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Abstract

Despite centuries of using mathematical notation, surprisingly
little is known about how mathematicians perceive equations.
The present experiment provides an initial step in understand-
ing what sort of internal representation is used by experienced
mathematicians, In particular, we examined if mathematical
syntax plays a role in how mathematicians encode algebraic
equations, or if just a simple memory strategy is used. Par-
ticipants in the experiment performed a memory recognition
task that required them to identify both well-formed (syntac-
tically correct) and non-well-formed sub-expressions of equa-
tions. As hypothesised, performance was significantly better
for well-formed sub-expressions, a result which suggests that
mathematicians do indeed use an internal representation based
on mathematical syntax to encode equations,

Introduction

Mathematical notation has evolved over hundreds of years.
Like natural language, mathematical notation appears to have
a well-defined syntax and semantics. It is clear that the ex-
pression

+
2—.
z( 78
is syntactically incorrect, while the equation
7 -9 .
=(3-2
—=3-2)

is syntactically well-formed but not true.

For decades now, phrase structure grammars have been
used to understand how humans parse natural language sen-
tences (for example, see Akmajian, Demers and Harnish,
1984). Such grammars have also been exploited in computer
programming languages to process simple linearised mathe-
matical expressions. However, unlike natural language (writ-
ten or spoken), the syntax of mathematical notation is two-
dimensional in nature. For example, the preceding equation
relies on both vertical and horizontal adjacency relationships
between the symbols to provide the meaning.

Given that mathematical notation has a well-defined syn-
tax and a two-dimensional structure, it is natural to ask how
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humans comprehend mathematical equations and other nota-
tions with similar characteristics. We are especially interested
in determining if humans parse mathematical expressions in
a manner similar to the way in which they parse natural lan-
guage. That is, do we assign grammatical structure to equa-
tions.

The notion that grammatical structure can be assigned to
equations has some support from work on developing com-
puter programs to understand mathematical notation. Since
the pioneering work of Anderson (1977), almost all ap-
proaches have been grammar based, using some form of
context-free attributed multiset grammar to specify the syn-
tax. Attributes are used to capture geometric properties of
the symbols, while the grammar works over multisets rather
than sequences since there is no single way to sequence an
equation. For further information, see the recent survey by
Marriott, Meyer and Wittenburg (1998).

When processing an equation, the information needs to be
stored in memory. Research has shown that humans have
memory procedures for dealing with large amounts of infor-
mation (Miller, 1956). They encode information into chunks
that they can utilise within the limits of working memory.
However, chunking is more efficient if it is guided by a
structural principle. Research done by Johnson (1968, 1970)
has shown that in the context of natural language, chunking
is guided by syntax, with individual chunks conforming to
grammatically defined units. Our aim is to determine if a
similar process is true for mathematical expressions.

This experiment therefore has been designed to examine
whether or not experienced users of mathematics use guided
encoding when processing equations. That is, do mathemati-
cians use some sort of internal representation that takes syn-
tax into account, or do they use a less guided memory strategy
to chunk a mathematical equation.

Surprisingly little work has been done that directly ad-
dresses this issue. The two-dimensional nature of mathemat-
ical notation seems to place it the same domain as diagrams.
There has been much work done in the field of diagrammatic
reasoning already (for example, see Glasgow, Narayanan and
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Table 1: Example equations and sub-expressions.

Equation Sub-Expression
Well-Formed Non-Well-Formed Incorrect
Y iy 2y - 5) 2(dy+
— x —_— —
z(2y - 5) . z(2 v
2z + 2 6z + 2
x = 6yz — 2 2z + 2 = byz- Iy

Chandrasekaran, 1995), however this has concentrated on
how diagrams are used in reasoning, rather than low-level
perception of structure,

Our hypothesis is that experienced mathematicians do use
some sort of internal representation to guide their encoding
of equations, and that this representation is based on math-
ematical syntax. To test this hypothesis, we have set up a
recognition task to determine if participants can more read-
ily identify syntactically well-formed sub-expressions of an
equation, as opposed to non-well-formed sub-expressions. If
a simple memory strategy were being used, we would ex-
pect chunking in its most basic form, randomly splitting up
the equations and providing no advantage for well-formed
over non-well-formed sub-expressions. Such a result would
mean that our hypothesis has no support. However, we expect
that participants will respond significantly faster to the well-
formed sub-expressions, indicating that mathematical syntax
plays an important role in encoding equations.

