UC Irvine UC Irvine Previously Published Works

Title

Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films

Permalink

<https://escholarship.org/uc/item/4k72b9z9>

Journal

Chemistry of Materials, 30(18)

ISSN

0897-4756

Authors

Jha, Gaurav Tran, Thien Qiao, Shaopeng [et al.](https://escholarship.org/uc/item/4k72b9z9#author)

Publication Date 2018-09-25

DOI

10.1021/acs.chemmater.8b03254

Peer reviewed

Article

<pubs.acs.org/cm>

¹ Electrophoretic Deposition of Mesoporous Niobium(V)Oxide ² Nanoscopic Films

3 Gaurav Jha,[†] Thien Tran,[†] Shaopeng Qiao,[†] Joshua M. Ziegler,[†] Ala[na F.](#page-9-0) Ogata,[†] Sheng Dai,[‡] 4 Mingjie Xu,[‡] Mya Le Thai,[†] Girija Thesma Chandran,[†] Xiaoqing Pan,^{[*](#page-9-0),‡} and Reginald M. Penner^{*,†}

s [†]Department of Chemistry, University of California, Irvine, California 92697, United States

 $^{\circ}$ ‡Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States

7 ABSTRACT: Nb₂O₅ is a Li⁺ intercalation metal oxide that is of current interest for lithium ion battery electrodes. The

8 electrophoretic deposition (ED) of Nb_2O_5 thin-films from aqueous, NbO_x colloidal solutions is reported here. For films ranging
9 in thickness from 38 to 144 nm, the mass loading of Nb_2O_6 on the electrode is corre in thickness from 38 to 144 nm, the mass loading of Nb_2O_5 on the electrode is correlated with the coulometry of ED using 10 quartz crystal microbalance gravimetry. Crystalline, phase pure films of orthorhombic, T-Nb₂O₅, are obtained by postdeposition 11 calcination. These films exhibit unusually high specific capacities for Li⁺-based energy storage as a consequence of ≈70% 12 porosity. For example, a 60 nm thick film displays a specific capacity, C_{sp} , of 420 mAh/g at 5 A/g and 220 mAh/g at 50 A/g, 13 which can be compared with the theoretical Faradaic capacity of 202 mAh/g. $T\text{-Nb}_2O_5$ films also have a specific energy density ¹⁴ in the range from 770−486 Wh/kg, and a specific power density in the range from 9 to 90 kW/kg. These excellent energy 15 storage metrics are attributed to augmentation of the Faradaic capacity by high double-layer capacities enabled by the

¹⁶ mesoporous structure of these films.

17 INTRODUCTION

18 Niobium pentoxide, $Nb₂O₅$, is a Li⁺ intercalation material that exhibits intercalation pseudocapacitance as a consequence of the availability of three accessible redox states for Nb centers: [1](#page-9-0) Nb^{3+} , Nb^{4+} , and Nb^{5+} .^{1-[6](#page-9-0)} The Li⁺ insertion/deinsertion reaction is written as

$$
Nb_2O_5 + xLi^+ + xe^- \rightleftharpoons Li_xNb_2O_5 \tag{1}
$$

24 where x in the range from 1.6–2.0 has been reported.⁷ [The](#page-9-0) 25 intercalation of Li⁺ according to reaction 1 causes a color 26 change of the $Li_xNb_2O_5$ which has been investigated for 27 applications in electrochromic coatings.^{8-[12](#page-10-0)} Nb₂O₅ is poly-²⁸ morphic, and the three most common polymorphs are T-29 $Nb₂O₅$ (orthorhombic), $M-Nb₂O₅$ (monoclinic), and H-30 $Nb₂O₅$ (pseudohexagonal). For Li⁺-based energy storage, 31 Dunn and others^{[2](#page-9-0),[4](#page-9-0),[13](#page-10-0),[14](#page-10-0)} have demonstrated that orthorhombic 32 niobium pentoxide $(T-Nb₂O₅)$ is capable of exhibiting ³³ unusually high capacities coupled with rapid charge−discharge ³⁴ rates, as compared with many other transition metal oxides t1 35 ([Table 1\)](#page-2-0). Grey and co-workers¹⁵ [have attributed the high rate](#page-10-0) 36 capability of $T\text{-Nb}_2O_5$ to low activation barriers, on the order

of a few k_BT , for Li⁺ transport in this material, as measured 37 using nuclear magnetic resonance. 38

 $T-Nb₂O₅$ is most often synthesized by hydrothermal 39 methods, $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ $\overrightarrow{A}^{1,2,4,13,14}$ and highly dispersed T-Nb₂O₅ on carbon 40 has demonstrated specific capacities of up to 590 F/g.¹⁴ [Other](#page-10-0) $_{41}$ methods for preparing $Nb₂O₅$ films include electrospinning 42 followed by thermal annealing,¹⁶ [spray pyrolysis,](#page-10-0)¹⁷ sol−[gel](#page-10-0) 43 processing methods, 9,10,18 9,10,18 9,10,18 9,10,18 9,10,18 9,10,18 9,10,18 electrospinning, $^{19'}$ [and reactive](#page-10-0) 44 sputtering. $\frac{11}{2}$ $\frac{11}{2}$ $\frac{11}{2}$ 45

Electrodeposition has hardly been attempted, in spite of the ⁴⁶ fact that it is an attractive method for both electrochromics and ⁴⁷ battery/capacitor materials because it promotes an electrically ⁴⁸ intimate contact with an electrode that can also serve as a ⁴⁹ current collector. The reason is that electrodeposition of ⁵⁰ $Nb₂O₅$ is difficult: the cathodic electrodeposition of niobium 51 oxides (NbO_x) is complicated by the very negative reduction 52 potential for Nb^{3+} (−1.1 V vs NHE) which makes disruptive 53

Received: August 1, 2018 Revised: August 27, 2018 Published: August 30, 2018

^aNb:O atomic ratio. ^bAbbreviations: SG = sol–gel, TO = thermal oxidation in air at 580 $^{\circ}$ C, MS-ad = magnetron sputtering (asdeposited), and MS-ta = magnetron sputtering (calcined at 600 $^{\circ}$ C).

 $54 H₂$ coevolution unavoidable in aqueous solutions. Crayston 55 and co-workers²⁰ [circumvented this issue by electrodepositing](#page-10-0) 56 NbO_x by the precipitation of niobium ions, immobilized in a ⁵⁷ thin porous film prepared using sol−gel methods, using ⁵⁸ electrogenerated OH[−]. Zhitomirsky²¹ [reported an aqueous](#page-10-0) ⁵⁹ cathodic electrophoretic deposition technique for the prepara-60 tion of $Nb₂O₅$ films on Pt electrodes. The mechanism they ⁶¹ proposed is based upon the peroxo-precursor method used for 62 titania deposition.²² [Both titanium and niobium salts react](#page-10-0) ⁶³ promptly with water to form precipitates, but dissolution of the ⁶⁴ precursor salt in dilute hydrogen peroxide at low temperature 65 (\approx 2 °C) allows for the formation of a stable peroxocation, 66 thought to be $Nb(OH)_{4}(H_{2}O_{2})^{+}$ or $NbO_{2}(H_{2}O_{2})^{+}$.²¹ [This](#page-10-0) ⁶⁷ complex is hydrolyzed by electrogenerated OH[−] at the cathode 68 formed, for example, by H_2 evolution to produce Nb_2O_5 .²¹ [The](#page-10-0) 69 work of Crayston et al.²⁰ [and Zhitomirsky provide the only](#page-10-0) 70 precedents for $Nb₂O₅$ electrodeposition, to our knowledge. 71 However, Nb_2O_5 films have also been obtained by the 72 anodization of electrodeposited niobium metal films, 2^3 [which](#page-10-0) 73 can be prepared by electrodeposition from molten salts²⁴ [and](#page-10-0) 74 propylene carbonate or acetonitrile using $LiNbF₆$ as a 75 precursor. 25

