven years. Interannual variation in growing season length of the hydro-ecological
year could be as large as 45 days (Thomas et al., 2009). However available soil water was the main factor
modulating net and gross carbon fluxes on a year to year basis. This team concludes that variability in
annual ecosystem photosynthesis, which is modulated by available soil water, drives the interannual
variability in net ecosystem carbon exchange. In Arizona, disturbance by fire and thinning were factors
driving interannual variability in net and gross carbon fluxes of another ponderosa pine forest (Dore et
al., 2012).

Slash pine (Pinus elliotii) forests in Florida experience relatively frequent logging cycles (20 to 25 years).
An 11 year study across the disturbance and recovery time history was the most variable in the record
(111 +/- 683 gC m™2 y) in this database. The forest lost between 800 and 1250 g€C m?y™ during the first
3 years after disturbance, was carbon neutral after 5 years and was a strong sink (-400 to -700 gC m™ y’
!), there after (Bracho et al., 2012). Aggrading leaf area index was a dominant factor driving this forest
from a large carbon source to sink. Across the data base that was inspected this site possessed the
greatest year to year variability in Ng. In comparison, the mid-rotation stand had a negative NEE value of
-669 +/- 98 gC m?y™ over 9 years.

For forests growing in Europe, we find that a 100 years old spruce forest (Picea abies) in Germany is one
of the more productive of those surveyed, but its net ecosystem carbon exchange is highly variable; its
mean net ecosystem exchange over 10 years was -550 +/- 91 gC m™ y™) (Grunwald and Bernhofer,
2007). High variation in net and gross carbon fluxes was attributed to a wide span of rainfall (500 to
1000 mm y!) and mean annual air temperature (6 to 9 C) during the duration of the time series at this
continental site. Carbon update was greatest during the warm and relatively wet years and least during
the warm and driest years. The wettest year depressed net carbon uptake, which is expected due to
light limitations by clouds.

Temperate Deciduous Forests

The geographic band for temperate deciduous forests range between 30 and 50 degrees across North
America, Europe and Asia (Barnes, 1991; Hicks and Chabot, 1985). These forests rely on a substantial,
but not excessive amount of rainfall (800 to 1400 mm per year), survive cold winters down to about -20
C and can withstand warm summer temperatures up to the low 30s (Baldocchi and Xu, 2005). These
forest tend to be tall (19 +/- 7 m) and possess a closed canopy with high leaf area index (6 +/- 3 m’> m™)
(Luyssaert et al., 2007).

Temperate deciduous forests are one of the ecosystems with the largest number of long term eddy
covariance, carbon flux measurement studies (Froelich et al., 2015; Granier et al., 2008; Herbst et al.,
2015; Novick et al., 2015; Pilegaard et al., 2011; Saigusa et al., 2005b; Shao et al., 2014; Sulman et al.,
2016; Urbanski et al., 2007; Wilkinson et al., 2012; Wilson and Baldocchi, 2001). Interannual variation
of Ng among this climate and functional type is relatively large. On average, the standard deviation of
interannual N¢ of these datasets is close to +/-100 g€C m™ y™ (Table 1).

The longest published time series of N comes from the mixed forest near Borden, Ontario, Canada, and
is 18 years long (Froelich et al., 2015). At this site, the mean Ng was -177 +/- 115 g€C m?2y™. The authors
reported that light and temperature were the main meteorological factors forcing interannual variation
in carbon fluxes. Net carbon exchange also correlated well with length of growing season, which ranged
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between 111 and 164 days per year. At this site a small trend in N¢ was reported (15 g€ m? y?) and was
attributed to slow long term warming (0.09 Cy™).

Harvard Forest, in Massachusetts, USA, was the first locale at which the first long term carbon fluxes
were measured (Wofsy et al., 1993), and is the source of the longest measured time series. This team’s
analysis of 13 years of measurements found that uptake rates doubled as the forest aged from 75 to 110
years (Urbanski et al., 2007); they concluded that tree biomass, successional changes in forest
composition and disturbance were dominant factors driving interannual and decadal variations in net
carbon exchange. Length of the growing season and deepness of winter snow has also been identified
as a factor affecting net carbon exchange at this site (Goulden et al., 1996).