Method

Participants Twenty-four participants successfully com-
pleted the experiment. All were staff members, graduate or
undergraduate students from the Computer Science depart-
ment, all competent mathematicians who were very familiar
with algebra. All participants were volunteers between the
ages of 18 and 35 years, with normal or corrected-to-normal
vision. Data from an additional 13 participants were not in-
cluded due to excessive error rates.'

Materials and Design One-hundred-and-twenty equations
were constructed, all consisting of between twelve and four-
teen characters. The equations contained at most one frac-
tion and the variables were z and y, since these are most
commonly used. For each equation, sub-expressions of three
types were constructed.

a) A well-formed sub-expression, which is a component of
its equation, and conveys the same meaning on its own that

'For the results of a participant to be included in the final analy-
sis, they were required to get at least 70% correct responses overall
and at least 50% correct for any given sub-expression type. This
resulted in there being twenty-four participants whose data was in-
cluded, eight for each version of the experiment.
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it conveys in the equation.

b) A non-well-formed sub-expression, which is also a com-
ponent of its equation, but does not convey any coherent
mathematical meaning on its own.

¢) An incorrect sub-expression, which was not part of the
original equation. It can be either well-formed or non-
well-formed. These act as fillers.

Each of the sub-expressions contained between four and six
characters (the average for well-formed sub-expressions was
4.89; for non-well-formed, 4.49; for incorrect, 4.72). See Ta-
ble 1 for examples of equations and sub-expressions used. As
the examples show, a variety of sub-expressions were used,
some of which were bracketed, but most of which were not.

In order to present all three sub-expression types for each
equation, but ensuring that participants were presented with
each equation only once to avoid practice effects, three coun-
terbalanced versions of the experiment were constructed. For
each version, there were forty instances of each type of sub-
expression. Two additional equations were constructed as
practice items. The same practice items were used in each
version. The items of each version were presented in a differ-
ent pseudo-random order for each participant.

Procedure Participants were seated comfortably in an iso-
lated booth. Items were displayed as black text on a white
background on a 17” monitor at a resolution of 1024x768,
controlled by an IBM compatible computer running a pur-
pose designed computer program. The average width of the
equations in pixels was 177 (range 99-220) with an average
height of 47 (range 26-61). The average width of the sub-
expressions in pixels was 73 (range 39-192) with an average
height of 26 (range 16-54).

Participants were given a brief statement of instructions be-
fore the experiment began. Practice items preceded the exper-
imental items, and the participants took approximately fifteen
minutes to complete the task. Progress was self-paced, with
participants pressing the space bar to initiate the presentation
of each trial.

Each item was presented in the centre of the monitor in
the following sequence. First, a simple algebra equation was
shown to the participant for 2500ms. The equation then dis-



Table 2: Mean correct response times (ms) and error rates (%) as a function of sub-expression type.

Sub-Expression RT(ms) % Error

Well-Formed 1147 (147) 13.1 (6.2)
Non-Well-Formed 1352 (228) 235 (8.8)
Incorrect 1429 (213) 328 (8.9)

appeared and the screen remained blank for 1000ms. Then
the sub-expression was shown. The participant was required
to decide whether the sub-expression was in that equation, re-
sponding via a timed selective button press. They pressed the
green button, (the ‘/* key on the right side of the keyboard),
to indicate that the sub-expression was part of the original
equation, and the red button, (the ‘Z’ key on the left of the
keyboard), to indicate that the sub-expression was not part
of the original equation. Participants were instructed to re-
spond as quickly as possible, while taking care not to make
too many errors. The sub-expression remained on the screen
until a response was made.