⁷⁶ In this work, we describe a robust method for the 77 electrophoretic deposition (ED) of $T\text{-Nb}_2O_5$ from NbO_x 78 colloids. NbO_x colloids were obtained using a modification 79 of the Zhitomirsky method, 21 [involving the rapid injection of](#page-10-0) 80 niobium salt dissolved in methanol into a cold (\approx 2 °C) 81 hydrogen peroxide solution. Phase pure $T\text{-Nb}_2O_5$ films, with ⁸² thicknesses varying from 38 to 144 nm, are obtained after 83 calcination at 550 °C. The gravimetric specific capacity of ⁸⁴ these films exceeds the theoretical Faradaic capacity (202 85 mAh/g) and capacitance values (403 F/g, 1.8 V window) 86 expected for $Nb₂O₅$, due to significant contributions from ⁸⁷ double-layer capacitance. The wetted surface area of these 88 films is increased by a porosity of 64−72% that forms when H₂ ⁸⁹ bubbles formed during ED are adsorbed and trapped on the 90 nascent Nb_2O_5 surface. The T-Nb₂O₅ films prepared by ED ⁹¹ retain up to 70% capacity for 5000 charge−discharge cycles.

■ EXPERIMENTAL METHODS 92

Chemicals and Materials. Niobium pentachloride (NbCl₅, 99%), 93 hydrogen peroxide solution $(H_2O_2, 30\%$ (w/w) in H₂O), lithium 94 perchlorate (LiClO₄, battery grade, dry, 99.99% trace metal basis), 95 propylene carbonate (anhydrous, 99.7%), and fluorine-doped tin ⁹⁶ oxide (FTO) coated glass slide (surface resistivity $\approx 3 \Omega/sq$) were all 97 used as received from Sigma-Aldrich. FTO was cleaned using a 98 commercial cleaning solution Hellmanex 3 obtained from Hellma 99 Analytics. Positive photoresist (Shipley S1808) and developer 100 (Shipley MF-319) were purchased from Microchem Corporation. 101 Acetone and methanol were used as received from Fisher (ACS 102 certified). 103

Electrophoretic Deposition of Nb₂O₅. An aqueous colloidal 104 solution of Nb_2O_5 nanoparticles was prepared as follows:²¹ [135 mg](#page-10-0) 105 $NbCl_s$ was dissolved in 4 mL methanol and rapidly injected into 96 106 mL of 0.052 M H₂O₂ at \approx 2 °C, resulting in a clear colloidal solution. 107 The solution was aged at room temperature for 3 h at RT before ED. 108 Colloid solutions were discarded 10 h after the rapid injection 109 process. 110

After cleaning (Hellmanex 3 solution for 5 min, Millipore water 111 rinse, air-dry), 2×1 cm FTO glasses were masked with a positive 112 photoresist layer (Shipley S1808). This was spin-coated at 2500 rpm 113 for 80 s onto the FTO, soft baked at 90 °C for 30 min, and patterned 114 to produce a square 6×6 mm FTO exposed region ([Figure 1a](#page-3-0)). 115 f1

ED was carried out in a 100 mL one compartment two-electrode 116 electrochemical cell, using a Gamry Series G 300 potentiostat. The 117 working electrode was the patterned FTO surface, which was 118 immersed into the aqueous colloidal solution of $Nb₂O₅$ nanoparticles, 119 leaving the top edge of the FTO outside the solution for contact with 120 the potentiostat. A platinum foil $(1 \times 2$ cm) counter electrode was 121 positioned at a 2 cm distance from the center of the exposed FTO 122 surface. The deposition was conducted at constant potential of −2.0 123 V, until the required charge was deposited, as shown in [Figure 1g](#page-3-0). 124 After deposition, all photoresist was removed using acetone and the 125 sample was air-dried. The sample was heated on a $4 °C/min$ ramp to 126 550 °C and was annealed at this temperature for 6 h, followed by a 127 cool-down. 128

Electrochemical Characterization. All electrochemical measure- 129 ments were performed by a one-compartment three-electrode cell 130 using a Gamry Series G 300 potentiostat. Cyclic voltametry and 131 galvanostatic measurements were conducted in 1.0 M LiClO₄ (battery 132 grade, dry, 99.99%) in dry propylene carbonate inside a N_2 glovebox. 133 1 \times 1 cm Pt foil was used as a unter electrode with a Ag/Ag⁺ 134 nonaqueous reference electrode $(10 \, \text{mM A}g^+, \, \text{DMSO})$ for the 135 electrochemical measurements. All potentials are quoted with respect 136 to the Li/Li⁺ couple, $E_{Li/Li^+} = -3.045$ V versus normal hydrogen 137 electrode²⁶ [by calibrating the Ag/Ag](#page-10-0)⁺ reference electrode against Li/ 138 Li⁺ using ferrocene/ferrocenium (Fc/Fc^{+•}) in 1 M LiClO₄, PC.^{[27](#page-10-0)} 139

Quartz Crystal Microbalance (QCM) Gravimetry. The mass of 140 the $Nb₂O₅$ deposited by ED was directly determined using QCM. The 141 QCM measurements were performed with a Stanford Research 142 Systems (SRS) QCM200 Quartz Crystal Microbalance Digital 143 Controller, in conjunction with a QCM25 5 MHz Crystal Oscillator 144 equipped with an Au-coated 5 MHz quartz crystal (area = 1.37 cm^2). 145 QCM measures the mass deposited onto the quartz/Au electrode by 146 correlating it to the change in frequency, Δf , according to the 147 Sauerbrey equation.^{[28](#page-10-0)} 148

$$
\Delta f = C_f \times \Delta m \tag{2)_{149}}
$$

The sensitivity factor (C_f) of the immersed quartz/gold electrode 150 was calibrated by galvanostatically electrodepositing silver from 151 aqueous 0.5 M AgNO₃ + 0.5 M HNO₃ solution, following previously 152
reported methods.²⁹,³⁰ The C_f value obtained for silver deposition was 153 $47.7(\pm 0.8)$ Hz cm² μ g⁻¹. QCM crystals were cleaned by immersion 154 into piranha solution 3:1, conc H_2SO_4 : $H_2O_2(30%)$ for 5 min, rinsing 155 in water, air drying, and then 2 h vacuum drying. The initial frequency 156 of the pristine crystal was recorded in air, immediately after vacuum 157 drying. The electrode holder containing the crystal was then 158 immersed in the colloidal NbO_x solution for deposition. After 159

Figure 1. Electrophoretic deposition (ED) of T-Nb₂O₅ film. (a). Three-step process flow: starting with a masked FTO-coated glass (left) electrode with area, 6 \times 6 mm area (0.36 cm²), in step 1 potentiostatic ED is carried out from a colloidal NbO_x solution using two electrodes (FTO-glass and counter electrode). The deposited Nb₂O₅ film is amorphous. In step 2, this a-Nb₂O₅ film is calcined at 550 °C for 5 h, producing T-Nb₂O₅. In step 3, $Li⁺$ can be reversibly intercalated into this T-Nb₂O₅ film. (b) SEM image of drop-cast NbO_y colloid particles on a clean silicon wafer, showing a dispersion of submicron particles. (c) Lower magnification SEM images showing several larger, 500−100 nm diameter colloid particles. (d) SEMderived particle diameter histogram of NbO_x colloid particles showing the smaller mode, at \approx 20 nm, seen in the dynamic light scattering (DLS) fractogram in (e). (e) DLS fractogram showing a bimodal distribution of NbO_x colloid particles. (f) Cyclic voltammograms (2 electrode) at 50 mV/s of aqueous 50 mM H_2O_2 (gray trace) and the colloidal NbO_x solution described above (red trace). (g) Current vs time plots for potentiostatic ED at −2.0 V (two electrode mode). Four plots are overlaid in this plot, corresponding to four Coulombic loadings as indicted, demonstrating the remarkable reproducibility of the ED process.

