
UCLA
UCLA Electronic Theses and Dissertations

Title
Synthetic Data Generation for Fraud Detection

Permalink
https://escholarship.org/uc/item/4k63b03c

Author
Shan, Jonathan

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4k63b03c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Synthetic Data Generation for Fraud Detection

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Applied Statistics and Data Science

by

Jonathan Shan

2023

© Copyright by

Jonathan Shan

2023

ABSTRACT OF THE THESIS

Synthetic Data Generation for Fraud Detection

by

Jonathan Shan

Master of Science in Statistics and Data Science

University of California, Los Angeles, 2023

Professor Ying Nian Wu, Chair

This paper applies various synthetic data generation techniques to create synthetic fraud data

for buy now, pay later (BNPL) financial institutions that mimic the statistical properties

of real data. We utilize both statistical and deep learning methods to accomplish this task,

contrasting each different framework’s respective qualities. We evaluate the efficacy of our

approaches by using our generated data to enhance the training sets of a fraud detection

model and analyze the effects on validation results. Our results show that including synthetic

data in existing datasets can improve the accuracy of fraud detection systems.

ii

The thesis of Jonathan Shan is approved.

Guido Montufar

Guang Cheng

Ying Nian Wu, Committee Chair

University of California, Los Angeles

2023

iii

TABLE OF CONTENTS

1 Introduction . 1

2 Methodology . 3

2.1 Overview . 3

2.2 Synthetic Data Generation Methods . 4

2.2.1 Bayesian Network . 4

2.2.2 Gaussian Copula . 5

2.2.3 Tabular Variational Autoencoder . 6

2.2.4 Conditional Tabular Generative Adversarial Networks 10

2.3 Evaluation Metrics . 15

2.3.1 Fraud Model Performance . 15

2.3.2 Synthetic Data Quality . 15

2.3.3 Synthetic Data Coverage . 16

3 Results . 17

3.1 Initial Dataset . 17

3.2 Bayesian Network . 19

3.3 Gaussian Copula . 22

3.4 TVAE . 26

3.5 CTGAN . 30

3.6 Synthetic Data Comparison . 33

3.7 Model Performance Comparison . 35

4 Conclusion . 37

iv

LIST OF FIGURES

2.1 Proposed Framework . 3

2.2 Mode Normalization Example . 8

2.3 SDV TVAE Architecture . 10

2.4 SDV CTGAN Generator Architecture . 13

2.5 SDV CTGAN Discriminator Architecture . 14

3.1 Dataset Missing Rates . 18

3.2 Bayesian Network DAG . 20

3.3 Bayesian Network Column Shape Scores . 21

3.4 Bayesian Network num var 5 Distribution . 21

3.5 Bayesian Network Correlation Heatmap . 22

3.6 Bayesian Network Coverage . 23

3.7 Gaussian Copula Column Shape Scores . 23

3.8 Gaussian Copula num var 5 Distribution . 24

3.9 Gaussian Copula Coverage . 24

3.10 Gaussian Copula num var 18 Distribution . 25

3.11 Gaussian Copula Correlation Heatmap . 26

3.12 Gaussian Copula bool var 2 Distribution . 26

3.13 TVAE Column Shape Scores . 27

3.14 TVAE num var 5 Distribution . 28

3.15 TVAE num var 18 Distribution . 28

3.16 TVAE cat var 0 Distribution . 29

3.17 TVAE Coverage . 29

3.18 TVAE Correlation Heatmap . 30

v

3.19 CTGAN Columns Shape Scores . 30

3.20 CTGAN num var 18 Distribution . 31

3.21 CTGAN num var 18 Distribution . 32

3.22 CTGAN Coverage . 32

3.23 CTGAN Correlation Heatmap . 33

vi

LIST OF TABLES

3.1 Dataset Split . 17

3.2 Bayesian Network Comparison . 19

3.3 Gaussian Copula Results . 23

3.4 TVAE Results . 27

3.5 CTGAN Results . 31

3.6 Synthetic Data Quality Metrics Table . 33

3.7 Model Performance Metrics . 35

3.8 Model Performance Relative Metrics . 36

vii

CHAPTER 1

Introduction

Buy now, pay later (BNPL) is a short-term loan option that serves as an alternative to credit

cards. BNPL methods are similar to credit cards in that they both allow customers to make

purchases and delay payment until a later time. However, BNPL firms distinguish them-

selves from credit card companies by requiring repayment in a series of installments, without

needing a credit line that is repeatedly paid off. This allows shoppers to make purchases

and spread the cost over time, generally spanning anywhere from two to eight weeks. BNPL

utilizes credit checks that are not as strict as those used for traditional credit loans, allowing

customers with poor or no credit history to qualify for loans. Moreover, BNPL companies

collaborate with merchants to provide customers with a comprehensive and flexible payment

option, which assists merchants in attracting more business.

In recent years, the usage of BNPL to pay for online purchases, and more recently, in-

store purchases, has increased significantly. A Consumer Financial Protection Bureau study

on the top five BNPL firms reported that the number of BNPL purchases grew from 16.8 to

180 million, while the total dollar amount lent grew from $2 billion to $24.2 billion [2]

With BNPL becoming increasingly prevalent, there is a growing need for effective systems

that can analyze large volumes of data and identify fraudulent patterns. When a BNPL

order is placed, relevant data is generated and utilized as input for machine learning models

aimed at fraud detection. These models assess the potential risk associated with the order

being fraudulent by considering various input variables pertaining to the order and return-

ing a fraud score to rank order the transactions by riskiness. These variables can encompass

1

customer-related information, order details, or data obtained from external fraud detection

agencies. Several examples of fraud predictors encompass the count of phone numbers linked

to the customer’s account, the monetary value of the order, or an identity verification score.

However, as fraud detection procedures improve, the quantity of legitimate transactions be-

gins to heavily outnumber the number of fraudulent transactions. This introduces a strong

class imbalance issue when designing machine learning models for fraud detection. Synthetic

data is a promising solution to this problem, as it allows for the creation of synthetic orders

that can be used to enhance existing tabular data. Additionally, similar studies have shown

that the inclusion of synthetic fraud data can lead to improvements in model performance [3].