Three long term studies come from beech forests growing across Europe and differing in age (Granier et
al., 2008; Herbst et al., 2015; Pilegaard et al., 2011). Each experienced different sources of variation.
Over an 80 to 90 year old beech forest in Denmark, a trend N; measured was detected; it increased 23
gC m?y? as the length of the growing season increased 1.9 days per year across a 13 year period
(Pilegaard et al., 2011). In comparison, a 40 year old beech forest in France experienced high variability
in Ng due to length of the growing season and the duration of soil water deficits (Granier et al., 2008).
This forest was thinned, but this thinning did not change photosynthesis markedly and year to year
changes in ecosystem respiration were not linked to climate forcings. In Germany, an unmanaged beech
forest with trees up to 250 years old was compared with a managed beech forest with trees averaging
130 years old (Herbst et al., 2015). Average net carbon exchange of the two forests did not differ.
However, this team found that interannual variability of N; was greater for the managed, than the
unmanaged, forest (119 vs 70 g€ m™y'). The lowest years of carbon uptake occurred when fruit
production was greatest. In addition, the old age, unmanaged forest suffered more from the 2003
drought/heat spell and no trend in Ng was detected, in contrast to the beech forest in Denmark.

An 80 year old deciduous forest in the United Kingdom was highly productive (-486 g€ m?y™) and
experienced moderate (+/-73 gC m™ y™) variability over 12 years (Wilkinson et al., 2012).

At this site year to year differences in the growing season was small and stable (165 +/- 6 days).
Interannual variations in sunlight modulated carbon fluxes at this site most (variations in radiation
accounted for 46% of the variation in Ng). Insect infestations were another source of variation. Thisis a
natural and possible source of variation in carbon fluxes that would be missed with shorter term studies.

In Japan, interannual variability in net carbon exchange of a temperate deciduous forest was strongly
associated with spring air temperature and the timing of leaf out (Saigusa et al., 2005a); it was also
reported that the occurrence of E/ Nino favored earlier leaf emergence. On the other hand, the effect of
the monsoon on clouds and summer solar radiation did not have a discernable effect on interannual
variation in net carbon exchange.

In sum, length of growing season is a dominant factor affecting N across much of the deciduous forest
biome. Deciduous forests tend to optimize the length of growing season by leafing out when soil
temperature matches mean annual air temperature (Baldocchi et al., 2005). If the plants leaf out too
early they are susceptible to damage by late freeze or frost events (Gu et al., 2008). In contrast, if they
are too conservative and leaf out too late they have a shorter period to accumulate carbon.

Evergreen Broadleaved Forests
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Evergreen broadleaved forests thrive where there is no frost or freezing (Woodward, 1987). Examples
include the tropical forests of South America, Africa and Asia, subtropical forests, like the eucalyptus
forests of Australia, and the evergreen oaks of zones with Mediterranean type climates.

Temperature is mostly invariant in the tropics. So year to year differences in rainfall and sunlight tend
to have the greatest impact on interannual carbon fluxes (Araujo, 2002; Goulden et al., 2004; Wu et al.,
2016; Yan et al., 2013; Zeri et al., 2014). Often tropical forests are light limited due to the presence of
clouds and frequent rain, so there can be an unexpected consequence with mild drought, more light and
photosynthesis.

Six years of carbon flux observations from a southwestern Amazonian forest encountered two years of
severe drought and one year of flooding (Zeri et al., 2014). At this site, carbon fluxes tend to be highest
at the end of the dry season when sunlight is ample and diffuse light increases light use efficiency. This
site is noteworthy for the observation of a lack of synchrony between monthly rainfall and carbon
uptake. Consequently, legacy effects of the 2005 drought were noted the year after; this year the forest
was a carbon source even though gross photosynthesis remained relatively high (2000 g€C m?y™).