160 deposition, the crystal was removed from the holder, rinsed with 161 water, air-dried, and vacuum-dried for 2 h. After drying, the crystal 162 was remounted on the QCM controller to record the change in 163 frequency for the dried sample after deposition. Mean mass versus 164 mean charge produced a slope of 6.18 μ g/C, which was used to ¹⁶⁵ calculate the dry mass of the ED thin film (see below).

166 Structural Characterization. Scanning electron micrographs 167 (SEMs) were acquired using a FEI Magellan 400 XHR system. 168 Before imaging, samples were sputter-coated with \approx 2 nm of iridium. Accelerating voltages of incident electron beams ranged from 5 to 15 169 kV, and probe currents ranged from 25 pA to 0.4 nA. All SEM 170 specimens were mounted on stainless stubs and held by carbon tape. 171 Grazing-incidence X-ray diffraction (GIXRD) patterns were obtained 172 using a Rigaku SmartLab X-ray diffractometer employing the parallel $_{173}$ beam optics. The X-ray generator was operated at 40 kV and 44 mA 174 with Cu Ka irradiation. X-ray photoelectron spectroscopy (XPS) was $_{175}$ measured using the AXIS Supra by Kratos Analytical Inc. equipped 176 with monochromatic Al/Ag X-ray source. 177

178 Transmission Electron Microscopy. Aberration-corrected scan- ning transmission electron microscopy (STEM) was performed on a JEOL Grand-ARM transmission electron microscope equipped with two spherical aberration correctors and a 300 kV cold field emission gun. High-angle annular dark field (HAADF)-STEM images were recorded using a convergence semi angle of 22 mrad and inner- and outer collection angles of 83 and 165 mrad, respectively.

185 **B** RESULTS AND DISCUSSION

186 Electrophoretic Deposition of $Nb₂O₅$ Thin Films. In [the](#page-10-0) cathodic electrodeposition described by Zhitomirsky, 2^{1} the aging of the peroxocation solution for 3 days induces cloudiness and sedimentation in the solution; a consequence 190 of the formation of micron-sized NbO_x particles. We found that such solutions yielded inconsistent results. To resolve this, NbO_x colloid solutions were obtained by rapidly injecting 125 193 mM NbCl₅ in methanol into 52 mM H₂O₂ in water at ≈2 °C. This colloidal solution was then aged for 3 h at RT. The 195 resulting NbO_x particles can be directly observed and measured by scanning electron microscopy (SEM) after drop-casting the colloid solution onto a silicon wafer [\(Figure](#page-3-0) [1](#page-3-0), panels b and c). These colloids are mainly in the diameter range from 20 to 30 nm [\(Figure 1d](#page-3-0)), but larger colloids 200 extending to 1.0 μ m are also seen in these solutions [\(Figure 1](#page-3-0), panels b and c). The SEM analysis of these particles is supported by dynamic light scattering (DLS) data [\(Figure 1](#page-3-0)e) 203 that shows two prominent modes at \approx 20 nm and 1.0 μ m.

²⁰⁴ Cyclic voltammograms (2 electrode) of the FTO-glass 205 working electrode in aqueous H_2O_2 (pH = 7.0) shows virtually 206 no Faradaic current, but in the presence of NbO_x colloid (pH) $207 = 5.0$), a reduction is observed that is attributed to migration of 208 the positively charged NbO_x colloids and H_2 evolution (HER) 209 coupled with ED of the NbO_x colloid [\(Figure 1](#page-3-0)f). ²¹⁰ Potentiostatic ED at −2 V rapidly produces a steady-state 211 current of 2.5 mA/cm² ([Figure 1](#page-3-0)g) that decreases gradually ²¹² with time. ED current versus time data traces for four ²¹³ experiments actually overlay one another ([Figure 1g](#page-3-0)), ²¹⁴ demonstrating the reproducibility of this process. Samples 215 were prepared using one of four total charge values, Q_{dep} : 300, 216 500, 1000, and 1500 mC. It should be emphasized that Q_{dep} 217 encompasses both the charge associated with HER and that of ²¹⁸ ED.

²¹⁹ Structural and Compositional Characterization. SEM $f2$ 220 images of as-deposited NbO_x films (Figure 2, panels a and c) ²²¹ show a mud-cracked topography and some texturing of the film 222 surface on the \approx 100 nm size scale. These cracks can be

Figure 2. Scanning electron microscopy (SEM). (a−c) As-deposited NbO_x films at three magnifications, and $(d-f)$ T-Nb₂O₅ films after calcination at 550 °C for 5 h.

attributed to dry shrinkage, as previously reported for $Nb₂O₅$ 223 films prepared for electrochromic applications, 31 [caused by the](#page-10-0) 224 contraction of metal oxides upon loss of capillary water. After ²²⁵ calcination, deep cracks become filled and a smoother ²²⁶ topography is seen for the film surface (Figure 2, panels d−f). ²²⁷

A cross-sectional STEM image of a $T-Nb₂O₅$ film at low 228 magnification shows several of these cracks (Figure 3a). Energy 229 f3

Figure 3. Cross-sectional TEM for AC-STEM characterization of T- $Nb₂O₅$ sample. (a) Cross-section view of a T-Nb₂O₅ on FTO. EDS elemental maps confirm the presence of Nb in the $T-Nb_2O_5$ region. Pt and Ir protecting layers were deposited for the TEM sample preparation. (b) Atomic-resolution STEM image of the $T-\text{Nb}_2\text{O}_5$ layer showing characteristic $d_{(181)}$ -spacings of 2.45 Å. (c) STEM image of the $T\text{-Nb}_2\text{O}_5$ layer showing a grain boundary, confirming its polycrystalline structure.

dispersive X-ray spectroscopy (EDS) elemental maps (Figure ²³⁰ 3a, bottom) confirm the $T\text{-Nb}_2\text{O}_5$ region, labeled in the STEM 231 cross section. At higher magnification, the crystallinity of the ²³² $T-Nb₂O₅$ layer is revealed in atomic-resolution STEM images 233 (Figure 3b). In this image, (181) and (18-1) planes are ²³⁴ observed together with a measured d -spacing of 2.45 Å. 235 Defects are also observed in these layers, as seen for example in ²³⁶ Figure 3c where a white dashed-line marks a grain boundary ²³⁷ confirming the polycrystalline structure of the ED-deposited T- ²³⁸ Nb_2O_5 layer. 239

