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Abstract

Objective—To evaluate whether the deep learning (DL) segmentation methods from the 

six teams that participated in the IWOAI 2019 Knee Cartilage Segmentation Challenge are 

appropriate for quantifying cartilage loss in longitudinal clinical trials.

Design—We included 556 subjects from the Osteoarthritis Initiative study with manually read 

cartilage volume scores for the baseline and 1-year visits. The teams used their methods originally 

trained for the IWOAI 2019 challenge to segment the 1130 knee MRIs. These scans were 

anonymized and the teams were blinded to any subject or visit identifiers. Two teams also 

submitted updated methods. The resulting 9,040 segmentations are available online.

The segmentations included tibial, femoral, and patellar compartments. In post-processing, we 

extracted medial and lateral tibial compartments and geometrically defined central medial and 

lateral femoral sub-compartments. The primary study outcome was the sensitivity to measure 

cartilage loss as defined by the standardized response mean (SRM).

Results—For the tibial compartments, several of the DL segmentation methods had SRMs 

similar to the gold standard manual method. The highest DL SRM was for the lateral 

tibial compartment at 0.38 (the gold standard had 0.34). For the femoral compartments, the 
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gold standard had higher SRMs than the automatic methods at 0.31/0.30 for medial/lateral 

compartments.

Conclusion—The lower SRMs for the DL methods in the femoral compartments at 0.2 

were possibly due to the simple sub-compartment extraction done during post-processing. The 

study demonstrated that state-of-the-art DL segmentation methods may be used in standardized 

longitudinal single-scanner clinical trials for well-defined cartilage compartments.
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Introduction

Over 60 years ago it was realized that radiographs could be used to stage osteoarthritis1, 

and later it was demonstrated that magnetic resonance imaging (MRI) allowed cartilage 

quantification2. Computer-based quantification was introduced using semi-automatic 

methods3 and then a fully automatic method in 20054. Gradually, methods for quantification 

of cartilage, bone, meniscus, and synovium compartments have been proposed5.

Currently, computer-based quantification of disease-related effects has proven effective for 

epidemiological research into OA pathogenesis using large cohort studies, recently targeting 

cartilage loss6 and bone shape7, and previously also cartilage composition8, bone structure9, 

and cartilage surface integrity10. Many of the recently proposed methods leverage advances 

in machine learning, particularly in deep learning (DL) 11.

However, these methods have limited impact on the patients and the clinicians. The reasons 

include:

• OA is a multi-faceted disease involving many tissues. Therefore, even if a 

specific grading like Kellgren Lawrence (KL) can be automated12, this does not 

remove the need for expert radiologists.

• MRI is a complicated qualitative modality with no direct physical interpretation 

of the intensity levels like CT. MRI sequences visualizing clinically important 

information are implemented differently across scanner vendors and scanner 

models. This challenges development and validation of software methods.

• The deep learning methods are data-hungry during training. For a clinical setting 

where multiple, vaguely-defined outcomes involving several tissues need to be 

extracted from multiple MRI sequences acquired from any given scanner model, 

the required training data may currently be prohibitive.

• Even if many DL methods for knee MRI segmentation have been published, 

they have only to a limited degree been validated for biomarker quantification in 

large, longitudinal cohorts.

We investigated whether state-of-the-art computer-based methods are suitable for use in 

clinical trials. This could support treatment development by allowing cheaper clinical trials 

and potentially more sophisticated analysis of the treatment effect beyond volumetry (e.g. 
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related to shape7 or surface integrity10). Clinical trials have a more controlled environment 

than the general clinical setting. Specifically for MRI analysis, clinical trials will have 

pre-defined, standardized sequences. However, the acquisitions will be subject to inter-site 

differences and to changes over time as the scanners age and receive hardware replacements 

(e.g. coil or magnet) and software upgrades. Due to these potentially interacting changes and 

the complexity of the MRI acquisition and reconstruction process, it is challenging to predict 

the impact on the resulting MRI scans. These potential changes can be grouped into changes 

occurring gradually over time, Drift, and abrupt changes occurring due to a specific event, 

Shift.

A previous, preliminary study13 demonstrated that even for a well-organized study like the 

Osteoarthritis Initiative (OAI)14, there were substantial Drift and Shift effects, as illustrated 

in Figure 1. For the two illustrated sites, the mean scan intensities gradually increased, 

similarly by 1.7% and 1.8% per year. However, this Drift was interrupted by Shift events 

causing the mean intensity to abruptly increase or decrease. These Shifts caused large 

intensity changes up to 50%. It is unclear whether the Drift is related to overall scan 

effects or to more tissue-specific, non-linear effects. The OAI setup adheres to the OARSI 

recommendations15 using the same Siemens 3T scanners on all MRI sites and the same 

set of predefined sequences. However, given the duration of the OAI, the setup is dynamic 

due to replacement of spare parts and scanner software updates, challenging the initial 

standardization.

