
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Stochastic Gradient MCMC: Algorithms and Applications

Permalink
https://escholarship.org/uc/item/4k8039zm

Author
AHN, SUNGJIN

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4k8039zm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Stochastic Gradient MCMC: Algorithms and Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sungjin Ahn

Dissertation Committee:
Professor Max Welling, Chair

Professor Babak Shahbaba
Professor Charless Fowlkes

2015

c© 2015 Sungjin Ahn

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Bayesian Inference for Machine Learning . 3
1.2 Advantages of Bayesian Inference . 6
1.3 Large-Scale Machine Learning . 7
1.4 Research Challenges . 10
1.5 Outline of the Thesis . 11

2 Markov Chain Monte Carlo 13
2.1 Monte Carlo Method . 13
2.2 Markov Chains . 15
2.3 MCMC Algorithms . 17

2.3.1 The Metropolis-Hastings Algorithm 17
2.3.2 Gibbs Sampling . 18
2.3.3 Langevin Monte Carlo . 20

2.4 Scalability of Traditional MCMC . 21

3 Stochastic Gradient Langevin Dynamics 24
3.1 Stochastic Gradient Langevin Dynamics . 25

3.1.1 SGLD with a constant step-size . 27
3.1.2 SGLD during burn-in . 27

4 Stochastic Gradient Fisher Scoring 29
4.1 Motivation . 29
4.2 Preliminaries and Notation . 30

ii

4.3 Stochastic Gradient Fisher Scoring . 32
4.3.1 Sampling from the Gaussian Approximate Posterior 32
4.3.2 Stochastic Gradient Fisher Scoring 33

4.4 Computational Efficiency . 38
4.5 Experiments . 39

4.5.1 Logistic Regression . 39
4.5.2 SGFS on Neural Networks . 42
4.5.3 Discriminative Restricted Boltzmann Machine (DRBM) 44

4.6 Discussion . 47

5 Distributed Stochastic Gradient Langevin Dynamics 49
5.1 Motivation . 50
5.2 Preliminaries and Notations . 50
5.3 SGLD on Partitioned Datasets . 52
5.4 Distributed Stochastic Gradient Langevin Dynamics 53

5.4.1 Traveling Worker Parallel Chains . 53
5.4.2 Distributed Trajectory Sampling . 54
5.4.3 Adaptive Load Balancing . 55
5.4.4 Variance Reduction by Chain Coupling 58

5.5 Experiments . 59
5.5.1 Simple Demonstration . 59

5.6 Discussion . 61

6 Large-Scale Distributed Inference for Latent Dirichlet Allocation 62
6.1 Motivation . 62
6.2 LDA and SGRLD . 64
6.3 D-SGLD for LDA . 65
6.4 Experiments . 66

6.4.1 Perplexity . 68
6.4.2 Dataset size . 70
6.4.3 Number of workers . 70
6.4.4 Load balancing . 72
6.4.5 Number of topics . 72

7 Large-Scale Distributed Bayesian Matrix Factorization 74
7.1 Motivation . 75
7.2 Bayesian Matrix Factorization . 77
7.3 Bayesian Matrix Factorization using SGLD 80

7.3.1 Sampling from P (U,V|R,Λ) using SGLD 81
7.3.2 Sampling from P (Λ|U,V) using Gibbs sampling 83

7.4 Distributed Inference . 84
7.4.1 Distributed SGLD Update . 87

7.5 Experiments . 89
7.5.1 Algorithms and Models . 89
7.5.2 Setup . 91

iii

7.5.3 Results . 93
7.6 Discussion . 100

8 Scalable MCMC for Mixed Membership Stochastic Blockmodels 102
8.1 Motivation . 103
8.2 Assortative Mixed-Membership Stochastic Blockmodels 104
8.3 Scalable MCMC for a-MMSB . 105

8.3.1 Sampling the global parameter . 106
8.3.2 Sampling the local parameters . 108
8.3.3 Scalable local updates for a large number of communities 109

8.4 Experiments . 111
8.4.1 Results . 113

8.5 Discussion . 116

9 Conclusions and Discussions 118

Bibliography 122

A Proofs 127
A.1 Proof of Theorem 4.3.1 . 127
A.2 Proof of Propositions and Corollaries in Chapter 5 130

iv

LIST OF FIGURES

Page

4.1 2-d marginal posterior distributions for logistic regression. Grey colors corre-
spond to samples from SGFS. Red solid and blue dotted ellipses represent iso-
probability contours at two standard deviations away from the mean computed
from HMC and SGFS, respectively. Top plots are the results for SGFS-f and
bottom plots represent SGFS-d. Plots on the left represent the 2-d marginals
with the smallest difference between HMC and SGFS while the plots on the
right represent the 2-d marginals with the largest difference. Value for α is 0
meaning that no additional noise was added. 40