The surface chemical composition of ED-as-deposited NbO_x 240 films and $T\text{-Nb}_2\text{O}_5$ films were assessed by XPS [\(Figure 4](#page-5-0), 241 f4 panels a and b, and [Table 1](#page-2-0)). As-prepared films showed ²⁴² binding energies (B.E.) for Nb $3d_{5/2}$, Nb $3d_{3/2}$, and O 1s at 243 207.5, 210.3, and 530.5 eV, respectively, all within 0.1 eV of ²⁴⁴ the B.E. reported for amorphous Nb_2O_5 ([Table 1\)](#page-2-0).¹² [The](#page-10-0) 245 Nb:O stoichiometry of these films was 0.40, also as previously ²⁴⁶ reported.¹² B.E. values of Nb 3d_{5/2}, 3d_{3/2} peaks for calcined 247 films slightly decreased to 207.4 and 210.2 eV ([Figure 4](#page-5-0)a), ²⁴⁸ respectively, while O 1s at 530.4 eV decreased by 0.2 eV ²⁴⁹ ([Figure 4b](#page-5-0)). Similar B.E. decreases for metal oxides have been ²⁵⁰ attributed to a decrease in the bandgap of the oxide caused by ²⁵¹ the creation of oxygen vacancies during annealing.¹² [The O 1s](#page-10-0) 252 photoelectron envelope can be deconvoluted into a lower B.E. ²⁵³ component assigned to niobium oxide (\approx 532.2 eV), and the 254 higher B.E. component (530.5 eV) assigned to OH[®] and 255 peroxocomplex species which contribute a significant shoulder ²⁵⁶ on the low B.E. side of the O $1s$.¹² [However, these species](#page-10-0) 257 decompose upon calcination leading to a dramatic reduction in ²⁵⁸ the intensity of this shoulder [\(Figure 4b](#page-5-0)). ²⁵⁹

Figure 4. T-Nb₂O₅ film characterization. (a and b) High-resolution XPS spectra of 500 mC T-Nb₂O₅ and a-Nb₂O₅ films. The observed chemical shifts are compared with literature values in [Table 1](#page-2-0). (c) Powder XRD patterns for as-deposited Nb_2O_5 , a- Nb_2O_5 , and T- Nb_2O_5 , as indicated. (d) QCM measurements of the deposited Nb₂O₅ mass as a function of deposition charge. (e) AFM amplitude traces for four T-Nb₂O₅ films, prepared using 300, 500, 1000, and 1500 mC, as indicated. (f) AFM-measured film thickness as a function of deposition charge. (g) AFM images of film edges for the same four deposition charges shown in (e).

Figure 5. Cyclic voltammetry (CV) of T-Nb₂O₅ films. (a-c) CVs at scan rates of (a) 5, (b) 100, and (c) 500 mV/s, for T-Nb₂O₅ films prepared using four Q_{dep} values as indicated. (d) Specific capacity, C_{sp}, calculated from the CVs like those of (a-c). Error bars represent the standard deviation for 3 samples. (e and f) Plots of log (current) versus log (scan rate) showing two regimes at slow (5−50 mV/s) and fast (100−500 mV/ s) scan rates. Calculated b values using eq 2 are tabulated in [Table 2.](#page-6-0)

 $_{260}$ Grazing incidence X-ray diffraction (GIXRD) data were $_{261}$ acquired for three films: (1) a spin-coated colloidal solution, 262 (2) an as-deposited NbO_x film, and (3) a calcined Nb₂O₅ films 263 (550 °C \times 5 h in air) (Figure 4c). Samples 1 and 2 showed no crystallinity (line at 38 $^{\circ}$ and 45 $^{\circ}$ are assigned to the gold ₂₆₄ substrate), but sample 3 produced reflections all of which were $_{265}$ assignable to orthorhombic, $T-Nb_2O_5$ (JCPDS 30-873). $_{266}$ Scherrer analysis³² [of the line widths a](#page-10-0)ffords an estimate of 267

charge (mC)	mass (μg)	thickness (nm)	$C_{\rm sn}$ at 5 mV/s (F/g)	$C_{\rm{sp}}$ at 5 A/g (mAh/g)	CV cycles ^{a} at 200 mV/s	galvanostatic cycles ^b at 10 A/g
300	1.85	38	1255.7 ± 375.2	560.5 ± 167.5	1200	200
500	3.09	60	977.2 ± 45.7	424.6 ± 19.9	2800	>500
1000	6.18	102	892.7 ± 133.7	251.5 ± 37.7	2000	300
1500	9.27	144	$679.0 + 56.0$	230.0 ± 18.9	1000	>500
a Cycles to 20% capacity fade. b Cycles to 20% capacity fade.						

Table 2. Metrics for $T\text{-Nb}_2O_5$ Films Synthesized by ED

 the grain size for these films of 19.3 nm, calculated using the (001), (181) and (002) reflections. Quartz crystal micro- balance gravimetry (QCM) was used to measure the mass of the dried films which increased in direct proportion to the 272 Coulombic loading, Q_{dep} , yielding a slope of 6.18 μ g/C [\(Figure](#page-5-0) [4](#page-5-0)d). The film thickness, measured by AFM, also increased in 274 proportion to Q_{dep} [\(Figure 4,](#page-5-0) panels e and f). The range of Q_{dep} values explored in this study corresponded to film thickness ranging from 38 nm (300 mC) to 144 nm (1500 mC).

 277 Cyclic voltammetry (CV). The electrochemical properties 278 of T-Nb₂O₅ film half-cells were investigated in dry, 1.0 M 279 LiClO₄, propylene carbonate electrolyte using a three-280 electrode cell with a nonaqueous Ag/Ag^+ reference electrode ²⁸¹ and Pt counter electrodes. In the following discussion and 282 figures, we convert these potentials to Li/Li^{+} (+3.04 V vs ²⁸³ NHE) for convenience. Cyclic voltammograms (CVs) for a 1.8 284 V window from 1.5 to 3.3 V versus Li/Li^{+} are shown at scan f5 285 rates of 5, 100, and 500 mV/s for all four films ([Figure 5](#page-5-0), 286 panels a, b, and c).

287 The theoretical Faradaic capacity of Nb_2O_5 is 726 C/g 288 assuming $x = 2.0$ in [eq 1](#page-1-0).⁷ [This corresponds to a speci](#page-9-0)fic 289 capacitance, $C_{sp} = 202 \text{ m/h/g or } 403 \text{ F/g}$ for the 1.8 V 290 window measured in [Figure 5](#page-5-0). All four $T\text{-Nb}_2\text{O}_5$ films produce 291 C_{sp} values considerably higher than this at 5 mV/s, ranging 292 from 600 to 1250 F/g ([Figure 5](#page-5-0)d and Table 2). In order for ²⁹³ the measured specific capacity to be higher than the theoretical ²⁹⁴ Faradaic capacity, charge must be stored by a non-Faradaic ²⁹⁵ mechanism. Double-layer charging of the film is the most likely 296 candidate for this mechanism. As shown in [Figure 5](#page-5-0)d, $C_{\rm{sp}}$ is ²⁹⁷ rapidly lost with increasing scan rate above 5 mV/s. But the ²⁹⁸ retention of capacity at higher scan rates is very good, with the 299 thinnest of these films (Q_{dep} = 300 mC, d = 38 nm) exhibiting ³⁰⁰ the theoretical Faradaic capacity at a scan rate of 500 mV/s ³⁰¹ ([Figure 5](#page-5-0)d).