The purpose of this thesis is to investigate the viability of synthetic data generation meth-

ods for fraud detection in BNPL systems. Models explored in this thesis include Bayesian

Networks, Gaussian Copulas, Variational Autoencoders (VAE), and Conditional Tabular

Generative Adversarial Networks (CTGAN). We will explore the efficacy of the different

data generation methods and their interactions with variable types. Each method will be

evaluated by how well the synthetic data matches the real data, as well as how much the

inclusion of the synthetic data improves the our baseline model’s performance.

2

CHAPTER 2

Methodology

2.1 Overview

Our paper investigates whether adding a tabular synthetic data generation step to a machine

learning model development process could improve fraud detection metrics. The proposed

development framework is shown below.

Figure 2.1: Proposed Framework

Using the fraudulent data from an imbalanced BNPL transaction dataset, we will proceed

to generate additional instances of fraudulent orders. These synthetic fraudulent transac-

tions will be generated employing the various synthesizers discussed earlier in this study.

Subsequently, we will assess the impact of incorporating synthetic data on the performance

3

of a model designed to predict fraud within the aforementioned BNPL imbalanced dataset.

To achieve this, we will train new models using training data enriched with varying propor-

tions of synthetic fraudulent data. This approach not only allows for an investigation into

the effectiveness of different synthesizers, but also enables the determination of the optimal

quantity of synthetic data required to enhance model performance.

The following sections will describe the individual methods used to generate data, as well as

the metrics used to determine quality of synthetic data and predictive performance.

2.2 Synthetic Data Generation Methods

2.2.1 Bayesian Network

Bayesian networks (BN) are probabilistic graphical models used to represent a set of vari-

ables and their conditional dependencies through a directed acyclic graph (DAG). BNs have

become increasingly common in the field of biology, where they have been widely applied,

with gene regulatory networks being a particularly popular area of research [6] [12] [20]. More

recently, BNs have been used for data imputation or to generate and anonymize synthetic

data [14] [19] .

Each vertex in the DAG corresponds to a variable and each edge represents a conditional

dependency between the variables. The key feature of Bayesian Networks is that they allow

for the representation of the joint probability distribution of a set of variables in terms of

their conditional probabilities.

Formally, a Bayesian Network for random variables X = {X1, X2, . . . , Xn} is defined as

a DAG G = (V,E) where V is the set of vertices representing X, and E is the set of edges

representing the conditional dependencies between X. For each vertex in set V, there exists

a conditional probability for a random variable Xi that can be defined as P (Xi|P (Ei)) where

P (Ei) is the probability of all vertices with a directed edge pointed towards Xi.

4

The joint probability distribution of X that is used to generate synthetic data can then

be represented as:

P (X) =
n∏

i=1

P (Xi|P (Ei))

We will use the DataSynthesizer [14] package to build a generative Bayesian Network in

Python. One key setting for the DataSynthesizer Bayesian Network is the ”mode” of the

model with three possible options: differential privacy, independent attributes, and corre-

lated attributes. For the purposes of this paper, we will be using the correlated attributes

setting as there are variables in our dataset that are the same metric measured over different

periods of time (e.g. number of payments made in the last day/week/month).

2.2.2 Gaussian Copula

Copulas are a statistical tool that allows the modeling of the dependence structure between

random variables separately from their marginal distributions. The Gaussian Copula, rather

infamously [9], has been widely used in finance and risk management, particularly in the

modeling of credit risk and the pricing of credit derivatives.

The Gaussian copula is defined as the copula function associated with a multivariate nor-

mal distribution with zero means and a correlation matrix that represents the dependence

structure between the variables. The copula function of a Gaussian Copula is given by the

cumulative distribution function of a multivariate normal distribution with standard normal

marginals.

Formally, let Φ be the the cumulative distribution function of a standard normal distri-

bution and X = {X1, X2, . . . , Xn} be a vector of random variables with F1, F2, . . . , Fn as

their marginal distributions. Then, the Gaussian Copula C, which represents the depen-

dence structure of X, is defined as:

5

C(F1, F2, . . . , Fn) = Φ(Φ−1(F1(X1)),Φ
−1(F2(X2)), ...,Φ

−1(Fn(Xn)); Σ)

The resulting copula C takes the joint distribution of the variables and maps it to a multi-

variate Gaussian distribution with a correlation matrix Σ.

For this study, we used the Gaussian Copula Synthesizer implementation provided by the

Synthetic Data Vault (SDV) package [13]. Their implementation follows the copula function

shown above to model the data, and uses the Σ matrix as the generative model.

2.2.3 Tabular Variational Autoencoder

A variational autoencoder (VAE) combines the statistical techniques from Bayesian varia-

tional inference with the framework of machine learning based autoencoders to approximate

distributions and generate data. As is typical for autoencoder structures, VAEs are com-

prised of two halves, an encoder and a decoder. The encoder is responsible for mapping the

set of input variables to a latent variable space. From there, the decoder tries to map the

latent variable space back into a variable space that is as similar as possible to the original

variable space. In most applications, VAEs use neural networks as the encoder and decoders.

The fundamental distinction between a VAE and other autoencoders lies in the objective

they aim to achieve. For traditional autoencoders, the primary goal is to create an efficient

representation of the original variable set, similar to using Principal Component Analysis

for variable reduction. In contrast, VAEs aim to learn the parameters of an encoder and

decoder such that new data that resembles the original data can be generated. Additionally,

the encoder in a VAE aims to model the input variables to a low dimensional latent space

that is a combination of a predetermined distribution.

Formally, an encoder Eϕ with parameters ϕ maps a given a set of variables x to a la-

tent space z. This latent space z is assumed to follow a prior distribution p(z) that is most

commonly the standard Gaussian distribution. This encoder represents the posterior latent

6

distribution qϕ(z|x), which approximates the true posterior latent distribution with param-

eters θ, pθ(z|x). Data is sampled from qϕ(z|x) and passed to the decoder which then maps

the sample to x′, a reconstructed representation of the original variable space. This mapped

sample is denoted as Dθ(z) with Dθ representing the decoder. This decoder represents the

conditional likelihood distribution pθ(x|z).

The VAE aims to learn the optimal parameters ϕ of the encoder and θ of the decoder.