The motivations for this study were:

• Clinical trials could potentially benefit from computer-based quantification.

• The 2019 IWOAI Knee Segmentation Challenge demonstrated that several 

methods had good segmentation accuracy performance16. However, the 

conclusions were unclear for assessing cartilage thickness changes in the small 

cohort.

• Most state-of-the-art knee MRI quantification methods are Deep Learning 

methods. Deep Learning methods have been criticized for being sensitive to 

changes in the input distributions17, potentially requiring dedicated architecture 

design to address this.

The objectives were:

• To focus on the clinical trial use case where an MRI biomarker is used as 

efficacy biomarker for a chondroprotective treatment.

• To evaluate the robustness of state-of-the-art DL methods with respect to Drift 

and Shift effects.

• To provide a large collection of segmentation masks as publicly available data for 

future research.

We pursued this by evaluating the methods from the original 2019 IWOAI Knee 

Segmentation Challenge16 on a large sub-cohort from the OAI.
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Methods

Study Cohort

The OAI study14 provides a large cohort with observations from multiple visits, including 

knee MRI. We used an OAI sub-cohort with publicly available gold standard estimates 

of cartilage quantity at different visits. This allowed evaluation of the ability to quantify 

changes in cartilage quantity.

Specifically, we used the cartilage volume scores from OAI project 9B derived from 

manual segmentations produced by Chondrometrics18 for the medial/lateral tibial and the 

load-bearing part of the medial/lateral femoral cartilage compartments at visits 00 and 01 

for 565 knees coming from 556 subjects. Project 9B included the index knees from a subset 

of the OAI Progression cohort and is representative of a typical clinical trial population 

with KL 2 and 3 knees, some pain, and substantial joint space width remaining. The study 

population characteristics are shown in Table 1.

The 88 knees with publicly available semi-manual segmentation masks for the DESS 

sequence provided by iMorphics14 were used for training here and in the original 2019 

IWOAI segmentation challenge16. This set includes semi-automated masks for the tibial, 

femoral, and patellar cartilage compartments.

Anonymization of knee MRI

All scans that were segmented in this study were anonymized before being shared with the 

participating teams. Thereby, the teams were blinded to any clinical, radiology readings, or 

visit information.

Teams and Segmentation Methods

The six teams from the 2019 IWOAI segmentation challenge were invited and all teams 

accepted. The teams were instructed to use the same method as in the original challenge, but 

were invited to also submit segmentations from an updated version. Teams 3 and 4 did this. 

Training of the 2019 challenge methods was therefore done previously16, while training of 

updated methods, all segmentations, and further analysis were done for this study.

The methods are summarized in Table 2, highlighting pre-processing or intensity 

normalization steps that could likely affect the robustness against drift and shift effects.

Post-processing of Segmentations

The gold standard compartment definitions differed from the compartment masks used for 

training the DL methods. Therefore, we performed post-processing of the segmentations 

from the DL methods.

The tibial cartilage compartment was split into a medial and a lateral compartment using 

a simple k-Means split based on the scan coordinates for the voxels included in the tibial 

compartment.
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The process for defining femoral cartilage sub-compartments is illustrated in Figure 2. First, 

a medial/lateral femoral compartment was defined using the sagittal extent of the tibial 

medial/lateral compartments. The gap between the tibial compartments was split in three. 

The center-most coordinate range was excluded from the femoral mask, defining medial/

lateral sub-compartments. For each medial/lateral femoral compartment, a load-bearing 

sub-region was defined using the axial and coronal coordinates for all voxels included in the 

segmentation. Mean axial and coronal coordinates defined a center. The direction of most 

variation was computed using principal component analysis. From the center and in this 

direction, a “ceiling” was defined. Voxels below this ceiling in the medial/lateral femoral 

segmentation were included to define load-bearing femoral sub-regions.

These resulting medial/lateral femoral sub-regions were intended to approximate load-

bearing sub-compartments similar to those used by Chondrometrics for the gold standard 

readings that were defined as “using 75% of the distance between the trochlear notch and the 

posterior of the femoral condyle”14.

The medial and lateral tibial compartments are denoted MT and LT. The central medial and 

lateral femoral compartments are denoted cMF and cLF.

Efficacy Biomarker

The segmentation methods were primarily evaluated by their ability to quantify cartilage 

loss. We used cartilage volume as the imaging biomarker. The analysis included the 

medial and lateral tibial cartilage compartments, medial and lateral load-bearing femoral 

compartments, and the patellar cartilage compartment. However, no gold standard was 

available for the patellar cartilage compartment.

In addition, we computed statistics for the median volume (Med) across the teams for each 

cartilage compartment to allow a simple summary evaluation.