The response time recorded was the time between the sub-
expression first appearing and the participant’s response. Af-
ter the response, the participant was given feedback. If the
response was correct then the word “CORRECT” appeared
on the screen. Otherwise, the word “INCORRECT™ appeared
on the screen. In both cases, the participant's response time
in milliseconds also appeared on the screen.

Data Treatment Two measures were employed to reduce
the unwanted effects of outlying data points. Absolute upper
and lower cut-offs were applied to response latencies, such
that any response longer than 2500ms or shorter than 500ms
was excluded from the response time data analysis and desig-
nated as an error. Secondly, standard deviation cut-offs were
applied, so that any response time lying more than two stan-
dard deviations above or below a participant’s overall mean
response time was truncated to the value of the cut-off point.
Three items, one from each condition of the experiment,
were excluded from the analysis due to error rates in excess
of 75%. As a result, the final analyses were over thirty-nine
items per condition, not the original forty. Response time and
error data were analysed by a series of analyses of variance
(ANOVAs), over both participant and item data. Where both
the subject-based and item-based analyses were significant
they were combined in the minF"' statistic to ensure the gen-
eralisability of results over both these domains (Clark, 1973).
Results are reported only where effects are significant.

Results and Discussion

The mean correct response time and error rate for the three
sub-expression types are summarised in Table 2, along with
the corresponding standard errors (in parentheses). Planned
comparisons of the data were conducted using two-way
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ANOVAs (versions x sub-expression), carried out separately
over subject and item data.

The sub-expressions whose content was drawn from
their corresponding equations (i.e., both well-formed
and non-well-formed sub-expressions), were responded to
more rapidly than incorrect sub-expressions (well-formed:
minF'(1, 40) = 57.34, p < .01; non-well-formed: Fj(1, 21)
433, p < .05, Fy(1, 114) = 15.73, p < .01, minF’(1, 34)
3.40, p = .074).2 This outcome is reflected in the er-
ror rate data also. Fewer errors were made relative to in-
correct sub-expressions, on responses to both well-formed
(minF'(1, 105) = 45.15, p < .01) and non-well-formed sub-
expressions (minF'(1, 59) = 5.60, p < .05). While not unex-
pected, this pattern of outcomes is comforting for it indicates
that both the experimental task and the participants are sensi-
tive to the contents of algebraic equations.

More importantly, there is also a 205ms recognition ad-
vantage for sub-expressions that are well-formed compo-
nents of their corresponding equation, over their non-well-
formed counterparts (minF'(1, 46) = 30.70, p < .01). This
recognition advantage holds for error rates also, with par-
ticipants making significantly fewer errors on well-formed
than non-well-formed sub-expressions (minF’(1, 66) = 12.32,
p < .01). Clearly, the participants perceive the original equa-
tions in a way that allows faster and more accurate recog-
nition of well-formed sub-expressions than non-well-formed
sub-expressions.

The results of the experiment give support for the hypoth-
esis stated in the introduction. That is, experienced mathe-
maticians use an internal representation based on mathemati-
cal syntax to encode equations. This support comes from the
logic of the experiment. Any encoding of an equation that sig-
nificantly favours recognition of well-formed sub-expressions
must rely on an underlying knowledge of mathematics; i.e.,
on the existence of internal representations of the properties
of equations.

An additional source of evidence supporting our hypothe-
sis comes from the fact that performance on non-well-formed
sub-expressions provides a recognition advantage over incor-
rect sub-expressions. This suggests that there is some form

Il

2The minF" is an extremely conservative statistic. It is consid-
ered to be significant if (a) it has an alpha level less than or equal to
0.05, or (b) it has an alpha level less than or equal to 0.1, and both
subject (F1) and item (F%) analyses are significant at an alpha level
of less than or equal to 0.05 (Santa, Miller and Shaw, 1979)



of internal mechanism that can rapidly reconstruct the equa-
tion from well-formed components, and thus identify sub-
expressions that lie across component borders.