This objective is accomplished by minimizing the VAE loss function, which is comprised of

a reconstruction term and a regularization term. The reconstruction term is applied at the

output layer of the decoder to minimize the distance between x and x′. This part of the loss

function ensures that the generated data follows a distribution similar to that of the input

data. The regularization term, otherwise known as the Kullback-Leibler divergence (KL),

encourages the latent space to follow its assumed prior distribution. This helps the encoder

shape the latent space into a structured and desirable distribution. With regularization, the

encoder is encouraged to map data in a tight distribution across the latent space preventing

the model from overfitting and allowing for smooth transitions and continuity between dif-

ferent latent points.

Example VAE loss function with standard Gaussian prior distribution:

Loss = ||x−Dθ(z)||2︸ ︷︷ ︸
reconstruction

+KL[N(µx, σx) ||N(0, I)]︸ ︷︷ ︸
regularization

Although VAEs are often used for tasks such as image generation, SDV has adapted a VAE

for tabular data generation called the Tabular Variational Autoencoder (TVAE) Synthesizer

[16]. In this implementation, both Eϕ and Dθ components are fully connected neural net-

works. Additionally, pθ(z|x) and qϕ(z|x) are assumed to follow Gaussian distributions while

p(z) is assumed to be a standard Gaussian distribution. TVAE employs the Evidence Lower

Bound (ELBO) as an objective function to optimize parameters ϕ and θ of the encoder and

7

decoder, respectively.

ELBO = ln pθ(x|z)−KL[qϕ(z|x) || p(z)]

The ELBO tries to maximize the log-likelihood of the generated data while also trying to

minimize the divergence between the posterior latent distribution and the standard Gaus-

sian distribution. The log-likelihood is back-propagated through the network to update the

model weights.

Before inputting the data into the TVAE, a preprocessing step is performed to ensure proper

data representation. A technique named mode normalization [16] is used to transform the

continuous variables. Mode normalization utilizes Variational Gaussian Mixture Models [11],

allowing each variable distribution to be expressed as a combination of multiple Gaussian

distributions centered around the modes of the original data.

Figure 2.2: Mode Normalization Example

For example, in Figure (change), the distribution of variable i is modelled as a combination

of two Gaussian distributions. According to the Gaussian Mixture Model, the example value

8

is more likely to originated from the second Gaussian, thus that distribution is used to nor-

malize the value. In addition, discrete variables are encoded into one-hot vectors to facilitate

their handling within the framework. The final representation of a row j of the data is

rj = α1,j ⊕ β1,j ⊕ . . .⊕ αNc,j ⊕ βNc,j ⊕ d1,j ⊕ . . .⊕ dNd,j

with α1,j as the normalized value, β1,j as the mode used normalize, di,j as the one-hot vector,

Nc as the number of continuous variables, a Nd as the number of discrete variables.

The TVAE structure for a given a row j of the input data can be seen in Figure (change).

The encoder and decoder are both fully connected neural networks that feature two ReLU

layers leading to multiple output layers. The encoder network outputs both a mean vector

µ and a variance vector σ. These resultant vectors are then used to model the latent space,

which is assumed to follow the distribution N (µ, σI). Samples zj are drawn from the latent

distribution and passed to the decoder, which outputs āi,j, β̂i,j, and d̂i,j for each variable

i in row j. âi,j ∼ N (āi,j, δi) is modelled from the output data, with δi being a parameter

learned by the decoder. Finally, a joint distribution approximating the distribution of the

input data is created:

pθ(rj|zj) =
Nc∏
i=1

P (α̂i,j = αi,j)
Nc∏
i=1

P (β̂i,j = βi,j)

Nd∏
i=1

P (d̂i,j = di,j)

Synthetic data is then generated by sampling from this joint distribution and transforming

the mode regularized data back into its original representation. For our implementation, we

trained our TVAE for 100 epochs.

9

Figure 2.3: SDV TVAE Architecture

2.2.4 Conditional Tabular Generative Adversarial Networks

Introduced in 2014, Generative Adversarial Networks (GANs) emerged as a powerful gen-

erative framework primarily aimed at image generation [1] [7] [18]. Over the recent years,

GANs have gained significant traction and witnessed a surge in popularity, leading to the

development of diverse variations tailored to address specific problem domains [4] [17]. The

fundamental architecture of an adversarial network consists of two opposing models that are

pitted against each other and trained simultaneously. The generative model G generates syn-

10

thetic data, while the discriminative model D attempts to differentiate generated data from

real data. GANs distinguishes themselves from other frameworks through the generator’s

loss function. Rather than generate data that aims to follow a similar distribution to the

original data, G creates data that maximizes the possibility of tricking D into thinking the

data is real. This process allow GANs to offer the distinct advantage of not on any inference

during the learning process or having to using Markov chain Monte Carlo methods for data

sampling. When both G and D are both neural networks, the system can be optimized using

forward and back propagation.

Formally, a GAN consists of:

1. G(z, θg): A multilayer perceptron generator with parameters θg that takes samples

random data from a prior noise distribution pz(z) and outputs x.

2. D(x, θd): A multilayer perceptron discriminator with parameters θd that takes data

x and returns D(x), the probability that x comes from the original data and not the

generator.

During training, we employ a joint optimization process for both the generator network (G)

and the discriminator network (D). The objective is to optimize the generator’s ability to

fool the discriminator by minimizing log(1−D(G(z))), while simultaneously improving the

discriminator’s accuracy in distinguishing between generated and original data samples. The

objective function V (G,D) of the GAN can be written as:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

The variation of GAN used in this paper is the Conditional Tabular GAN Sythesizer offered

by the SDV package [16]. As traditional GANs are geared towards image generation, they

can struggle to model certain aspects of mixed-type tabular data [16]. The CTGAN imple-

mentation improves upon traditional GANs by addressing these common issues.

In traditional GANs, the same activation function is typically used for both continuous

11

and discrete variables when generating tabular data. CTGAN addresses this limitation by

applying the tanh activation function specifically to the continuous variables, while adopt-

ing the more appropriate Gumbel-Softmax [5] activation for the discrete variables. Previous

research has also demonstrated that GANs are susceptible to a phenomenon known as mode

collapse, which refers to the GAN’s limited ability to model multimodal distributions [15].