In another part of the Amazon, near Santarem, Brazil, it was found that hourly variations in solar
radiation, diffuse light fraction and vapor pressure deficits could account for 75% of the variability in
ecosystem photosynthesis (Wu et al., 2016). When carbon fluxes were aggregated into daily, monthly
and annual integrals, these variables explained a progressively smaller fraction of variability in
photosynthesis (down to 3%). Instead, biological factors, such as light use efficiency and phenology, had
a larger (63%) explanatory power.

Across Asia, tropical forests assimilate carbon at greater rates and with greater interannual variability (-
397 +/- 94 gC m™ y') than sub-tropical forests (-166 +/- 49 gC m?y™) (Yan et al., 2013). Rainfall is the
fundamental driver of carbon exchange of tropical and sub-tropical forests and best explained
interannual variability in N¢. The sub-tropical forest was a carbon sink during wet and dry seasons. In
contrast, the tropical forest was a carbon source during the wet season, when ecosystem respiration
outpaced carbon assimilation. Drought reduced wet season respiration, enabling the tropical forest to

be a stronger carbon sink during the dry years.

Two papers reported on measurements from eucalypt forests, a natural stand in Australia (van Gorsel et
al., 2013) and a plantation in Portugal (Rodrigues et al., 2011). Ten years of carbon flux measurements
over a native eucalypt stand revealed that extended clouds during wet periods and extended dry
periods both reduced carbon uptake (van Gorsel et al., 2013). Drought also promoted an insect attack,
which caused the forest to become a carbon source. Large year to year variations in rainfall (between
370 and 750 mm y'!) at a Portuguese eucalypt plantation caused this stand to switch back and forth
from being a strong sink (-865 gC m™ y™) to being carbon neutral (-11 gC m?y™") (Rodrigues et al., 2011).

As has been shown with shorter time series, evergreen broad-leaved forests in semi-arid regions, like
Australia, or Mediterranean climates, like France, Italy and Portugal can experience variability by the
amount of rain during the wet growing season (Allard et al., 2008; Pereira et al., 2007). And, drought
stress reduces ecosystem photosynthesis more than respiration.
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Grasslands

Grasslands are associated intermediate rainfall conditions that are too dry to sustain forests and too wet
for deserts (Woodward, 1987). While grasslands thrive across wide swaths of North and South America
and Eurasia, long term published data come only from the Mediterranean climate of California and the
benign maritime climates of the British Isles.

Based on 15 years of data, an annual grassland in California, with a winter and spring growing season
experienced reduced photosynthesis during the wettest years (Ma et al., 2016). This system also
experienced legacy effects on ecosystem respiration. Consider a year with high biomass production. A
large fraction of this biomass will persist and be present the next growing season. This dead biomass
will compete for photons with emerging sprouts and reduce their carbon assimilation.

Grass grows nearly year-round in Ireland. Management, in terms of grazing and harvesting, were among
the more dominant factors affecting carbon fluxes in this maritime climate where environmental
conditions were often not limiting (Peichl et al., 2012).

Semi-Arid Savanna

Semi-arid ecosystems can be viewed as natural models for a future world that is drier and warmer, as
these system experience much year to year variability in rainfall (30 to 40% coefficient of variation),
compared to more humid and mesic climate zones (Fatichi et al., 2012). Semi-arid savannas tend to be
about 12 +/- 8 m tall and support an open canopy (leaf area index equals 3.5 +/- 1.2) (Luyssaert et al.,
2007; Sankaran et al., 2005).

Savanna woodlands in regions with Mediterranean climates, cool, wet winters and hot dry summers,
year to year variations are mostly driven by the amount of rain during the spring (Allard et al., 2008; Ma
et al.,, 2016; Ma et al., 2007). Both G and R, increased linearly with increasing spring rainfall up to a
limit. Years with excessive rainfall, meet the water demand of the open woodlands and end up limiting
G through cloudiness and limited light. Carbon uptake is limited by physiological soil water deficits
during the dry hot summers, so small absolute changes in rainfall may have large relative.