4.2 Logistic Regression: Final Error . 41
4.4 2-d marginal posterior distributions of DRBM. Grey colors correspond to sam-

ples from SGFS/SGLD. Thick red solid lines correspond to iso-probability con-
tours at two standard deviations away from the mean computed from HMC
samples. Thin red solid lines correspond to HMC results based on subsets
of the samples. The thick blue dashed lines correspond to SGFS-f (top) and
SGLD (bottom) runs. Plots on the left represent the 2-d marginals with the
smallest difference between HMC and SGFS/SGLD while the plots on the
right represent the 2-d marginals with the largest difference. 45

4.5 Final error for DRBM at time T versus mixing rate for the mean (left) and
covariance (right) estimates after 6790 seconds of computation on a subset of
KDD99. 46

5.1 Illustration of adaptive load balancing. Each row represents a worker and the
chains are represented by different colors. The box filled by diagonal lines
are block-time, and at the vertical dotted lines represent chains jumping to
other workers. A sample is collected at each arrow whose length represents
the time required to collect the sample. In the present example, four workers
have different response delays, 3, 1, 2, and 4, respectively. In (a) τ is set to
a constant τ = 3 for all workers, and in (b) with τ̄ = 25

4
, the trajectory plan

becomes T = (4, 12, 6, 3), and in (c), T = (3, 9, 4.5, 2.25) with τ̄ = 75
16

. 56
5.2 Bias correction and trajectory length effects. 60

6.1 Perplexity. Left: Wikipedia, Right: Pubmed. 68
6.2 Group size and number of groups. Top: group size, Bottom: number of

groups, Left: Wikipedia, Right: Pubmed. 69
6.3 Dataset size. Left: Wikipedia, Right: Pubmed 71

v

6.4 Number of workers. Left: Wikipedia, Right: Pubmed 71
6.5 Load balancing. Left: Wikipedia, Right: Pubmed. 72
6.6 Number of topics. Top: Wikipedia, Bottom: Pubmed. Right: Perplexity

after 104 updates (that is, the end points of each line in the left plots). . . . 73

7.1 Block split schemes. 84
7.2 An example illustration. On the left, a matrix R is partitioned into 2 × 2

blocks, B11, · · · ,B22. There are two orthogonal groups (the gray (B11,B22)
group and the white (B12,B21) group). We run two independent chains,
chain a with parameters Ua and Va (solid-line rectangles) and chain b, with
parameters Ub and Vb (dotted-line rectangles). Given four workers, we assign
a block to each worker. At round t = 1, chain a updates using the gray
orthogonal group and chain b using the white orthogonal group. Note that
the entire U and V matrices of both chains are updated in this single round.
In the next round, the chains are assigned to the next orthogonal groups by
the block-scheduler. 87

7.3 Netflix dataset (D = 30). 94
7.4 Yahoo Music Rating dataset (D = 30). 94
7.5 The effect of the number of chains, number of workers, and block split. . . . 97
7.6 The effect of the latent feature dimension. (a) and (b) show RMSE for D =

[30, 60, 100] on (a) the Neflix dataset and (b) the Yahoo music ratings dataset.
The maximum computational time was set to 50K seconds for Netflix and
100K (D=30), 200K (D=60), and 300K (D=100) seconds for Yahoo. (c)
shows time (in seconds) required to draw a single sample on the Yahoo dataset. 99

8.1 Convergence of perplexity on (a) Synthetic and (b) US-AIR datasets. 114
8.2 (a) Wall-clock time per iteration over increasing community sizes, on (a) HEP-

PH and (b) NETSCIENCE datasets. 114
8.3 Converged perplexity for various community sizes on (a) US-AIR and (b)

NETSCIENCE datasets. 115
8.4 (a) Memory usage over different community sizes and datasets. The memory

usage is defined as a ratio (|A| + |C| + 1)/K. (b) Convergence of perplexity
for various threshold values p on US-AIR dataset. 116

vi

LIST OF TABLES

Page

4.1 Final test error rate on the KDD99 dataset. 46

6.1 Required time to reach the perplexity that AD-LDA obtains after running 105

seconds (27.7 hours). 68

7.1 Algorithms. 89
7.2 Datasets. 91
7.3 RMSE and relative improvement (RI). Netflix. The percentage shown below

each RMSE value is the relative improvement. 98
7.4 RMSE and relative improvement (RI). Yahoo. The percentage shown below

each RMSE value is the relative improvement. 98

8.1 Datasets . 112

vii

LIST OF ALGORITHMS

Page
1 Metropolis-Hastings algorithm . 17
2 Gibbs sampling . 20
3 Langevin Monte Carlo . 21
4 Stochastic Gradient Fisher Scoring (SGFS) 37
5 D-SGLD Pseudo Code . 58
6 Gibbs Sampling for BPMF . 79
7 DSGLD for BPMF at the parameter server 88
8 DSGLD for BPMF at worker s . 88
9 Pseudo-code for each sampling iteration t . 112

