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Connections between ACT-R’s declarative memory system and Minerva2
Cvetomir M. Dimov (cvetomir.dimov@unil.ch)

Department of Information Systems, University of Lausanne
CH-1015, Switzerland

Abstract

As a first step towards applying ACT-R to problems of like-
lihood judgment, we draw parallels between ACT-R and Hy-
Gene. More specifically, in the spirit of theory integration, we
demonstrate the relation between ACT-R’s declarative memory
system and the core of HyGene: Minerva2. We first start by
transforming ACT-R’s activation equations into what is in our
view a more intuitive form. This form then allows us to more
transparently see the correspondence of the effect of prior his-
tory between the two theories and of the current context be-
tween them. The results provide insights into the workings of
the two theories and open an avenue for future attempts of the-
ory integration, not only between the two theories, but also to
related theories of memory. Moreover, we hope these results
will be important steps toward testing ACT-R’s capabilities of
accounting for judgment phenomena.
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Introduction
The cognitive architecture ACT-R (Anderson, 2007) is ar-
guably the most advanced integrated theory of cognition at
the moment. A testament to its generality is the broad spec-
trum of phenomena to which it has been applied. These in-
clude phenomena as diverse as analogy making (Salvucci &
Anderson, 2001), past tense learning (Taatgen & Anderson,
2002) and solving the Tower of Hanoi puzzle (Anderson &
Douglass, 2001).

One set of phenomena to which ACT-R has been ap-
plied are those in the field of judgment and decision mak-
ing. Specifically, the memory system of this cognitive archi-
tecture has been used to explore the applicability of various
decision strategies (Marewski & Schooler, 2011) and to in-
vestigate the properties of the fluency heuristic (Schooler &
Hertwig, 2005). In addition, the full power of the architecture
was used to construct 39 implementations of the recognition
heuristic (Marewski & Mehlhorn, 2011) and identify those
that best describe behavioral data.

A problem in the domain of judgment and decision making
to which ACT-R was never, to our knowledge, applied is how
people make probability judgments. Probably the most com-
plete psychological theory of probability judgment is HyGene
(Thomas, Dougherty, Sprenger, & Harbison, 2008). Thus, a
first step in applying ACT-R to problems of probablity judg-
ment would be to work towards the integration of ACT-R and
HyGene by exploring the compatibility of the two theories.

HyGene extends MINERVA-DM (Dougherty, Gettys, &
Ogden, 1999) by adding semantic memory and working
memory storages. MINERVA-DM was first introduces to ac-
count for various likelihood judgment phenomena, such as
frequency judgments and some judgment biases, and is itself
based on the theory of memory Minerva2 (Hintzman, 1984).

Thus, many of HyGene’s properties stem from the very prop-
erties of Minerva2.

In the spirit of theory integration (Mischel, 2009, criti-
sized the lack of theory integration efforts in psychology), we
will demonstrate the close correspondence between ACT-R’s
declarative memory and Minerva2. We will first briefly intro-
duce ACT-R’s declarative memory equations and Minerva2.
We will then present what is in our mind a more intuitive
funcitonal form of activation - the exponent of activation. We
will then derive the optimized learning equation in the expo-
nentiated form and demonstrate the conditions under which it
provides a good approximation to base-level activaiton. This
will allow us to relate influence of prior exposure according
to the two aforementioned theories of memory. We will then
compare the effect of context on activation according to the
two theories and again demonstrate the close correspondence
between the two.

ACT-R’s declarative memory system
ACT-R’s declarative memory system integrates retrieval
probability and retrieval time of a memory chunk through a
single quantity: the memory activation of that chunk. Mem-
ory activation Ai of a chunk is modeled as a function of prior
exposure to the object represented by the chunk (base-level
activation), context relevance (spreading activation of chunk)
and noise:

Ai = Bi +SAi + ε = Bi +∑
j

WjS ji + ε, (1)

In this equation, Bi is the base-level activation, which re-
flects the recency and frequency of practice of the chunk i. ε

is the noise value, which consists of permanent noise and in-
stantaneous noise computed at the time of a retrieval request.
We will only consider instantaneous noise below. Wj is the
amount of activation from source j, while S ji is the strength
of association from source j to chunk i.

The equation describing learning through base-level acti-
vation for chunk i is:

Bi = ln
n

∑
j=1

t−d
j (2)

where n is the number of presentations for a chunk i, t j
is the time since the jth presentation, and d is the decay pa-
rameter. According to the base-level equation, each time an
item is presented, its activation increases. Then, with time, its
activation decays, described with a power function .

The strength of association S ji between two chunks j and
i is 0 if chunk j is not the value of a slot of chunk i (also,
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j and i should not be the same chunk). If the two chunks
have common slots, the association strength is set using the
following equation:

S ji = S− ln( f an j) (3)

In this equation, S is the maximum associative strength
and f an j is the number of chunks in declarative memory in
which j is the value of a slot. In addition, 1 is added for each
chunk (in this case, chunk j) being associated with itself. In-
tuitively, the amount of spreading activation from a slot of the
chunk currently in the focus of attention is distributed equally
among all chunks with that slot in declarative memory.