Performance Metrics

Following BIPED19, a clinical trial efficacy biomarker should be evaluated for the sensitivity 

to measure treatment effects. However, the lack of available treatment studies challenged 

this. Following the OARSI recommendations15, we therefore evaluated the sensitivity 

to change in the efficacy biomarker. Specifically, we evaluated the compartment-wise 

standardized response mean (SRM) for the cartilage volume: SRM = mean(Δvol)/std(Δvol), 

where Δvol is the signed change in volume from visit 00 to visit 01. The mean and standard 

deviation (std) were computed across the cohort for each compartment.

Robustness to Intensity Drift and Shift

The performance metrics above evaluate suitability for use in multi-center clinical trials. 

However, they do not directly reveal how sensitive the methods are to Drift and Shift events.

Therefore, we evaluated whether there were significant jumps in estimated cartilage volume 

across potential Shift events. Secondly, focused on Drift, we investigated whether there 

were trends in estimated cartilage volumes (after normalization for any jumps across Shift 
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events). Finally, we explored if any such effects would possibly be explained by differences 

in population across Shift events.

Specifically, we fitted a piece-wise linear model to total central tibio-femoral cartilage 

volume as a function of scan date. Here, discontinuities were allowed at known, potential 

intensity Shift events at each site (illustrated in Figure 1). The line slope was constrained 

to be equal for all line pieces for each site (assuming constant scanner drift). Given the 

complexity of Drift/Shift sources, these models were mainly discussed qualitatively.

Statistical Analysis

For evaluation of the accuracy of the cartilage volume measurements, we computed the 

mean relative signed difference (Offset) and the linear correlation coefficient (r) between 

the DL and the gold standard estimates for the baseline scans. For further investigation of 

potential bias in the segmentations, we constructed Bland-Altman plots.

For evaluation of the accuracy of the longitudinal volume changes, we computed the mean 

volume difference for each method. To test whether the volume change estimates were 

statistically different from the gold standard, we used a paired t-test on the quantified 

volume differences between baseline and follow-up.

As primary performance measure, we computed the standardized response mean (SRM) for 

each method and compartment. Confidence intervals for the SRMs were computed using 

bootstrapping with 95% Cis estimated using the bias corrected and accelerated percentile 

method20.

For detection of a Shift effects, we included Shift events with more than 10 scans in the 

intervals directly before and after and used an unpaired t-test between the before/after 

samples to statistically significant differences. For detection of Drift effects, we quantified 

the Pearson linear correlation coefficient for the samples after correction for Shift effects (in 

the spirit of the piece-wise linear model).

The extraction of the cartilage volumes from segmentation masks was done using 

JupyterLab notebooks that are available at the study repository (see below). The statistical 

analysis was done using Matlab.

Data and Open Access

The original MRI scans are available at the OAI web site at https://nda.nih.gov/oai/.

The segmentations from all teams and the JupyterLab notebook that 

extracts all cartilage compartment volumes are available at the University 

of Copenhagen Electronic Research Data Archive (ERDA) with DOI 

https://doi.org/10.17894/UCPH.14A5084C-4618-4A8F-9A59-867654EC060B at https://

erda.ku.dk/archives/1518a9c6b1db56269ef6ef62badd9d31/published-archive.html. The list 

of included scans and the unblinding codes are available upon request to the corresponding 

author.
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Some teams have shared the source code and, in some cases, also the trained models. The 

links are included in Table 2.

Results

All scans from the 556 subjects in the cohort (see Table 1 for demographics) were 

successfully analyzed by all 6 participating teams.

Volume Biomarker Accuracy

The agreement between the volume measurements from the gold standard segmentations 

and DL methods are in the two top sections of Table 3. For the baseline (BL) measurements, 

there were high correlations for the tibial MT and LT compartments with r between 0.90 

and 0.95. For the cMF and in particular for the cLF compartments, the correlations were 

lower and less consistent between the methods, ranging from 0.75 to 0.9. The DL methods 

typically estimated higher cartilage volumes for the tibial compartments with between 6 and 

10 % over-estimation. For the femoral compartments, the methods were less consistent in 

over/under-estimation.

For the change measurements from BL to follow-up (FU), the methods typically estimated 

cartilage loss similar to the gold standard. The median volume from the teams (Median) was 

around 0.2 % from the gold standard for all four tibial/femoral compartments. The paired 

t-tests showed that for 5 of the 36 compartment/method comparisons, p-values at 0.01 or 

0.02 indicated that these estimates were statistically different from the gold standard. No 

correction for multiple comparisons was done.

Sensitivity to Change

The primary performance evaluation was the sensitivity to measure changes in cartilage 

volumes estimated by the SRM (bottom section of Table 3). The gold standard had SRMs 

between 0.21 and 0.34 for the four tibial/femoral compartments. The median of the DL 

methods had SRMs between 0.17 and 0.33 for these compartments and 0.22 for the patellar 

compartment. The highest SRMs were found for the LT compartment with 0.34 for the gold 

standard and 0.38 for the best DL method.