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Max Welling, for his excellent
guidance and persistent encouragement throughout my doctoral program. His attitude,
passion, and insight as a researcher and also his kindness and warmth as a person have
greatly influenced my life. I will always be very proud that Max Welling was my advisor.

I would like to thank my defense committee members, Babak Shahbaba and Charless Fowlkes,
for their invaluable advices and guidance. I am particularly grateful to Babak Shahbaba also
for his insightful advices and discussion on my research projects.

I am also grateful to my research collaborators and fellow students: Anoop Korattikara,
Yutian Chen, Dilan Gorur, Wenzhe Li, Nathan Liu, Suju Rajan, and Andrew Gelfand. I
particularly spent many times with Anoop. He was always kind and supportive. It was
alway a pleasure to discuss with him and I learned a lot from him.

Finally, I would like to thank my parents for a lifetime of love and support. Also, I am very
grateful to my wife, Nayoung Sohn. None of this would have been possible without her love
and support.

This material is based upon work supported by the National Science Foundation under Grant
No.0447903, 0914783, 0928427, and IIS-1216045.

ix

CURRICULUM VITAE

Sungjin Ahn

EDUCATION

Doctor of Philosophy in Computer Science 2015
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2006
Korea Advanced Institute of Science and Technology South Korea

Bachelor of Science in Computer Engineering 2004
Korea Aerospace University South Korea

RESEARCH EXPERIENCE

Graduate Research Assistant 09/2010–08/2015
University of California, Irvine Irvine, California

Research Intern 07/2014–01/2015
Yahoo Labs Sunnyvale, California

Research Intern 06/2013–09/2013
Bosch Research & Technology Center Palo Alto, California

Researcher 12/2007–06/2010
Agency for Defense Development South Korea

REFEREED CONFERENCE PUBLICATIONS

Large-Scale Distributed Bayesian Matrix Factorization using Stochastic
Gradient MCMC

2015

Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, and Max Welling
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)

Distributed Stochastic Gradient MCMC 2014
Sungjin Ahn, Babak Shahbaba, Max Welling
International Conference on Machine Learning (ICML)

Distributed and Adaptive Darting Monte Carlo through Regenerations 2013
Sungjin Ahn, Yutian Chen, and Max Welling
Artificial Intelligence and Statistics (AISTATS)

Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring 2012
Sungjin Ahn, Anoop Korattikara Balan, and Max Welling
International Conference on Machine Learning (ICML)

x

WORKS UNDER REVIEW

Scalable Markov chain Monte Carlo for Overlapping Community Detection 2015
Wenzhe Li, Sungjin Ahn, and Max Welling
Neural Information Processing Systems (NIPS)

xi

ABSTRACT OF THE DISSERTATION

Stochastic Gradient MCMC: Algorithms and Applications

By

Sungjin Ahn

Doctor of Philosophy in Computer Science

University of California, Irvine, 2015

Professor Max Welling, Chair

Despite the powerful advantages of Bayesian inference such as quantifying uncertainty, ac-

curate averaged prediction, and preventing overfitting, the traditional Markov chain Monte

Carlo (MCMC) method has been regarded unsuitable for large-scale problems because it

required processing the entire dataset per iteration rather than using a small random mini-

batch as performed in the stochastic gradient optimization. The first attempt toward the

scalable MCMC method based on stochastic gradients is the stochastic gradient Langevin

dynamics (SGLD) proposed by Welling and Teh [2011]. Originated from the Langevin

Monte Carlo method, SGLD achieved O(n) computation per iteration (here, n is the size

of a minibatch) by using stochastic gradients estimated using minibatches and skipping the

Metropolis-Hastings accept-reject test.