General Discussion

The natural question to ask now is what structural principle
underlies the encoding of mathematical equations. In the in-
troduction, we considered the possibility that humans might
parse mathematical expressions in a manner similar to the
way in which they parse natural language. In an experiment
conducted by Johnson (1968) it was shown that it was easier
for participants to learn sequences of words that conform to
grammatical units (phrases), than to learn sequences of words
which are equally probable and acceptable, but do not con-
form to grammatical units. This result is analogous to our
own result for equations, in which syntactically well-formed
sub-expressions are more readily recognised than non-well-
formed sub-expressions, suggesting that experienced mathe-
maticians might encode equations according to the rules of a
grammar.

In natural language, the use of a phrase structure grammar
allows us to construct parse trees for sentences. It is natural
to ask then, whether the internal representation used by math-
ematicians might also utilise a parse tree when encoding an
equation. For example, consider the following algebraic ex-
pression.

(z — 3y)?

Figure 1 shows a parse tree of this expression based on math-
ematical syntax. The dashed boxes in the diagram would be
equivalent to phrases in natural language, with the top node
of tree (which contains the entire expression) being equiva-
lent to a sentence. Just as natural language consists of noun
phrases and verb phrases and so on, the dashed box contain-
ing z — 3y might, for example, be considered a subtraction
phrase.

While the results of the experiment discussed in this pa-
per do not contradict the possibility of a hierarchical struc-
ture such as a parse tree, it will require much further research
before such a conjecture can be confirmed. Our research di-
rection for the immediate future therefore is aimed at both re-
inforcing the results of the experiment conducted, and inves-
tigating further the nature of the internal representation used
by mathematicians to encode equations. There are two ex-
periments in particular which we plan to conduct in order to
meet these aims.

The first of these is essentially the experiment described
in this paper, except that rather than using experienced math-
ematicians as participants, people with very little experience
with mathematics will participate. Since the participants have
a very weak background in working with mathematical syn-
tax, we would expect no significant advantage in recognis-
ing well-formed sub-expressions over non-well-formed sub-
expressions. This experiment would be aimed at providing
further evidence to support the hypothesis that knowledge of
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Figure 1: Parse Tree for (z — 3y)?

mathematical syntax is used by experienced mathematicians
when encoding equations.

The other experiment is designed to examine the nature of
the internal representation used to encode mathematical ex-
pressions. The structure of the experiment is similar to the
one described in this paper. However, the sub-expressions
presented will be of slightly different types. While there will
be an incorrect type to again act as fillers, the focus will be on
the two types whose content is drawn from their correspond-
ing equations. Consider the following algebraic expression.

8y — 3z?
(z - 2y)?

The sub-expression z — 2y has a valid syntax, and it conveys
the same meaning on its own as it conveyed in the equation.
It is well-formed, and in a parse tree it would form a phrasal
node. However, while the sub-expression y — 3z also has
a valid mathematical syntax, it conveys a different meaning
on its own than it does in the equation. It would not form a
phrasal node on a parse tree.

If the conjecture that mathematicians use a parse tree when
encoding an equation is correct, then it would be expected
that the first well-formed sub-expression would be recognised
significantly faster than the sub-expression which does not
form a phrasal node. The result of such an experiment would
indicate if the examination of parse trees as an internal rep-
resentation for encoding equations, is a worthwhile line of
investigation.



Finally, it is hoped that this research will not be limited
to just mathematical expressions. There are other visual lan-
guages with a two-dimensional structure and a well-defined
syntax, such as finite state automatas, sheet music and chem-
ical structural formulae. Similar questions need to be asked
about these visual languages. A long term aim of this research
is to examine the perception of visual languages in general.
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