Mode collapse signifies that the generator fails to capture the full complexity of the un-

derlying data distribution, often by reducing a multimodal distribution to a Gaussian-like

distribution. To address this, CTGAN uses the same mode normalization preprocessing as

described in the TVAE section.

Another area that GANs struggle with is mode collapse in highly imbalanced categorical

columns. During training, underrepresented classes can be incidentally omitted when re-

sampling, leading to a lack of learning opportunities for minority classes. To tackle this

issue, a solution involves enabling the generator to generate synthetic data conditioned on a

discrete variable and then sampling data during the training phase based on the logarithmic

frequency of each category. This novel approach, dubbed ”training-by-sampling”, ensures

that the generator explores all possible discrete values.

12

Figure 2.4: SDV CTGAN Generator Architecture

In the CTGAN implementation, the generator is capable of generating synthetic data that

is conditioned on a discrete column. This conditioning is represented by a vector called

cond. To construct the condition vector cond, the mask vectors for each discrete variable

are concatenated. The mask vector m for a discrete variable Di is its a one-hot vector if Di

is the variable being conditioned on, and a zero vector otherwise. For example, if there are

two discrete variables D1 and D2 with possible values {1, 2, 3} and the condition is D2 = 1,

then the mask vectors are m1 = [0, 0, 0] and m2 = [0, 1, 0] and the conditional vector is then

13

cond = [0, 0, 0, 0, 1, 0].

The neural network structure of SDV CTGAN follows a architecture resembling their TVAE

implementation. Both the generator G and discriminator D consist of two fully connected

hidden layers that lead to output layers. Similar to the TVAE decoder, the generator G

produces outputs scalar values for the continuous variables âi,j, mode indicators of the con-

tinuous variables β̂i,j, and one-hot vectors for the discrete variables d̂i,j. Finally, these

generated rows r are fed into the discriminator for classification.

Figure 2.5: SDV CTGAN Discriminator Architecture

The discriminator show in Figure 2.5 uses a PacGAN architecture [8] with a pac size of 10

samples. PacGANs takes in multiple samples at the same time and evaluates the data’s

legitimacy as a single entity rather than individually. This helps the discriminator prevent

14

model collapse during training. Our final CTGAN was trained for 50 epochs.

2.3 Evaluation Metrics

2.3.1 Fraud Model Performance

In order to assess the impact of synthetic data on the model’s performance, we will conduct

experiments involving the inclusion of varying proportions of synthetic data in the model’s

training set. Subsequently, we will analyze the resultant changes in the model’s out-of-

time performance, specifically focusing on two widely used evaluation metrics for binary

classification tasks: Precision-Recall Area Under Curve (PR AUC) and Receiver Operating

Characteristic Area Under Curve (ROC AUC). These metrics provide valuable insights into

the model’s ability to correctly classify positive (fraud) and negative (non-fraud) instances,

thereby aiding in the evaluation of its overall performance.

PR AUC assesses the quality of a binary classification model by measuring the area under

the precision-recall curve.

ROC AUC assesses the discriminative power of a binary classifier by computing the area

under the Receiver Operating Characteristic (ROC) curve.

Both PR AUC and ROC AUC are robust evaluation metrics that are insensitive to class

imbalance and suitable for imbalanced datasets. In our experiments, we will use the increase

in PR AUC and ROC AUC to evaluate the efficacy of our synthetic data generation.

2.3.2 Synthetic Data Quality

Synthetic Data Metrics (sdmetrics) is a Python-based library crafted by the creators of the

SDV, DataCebo. This library serves the purpose of producing measurements and visual

representations that aid in evaluating the quality of our artificially generated data. We will

15

examine a couple statistics from sdmetrics to compare our synthetic data to the real data:

column shape similarity and column pair trends. These metrics assist us in measuring the

extent to which our synthetic data aligns with the statistical attributes inherent to our gen-

uine data.

Column Shape Similarity pertains to the similarity between synthetic data and real

data averaged over all of the columns in the dataset. Similarity between distributions is

measured using the Kolmogorov-Smirnov statistic [10] for numeric columns and the Total

Variation Distance for categorical and boolean columns.

Column Pair Trends measures how similarly the correlation of two columns is between the

real and synthetic data. The final statistic is the average difference in Pearson Correlation

across all pairs of variables.

2.3.3 Synthetic Data Coverage

Another facet of generating synthetic data is ensuring that the generated data approximates

the minimum-maximum value ranges for each variable in the data. We examine the Diag-

nostic Report from sdmetrics to help us verify if synthetic data is representative of the entire

real data sample. This report provides us with the column coverage metric.

Column Coverage gauges how well the synthetic data covers the range of values from

the real data for a given column. The metric is calculated differently depending on the

variable type. For numeric columns, this metric measures how close the minimum and max-

imum values of the synthetic data are to those of the real data. For categorical and boolean

variables, the coverage is measured by the proportion of unique categories represented in

the synthetic data. This metric has a range of [0, 1] where 0 represents no coverage while 1

represents perfect coverage. The final metric is the average across all columns.

16

CHAPTER 3

Results

3.1 Initial Dataset

The original dataset contains 46 predictors along with 9,300,266 BNPL orders. Among these

orders, 8,246 (0.09%) are identified as fraudulent transactions. To protect privacy, the names

of the predictor variables have been anonymized. The dataset is partitioned into three dis-

tinct subsets: training, testing, and out-of-time (OOT), with the data distribution outlined

in Table 3.1. The 8,246 fraudulent orders in the dataset serve as the real data from which

we generate synthetic fraudulent data.

Dataset # Orders # Fraud Orders

Train 5,797,166 5,521 (0.095%)

Test 1,449,291 1,349 (0.093%)

OOT 2,053,809 1,376 (0.067%)

Table 3.1: Dataset Split

The dataset includes numeric, categorical, and boolean predictors. Among the numeric pre-

dictors, there are predictors that are inherently correlated with each other. For example, one

numeric predictor could be the number of orders a customer has placed over the last hour,

while the another predictor could be the number of orders over the last day. To successfully

generate data that emulates the original data, these relationships between variables much

remain consistent, with no logical contradictions (e.g. more orders in last hour than last day).

The categorical variables in the dataset were encoded using ordinal encoding, the default

17

method for LightGBM frameworks. Compared to one-hot encoding, where each category

becomes a binary feature, ordinal encoding can help reduce the dimensionality of the data.