Drift and Shift Robustness

The impact of Shift events on the resulting total central tibio-femoral (cTF) cartilage volume 

measurements is shown in Table 4. For perspective, the differences in BMI, Age, KL 

score across the Shift events are included in Table 4. These differences are generally not 

statistically significant.

There were clear, statistically significant differences in observed cartilage volumes for two 

of the three Shift events. For one of these, from site 20576, these differences are similar 

between the gold standard and the DL methods. However, for the event at site 20575 

involving both a change of scanner station and a scanner software update, the cartilage 

volume differences across the event are higher for the DL methods than for the gold 
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standard. Here, the Median of the DL estimates showed mean cartilage volume difference at 

−10% whereas the gold standard showed −4%.

The impact of potential Drift effects is shown in Table 5. Correlation between scan day 

and cTF cartilage volume could indicate a scanner drift effect. Also in Table 5, BMI, Age, 

and KL grade are included for perspective. For three of the sites, 20575/20576/20579, there 

was positive or no significant correlation between scan day and BMI/Age/KL. A positive 

correlation corresponds with the population becoming older, heavier, and more affected by 

OA over time. For these sites, there was no significant correlation between scan day and 

total tibio-femoral cartilage volumes.

However, for site 20574, there was a negative correlation between Age and scan day and 

a clear, positive correlation between cartilage volume and scan day. These observations are 

treated in the Discussion.

Discussion

Primary Results

Sensitivity to change was similar for the gold standard and the computer-based methods 

for the compartments with matching definitions, MT and LT. Here, from Table 3, the gold 

standard had SRMs at 0.21 and 0.34, respectively, and the median of the DL methods had 

0.17 and 0.33. The highest SRM was achieved by method T3+ for the LT compartment with 

SRM 0.38.

For the femoral compartments with differing region definitions, SRMs were higher for the 

gold standard at 0.31 and 0.30 for cMF and cLF compared to 0.19 and 0.21 for the median 

of the DL methods. This does not reveal whether the simple sub-compartment definition was 

inappropriate or whether the segmentations were less accurate. However, given the results of 

the IWOAI 2019 segmentations challenge16, the femoral segmentations were likely accurate 

and the culprit is most likely a too naïve sub-compartment definition.

We further investigated whether the sensitivity to change was affected by the degree of 

pathology since automated segmentation methods are often suspected of being less robust 

for knees with advanced OA. Since the cohort almost exclusively contained KL 2 and KL 

3 knees (see Table 1), we split the cohort into KL<=2 and KL>2 sub-groups. The SRMs 

for cTF are shown in the supplementary material. The results show that SRM was very 

similar for these two sub-groups for the DL methods (0.32 for KL <=2 vs 0.31 for KL>2 

for the median of the DL methods). However, for the gold standard comparison the SRM 

was higher for the KL>2 group (0.42 vs 0.36). This may indicate that the DL segmentations 

could be less robust than the manual for progressed OA. This would be very relevant to 

investigate further on cohorts with a wider range of KL scores.

Unlike the gold standard, the DL segmentations included the patellar cartilage. Here, 

the SRM for the median of the methods was 0.22, somewhat lower than for the tibial 

compartments. This may be a consequence of the sub-cohort being originally defined as 

likely progressors in the TF compartments.
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The extended version of Table 3 in the supplementary material includes 95% confidence 

intervals for the SRM scores. These reveal that the differences in SRM between methods 

are generally not statistically significant. For instance, for the LT compartment where the 
SRMs are highest, the gold standard method had 0.34 [0.26;0.41] and the median of the 
DL methods had 0.33 [0.26;0.40]. For the cLF compartment where the gold standard was 
better defined anatomically, the gold standard had 0.30 [0.22;0.37] and the median of the DL 
methods had 0.21 [0.12;0.28].

Secondary Results

The segmentation accuracy was evaluated by the correlation between the cartilage volumes 

for the gold standard and computer-based methods for the baseline scans. For the tibial 

compartments these were very high at 0.94 and 0.95, but lower for the central femoral 

compartments at 0.86 and 0.82, as seen in Table 3. This is consistent with the lower 

performance in the femoral compartments mentioned above.

The Offset between DL methods and gold standard were between −4% and +11% for the 

median of the DL methods for the four compartments at baseline. However, the estimations 

of % Loss is more consistent between the DL methods and the gold standard. This 

indicates that the DL methods are likely consistently over- or under-segmenting in each 

compartment compared to the gold standard. This is confirmed by the Bland-Altman plots in 

the supplementary material.

Robustness Against Sanner Drift and Shift Events

The OAI was not designed to investigate scanner drift and shift effects and it is challenging 

to conclude whether the methods handled these effects robustly.