³⁰² A closer look at the CV data allows the influence of Li+ 303 transport on C_{sp} to be better understood. The cyclic 304 voltammetric peak current, i_p , shows a scan rate, ν , dependence 305 given $by²⁶$ $by²⁶$ $by²⁶$

$$
i_p = a\nu^b \tag{3}
$$

 307 where a is a constant and the value of b provides insight into 308 whether diffusional transport limits the measured i_p . $b = 0.5$ 309 signifies a diffusion-controlled current, whereas $b = 1.0$ is ³¹⁰ produced by diffusion-independent processes which could be ³¹¹ non-Faradaic (e.g., capacitive charging) or Faradaic (e.g., 312 pseudocapacitive), provided ion transport is rapid enough.²⁶ [In](#page-10-0) 313 the thinnest T-Nb₂O₅ films examined here (Q_{dep} = 300 mC, *d* $314 = 38$ nm), b approaches 1.0 at slow scan rates (5–50 mV/s, 315 [Figure 5](#page-5-0), panels e and f), suggesting that the diffusion of $Li⁺$ ³¹⁶ within these films is sufficiently rapid to enable all Nb centers ³¹⁷ to be charge-compensated on the time scale of a single 318 voltammetric scan. For example, at $\nu = 20 \text{ mV/s}, \tau_{CV} \approx RT/F\nu$ = 1.3 $s_i²⁶$ where R, T, and F [are the gas constant, the](#page-10-0) 319 temperature, and Faraday's constant, respectively. Since $n \approx 320$ 1.0 ([Figure 5,](#page-5-0) panels e and f), the film is behaving ³²¹ pseudocapacitively, implying that Li⁺ is able to access the 322 entire 38 nm T-Nb₂O₅ film. This requires that $D_{Li} \geq d^2/2\tau_{CV}$ 323 $= 6 \times 10^{-12}$ cm²/s.²⁶ As d [increases from 38 to 140 nm \(](#page-10-0)Q_{dep} = 324 1500 mC), b decreases from ∼0.95 to ∼0.75 in this slow scan ³²⁵ rate regime, suggesting that $Li⁺$ diffusion is no longer able to 326 access all Nb centers, and the Faradaic current is increasing ³²⁷ diffusion-limited $(b = 0.5)$. 328

At scan rates of 100 mV/s and above, $T\text{-Nb}_2\text{O}_5$ films of all 329 four thickness show lower b values in the 0.36−0.67 range ³³⁰ ([Figure 5](#page-5-0), panels e and f, and Table 3). Notably, b values even 331 t3

^ab-Value, as defined by [eq 2.](#page-2-0) ^bNb₂O₅ ED deposition charge at a 6 \times 6 mm FTO electrode with area 0.36 cm^2 .

lower than 0.5 are observed for the thickest films, indicating ³³² that uncompensated ohmic resistance and/or rate-limiting ³³³ electron transfer act to limit the current in addition to Li⁺ 334 diffusion.²⁶ [In this fast scan rate regime, thinner](#page-10-0) films are 335 storing charge both capacitively ($n = 1.0$) and by accessing Nb 336 centers via Li⁺ diffusion ($n = 0.5$), but the entire film thickness 337 is not accessible to $Li⁺$ on these time scales. For example, if $Li⁺$ 338 transport is diffusion-controlled within the 38 nm film, this ³³⁹ requires that $D_{Li}^* \leq d^2/2\tau_{CV} = 1.4 \times 10^{-10} \text{ cm}^2/\text{s}$. Thus, the 340 cyclic voltammetric behavior of the 38 nm sample can be ³⁴¹ understood if $D_{Li_2^+}$ satisfies this inequality: 6 \times 10⁻¹² cm²/s < 342 D_{Li^*} < 1.4 × 10⁻¹⁰ cm²/s, or approximately 10⁻¹¹ cm²/s. This 343 D_{Li^+} value is in the range of other transition metal oxides used 344 for Li⁺ storage.^{[33](#page-10-0)-[37](#page-10-0)}

At ν = 500 mV/s the cyclic voltammograms for all four films 346 converge ([Figure 5c](#page-5-0)). This behavior is expected if τ_{CV} limits 347 Li⁺ diffusion to distances smaller than the thickness of all four 348 films. In this limit, Li^+ is able to access the same volume, and 349 the same number of Nb centers, for all four films. At 500 mV/ ³⁵⁰ s, $\tau_{CV} \approx 50$ ms. 351

As already noted, the $C_{\rm sp}$ measured by cyclic voltammetry at 352 slow scan rates is higher than the theoretical Faradaic $C_{\rm SD}$ value 353 of 403 F/g (1.8 V window). This implies that non-Faradaic ³⁵⁴

Figure 6. Deconvolution of insertion and noninsertion currents in a cyclic voltammogram using the method of Conway.³⁸ [\(a\) CV at 5 mV/s for a](#page-10-0) 500 mC T-Nb₂O₅ film. (b) CV for the same film at 100 mV/s. (c) Plot of total C_{sp}, together with the insertion and noninsertion capacities as a function of scan rate, ν . The dash blue line marks the theoretical Faradaic capacity, 403 F/g for a 1.8 V window.

Figure 7. Galvannostatic charge/discharge and assessments of cycle stability. (a and b) Galvannostatic charge−discharge curves for rates of (a) 5A/ g and (b) 50 A/g. (c) Measurements of specific capacity for all four film thicknesses at five galvannostatic rates ranging from 5 to 50 A/g. (d) Cycle stability of C_{sp} for galvannostatic charge/discharge across 500 cycles. (e) Cycle stability of C_{sp} for cyclic voltammetric charge/discharge at 200 mV/ s across a 1.8 V window and 5000 cycles.

355 energy storage contributes substantially to the measured C_{sp} , ³⁵⁶ but what experimental evidence supports the existence of this 357 double-layer capacity? A version of [eq 3](#page-6-0) can be used to resolve ³⁵⁸ the total current into insertion and noninsertion components, ³⁵⁹ the latter of which includes double-layer charging as well as the 360 Faradaic capacity of the T-Nb₂O₅ surface.^{[38](#page-10-0)–[40](#page-10-0)} The total 361 current at any potential and scan rate, ν , can be written as^{[38](#page-10-0)–[40](#page-10-0)}

$$
i(\nu) = k_1 \nu + k_2 \nu^{1/2} \tag{4}
$$

³⁶³ where the first term accounts for the noninsertion current (i.e., ³⁶⁴ nondiffusion controlled), the second term is the insertion 365 current (diffusion-controlled), and k_1 and k_2 are scan rate 366 independent constants. A plot of the quotient $[i(\nu)/\nu^{1/2}]$ versus $\nu^{1/2}$ at each potential point yields the values of k_1 and k_2 367 as the slope and intercept, respectively. $38-40$ $38-40$ $38-40$ Application of this 368 deconvolution algorithm to a 500 mC T-Nb₂O₅ film (Figure 6) 369 f6 allows the insertion and noninsertion currents to be plotted ³⁷⁰ separately, together with the total current (Figure 6, panels a 371 and b). At $\nu = 5$ mV/s, a large noninsertion current is observed 372 that is similar in magnitude to the insertion current (Figure 373 $6a$), and at 100 mV/s, the noninsertion capacity dominates 374 (Figure 6b). The fraction of the total capacity, C_{sp} , comprised 375 by insertion decreases smoothly with ν from 55% at 5 mV/s to 376 19% at 100 mV/s (Figure 6c). This analysis suggest that a large 377 noninsertion capacity that rivals or exceeds the insertion ³⁷⁸ capacity operates in these ED T-Nb₂O₅ films, providing a 379

"Abbreviations: ox = oxidized, np = nanoporous, nb = nanobelts, $A&A =$ anodization and thermal annealing, $HT =$ hydrothermal, $ED =$ electrophoretic deposition, CNT = carbon nanotubes, CDC = carbide-derived carbon, T-Nb₂O₅ = orthorhombic Nb₂O₅, Nb₂CT_x = 2D niobium carbide MXene, and o -Nb₂O₅@carbon = orthorhombic-Nb₂O₅@carbon core–shell microspheres.