This is especially important when generating synthetic data, as it can simplify the complex-

ity of the generated dataset and reduce the number of interactions between variables that

the synthesizer must learn.

Figure 3.1: Dataset Missing Rates

Furthermore, it’s worth noting that the dataset exhibits a significant amount of missing data,

with missing rates peaking at 75%, as illustrated in Figure 3.1. No imputation is done to the

missing values as the LightGBM framework inherently addresses missing data by ignoring

them when making a new split. Subsequently, these missing values are allocated to the side

of the split that minimizes the overall loss, effectively treating missing data as its own unique

18

value. The proportions of missing values existing in each column is another quality of the

data the synthesizers must learn in order to successfully recreate the data.

3.2 Bayesian Network

In this project, we experimented with two Bayesian Networks, the first featured one in-

coming edge per node (degree=1) and the second permitting two incoming edges per node

(degree=2). This configuration provided the second Bayesian Network with the capability

to represent more intricate relationships between nodes, as variables could be directly asso-

ciated with two other variables. Although, this comes at the cost of increased complexity of

the DAG, and subsequently, the model, as well as an increased risk of overfitting. The first

model, with a degree of one, presented a simpler alternative. However, it may not capture

all the nuanced patterns present in the original data.

Model Column Shapes Column Pair Trends Coverage

BN(d=1) 0.7217 0.9685 0.9311

BN(d=2) 0.7212 0.9740 0.9784

Table 3.2: Bayesian Network Comparison

The findings presented in Table 3.2 indicate that the Bayesian Network with a degree of two

only exhibits slight enhancements in terms of the data’s shape and correlations compared

to the more straightforward model. Additionally, it experiences a regression in terms of

data coverage when compared to the first model. Consequently, we have decided to proceed

by incorporating the data generated by the Bayesian Network with a degree of one into

the original dataset. This choice was made because the increased complexity introduced by

the second model did not yield significant improvements. The directed acyclic graph of the

Bayesian Network (d=1) can be seen in Figure 3.2.

19

Figure 3.2: Bayesian Network DAG

When examining the results of the Bayesian Network, it is clear that the model can struggle

maintaining the correct distributions for certain numeric variables. Figure 3.3 displays the

column shape scores by variable. Although the boolean and categorical variables seem to be

well fit, the numeric variables score as low as about 0.2, indicating a lack of fit for certain

columns.

The Bayesian Network often struggles when trying to fit numeric variables, specifically those

with a large maximum and a majority of their values tightly clustered within a narrow range.

The distributions for the variable exhibiting the worst fit, num var 5, is displayed in Figure

20

Figure 3.3: Bayesian Network Column Shape Scores

3.4. The actual distribution of this variable is highly centered around 0, with approximately

98% of its values falling between 0 and 10. However, it is worth noting that the maximum

value in this distribution is significantly distant at 385.

In comparison, the synthetic data produced by the Bayesian Network scatters this con-

centration, with only around 53% of its values falling below 10. It is important to highlight

that the Bayesian Network consistently encounters difficulties when dealing with numeric

variables that exhibit a distribution pattern akin to that of num var 5, characterized by a

concentration around 0 and a large maximum value.

Figure 3.4: Bayesian Network num var 5 Distribution

The Bayesian Network is not without its merits. For the given data set, the model does

21

a perfect job at creating synthetic categorical and boolean data. Numeric columns with

maximum values close to their means also attained high column shape scores.

Figure 3.5: Bayesian Network Correlation Heatmap

The column pair trends score of 0.9685 displays the greatest strength that the Bayesian

Network, its ability to model correlations between variables. The DAG structure of a BN

offers a valuable framework for understanding the dependencies within a dataset, enabling

anyone analyzing the data to visualize potential dependencies between variables. The cor-

relations between each pair of features in Figure 3.5 shows the synthetic data follows the

original data’s trends, possibly accentuating these correlations even further. Additionally,

the model’s synthesized data spans most of the ranges of the original data, earning a coverage

score of 0.93.

3.3 Gaussian Copula

The Gaussian Copula produced generally good fits across all variable types while boasting

several advantages over the Bayesian Network. Most notably, the model does well with most

of the numeric variables including many of the variables the Bayesian Network struggled to

22

Figure 3.6: Bayesian Network Coverage

model. The column shapes bar plot in Figure 3.7 shows the efficacy of the Gaussian Copula

at simulating real numeric data. These improvements led the GC to an overall column shapes

score of 0.7844.

Model Column Shapes Column Pair Trends Coverage

GC 0.7844 0.8265 0.709

Table 3.3: Gaussian Copula Results

Figure 3.7: Gaussian Copula Column Shape Scores

The improvement over the Bayesian Network for numeric variables is further illustrated in

the Gaussian Copula distribution of num var 5 in Figure 3.8. Although the column shape

score for the variable is still relatively low at 0.4, the Gaussian Copula does a better job

23

at approximating the shape of the distribution compared to the BN. As this method uses

Gaussian distributions, it will generally do a good job at modeling Gaussian-like distributions

the original data.

Figure 3.8: Gaussian Copula num var 5 Distribution

However, the model’s overall improvement to variable distributions comes in exchange for a

significant loss in coverage. As depicted in Figure 3.9, the coverage scores indicate that the

model covers less than 40% of the range for many of the numeric variables. These poorly

covered variables are also the same numeric variables that the Bayesian Network struggled

to synthesize effectively, characterized by their concentration around 0 and possessing large

maximum values. In essence, the model is exchanging broader column coverage for enhanced

precision in depicting the distribution’s shape.

Figure 3.9: Gaussian Copula Coverage

In contrast to the Bayesian Network (BN), the Gaussian Copula encounters challenges when

24

it comes to modeling categorical and boolean variables. Moreover, it exhibits difficulty in

handling multimodal variables, as exemplified by num var 18, whose distribution is illus-

trated in Figure 3.10. This particular variable has three distinct Gaussian-like curves, yet

the synthesizer retains only one of them. In the context of fraud detection, this behavior can

have significant repercussions, as additional modes in the data may serve as potential indi-

cators of fraudulent patterns. The omission of such information could potentially diminish

the utility of the synthetic data for fraud detection purposes.