Focusing on the Shift effects, it is clear from Figure 1 that the events can have drastic effects 

on the scan intensity level. Table 4 reveals the computer-based methods appeared to be 

sensitive to some of these. In particular, one event at site 20575 was associated with large 

differences in cTF volume before and after the event. The gold standard method reported 

−4% difference whereas the DL methods reported between −8% and −12%. This would 

indicate that even if several of the DL methods are overall comparable to the gold standard 

in terms of robustly quantifying changes (as evaluated by SRM in Table 3), they may still 

be more sensitive to some events. Here, a change of scanner station including a change 

of scanner software version appeared to cause the DL methods to detect less cartilage in 

their segmentations. However, since the subjects scanned before and after the event are not 

controlled, some of the volume difference across the event is likely due to actual differences 

between subjects.

This study design challenge becomes even more clear for the investigation of the Drift 

effects in Table 5. For three sites, there were no statistically significant trend in the cTF 

cartilage volumes over time. However, for site 20574, there were strong linear correlations 

between scan day and measured volumes with coefficients around 0.3 for both gold standard 

and DL methods. The positive correlation even suggests the subjects were growing cartilage. 

However, there was also a correlation between age and scan day at −0.17, suggesting the 

subjects became younger. Figure 3 shows that the ages were simply lower for subjects 
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scanned later in the study, so even if all subjects aged one year between the visits, the overall 

trend was actually a decline of 3.6% in subject age per year. This makes it hard to conclude 

whether the trend in cTF volume at an increase of 11.3% per year (not shown) was due to a 

scanner drift effect or an age confounding effect.

Potentially, a different cohort design would allow for analysis of more subtle drift/shift 

effects. In the present cohort, the subjects generally experience cartilage loss. A cohort 

designed to include structurally stable knees (possibly defined based on available semi-

quantitative readings on the OAI) would potentially make it simpler to isolate measured 

cartilage volume changes as a consequence of drift/shift effects.

Further, more sophisticated statistical analysis could potentially incorporate the known 

potential confounders (e.g. age, BMI, and KL) to reveal if the cartilage volume 

measurements are independently affected by Shift effects. However, the uncontrolled study 

design (regarding these effects) makes this challenging.

Deep Learning Architecture Choices

The methods were quite similar in performance for the secondary performance measures, 

while there appeared to be qualitatively larger differences in the primary outcome. However, 

there was no clear relationship between architectural differences and performances.

For both the teams with updated methods, the updates resulted in slight performance 

improvements (Table 3). This indicates that ELU is indeed slightly better than RELU. 

And that adding more elaborate optimization (added data augmentation) may provide 

improvement. Both of these choices are consistent with general advances in Deep Learning.

Limitations of the Study

Mean cartilage thickness including denuded areas may be a more sensitive and suitable 

biomarker for cartilage loss than volume, although studies are conflicting21–23. However, 

this requires a model of the underlying bone to determine the total area of bone, which is 

not included in this study. We therefore focused on cartilage volume to directly validate the 

segmentation methods rather than some elaborate thickness estimation step.

In the present study, we performed a post-processing step to extract a central load-bearing 

sub-region in the femoral compartments. It is known that cartilage loss is inhomogeneous 

across the femoral compartment, likely even including areas with thickening24,25. However, 

our simple post-processing step was based on the cartilage segmentation and not the bone 

anatomy. Therefore, segmentation variability will also lead to variability in the sub-region 

definition. However, in line with the above decision regarding volume vs thickness, we 

chose a crude post-processing step to keep the analysis simple.

Precision is often highlighted in evaluation of biomarkers5. This was not possible here since 

scan-rescan MRIs are not publicly available for the OAI. However, precision is reflected 

in the SRM since high measurement variation contributes to higher variation on change 

measurements and thereby lower SRM. However, low SRM may not imply poor precision.
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Readings done by trained experts in clinical trials are often performed paired, inspecting 

baseline and follow-up together (ideally blinded to order). This is to ensure consistent 

readings and high precision. In this study, the automatic methods segmented the scans 

individually. Thereby, there is room for improvement since automatic methods could also 

benefit from paired analysis.

The statistical analysis assumed that the knees are independent. However, for 9 subjects both 

knees are included, violating this assumption. Since this subset is relatively very small, we 

did not use more sophisticated statistical analysis correcting for this. However, in the table in 

the supplementary materials, we added statistics for the primary SRM outcome for a subset 

only including a single knee for each subject. This analysis demonstrated qualitatively 

identical SRM values for the 565 and the 556 knee cohorts.

Finally, the OAI data used for this study is more standardized than most clinical trials. 

Specifically, all sites used the same scanner model and the exact same MRI sequences. 

The validated DL methods may be challenged by a less standardized, multi-vendor setup. 