In this thesis, we introduce recent advances in the stochastic gradient MCMC method since

the advent of SGLD. Our contributions are two-fold: algorithms and applications. In the

algorithm part, we first propose the stochastic gradient Fisher scoring algorithm (SGFS)

which resolves two drawbacks of SGLD: the poor mixing rate and the arbitrarily large bias

occurred when using large step sizes. Then, we also propose the distributed SGLD (D-SGLD)

algorithm which makes it possible to extend the power of stochastic gradient MCMC to the

distributed computing systems. In the second part, we apply the developed SG-MCMC

xii

algorithms to the most popular large-scale problems: the topic modeling using the latent

Dirichlet allocation model, recommender systems using matrix factorization, and community

modeling in social networks using mixed membership stochastic blockmodels. By resolving

the unique challenges raised by each of the applications, which make it difficult to directly

use the existing SG-MCMC methods, we obtain the-state-of-the-art results outperforming

existing approaches using collapsed Gibbs sampling, stochastic variational inference, or dis-

tributed stochastic gradient descent.

xiii

Chapter 1

Introduction

We are living in the era of Big data. The number of mobile devices, cameras, microphones,

wireless sensor networks, and software logs has been exponentially increasing the volume of

data. In 2012, 2.5 exabytes (2.5 ×1018) of data were created every day and 90% of the data

in the world today has been created in the last two years1. We expect that this data deluge

will be spurred even further by the rise of the Internet of Things (IoT) technology [Gubbi

et al., 2013] which tries to connect objects in our daily life to the Internet.

Big data is a big opportunity. By distilling useful information such as trends, causality,

and associations, from a vast sea of data, we will be better able to understand and pre-

dict the behaviors and properties of individuals, communities, society, and various systems

surrounding them. This will also make us solve many problems which were difficult in the

past. For example, by analyzing activity records of thousands of millions of users, companies

like Google, Facebook, and Amazon, provide high-quality recommendations for books, news

articles, restaurants, and even persons who we may be interested in [Koren et al., 2009].

By learning from enormous amounts of images and speech records, these companies have

also succeeded in increasing recognition accuracies of some tasks such as face and speech

1“IBM What is big data? – Bringing big data to the enterprise”, www.ibm.com.

1

recognition close to the level of humans [Krizhevsky et al., 2012, Taigman et al., 2014]. Fur-

thermore, some startups like Enlitic2 are also working to develop disease diagnosis systems

which can predict diseases or estimate its risk by learning latent factors from various medical

records of a large number of patients.

However, the fruits of Big data are not free. We have to resolve many challenges raised by

the enormous amount of data. Among others, the biggest challenge is the computational

overhead in learning algorithms provided the large-scale datasets. Traditionally, algorithms

of linear computation complexityO(N) per iteration have been considered as an efficient class

of algorithms because the number of observations N was not as large as to be a computational

challenge. However, the scale that we are facing today easily exceeds the level which the

traditional learning algorithm can return a meaningful result within a reasonable time-budget

for training. That is, these traditional algorithms became practically intractable for modern

large-scale problems.

One way to scale up these algorithms is to use a small number of samples (called the mini-

batch) from the original dataset at every iteration instead of using the entire dataset, for

instance, as is performed in the stochastic gradient descent (SGD) algorithm [Bishop, 2006].

In fact, it turned out that this type of algorithms, which requires only a random minibatch of

size n� N for an update, is almost optimally efficient for large-scale problems [Bottou and

Bousquet, 2008]. Another problem regarding the computational inefficiency of the traditional

learning algorithms is that they were not designed for distributed computing. Because most

of the large-scale datasets being used in industry these days significantly exceed the storage

capacity of a single machine, efficient operability in distributed computing systems is not an

option anymore but an indispensable component of any large-scale learning algorithm.

In this thesis, we aim to introduce recent advances in these directions, particularly focusing

on the Bayesian learning algorithms.

2http://www.enlitic.com/

2

1.1 Bayesian Inference for Machine Learning

There exist two main approaches to formulating machine learning problems. In the frequen-

tist approach, one defines a loss function Lf (θ;D) by a model parameter θ and the observed

dataset D = {(xi, yi)}Ni=1 in such a way that predictions made by the model ŷi(θ) = f(xi; θ)

can be close to the observed label yi. Here xi denotes the feature and yi the label of ith data

point di ∈ D. The mean squared error (MSE) function 1
N

∑N
i=1(yi− ŷi(θ))2 is an example of

such loss functions which is often used for regression problems.

Then, we run an optimization algorithm (typically iterative) to find a single optimal model

parameter θ∗ that minimizes the loss function. Because minimizing solely this loss function

can cause overfitting, usually an additional term Ω(θ) which penalizes complex models is

added. As a result, in the frequentist approach, we solve an optimization problem of the

following form

θ∗ = argmin
θ
Lf (θ;D) + λΩ(θ). (1.1)

Here, λ is the regularization hyperparameter for which a good value has to be set by the

user, e.g., using cross-validation. At test time, given a test point x′, we make a prediction

by y′(θ∗) = f(x′; θ∗).