A brief introduction to Minerva2
Minerva2 represents stimuli as feature-lists, which get stored
as episodic traces in memory upon encoding. Each repeti-
tion procudes a new trace of that item. Upon cued retreaval,
all episodic traces in memory are contacted and compared to
the cue, and produce a cumulative output in working mem-
ory called an echo. In the echo, each trace is weighted by its
activation.

Activation A(i)of an episodic trace in Minerva2 is a cubic
function of its similarity to the cue. It is expected that the
activation of a trace is close to 0 for a randomly chosen trace
and it increases superlinearly to 1 when the cue and the trace
are the same.

Exponentiating memory activation
We consider that for the current purposes the exponent of
memory activation is a more intuitive quantity to work with
than memory activation on its own:

Ae
i = eAi = eBi+SAi = eBieSAi = Be

i SAe
i (4)

Base-level activation
In the following we will use the non-log-transformed version
of base-level activation Be

i (Anderson & Schooler, 1991; An-
derson, Fincham, & Douglass, 1999), because it demonstrates
the effect of prior exposure on activation more transparently:

Be
i =

n

∑
j=1

t−d
j (5)

Derviation of the optimized learning equation To derive
the optimized learning equation, we suppose that we know
the time since the chunk was created, called its lifetime L.
Lets also suppose that it has been periodically strengthed n
times since its creation with a period of T = L

n . Given these
assumptions, we can derive a new form of the base-level ac-
tivation:

Be
i = T−d

n

∑
j=1

j−d (6)

We can approximate the sum above with an integral
(Anderson et al., 1999), and arrive at the simplified equation:

Be
i = T−d n1−d

1−d
(7)

At first sight, it seems that the base-level activation is a
power function of n (Anderson et al., 1999). Note however
that T is also a function of n. Taking this into account, we
arrive at the final expression for Be

i :

Be
i =

L−d

1−d
n (8)

This is (the exponent of) the optimized learning equation,
available, for example, in ACT-R’s documentation. Note that
it is a linear function of n, discounted only by the chunk’s
lifetime L.

Generality of the optimized learning equation Some
might argue that equation 8 rests on the rather strict assump-
tion of periodicity. To test how much of a restriction that
is, lets start with the following ”noisy” base-level activation
equation:

Bn
i =

n

∑
j=1

( jT + j1+d
ε j)
−d =

n

∑
j=1

( jT )−d
(

1+
idε j

T

)−d
, (9)

where the noise j periods ago is j1+dε j.
Using the approximation (1+a)n≈ 1+na, we can separate

the noise term from the rest:

Bn
i =

n

∑
j=1

( jT )−d
(

1−
jddε j

T

)
= Bi−dT−(1+d)

n

∑
j=1

εi (10)

If ε has an expectation of 0, then our noisy base-level ac-
tivation equation will be unbiased. Notice that the noise that
we added grows as a superlinear function of the number of
periods j.

Spreading activation
According to ACT-R the slots of the chunk present in the
imaginal buffer spread activation to chunks in declarative
memory. The exponentiated spreading activation is equal to:

SAe
i = eSAi = e∑ j

wim
nim

S ji = ∏
j

e
wim
nim

S ji , (11)

where wim is the total amount of spreading activation from the
imaginal buffer and nim is the number of slots in the imagi-
nal buffer’s chunk. Intuitively, the total amount of spreading
activation that the imaginal buffer can provide is equally dis-
tributed among its slots.

What remains to unpack is S ji, which is the difference be-
tween the maximum possible amount of spreading activation
S and the number of chunks in declarative memory with that
slot value fanj. For simplicity we set wim = nim so that these
two cancel each other out. The contribution to spreading ac-
tivation from a slot is:

eS ji =
eS

f an j
, (12)

Note that the total spreading activation from a chunk slot
in the imaginal buffer is equally distributed among all chunks
in declarative memory which contain that slot (Anderson &
Reder, 1999, discuss the general equation for spreading acti-
vation).
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The effect of prior history on activation
according to ACT-R and Minerva2

In this section we will use equation 8 to draw parallels be-
tween memory activation according to Minerva2 and ACT-R.
We will consider only the effect of prior history. For Min-
erva2 this means a constant similarity S. For ACT-R will as-
sume that there is constant spreading activation.