Wetlands/Peatlands/Tundra

Two long term flux studies over wetlands were conducted on the British Isles, Scotland and Ireland
(Helfter et al., 2015; McVeigh et al., 2014). Both studies reported very small annual fluxes (-64 gC m™?y
in Scotland and -55 gC m™2 y™ in Ireland). Moreover, the clement, maritime climate of these locales
produced time series that ranked among the least variable (the standard deviations in Nz were less than
38gCm™yY).

Despite the small range, interannual variability in N; depended upon the length of growing season and
depth of the water table. These ecosystems experienced an anti-correlation between R, and G, when
drought increased R, by decreasing the water table, and decreased G (Helfter et al., 2015). Conversely,
warmer winter temperatures lead to an earlier spring, longer growing season and greater G. Based on
these studies, anticipated trends in declining water tables with global warming are anticipated to cause
these ecosystems to become smaller carbon sinks and potentially carbon sources.

The first set of long term carbon flux data were published recently from two representative Arctic
ecosystems in Alaska, a wet sedge and heath tundra (Euskirchen et al., 2016). These ecosystems are
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shifting from being a small carbon sink to losing carbon, as increasing air and thawing soil temperatures
are triggering the decomposition of stored organic matter that had been inactive in frozen layer. Later
dates of autumnal freezing are also extending the period of net carbon loss.

Crops

Management has an overwhelming impact on interannual variability of crops, depending upon the
choice of crop (corn or soybeans) and whether it is rainfed or irrigated (Knox et al., 2016; Suyker and
Verma, 2012). With maize/soybean rotation, both irrigated and rainfed maize are a moderate carbon
sink, compared to soybean, which ranges from being carbon neutral to a small carbon source (Suyker
and Verma, 2012). Yet, given a specific crop, exogenous factors, like the wetness of the spring on the
timing of planting, can modulated photosynthesis, and the temperature of the soil can affect ecosystem
respiration (Knox et al., 2016).

Discussion and Synthesis

As we accumulate more and longer time series on net and gross carbon fluxes inquiries about the
relative contribution of climatic vs biotic drivers are being produced (Richardson et al., 2007; Shao et al.,
2015). The most exhaustive meta-analysis to date, using flux data from 65 sites, showed that biotic
factors contributed to 57% of the variability in net ecosystem exchange and climatic factors were
associated with the residual (43%) (Shao et al., 2015).

This literature review, performed on a larger body of data, reveals that a complex combination of
climate, ecological and disturbance variables can explain year to year variability in net and gross carbon
fluxes to different degrees in different parts of the world. Inspecting results from individual papers, we
have learned that variability in ecosystem photosynthesis is the more dominant factor causing
interannual variation in net ecosystem carbon exchange, N, for a complex combination of climatic and
ecological reasons.

In principle, there are a variety of factors that can modulate annual gross primary productivity from one
year to the next. Consider the conceptual figure where the green line is the baseline (Figure 9a).
Changes in the area under the curve can occur if the season starts earlier and/or ends later (blue line).
A growing number of studies are finding that that an earlier spring may positively modulate carbon
fluxes in a deciduous forest more, while later autumn has a greater impact on accumulated
photosynthesis of a boreal forest. Figure 9 also shows that there can be a bump in the midseason rate
of carbon uptake if more light is absorbed via more leaf area index, fewer clouds or higher
photosynthetic capacity and leaf nitrogen (red line). There can be a decrease in light absorption if there
is any legacy effect of dead biomass competing for photons the following year. The experience of a
summer drought will reduce carbon uptake later in the growing season, relative the baseline (yellow
line) (Reichstein et al., 2007; Wolf et al., 2016); this can occur by direct physiological stress and/or by a
co-occurring reduction in leaf area index.