Figure 3.10: Gaussian Copula num var 18 Distribution

The Gaussian Copula achieved an overall column pair trends score of 0.8265, implying

that the model reasonably reproduces the pairwise correlations observed in the original

data. While this score falls noticeably short of the Bayesian Network score, the correlation

heatmap in Figure 3.11 reveals that the Gaussian Copula effectively captures and accentu-

ates the strong correlations present in the real data. However, it may not have detected the

subtle correlations that the Bayesian Network picked up on.

It is also worth noting that the Gaussian Copula exhibits a lower proficiency in generat-

ing categorical and boolean variables when compared to the Bayesian Network (BN). This

pattern is particularly evident in the synthetic distribution of bool var 2, which attained

a column shape score of approximately 0.6. The distribution of bool var 2, as depicted in

Figure 3.12, illustrates that the synthesizer overemphasizes the occurrence of 1 (true) values

in the variable. Moreover, the synthetic data for this variable contains no missing values, in

25

Figure 3.11: Gaussian Copula Correlation Heatmap

contrast to the real data, which exhibits a missing value rate of 29.47%.

Figure 3.12: Gaussian Copula bool var 2 Distribution

3.4 TVAE

The Tabular Variational Autoencoder is the first of two deep learning methods tested in

this project, with the CTGAN serving as the other. Typically, a neural network-based

architecture introduces elevated complexity, resulting in longer training times and enhanced

accuracy. This association also holds true when comparing the TVAE to the prior methods

26

as the TVAE achieves the highest average column shape score at 0.8469 indicating that this

model is very effective at synthesizing the original data.

Model Column Shapes Column Pair Trends Coverage

TVAE 0.8469 0.8342 0.5691

Table 3.4: TVAE Results

Figure 3.13 underscores the TVAE’s exceptional effectiveness in generating data that closely

resembles the original dataset. Notably, the model excels in synthesizing numeric columns,

with all columns scoring a minimum column shape score of 0.6. Moreover, the TVAE captures

patterns that were inaccurately modeled by the previous methods, including tightly clustered

distributions with high maximums and multimodal distributions.

Figure 3.13: TVAE Column Shape Scores

This discrepancy is evident in Figure 3.14 and Figure 3.15, which shows the TVAE’s dis-

tributions for num var 5 and num var 18 respectively. The TVAE exhibits strong modeling

capabilities, particularly in the case of num var 5 and other variables sharing similar dis-

tribution characteristics. It succeeds in synthesizing these columns to closely mirror the

original data. For num var 18, the model overemphasizes the first mode at the expense of

the third mode. Despite this, it effectively captures and reproduces the general shape of the

distribution, demonstrating its proficiency in representing complex data patterns.

The TVAE, however, is similar to the Gaussian Copula as it also struggles a bit with cat-

27

Figure 3.14: TVAE num var 5 Distribution

Figure 3.15: TVAE num var 18 Distribution

egorical and boolean variables. For example, cat var 0 is the second worst fit according to

the column shape scores and its distribution can be seen in Figure 3.16. The synthetic data

contains exclusively one value for the whole column, as well as an 8% higher missing rate

when compared to the real data.

Furthermore, the model exhibits a notably lower average coverage score of 0.5691 compared

to the previous two models. The coverage scores, as depicted in Figure 3.17, highlight

the TVAE’s limited value diversity in certain columns, even though it generally maintains

the original data distributions quite faithfully. While the synthesizer may not incorporate

outliers that were present in the original data, it does manage to capture the essence of the

real data distributions with a high degree of accuracy. The correlation heatmap in Figure

3.18 displays the pairwise correlations of the TVAE model, which are consistently lower in

28

Figure 3.16: TVAE cat var 0 Distribution

Figure 3.17: TVAE Coverage

comparison to those generated by the Gaussian Copula and Bayesian Network models. The

GC and BN models may have magnified certain correlations present in the original data,

which is not the case with the TVAE. However, it’s worth noting that the TVAE still achieves

a respectable column pair trends score of 0.8342.

29

Figure 3.18: TVAE Correlation Heatmap

3.5 CTGAN

With a 0.8116 column shapes score, the CTGAN performs well at generating data that ad-

heres to the original data’s distribution. As illustrated in Figure 3.19, the column shape

scores reveal similarities between the CTGAN and the TVAE, both of which perform ade-

quately across various data types. However, the model exhibits some difficulty with categor-

ical and boolean variables when compared to the Bayesian Network. Otherwise, the model

does well, achieving a column shape score of at least 0.6 for nearly all variables, with just

two exceptions.

Figure 3.19: CTGAN Columns Shape Scores

30

Model Column Shapes Column Pair Trends Coverage

CTGAN 0.8116 0.8038 0.5917

Table 3.5: CTGAN Results

When analyzing the interactions between the model and different variables types and distri-

butions, it is clear the CTGAN represents a significant advancement over preceding method-

ologies. Figure 3.20 effectively illustrates this point by showcasing the distribution of the

multimodal variable num var 18, which both the Gaussian Copula and TVAE struggled to

synthesize properly. Remarkably, CTGAN accurately reproduces a distribution with three

distinct modes, mirroring the patterns observed in the authentic data. This demonstrates

CTGAN’s capacity to address complex numeric distribution that posed difficulties for earlier

approaches.

Figure 3.20: CTGAN num var 18 Distribution

The numeric variable that scored the worst according to the column shape scores was

num var 35, whose distributions can be found in Figure 3.21. Despite its relatively modest

score of 0.55, the synthetic distribution succeeds in preserving the fundamental shape char-

acteristics of the original distribution, albeit with a larger proportion of values concentrated

near the mean. In addition num var 35, CTGAN does not significantly distort the shape of

any other numeric variables to the same extent as observed with the previous models.

Despite the CTGAN’s strengths in modeling numeric variables, the model shares similar

31

Figure 3.21: CTGAN num var 18 Distribution

shortcomings as the TVAE. Specifically, the model struggles with synthesizing categorical

and boolean columns, poor coverage, and training complexity. For cat var 0, the CTGAN

Figure 3.22: CTGAN Coverage

under represents the majority class and missing values as seen in Figure 3.22. Addition-

ally, the model consistently gets lower column shape scores than TVAE when synthesizing

categorical and boolean columns. The coverage scores in Figure 3.23 and average cover-

age score of 0.5917 are reminiscent of the TVAE’s coverage metrics. Additionally, CTGAN

shares similar column pair trends scores with the TVAE and both models exhibit comparable

correlation heatmaps.