Minerva2 encodes each observation as a separate trace.
When memory is probed, each trace in memory contributes
with a certain activation to the echo intensity and content.
Given a similarity, the activation of a trace is A = S3. For an
occurrence frequency of an event n, we will have a total acti-
vation of the n traces related to that event of Atot = nA = nS3.
That is, the relative total activation of all traces related to two
events is simply a function of their relative occurrence fre-
quencies:

Atot
1

Atot
2

=
n1S3

n2S3 =
n1

n2
(13)

According to ACT-R, using equation 8, the relative activa-
tion of two chunks is:

Be
1

Be
2
=

L−d(1−d)
L−d(1−d)

n1

n2
=

n1

n2
(14)

It is important to emphasize that this result holds only for
chunks with the same lifetime L. However, this is not nec-
essarily a strong limitation to our result: In learning exper-
iments often all pieces of information have the same life-
time.That is, learning usually starts at the same point - in the
beginning of the experiment. And even if this is not the case,
as demonstrated, there is some variability in the starting point
allowed. In addition, it is often true for real-life memories
such as general knowledge facts that they have similar life-
times.

When there is considerable departure from this assump-
tion, one can plug in the actual lifetime of memories to esti-
mate their relative activation. For example, let us assume that
one chunk of memory is 4 times older than another. That is,
we assume that L1 = 4L2. Let us also take the standard value
of the decay parameter d = 0.5. For these values the relative
activation of the two chunks will be:

Be
1

Be
2
=

L−d
1 (1−d)

L−d
2 (1−d)

n1

n2
=

n1

2n2
(15)

This means that the relative activation of the younger chunk
will be boosted two times compared to that of the older chunk.
Generally, with the default decay parameter, if a chunk is r2

times youger, its relative activation will be r times higher.
This is a testable difference between ACT-R and Minerva2
and could be another source of bias, which Minerva2 does
not account for.

The effect of context on activation according to
ACT-R and Minerva2

For simplicity, lets assume that there are a total of m slots
in the imaginal buffer’s chunk and that wk = m. Also, we

will assume that all slots have the same fan. If for chunk i a
total of k slots spread activation, the total amount of spreading
activation is:

SAe
i = ∏

j
eS ji =

(
eS

f an

)k

(16)

Thus, spreading activation is power function of the number of
matching slots. According to Minerva2, activation changes as
the cube of the number of matching values:

A = S3 =

(
k
m

)3

(17)

Qualitatively, both expressions are superlinear functions of
k, albeit with different functional forms. However, note that
there is no strong justification for the latter expression. Its
purpose is to allow ”those items in memory that are most
similar to the test probe to dominate the overall echo from
secondary memory, while preserving the sign” (Dougherty et
al., 1999, p. 183). ACT-R’s spreading activation also affords
this and is in fact consistent with other exemplar models such
as Context Theory (Medin & Schaffer, 1978), where similar-
ity of two stimuli follows a multiplicative rule. Such parallels
can also be drawn between ACT-R and the more recent model
of recognition memory REM (Shiffrin & Steyvers, 1997). In
REM, the likelihood ratio λj plays the role of activation. Un-
der the assumption that the values of a feature in a memory
image Vkj are all equal, the expression for λ j reduces to:

λ j = (1− c)n jq ∏
k∈M

c+(1− c)g(1−g)V jk

g(1−g)V jk
(18)

λ j = (1− c)n jq
(c+(1− c)g(1−g)V

g(1−g)V

)m
, (19)

where njq is the number of nonzero features, M are the in-
dices of non-zero features that match, and m is the number of
features that match. Generally, exemplar and memory models
seem to converge to the notion that the relevance of a item of
memory increases in a multiplicative fashion with the number
of matching features.

Discussion and Conclusion
At first sight, ACT-R’s declarative memory theory and Min-
erva2 seem quite different: ACT-R uses the notion of a mem-
ory chunk with slots, while Minerva2 uses vectors with bi-
nary values. In addition, ACT-R explicitly models memory
decay, while according to Minerva2 the only way for infor-
mation to be not perfectly recorded in memory is through im-
perfect encoding. Finally, ACT-R envisions a single internal
representation of an external object, whose memory strength
increases upon each encounter of that object or recall of the
internal representation. Minerva2 on the other side saves sep-
arate traces upon each encounter.

Given these differences, it is not obvious at which points
these two theories will be tangential to each other. Our re-
sults show that both as a function of prior history and cur-
rent context the theories can make similar predictions. More
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specifically, according to both theories, in many experimental
conditions we expect relative activation to be a function only
of relative presentation frequency. As for context, it rapidly
increases the activation of memory traces similar to it. The
correspondence between the functional form of this increase
according to ACT-R and some exemplar models suggests an
exploration of that very funcitonal form as a viable alternative
to Minerva2’s current cubic function.

More importantly, the results presented above also indi-
cate the plausiblity of accounting for judgment phenomena
with ACT-R. Future efforts should aim at fully implementing
HyGene into ACT-R and repeating the very simulations that
MINERVA-DM and HyGene have already presented. Of es-
pecial interest would be an exploration of those conditions, in
which ACT-R’s predictions differ from those of Minerva2,
such as when chunks have diffferent lifetimes or different
fans.

We conclude with a wish for more frequent theory integra-
tion efforts in psychology, as we hope that the aforementioned
results demonstrated.
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