The lower panel (figure 9b) shows related changes in ecosystem respiration, where the green line is the
baseline. Drought and reductions in photosynthesis (yellow line) reduce the time course in respiration.
Higher photosynthesis or photosynthetic capacity (red line) will have a compensatory increase in
ecosystem respiration. An earlier or later growing season (blue line) will promote respiration compared
to the base case.
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Figure 9 Conceptual figure on how ecosystem photosynthesis, or gross primary production and
ecosystem respiration may vary year to year by a set of biophysical forcings. The green line is the
baseline. Yellow line is for a season with less soil moisture in late growing season. The blue line is for
earlier start and later end of the growing season. The red line is for conditions that increase
photosynthesis through more leaf area, more light absorption or greater photosynthetic potential
though greater leaf nitrogen. The lower panel shows how ecosystem respiration may respond to these
changes in photosynthesis and environmental conditions.

The standard deviations and trends of interannual variability, reported here, have uncertainties
associated the intrinsic sampling and measurement error associated with the eddy covariance method
and with the length of the time series. Using statistical sampling of random synthetic time series, we
estimated the uncertainty of interannual carbon fluxes that one must exceed given the duration of the
time series and the error of the measurements. We ran Monte Carlo simulations (N=5,000) to derive
the detectable thresholds for trends and inter-annual variability of the annual carbon fluxes. The
simulations begin with three levels of random uncertainties (i.e., +/-10, +/-30, to +/-60 g C m-1 y’l, 95%
Cl) in the annual carbon fluxes. A series of artificial time series are then drawn from the proposed
uncertainty distributions, and are used to calculate the trends (i.e., linear regression slope) and
interannual variability (i.e., standard deviation). The 95% quantiles of the simulated trends and
interannual variability are interpreted as the detectable thresholds. The simulations are carried out
subsequently for time series ranging from 5 to 30 years.

Figure 10 shows that the threshold for detecting interannual variability in net carbon flux decreases as
the duration of the time series increases and the sampling/measurement error decreases. For a
conservative case, the interannual variability must exceed 50 gC m™ y ™ to be attributed to non-random
causes if the random sampling error was +/- 60 gC m™ y™* and the time series was 5 years long. This
threshold drops to about 40 g€C m™ y ™ as the time series exceeds 20 years.
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Figure 10 Confidence interval of standard deviation as a function of sample size and sampling error.
Superimposed on this figure are reported values (closed circles) from literature review. For better
presentation, only reported values lower than 60 g€ m™ y " were showed here.

The length of the time series has a marked impact on how well we can detect temporal trends, or not,
too (Shao et al., 2015). Figure 11 shows that that the 95% confidence interval of detectable trends
reduces markedly as the duration of the time series extends from 3 to 30 years. We find that
measured trends of interannual Ng must exceed 8 gC m> y"2 if the measurement error is 30 gC m y'1 and
the time series is 5 years long for one to conclude that the noted variation is natural and not due to
randomness. If we have longer records, exceeding 20 years, we should be able to detect trends as small
as3gC m? y'z.

Figure 11 gives us context with regards to interpreting reported trends if there is no systematic bias. For
example, Pilegaard et al (2011) reported a trend in their 13 year record equal to a slope of 25 gC m™ y™
and Froelich et al. (2015) reported a trend of 15 gC m™ y™ from an 18 year record. Assuming a 30 g€Cm™
y measurement/sampling error, these trends exceed the detectable limit due to random causes.
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Figure 11 95% confidence intervals of trends in random time series of varying length and varying
measurement uncertainty.

Closing comments

We need long term carbon flux measurements for many reasons. Most importantly is to study
ecosystems on ecosystem time scales, which exceed decades. For example, long time series give us a
better and direct understanding how landscapes recover from disturbance, slow and steady process
(Odum, 1969). So far we have relied on chrono-sequences, time for space, to understand how net and
gross carbon exchange changes with time since disturbance (Amiro et al., 2010; Goulden et al., 2006).
But, this approach does not control for soil type and is often applied across large geographical areas.
Extending the time series of many disturbed forest sites beyond a decade and into multiple decades
remains an important goal for future long term research.