Figure 8. T-Nb₂O₅ film porosity. (a and b) Cross-sectional images of a 140 nm T-Nb₂O₅ film prepared with $Q_{dep} = 1500$ mC. The porosity of T-Nb₂O₅ films prepared by ED of 72%−64% is attributed to voids within the bulk of the T-Nb₂O₅ film seen in these high-angle annular dark field (HAADF)-STEM images. (c) Calculated porosity versus thickness for T-Nb₂O₅ films, derived from AFM measurements of thickness and QCM measurements of the mass of each film.

380 mechanism for this material to achieve a total C_{sp} value that is ³⁸¹ up to twice the theoretical Faradaic value.

382 Galvanostatic Charge/Discharge and Assessments of 383 Cycle Stability. Galvanostatic charge/discharge curves for T-384 $Nb₂O₅$ films, evaluated at 5−50 A/g, show appreciable capacity ³⁸⁵ for these films even at 50 A/g [\(Figure 6,](#page-7-0) panels a−c). For 386 example, 300 mC films ($d = 38$ nm) produce C_{sp} approaching ³⁸⁷ ∼300 mAh/g, whereas 1000 mC and 1500 mC films (100, and 388 140 nm) show C_{sp} of 40–60 mAh/g at a 50 A/g rate (Figure 389 db). For the 500 mC sample $(d = 60 \text{ nm})$, C_{sp} exceeds 400 ³⁹⁰ mAh/g at 10 A/g, which translates to an energy density of ³⁹¹ >700 Wh/kg, at a power density of 18 kW/kg ([Figure 6c](#page-7-0)). As ³⁹² indicated in [Figure 6](#page-7-0)c, the two thinnest films exceed the 393 theoretical Faradaic capacity of $Nb₂O₅$ of 202 mAh/g even at ³⁹⁴ 50 A/g. As discussed in greater detail below, this requires the ³⁹⁵ participation of non-Faradaic charge storage in the form of 396 double-layer charging ([Figure 7](#page-7-0)).

³⁹⁷ The cycle stability of charge storage is critically important ³⁹⁸ for all technological applications of energy storage materials. In t4 399 prior work (Table 4), Zhou⁴¹ reported Nb_2O_5 nanobelts (15 \times $400\,60$ nm in width) produced C_{sp} values of 50 mAh/g and showed 401 virtually no fade for 50 cycles. Zhang and co-workers 42 402 demonstrated $Nb₂O₅$ nanoparticle/CNT composites that ⁴⁰³ demonstrated 128 mAh/g at a 5 A/g rate for 2000 cycles ⁴⁰⁴ with 95% retention of this capacity. Extraordinary cycle 405 stability of $T\text{-Nb}_2\text{O}_5$ nanoparticle-decorated carbon fibers was reported by Yun and co-workers⁴³ [who achieved](#page-10-0) C_{sp} 406 values in the range from 240−356 F/g (0.5−10 A/g) and ⁴⁰⁷ cycle stabilities to 70000 cycles, unfortunately, at an ⁴⁰⁸ unspecified rate. Dunn and co-workers¹ [studied the same](#page-9-0) 409 composite system and reported 500 cycles with 5% fade at 380 ⁴¹⁰ C/g (80 mAh/g) cycled at a 20 C rate. These examples, which 411 are representative of the best in terms of demonstrating ⁴¹² excellent cycle stability of $Nb₂O₅$, all involve nanostructures or 413 dispersions of $Nb₂O₅$ nanoparticles on a conductive support. 414

 $T-Nb₂O₅$ films represent a much different type of sample. 415 Since voltage cycling and galvannostatic cycling can produce ⁴¹⁶ very different results for the same material, we investigated ⁴¹⁷ both (Figure 8). All four films were cycled at 10 A/g for 500 $_{418~fs}$ cycles [\(Figure 6](#page-7-0)d) and, with different samples, across 1.8 V at ⁴¹⁹ 200 mV/s for up to 10000 cycles (5000 shown in [Figure 6](#page-7-0)e). ⁴²⁰ These are amongst the highest rates at which stability has been ⁴²¹ tested for this material, to our knowledge. Galvanostatic ⁴²² cycling under these conditions often resulted in little ⁴²³ measurable capacity fade ([Figure 6d](#page-7-0), $Q_{\text{dep}} = 1500$, 1000, and 424 500 mC samples), but significant fade (55%) was also seen for ⁴²⁵ some samples (e.g., [Figure 6](#page-7-0)d, $Q_{\rm dep}$ = 300 mC). These trends 426 are representative of a larger number of samples examined in ⁴²⁷ this study. $T\text{-Nb}_2\text{O}_5$ films exhibited significantly better stability 428 in CV cycling ([Figure 6](#page-7-0)e) where films retained in excess of ⁴²⁹ 60% of their initial C_{sp} to 5000 cycles, and more than 40% to 430 10000 cycles. ⁴³¹

 Mesoporosity in ED T-Nb₂O₅ Films. The nanometer-433 scale thicknesses of the $T-Nb₂O₅$ film studied here precluded the measurement of specific surface areas using the BET method. But porosity data were acquired directly, by 436 measuring the apparent density of the film, ρ_{expt} based upon 437 the AFM-measured film thickness, d , and the QCM-measured film dry mass, m. In conjunction with the known density of $Nb₂O₅$, ρ_{theory} a porosity is obtained ([Figure 7](#page-7-0)c):

$$
porosity = 1.0 - \frac{\rho_{expt}}{\rho_{theor}}
$$
\n(5)

441 The measured values, ranging from 72% for the 300 mC ($d =$ ⁴⁴² 38 nm) film to 64% for the 1500 mC (140 nm) film, are ⁴⁴³ surprisingly large.

 This porosity can be directly imaged by STEM in cross- sectional thin sections of these films ([Figure 7,](#page-7-0) panels a and b). These images show many spherical voids (dark regions in these 447 dark field images) within the $ED T-Nb₂O₅$ matrix. These voids range in diameter from 1−10 nm where smaller voids (diameter 1−2 nm) are uniformly distributed, but larger voids (8−10 nm) tend to form clusters (one of these is shown in [Figure 7](#page-7-0)b). This mesoporosity provides an explanation for the large noninsertion capacities demonstrated in [Figure 6](#page-7-0). Both the double-layer capacity and the surface Faradaic capacities are proportional to the wetted surface area of the ⁴⁵⁵ film.

⁴⁵⁶ How do these voids form? Our hypothesis is that hydrogen ⁴⁵⁷ nanobubbles that coevolve during the ED process (macro-458 scopic H_2 bubbles are also seen on the electrode surface during 459 ED) adhere to the nascent NbO_x film and are covered and 460 encapsulated by NbO_x colloids during the ED growth process. ⁴⁶¹ Confirmation of this mechanism must await further exper-⁴⁶² imentation; however, if this mechanism is correct, it could ⁴⁶³ provide a means for controlling the mesoporosity of these films 464 by adjusting the rate of H_2 evolution during the ED process.