Therefore, the crucial next step is to validate the DL methods on clinical trial data such as 

the cohorts included in phase II of the FNIH Biomarkers Consortium (“Progress OA”)26. 

One straightforward strategy for handling the multi-vendor setup is to expand the collection 

of manually segmented training cases with examples representing all the scanner models 

and then retraining the DL models. This strategy is simple but requires expert annotator 

resources.

Conclusion

The aim of this study was – in line with the original IWOAI 2019 challenge – not to 

select a winner. Rather, this study intended to learn how robust different state-of-the-art DL 

methods were for quantifying longitudinal cartilage loss possibly confounded by scanner 

Drift and Shift effects. Since the OAI study was not designed to investigate these Drift/Shift 

effects, it is hard to firmly conclude how sensitive the DL methods were. However, it would 

appear that at least for some Shift effects, the DL methods were more affected than the gold 

standard method, causing an apparent cartilage loss.

Even so, the DL methods performed well for the primary study outcome measure, the 

sensitivity to detect cartilage volume changes. For the well-defined tibial compartments, the 

best DL methods were similar to the gold standard. The highest observed SRM at 0.38 

was from a DL method in the lateral tibial compartment (compared to 0.34 for the gold 

standard).

Given the possible impact of Drift/Shift effects on computer-based methods, two simple trial 

design recommendations could be:

• Re-scan a subset of recently scanned subjects directly following a major system 

update to reveal potential Shift effects. A power analysis could reveal a suitable 

size for this subset.

• Similar to the randomization of subjects for treatment/control groups, visit dates 

should be designed to avoid bias (as seen in Figure 3).
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Further, when adopting a DL method for a study, we recommend considering the evaluated 

methods:

• Select a subset of the methods based on the performance metrics reported here.

• Consider if these methods provide open-source implementations that you can 

use.

• Investigate if these methods have been validated on other cohorts, anatomies, and 

modalities.

• Realize that you may need to add quantification steps if you need more advanced 

imaging biomarkers than volume.

• Realize that you will need to retrain the methods using manually segmented 

training scans if you are not investigating scans acquired using the OAI DESS 

sequence.

These considerations imply that automatic cartilage quantification in clinical studies is still 

not available from a simple off-the-shelf software package. Adaptation and expert assistance 

are still needed. However, it should be noted that radiologist-based reading in clinical trials 

is also neither free nor trivial – requiring expert readers and elaborate protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Drift and Shift effects as observed from two OAI sites. The MRI scan mean intensity 

is plotted against the scan acquisition day for two of the four OAI sites. For both sites, 

the scan intensities increased gradually by 1.7% and 1.8% per year. However, these drifts 

were interrupted due to changes in scanner software and hardware, resulting in relatively 

large, abrupt shifts in intensity. The shift events were derived from the DICOM headers 

(e.g. attributes for software version and station name), except for the “Observed” event that 

appeared highly plausible from the data but had unknown origin. Note that these figures 

include all OAI scans at these sites at the 0 and 1 year visits and not only the Project 9B 

scans included in this study.
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Figure 2: 
The segmentations included the tibial and femoral compartments that were split during 

postprocessing. The process is illustrated for the first scan segmented by Team 1. The 

visualizations project the 3D segmented compartments onto a scan axis and sum up the 

segmented voxels for each position, giving a radiograph-like impression.

Left: During postprocessing, the tibial compartments were split into a medial and a lateral 

compartment by the k-means algorithm and the gap between these tibial compartments was 

split in three. The dividing planes defined medial and lateral femoral sub-compartments. The 

tibial and femoral cartilages are visualized in red and green, respectively, seen from the front 

with the medial compartment to the right. The yellow lines show the gap between medial 

and lateral tibial cartilage.

Center: For medial and lateral femoral compartments, the coordinates of the included 

voxels were used to define a sub-compartment approximating a load-bearing region. The 

center figure shows the lateral femoral cartilage with segmented voxels accumulated medio-

laterally with anterior left and posterior to the right. The center-of-mass is computed to 

define a center for the compartment. Principal component analysis is used to compute 

a primary and a secondary mode of orientation. The red line is the primary orientation 

going through the center-of-mass. Everything below the red line is included in the selected 

sub-compartment.

Right: The final lateral femoral sub-compartment, approximating a load-bearing sub-region.
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Figure 3: 
Apparent rejuvenation at site 20574. The subjects in the later part of each visit are younger. 

This means that even if each individual was approximately one year older at the second visit, 

the overall trend suggests that the subjects were 3.6% younger per study year.
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Table 1:

The study population of 556 subjects at baseline summarized by number, age, BMI, KL score, WOMAC pain 

score, and minimal medial joint space width (mmJSW) for the four sites. For Age, BMI, pain, and mmJSW the 

table shows mean ± standard deviation at baseline. For KL, the first line shows baseline grade and the second 

line shows number of progressors at 1 year follow-up. The population is evenly distributed and fairly 

homogeneous across sites, resembling a clinical trial cohort with mostly KL 2/3 subjects, some pain, and 

preserved JSW.