32

Figure 3.23: CTGAN Correlation Heatmap

3.6 Synthetic Data Comparison

Model Column Shapes Column Pair Trends Coverage

BN 0.7217 0.9685 0.9311

GC 0.7844 0.8265 0.709

TVAE 0.8469 0.8342 0.5691

CTGAN 0.8116 0.8038 0.5917

Table 3.6: Synthetic Data Quality Metrics Table

When conducting a comparative analysis of the various data synthesizers employed, distinct

disparities emerge between the outcomes achieved by deep learning algorithms (TVAE and

CTGAN) and statistical models (BN and GC). The deep learning models notably distin-

guish themselves through their ability to produce accurate synthetic data distributions, as

evidenced by the TVAE achieving the highest average column shape score at 0.8469. Con-

versely, the statistical models excel in terms of data coverage, with the Bayesian model,

achieving a high score of 0.9311. The metrics in Table 3.6 suggests the existence of a trade-

off between column shape and coverage, where higher column shape scores correspond to

33

lower coverage scores. For the purposes of using synthetic data to enrich machine learning

model training sets, preserving the accurate shape of the data distribution may hold greater

importance than achieving complete coverage of all potential data points. Nevertheless,

maintaining proportional data representation remains a important consideration.

The column pair trends also provide a interesting metric to analyze our models from. The

Bayesian Network emerges as the leading model in this regard, effectively replicating pair-

wise correlations from the original data. This outcome aligns with expectations, given the

Bayesian Network’s focus on modeling correlations between variables. However, it is impor-

tant to acknowledge that while the BN excels in maintaining pairwise correlation trends, its

performance may vary when confronted with more intricate interactions between variables.

Another pertinent comparison pertains to the deep learning models themselves. The TVAE

outperforms the CTGAN in both column shapes and column pair trends metrics. Neverthe-

less, during the exploration of individual synthetic variable distributions, it becomes evident

that the CTGAN successfully addresses certain issues observed in the TVAE’s synthesis of

numeric and multimodal variables. This suggests that while the CTGAN boasts specific

advantages over the TVAE, the latter may offer more precise overall distribution accuracy.

34

3.7 Model Performance Comparison

Table 3.7 below displays the results of training the baseline model with differing amounts

of synthetic data generated with the various synthesizers from the previous section. In the

table, p represents the proportion of fraud orders in the training set that were synthetically

generated. Table 3.8 displays the values of Table 3.7 relative to the baseline model as percent

increases and decreases.

Model PR AUC ROC AUC Best F1 Score

Baseline 0.2884 0.8415 0.3859

BN (p = 0.05) 0.2718 0.8422 0.3499

BN (p = 0.10) 0.2553 0.8399 0.3353

BN (p = 0.15) 0.2513 0.8393 0.3295

GC (p = 0.05) 0.2547 0.8348 0.3346

GC (p = 0.10) 0.2682 0.8351 0.3514

GC (p = 0.15) 0.2723 0.8305 0.3586

TVAE (p = 0.05) 0.3082 0.8443 0.3934

TVAE (p = 0.10) 0.3085 0.8421 0.3907

TVAE (p = 0.15) 0.3050 0.8430 0.3924

CTGAN (p = 0.05) 0.3120 0.8391 0.3989

CTGAN (p = 0.10) 0.3113 0.8388 0.4004

CTGAN (p = 0.15) 0.3075 0.8391 0.3922

Table 3.7: Model Performance Metrics

Based on our research findings, the inclusion of data generated solely from the BN and GC

models appears to have a detrimental impact on model performance. Conversely, the uti-

lization of deep learning models proves to be beneficial, enhancing the predictive capabilities

of the baseline model. Notably, datasets augmented by the TVAE exhibit improvements in

key performance metrics, such as PR AUC, ROC AUC, and F1 score. Datasets augmented

35

by the CTGAN show substantial enhancements in PR AUC and F1 Score, albeit with minor

decreases in ROC AUC.

It is noteworthy that, except for the Gaussian Copula, the model consistently performed

optimally when 5% to 10% of the fraudulent orders in the training set were synthetic. This

suggests that this range typically represents the most effective proportion for appending

synthetic data to the positive class of the training dataset.

Model PR AUC ROC AUC Best F1 Score

BN (p = 0.05) -5.75% +0.08% -9.33%

BN (p = 0.10) -11.51% -0.19% -13.11%

BN (p = 0.15) -12.86% -0.26% -14.62%

GC (p = 0.05) -11.17% -0.80% -13.29%

GC (p = 0.10) -7.00% -0.76% -8.94%

GC (p = 0.15) -5.58% -1.31% -7.07%

TVAE (p = 0.05) +6.87% +0.33% +1.94%

TVAE (p = 0.10) +6.97% +0.07% +1.24%

TVAE (p = 0.15) +5.76% +0.18% +1.68%

CTGAN (p = 0.05) +8.18% -0.29% +3.37%

CTGAN (p = 0.10) +7.94% -0.32% +3.76%

CTGAN (p = 0.15) +6.62% -0.29% +1.63%

Table 3.8: Model Performance Relative Metrics

36

CHAPTER 4

Conclusion

Synthetic data generation is an evolving field within the realm of machine learning, char-

acterized by continuous development of new methods and applications. In our study, we

employed four distinct synthesizers to augment a dataset focused on Buy Now Pay Later

(BNPL) fraud. As is typical with many fraud detection datasets, our data exhibits a sub-

stantial class imbalance, with a fraud rate of just 0.09%. When training models with datasets

enriched by deep learning models, we observed notable performance enhancements, including

an up to 8.18% increase in PR AUC and a 3.76% rise in F1 Score. This research establishes

a valuable framework for leveraging synthetic data generation to tackle class imbalance chal-

lenges in the context of fraud detection.