⁴⁶⁵ ■ SUMMARY

⁴⁶⁶ The electrochemical preparation of high quality, crystalline T- $467 \text{ Nb}_2\text{O}_5$ thin films can be achieved using the ED process

Figure 9. Ragone plot for comparison of the half-cell performance for $T\text{-Nb}_2\text{O}_5$ films prepared using ED with literature results. Data for Q_dep $= 500$ mC and $Q_{dep} = 1000$ mC represent the average measured for three independent samples.

⁴⁶⁸ described here. This method affords control of film thickness 469 from 38 to 140 nm. Moreover, these ED T- $Nb₂O₅$ films 470 achieve capacities for Li⁺ storage of \approx 1200 F/g at 5 mV/s (1.8 ⁴⁷¹ V window) and 610 F/g at 100 mV/s that exceed the 472 theoretical Faradaic capacities for this material (403 F/g) and are unprecedented to our knowledge. A Ragone plot for two of ⁴⁷³ these films (Figure 9) is compared with prior work on $Nb₂O₅$, 474 f9 highlighting the excellent energy storage performance of these ⁴⁷⁵ $ED \, \text{films.}$ 476

These exceptional C_{sp} values are attributed to a significant 477 porosity of $\approx 70\%$ that enables a large double-layer capacity 478 that is 50% of C_{sp} at 5 mV/s and 80% at 100 mV/s. This 479 capacity is sustainable for many charge−discharge cycles, with ⁴⁸⁰ 500 mC films retaining a $C_{\rm sp}$ of 350 F/g to 5000 cycles. A 481 similar trend is observed in the galvanostatic charge−discharge, ⁴⁸² where high energy densities of \approx 700 Wh/kg are obtained at 483 power densities as high as 18 kW/kg. 484

■ ACKNOWLEDGMENTS 495

This work was supported by Nanostructures for Electrical ⁴⁹⁶ Energy Storage (NEES II), an Energy Frontier Research ⁴⁹⁷ Center (EFRC) funded by the U.S. Department of Energy, ⁴⁹⁸ Office of Science, Office of Basic Energy Sciences under award ⁴⁹⁹ number DESC0001160. Valuable discussions with Professor ⁵⁰⁰ Phil Collins, Professor Zuzanna Siwy, Professor Bruce Dunn, ⁵⁰¹ and their students are gratefully acknowledged. SEM, TEM, ⁵⁰² XRD, and XPS data were acquired at the Irvine Materials ⁵⁰³ Research Institute (IMRI, imri.uci.edu) at UCI. ⁵⁰⁴

■ REFERENCES 505

(1) Wang, X.; Li, G.; Chen, Z.; Augustyn, V.; Ma, X.; Wang, G.; 506 Dunn, B.; Lu, Y. High-Performance Supercapacitors Based on 507 Nanocomposites of $Nb₂O₅$ Nanocrystals and Carbon Nanotubes. 508 Adv. Energy Mater. 2011, 1, 1089–1093. 509

(2) Kim, J. W.; Augustyn, V.; Dunn, B. The Effect of Crystallinity on 510 the Rapid Pseudocapacitive Response of $Nb₂O₅$. Adv. Energy Mater. 511 2012. 2. 141–148. 2012, 2, 141−148.

(3) Zhang, C.; Beidaghi, M.; Naguib, M.; Lukatskaya, M.; Zhao, M.; 513 Dyatkin, B.; Cook, K.; Kim, S.; Eng, B.; Xiao, X.; Gogotsi, Y.; Long, 514 D.; Qiao, W.; Dunn, B. Synthesis and Charge Storage Properties of 515 Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide 516 (MXene) Hybrid Materials. Chem. Mater. 2016, 28, 3937–3943. 517

(4) Zhang, C.; Maloney, R.; Lukatskaya, M.; Beidaghi, M.; Dyatkin, 518 B.; Perre, E.; Long, D.; Qiao, W.; Dunn, B.; Gogotsi, Y. Synthesis and 519 Electrochemical Properties of Niobium Pentoxide Deposited on 520 Layered Carbide-Derived Carbon. J. Power Sources 2015, 274, 121− 521 129. 522

(7) Ohzuku, T.; Sawai, K.; Hirai, T. Electrochemistry of L-niobium 530 Pentoxide A Lithium/Non-Aqueous Cell. J. Power Sources 1987, 19, 531 287−299. 532

⁽⁵⁾ Lim, E.; Kim, H.; Jo, C.; Chun, J.; Ku, K.; Kim, S.; Lee, H.; Nam, 523 I.-S.; Yoon, S.; Kang, K.; Lee, J. Advanced Hybrid Supercapacitor 524 Based on a Mesoporous Niobium Pentoxide/Carbon as High- 525 Performance Anode. ACS Nano 2014, 8, 8968−8978. 526

⁽⁶⁾ Zhao, G.; Ye, C.; Zhang, L.; Li, C.; Sun, K. T-Nb2O5 quantum 527 dots prepared by electrodeposition for fast Li ion intercalation/ 528 deintercalation. Nanotechnology 2017, 28, 215401. 529

533 (8) Gomes, M. A.; Bulhões, L. O. d. S.; De Castro, S. C.; Damião, A. 534 J. The Electrochromic Process at $Nb₂O₅$ Electrodes Prepared by 535 Thermal Oxidation of Niobium. J. Electrochem. Soc. 1990, 137, 3067− 536 3070.

537 (9) Schmitt, M.; Heusing, S.; Aegerter, M.; Pawlicka, A.; Avellaneda, 538 C. Electrochromic Properties of Nb₂O₅ Sol−Gel Coatings. Sol. Energy 539 Mater. Sol. Cells 1998, 54, 9−17.

540 (10) Rosario, A.; Pereira, E. Optimisation of the Electrochromic 541 Properties of Nb₂O₅ Thin Films produced by Sol–Gel route using 542 Factorial Design. Sol. Energy Mater. Sol. Cells 2002, 71, 41−50.

543 (11) Huang, Y.; Zhang, Y.; Hu, X. Structural, Morphological and 544 Electrochromic Properties of $Nb₂O₅$ Films Deposited by Reactive 545 Sputtering. Sol. Energy Mater. Sol. Cells 2003, 77, 155−162.

546 (12) Coşkun, Ö. D.; Demirel, S.; Atak, G. The Effects of Heat

547 Treatment on Optical, Structural, Electrochromic and Bonding 548 Properties of $Nb₂O₅$ Thin Films. J. Alloys Compd. 2015, 648, 994− 549 1004.

 (13) Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.- L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudoca-pacitance. Nat. Mater. 2013, 12, 518.

554 (14) Lai, C.-H.; Ashby, D.; Moz, M.; Gogotsi, Y.; Pilon, L.; Dunn, B. 555 Designing Pseudocapacitance for $Nb_2O_5/Carbide-Derived$ Carbon 556 Electrodes and Hybrid Devices. Langmuir 2017, 33, 9407−9415.

557 (15) Griffith, K. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-rate 558 Intercalation without Nanostructuring in Metastable $Nb₂O₅$ Bronze 559 phases. J. Am. Chem. Soc. 2016, 138, 8888−8899.

560 (16) Le Viet, A.; Jose, R.; Reddy, M.; Chowdari, B.; Ramakrishna, S. 561 $Nb₂O₅$ Photoelectrodes for Dye-Sensitized Solar Cells: Choice of the 562 Polymorph. J. Phys. Chem. C 2010, 114, 21795−21800.

563 (17) Romero, R.; Ramos-Barrado, J.; Martin, F.; Leinen, D. $Nb₂O₅$ 564 Thin Films Obtained by Chemical Spray Pyrolysis. Surf. Interface Anal. 565 2004, 36, 888−891.