Site N (%female) Age [years] BMI [kg/m2] KL (N at 0,1,2,3,4) WOMAC Pain mmJSW [mm]

20574 153 (61) 61.3 ± 8.8 29.6 ± 4.6 00 03 78 71 01 
00 00 10 10 00

4.1 ± 3.5 4.0 ± 1.5

20575 128 (61) 61.7 ± 8.9 30.9 ± 5.3 02 02 69 53 02 
01 01 05 04 00

5.5 ± 4.0 4.0 ± 1.4

20576 146 (51) 60.9 ± 8.6 29.6 ± 4.3 01 06 63 75 01 
00 03 03 02 00

4.1 ± 3.4 3.9 ± 1.4

20579 129 (58) 60.7 ± 9.1 30.7 ± 5.5 01 07 54 66 01 
00 00 04 11 00

5.4 ± 4.2 3.7 ± 1.4
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Table 2:

Segmentation Methods. The manual expert segmentation (Gold) is used as gold standard and a non-DL 

method (KIQ27) is used for comparison. The methods from the 2019 IWOAI knee segmentation challenge are 

named T1-T6 (as originally16).

Team Method Optimization Loss Intensity Normalization

Gold The gold standard segmentations were done using slice-wise 
manual outlining done by training readers in a quality-assured 
setup18.

Visual inspection Manual intensity windowing

KIQ kNN voxel classification using feature selection among Gaussian 
derivative features27. This non-Deep Learning method from the 
preliminary study13 is used as baseline method.

Dice Affine global intensity correction 
from multi-atlas rigid registration

T1 Multi-class 3D U-Net architecture with dilated convolutions 
at the bottleneck layer to increase the effective receptive 
field28github.com/denizlab/2019_IWOAI_Challenge

First cross-entropy 
and then fine-tuning 
with soft Dice

Volumes were zero-mean whitened 
(zero-mean, unit variance).

T2 Cascaded ensemble of 3D and 2D variants of the V-Net29 using 
dropout and intensity/geometric data augmentation6

Dice Data augmentation using randomly 
sampled intensity transformations

T3 Multi-planar sampling of volume into 2D U-Net with batch 
normalization and geometric data augmentation github.com/perslev/
MultiPlanarUNet

Unweighted cross-
entropy

Intensity normalized to median zero 
and inter-quartile range one

T3+ As T3 where activation is ELU instead of RELU github.com/
perslev/MultiPlanarUNet

Unweighted cross-
entropy

As T3

T4 Modified DeeplabV3 with dense connections at bottleneck block 
and dilated multi-scale features30

Soft multiclass Dice No Augmentation. Volumes were 
normalized to zero-mean and unit 
variance.

T4+ Added dropout layer to T4 architecture and extended data 
augmentation

Soft multiclass Dice Geometric, Intensity and Noise 
addition based data augmentation. 
Volumes were normalized to zero-
mean and unit variance.

T5 Encoder-decoder CNN architecture using Dense Blocks 
with tri-planar fusion of 2D models with geometric data 
augmentation31github.com/ali-mor/IWOAI_challenge

Z-loss32 Bias field and intensity normalization 
using N4ITK33 followed by edge-
preserving non-linear diffusion for 
noise reduction.

T6 2D U-Net applied slice-wise in the sagittal plane. U-Net had 5 
pooling steps. http://github.com/ad12/DOSMA

Soft Dice Volumes were zero-mean whitened 
(zero-mean, unit variance).

“+”
The updated methods have a added. For each method, the optimization target and any intensity normalization steps are summarized. Links are 

included for methods with available open-source implementation and trained model weights.
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Table 3:

Accuracy and Sensitivity to Change. The agreement for volume measurements between the gold standard and 

each team are given both at baseline (BL) and for changes from BL to follow-up (FU). For BL, this is shown 

by Pearson correlation coefficient r and signed relative difference in mean value (Offset in %). For changes 

FU-BL, this is shown as the mean signed loss and the p value from a paired t-test indicating whether each 

method is significantly different from the gold standard. The sensitivity to measure change given by the 

standardized response mean (SRM) for each compartment for each method is at the bottom section of the 

table.