Secondly, long term flux studies are needed to provide information on whether or not, and if so, how
fast, ecosystem metabolism may be responding to a changing world that is warmer, bathed in more CO,,
experiencing variation in rainfall and different degrees of nitrogen deposition, air pollution and
disturbance from humans, diseases and pests. This behavior, with co-occurring global warming, a
changing hydrological cycle and rising CO, will make even longer time series measurements crucial.
These datasets are invaluable and cannot be recreated if they are shut.

We also show clearly that longer time series are needed to distinguish trends from random noise and
that future evaluations of year to year variability should consider this possibility. Leaving on a positive
note, the uncertainty will decrease in a diminishing returns manner as the length of the time series
increase from 5 to about 20 years. Ideally, it will be a goal to produce a diverse number of carbon flux
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time series reaching and exceeding 30 years. This will require long term investment by the funding
agencies and an inter-generational transition in leadership of long term flux sites.
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Figure 1.

Histogram of published values of net ecosystem carbon exchange, Ng, derived from annual long studies
using the eddy covariance method. The histogram is based on 1781 site years of data. The y axis
represents the probability density function, pdf.

Figure 2.

a) Histograms of published values of ecosystem photosynthesis (G) at annual time scales, reported in the
literature; b) histogram of published values of ecosystem respiration (R.) at annual time scales, reported
in the literature. These gross carbon fluxes were derived from eddy covariance measurements of net
ecosystem carbon exchange. The y axes represent the probability density function, pdf.

Figure 3.

Histogram of yearly anomalies in net ecosystem carbon exchange from the literature data pool of 544
site years of data. Anomalies were computed with regards to the annual mean of each time series in the
database.

Figure 4.

Histogram of yearly anomalies in a) gross primary production, or photosynthesis (G) and b) ecosystem
respiration, R.. These data are derived literature data pool of 454 site years of data. Anomalies were
computed with regards to the mean of each time series in the database.

Figure 5.

The regression between the variance in net ecosystem exchange (Ng) and gross photosynthesis (G) and
ecosystem respiration (R.). Regression coefficients are for the log transform of log(y)=b(0) + b(1) log(x)

Figure 6.

Examination of the covariance between ecosystem photosynthesis (G) and respiration (R.). Plotted here
are the yearly anomalies with the long term means of the data.

Figure 7.

Relation between year to year changes in gross ecosystem photosynthesis (dG/dt) vs ecosystem
respiration (dR./dt). The slope of the population is 0.494, the intercept is -1.137 and r’ equals 0.552, N =
398. Color codes indicate data points from each study.

Figure 8.

Lagged auto-correlation function for net ecosystem exchange at the 59 sites listed in Table 1. Each line
denotes results from time series of one site study. To detect if the lag correlation values were
significantly different from zero we performed a set of auto-correlation computations on a set of
random numbers of progressive lengths (5 to 18). From these computations, we computed the 95%
confidence intervals of lag correlations from an repeated ensemble (5000) of calculations, as shown with
the red lines.



Figure 9.

Conceptual figure on how ecosystem photosynthesis, or gross primary production and ecosystem
respiration may vary year to year by different biophysical forcings. The green line is the baseline.
Yellow line is for a season with less soil moisture in late growing season. The blue line is for earlier start
and later end of the growing season. The red line is for conditions that increase photosynthesis through
more leaf area, more light absorption or greater photosynthetic potential though greater leaf nitrogen.
The lower panel shows how ecosystem respiration may respond to these changes in photosynthesis and
environmental conditions.

Figure 10.

Confidence interval of standard deviation as a function of sample size and sampling error.
Superimposed on this figure are reported values (closed circles) from literature review. For better
presentation, only reported values lower than 60 g€ m™ y* were showed here.

Figure 11.

95% confidence intervals of trends in random time series of varying length and varying measurement
uncertainty.
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