 (18) Ö zer, N.; Rubin, M. D.; Lampert, C. M. Optical and Electrochemical Characteristics of Niobium Oxide Films prepared by Sol-Gel Process and Magnetron Sputtering: A Comparison. Sol. Energy Mater. Sol. Cells 1996, 40, 285−296.

570 (19) Viet, A. L.; Reddy, M.; Jose, R.; Chowdari, B.; Ramakrishna, S. 571 Nanostructured Nb_2O_5 Polymorphs by Electrospinning for Recharge-572 able Lithium Batteries. J. Phys. Chem. C 2010, 114, 664−671.

573 (20) Lee, G.; Crayston, J. Studies on the Electrochemical Deposition 574 of Niobium Oxide. J. Mater. Chem. 1996, 6, 187−192.

575 (21) Zhitomirsky, I. Electrolytic Deposition of Niobium Oxide 576 Films. Mater. Lett. 1998, 35, 188−193.

577 (22) Zhitomirsky, I.; Gal-Or, L.; Kohn, A.; Hennicke, H. 578 Electrodeposition of Ceramic Films from Non-Aqueous and Mixed 579 Solutions. J. Mater. Sci. 1995, 30, 5307−5312.

580 (23) Gomes, M. B.; Onofre, S.; Juanto, S.; Bulhoes, L. d. S.

581 Anodization of Niobium in Sulphuric Acid Media. J. Appl. Electrochem. 582 1991, 21, 1023−1026.

583 (24) Zhiyu, Q.; Pierre, T. Electrochemical Reduction of Niobium 584 Ions in Molten LiF-NaF. J. Appl. Electrochem. 1985, 15, 259−265.

585 (25) Chong, N.-S.; Anderson, J. L.; Norton, M. L. Nonaqueous 586 Electrodeposition of Niobium from Propylene Carbonate and 587 Acetonitrile. J. Electrochem. Soc. 1989, 136, 1245−1246.

588 (26) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: 589 Fundamentals and Applications, 2nd ed.; Wiley: New York, 2001.

 (27) Laoire, C. O.; Plichta, E.; Hendrickson, M.; Mukerjee, S.; Abraham, K. Electrochemical Studies of Ferrocene in a Lithium Ion Conducting Organic Carbonate Electrolyte. Electrochim. Acta 2009, 54, 6560−6564.

594 (28) Sauerbrey, G. Use of Quartz Crystal Units for Weighing Thin 595 Films and Microweighing. Eur. Phys. J. A 1959, 155, 206−222.

596 (29) Gabrielli, C.; Keddam, M.; Torresi, R. Calibration of the 597 Electrochemical Quartz Crystal Microbalance. J. Electrochem. Soc. 598 1991, 138, 2657−2660.

599 (30) Yan, W.; Kim, J. Y.; Xing, W.; Donavan, K. C.; Ayvazian, T.; 600 Penner, R. M. Lithographically Patterned Gold/Manganese Dioxide 601 Core/Shell Nanowires for High Capacity, High Rate, and High

Cyclability Hybrid Electrical Energy Storage. Chem. Mater. 2012, 24, 602 2382−2390.

(31) Avellaneda, C. O.; Pawlicka, A. Two Methods of Obtaining 604 Sol–Gel Nb₂O₅ Thin Films for Electrochromic Devices. *J. Mater. Sci.* 605
1998. 33. 2181–2185. 1998, 33, 2181−2185.

(32) Patterson, A. The Scherrer Formula for X-ray Particle Size 607 Determination. Phys. Rev. 1939, 56, 978−982. 608

(33) Van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding 609 Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 2013, 46, 610 1216−1225. 611

(34) Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Determination of 612 the Chemical Diffusion Coefficient of Lithium in LiFePO4. Solid State 613 Ionics 2002, 148, 45−51. 614

(35) Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; 615 Salitra, G.; Heider, U.; Heider, L. Common Electroanalytical Behavior 616 of Li Intercalation Processes into Graphite and Transition Metal 617 Oxides. J. Electrochem. Soc. 1998, 145, 3024−3034. 618

(36) Kang, K.; Ceder, G. Factors That Affect Li Mobility in Layered 619 Lithium Transition Metal Oxides. Phys. Rev. B: Condens. Matter Mater. 620 Phys. 2006, 74, 094105. 621

(37) Sun, Y.-K.; Chen, Z.; Noh, H.-J.; Lee, D.-J.; Jung, H.-G.; Ren, 622 Y.; Wang, S.; Yoon, C. S.; Myung, S.-T.; Amine, K. Nanostructured 623 High-Energy Cathode Materials for Advanced Lithium Batteries. Nat. 624 Mater. 2012, 11, 942. 625

(38) Liu, T.-C.; Pell, W.; Conway, B.; Roberson, S. Behavior of 626 molybdenum nitrides as materials for electrochemical capacitors 627 comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 628 1882−1888. 629

(39) Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive 630 Contributions to Electrochemical Energy Storage in TiO₂ (Anatase) 631 Nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931. 632

(40) Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. 633 O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. 634 Pseudocapacitive Contributions to Charge Storage in Highly Ordered 635 Mesoporous Group V Transition Metal Oxides with Iso-Oriented 636 Layered Nanocrystalline Domains. J. Am. Chem. Soc. 2010, 132, 637 6982−6990. 638

(41) Wei, M.; Wei, K.; Ichihara, M.; Zhou, H. $Nb₂O₅$ Nanobelts: A 639 lithium Intercalation Host with Large Capacity and High Rate 640 Capability. Electrochem. Commun. 2008, 10, 980−983. 641

(42) Luo, G.; Li, H.; Zhang, D.; Gao, L.; Lin, T. A Template-free 642 Synthesis via Alkaline route for $Nb_2O_5/carbon$ Nanotubes Composite 643 as Pseudo-capacitor Material with High-Rate Performance. Electro- 644 chim. Acta 2017, 235, 175−181. 645

(43) Song, M. Y.; Kim, N. R.; Yoon, H. J.; Cho, S. Y.; Jin, H.-J.; Yun, 646 Y. S. Long-lasting Nb_2O_5 -based Nanocomposite materials for Li-ion 647 storage. ACS Appl. Mater. Interfaces 2017. 9. 2267–2274. storage. ACS Appl. Mater. Interfaces 2017, 9, 2267-2274.

(44) Teixeira da Silva, V. L. S.; Schmal, M.; Oyama, S. Niobium 649 Carbide Synthesis from Niobium Oxide: Study of the Synthesis 650 Conditions, Kinetics, and Solid-State transformation Mechanism. J. 651 Solid State Chem. 1996, 123, 168−182. 652

(45) Rahman, M. M.; Rani, R. A.; Sadek, A. Z.; Zoolfakar, A. S.; 653 Field, M. R.; Ramireddy, T.; Kalantar-Zadeh, K.; Chen, Y. A Vein- 654 Like Nanoporous Network of Nb_2O_5 with a Higher Lithium 655 Intercalation Discharge Cut-Off Voltage. J. Mater. Chem. A 2013, 1, 656 11019−11025. 657

(46) Kong, L.; Zhang, C.; Wang, J.; Qiao, W.; Ling, L.; Long, D. 658 Nanoarchitectured Nb_2O_5 Hollow, $Nb_2O_5@$ Carbon and $NbO_2@$ 659 Carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation 660 Pseudocapacitors. Sci. Rep. 2016, 6, 21177. 661