Team Gold KIQ T1 T2 T3 T3+ T4 T4+ T5 T6 Median

BL MT r 0.91 0.93 0.94 0.94 0.94 0.93 0.94 0.91 0.90 0.94

Offset 5.3 4.4 6.9 4.1 2.1 10.6 14.8 −20.3 6.7 5.8

LT r 0.88 0.92 0.92 0.95 0.95 0.95 0.95 0.94 0.91 0.95

Offset 11.2 10.8 14.1 9.5 7.6 14.1 19.9 −4.7 10.9 11.2

cMF r 0.81 0.84 0.84 0.86 0.87 0.83 0.85 0.86 0.78 0.86

Offset 2.5 −2.7 0.3 −4.7 −5.6 0.3 −6.5 −17.8 −1.8 −4.0

cLF r 0.75 0.79 0.79 0.81 0.80 0.82 0.80 0.81 0.78 0.82

Offset 4.6 9.0 9.4 4.5 3.5 10.7 6.7 −4.9 7.6 6.5

FU-BL MT % Loss 1.0 0.9 0.7 0.5 0.8 0.7 0.3 0.5 1.3 0.6 0.8

p 0.75 0.37 0.07 0.57 0.31 0.01 0.08 0.75 0.49 0.48

LT % Loss 1.4 1.5 1.8 1.4 1.8 1.8 1.9 1.6 1.3 2.0 1.7

p 0.42 0.08 0.34 0.01 0.01 0.01 0.02 0.62 0.12 0.04

cMF % Loss 1.4 1.1 1.3 1.1 1.1 1.0 0.9 1.7 1.4 0.3 1.2

p 0.34 0.64 0.35 0.21 0.09 0.18 0.57 0.30 0.09 0.35

cLF % Loss 1.1 1.1 1.2 1.5 1.6 1.5 1.1 0.7 1.1 1.9 1.4

p 0.74 0.50 0.13 0.08 0.07 0.62 0.41 0.83 0.10 0.19

P % Loss 1.5 2.1 2.1 2.3 2.2 2.6 1.8 0.6 1.5 2.0

FU-BL MT SRM 0.21 0.14 0.12 0.11 0.15 0.16 0.05 0.10 0.16 0.05 0.17

LT 0.34 0.25 0.25 0.30 0.33 0.38 0.29 0.33 0.19 0.17 0.33

cMF 0.31 0.16 0.16 0.15 0.16 0.15 0.11 0.21 0.18 0.02 0.19

cLF 0.30 0.18 0.15 0.19 0.22 0.24 0.13 0.07 0.16 0.14 0.21

P NaN 0.12 0.21 0.23 0.23 0.23 0.24 0.23 0.06 0.13 0.22
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Table 4:

Shift Effects. Change in total central load-bearing tibio-femoral (cTF) cartilage volume across shift events 

causing intensity distribution shift.

Shift Events

Site 20575 20575 20576

Event Observed Station change and SW update Observed

Day 337 826 322

Scans before/after 39/152 152/65 86/207

Difference in BMI (%) −2.8 −1.8 −1.1

Difference in Age (%) 1.5 1.7 * −3.8

Difference in KL (%) −1.9 2.8 −3.6

Speculative expectation on OA state across event Marginally better? Marginally worse? Likely better?

Difference in cTF Volume

Gold (%) −0.4 −3.9 ** 8.5

KIQ (%) −6.0 *** −12.2 * 5.7

T1 (%) −3.8 ** −10.5 * 7.0

T2 (%) −3.9 ** −10.3 * 6.5

T3 −4.0 * −9.3 * 7.8

T3+ −4.2 * −9.2 ** 8.0

T4 −5.1 ** −10.1 * 6.7

T4+ −4.8 * −9.3 * 7.0

T5 −1.9 * −8.0 * 7.8

T6 −4.6 * −9.4 * 7.8

Med −4.6 ** −10.0 * 7.3

Only events with at least 10 scans both before and after are included.

*, **, or ***
All differences across shift events are shown as mean relative difference between before/after scans in % and marked by for statistical 

significance given by the p-value from an unpaired t-test with p<0.05, p<0.01, or p<0.001, respectively.
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Table 5:

Drift Effects. Trend for cross-sectional drift in for central load-bearing tibio-femoral (cTF) cartilage volume 

where any changes across shift events are normalized away.

Site 20574 20575 20576 20579

BMI 0.01 * 0.15 0.03 −0.10

Age ** −0.17 −0.04 *** 0.23 0.07

KL −0.03 −0.04 ** 0.16 * 0.15

Gold *** 0.30 −0.01 −0.07 0.06

KIQ *** 0.30 0.10 0.01 0.07

T1 *** 0.30 0.03 −0.02 0.08

T2 *** 0.29 0.04 −0.01 0.07

T3 *** 0.29 0.05 −0.05 0.06

T3+ *** 0.29 0.05 −0.05 0.06

T4 *** 0.29 0.07 −0.03 0.07

T4+ *** 0.30 0.05 −0.02 0.07

T5 *** 0.31 −0.01 −0.04 0.08

T6 *** 0.29 0.05 −0.04 0.07

Med *** 0.29 0.05 −0.03 0.07

*, **, and ***
The trends are shown as the Pearson correlation coefficient with statistical significance marked by for p<0.05, p<0.01, and p<0.001, 

respectively
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