Among the four synthesizers employed in our study, the Conditional Tabular Generative Ad-

versarial Network (CTGAN) and Tabular Variational Autoencoder (TVAE) demonstrated

the ability to generate fraudulent order data closely mirroring the variable distributions of

the input data. Notably, the inclusion of fraud orders generated by a CTGAN led to sub-

stantial improvements in validation PR AUC and F1 Score, while datasets enriched by a

TVAE exhibited across-the-board enhancements in PR AUC, ROC AUC, and F1 Score.

While this project serves as a promising proof of concept, there is room for further develop-

ment of this framework. Future research endeavors may involve the creation of additional

evaluation metrics to comprehensively assess the effectiveness of each method in generating

synthetic data that replicates the original data’s distribution. Furthermore, considering our

research primarily focuses on enhancing gradient boosted tree methods, future investigations

37

could also delve into the interactions between various statistical and machine learning models

and the data generated by these synthesizers.

38

REFERENCES

[1] Jianmin Bao et al. “CVAE-GAN: fine-grained image generation through asymmetric

training”. In: Proceedings of the IEEE international conference on computer vision.

2017, pp. 2745–2754.

[2] Consumer Financial Protection Bureau. Buy Now, Pay Later Market Trends and Con-

sumer Impacts. 2022. url: https://files.consumerfinance.gov/f/documents/

cfpb_buy-now-pay-later-market-trends-consumer-impacts_report_2022-

09.pdf.

[3] Yinan Cheng et al. “Downstream Task-Oriented Generative Model Selections on Syn-

thetic Data Training for Fraud Detection Models”. In: ACM International Conference

on AI in Finance – Workshop (2023).

[4] Justin Engelmann and Stefan Lessmann. “Conditional Wasserstein GAN-based over-

sampling of tabular data for imbalanced learning”. In: Expert Systems with Applications

174 (2021), p. 114582.

[5] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with gumbel-

softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[6] Yifeng Li et al. “The Max-Min High-Order Dynamic Bayesian Network for Learning

Gene Regulatory Networks with Time-Delayed Regulations”. In: IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics 13.4 (2016), pp. 792–803. doi:

10.1109/TCBB.2015.2474409.

[7] Wentong Liao et al. “Text to image generation with semantic-spatial aware gan”. In:

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

2022, pp. 18187–18196.

[8] Zinan Lin et al. “Pacgan: The power of two samples in generative adversarial networks”.

In: Advances in neural information processing systems 31 (2018).

39

https://files.consumerfinance.gov/f/documents/cfpb_buy-now-pay-later-market-trends-consumer-impacts_report_2022-09.pdf
https://files.consumerfinance.gov/f/documents/cfpb_buy-now-pay-later-market-trends-consumer-impacts_report_2022-09.pdf
https://files.consumerfinance.gov/f/documents/cfpb_buy-now-pay-later-market-trends-consumer-impacts_report_2022-09.pdf
https://doi.org/10.1109/TCBB.2015.2474409

[9] Donald MacKenzie and Taylor Spears. “‘The formula that killed Wall Street’: The

Gaussian copula and modelling practices in investment banking”. In: Social Studies of

Science 44.3 (2014). PMID: 25051588, pp. 393–417. doi: 10.1177/0306312713517157.

eprint: https://doi.org/10.1177/0306312713517157. url: https://doi.org/10.

1177/0306312713517157.

[10] Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness of fit”. In: Journal of

the American statistical Association 46.253 (1951), pp. 68–78.

[11] Nikolaos Nasios and Adrian G Bors. “Variational learning for Gaussian mixture mod-

els”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

36.4 (2006), pp. 849–862.

[12] Hasna Njah and Salma Jamoussi. “Weighted ensemble learning of Bayesian network

for gene regulatory networks”. In: Neurocomputing 150 (2015), pp. 404–416.

[13] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. “The synthetic data vault”.

In: 2016 IEEE International Conference on Data Science and Advanced Analytics

(DSAA). IEEE. 2016, pp. 399–410.

[14] Haoyue Ping, Julia Stoyanovich, and Bill Howe. “DataSynthesizer: Privacy-Preserving

Synthetic Datasets”. In: Proceedings of the 29th International Conference on Scientific

and Statistical Database Management. SSDBM ’17. Chicago, IL, USA: Association for

Computing Machinery, 2017. isbn: 9781450352826. doi: 10.1145/3085504.3091117.

url: https://doi.org/10.1145/3085504.3091117.

[15] Akash Srivastava et al. “Veegan: Reducing mode collapse in gans using implicit varia-

tional learning”. In: Advances in neural information processing systems 30 (2017).

[16] Lei Xu et al. “Modeling tabular data using conditional gan”. In: Advances in neural

information processing systems 32 (2019).

[17] Jianwei Yang et al. “Lr-gan: Layered recursive generative adversarial networks for

image generation”. In: arXiv preprint arXiv:1703.01560 (2017).

40

https://doi.org/10.1177/0306312713517157
https://doi.org/10.1177/0306312713517157
https://doi.org/10.1177/0306312713517157
https://doi.org/10.1177/0306312713517157
https://doi.org/10.1145/3085504.3091117
https://doi.org/10.1145/3085504.3091117

[18] Bowen Zhang et al. “Styleswin: Transformer-based gan for high-resolution image gen-

eration”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2022, pp. 11304–11314.

[19] Zhigang Zhou et al. “A Targeted Privacy-Preserving Data Publishing Method Based

on Bayesian Network”. In: IEEE Access 10 (2022), pp. 89555–89567. doi: 10.1109/

ACCESS.2022.3201641.

[20] Min Zou and Suzanne D Conzen. “A new dynamic Bayesian network (DBN) approach

for identifying gene regulatory networks from time course microarray data”. In: Bioin-

formatics 21.1 (2005), pp. 71–79.

41

https://doi.org/10.1109/ACCESS.2022.3201641
https://doi.org/10.1109/ACCESS.2022.3201641

	Introduction
	Methodology
	Overview
	Synthetic Data Generation Methods
	Bayesian Network
	Gaussian Copula
	Tabular Variational Autoencoder
	Conditional Tabular Generative Adversarial Networks

	Evaluation Metrics
	Fraud Model Performance
	Synthetic Data Quality
	Synthetic Data Coverage

	Results
	Initial Dataset
	Bayesian Network
	Gaussian Copula
	TVAE
	CTGAN
	Synthetic Data Comparison
	Model Performance Comparison

	Conclusion