Unlike the frequentist approach where the output of a learning algorithm is a single model

θ∗, in the Bayesian approach we are interested in obtaining a “distribution” of the model

parameter θ given the observation D. This is called the posterior distribution p(θ|D) and

we use the Bayes’ rule to obtain it

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (1.2)

3

Here, p(D|θ) =
∏N

i=1 p(di|θ) is the likelihood function of the observation D parameterized

by θ, and p(θ) is the prior distribution which encodes our prior knowledge on the param-

eter θ. The denominator, called the evidence or the marginal likelihood, is obtained by

p(D) =
∫
p(D|θ)p(θ)dθ. At test time, the prediction is obtained by integrating out predic-

tions p(y′|θ, x′) w.r.t the posterior distribution p(θ|D), resulting in the following posterior

predictive distribution

p(y′|D) =

∫
p(y′|θ, x′)p(θ|D)dθ. (1.3)

Bayesian inference is usually regarded as computationally more demanding than the frequen-

tist approach because, except some trivial cases, the posterior distribution in Equation (1.2)

is intractable since the marginal likelihood p(D) is difficult to compute.

Approximate Inference

To resolve this problem, modern Bayesian inference methods for machine learning rely on the

approximate inference methods such as Markov chain Monte Carlo (MCMC) and variational

inference. The general idea behind MCMC is that, if we can draw samples from the posterior

distribution only by evaluating the numerator3 p(D|θ)p(θ) in Equation (1.2), the integration

in Equation (1.3) can be approximated by the Monte Carlo method (introduced in the next

chapter) using a finite number of posterior samples. In the next chapter, we provide a more

detail introduction to MCMC.

Another powerful approximate inference algorithm is the variational inference. In variational

inference, we introduce a distribution q(θ|φ), called the variational distribution, which is

easy to evaluate (unlike the true posterior distribution p(θ|D)) and parameterized by φ. For

example, we can use a normal distribution q(θ|φ) = N (θ;µ, σ2) where φ = (µ, σ2). The goal

3Traditionally, it was assumed that the numerator term is easy to evaluate. However, as we will see in
the following chapter, this will not be true for large-scale problems where |D| is very large.

4

is then to find an optimal variational parameter φ∗ which minimizes the discrepancy between

the true posterior distribution p(θ|D) and the variational distribution q(θ|φ). Then, we use

the optimized variational distribution q(θ|φ∗) as a tractable alternative to the true posterior

distribution. Using the Kullback-Leibler (KL) divergence as a metric of the discrepancy

between two distributions, the problem of obtaining an approximate posterior distribution

is converted to an optimization problem of the following objective function

φ∗ = argmin
φ

KL[q(θ|φ)|p(θ|D)]. (1.4)

Note that the variational distribution q has to be flexible/complex enough to approximate

the true posterior distribution as close as possible while at the same time remaining compu-

tationally tractable, e.g. for the analytic integration of the Equation (1.3).

MCMC and variational inference have advantages and disadvantages which are exclusive

each other. MCMC usually provides better performance than variational inference because

the MCMC estimate converges to the true value as the sample size increases, whereas in

variational inference even the best parameter of a variational distribution cannot exactly

model the true posterior distribution because the expressiveness of the variational distribu-

tion parameterized by φ is usually restricted to a specific family of distributions which may

not include the true posterior. However, MCMC can be computationally more demanding

than variational inference because collecting a large number of samples can be computational

expensive. Besides, when the sample size is not large enough, the MCMC estimates usually

show large variance while variational inference is a deterministic optimization process. In

this thesis, we only focus on MCMC.

5

1.2 Advantages of Bayesian Inference

Compared to the frequentist approach, the Bayesian method in general has the following

advantages.

1. Quantifying uncertainty in principled way. Unlike the loss function minimization of the

frequentist method where the goal is to find a single model parameter, the output of

Bayesian inference is a probability distribution over the model parameter. Therefore,

uncertainty under the model parameter is quantified under the framework of probability

theory.

2. Accurate prediction and overfitting prevention. In Bayesian inference, the final pre-

diction is based on an (weighted) average of (infinitely) many predictions made by

(infinitely) many models drawn from the posterior distribution. In contrast, predic-

tions by frequentist methods rely only on a single model. Thus, Bayesian inference

not only improves the prediction accuracy in a similar way as ensemble learning [Diet-

terich, 2000], but also prevents overfitting because the averaged prediction generalizes

well (not settling down on a single model).

3. Avoiding hyperparameter tuning. In the Bayesian framework, we can learn also the hy-

perparameters by placing a hyper-prior distribution on the prior parameters, resulting

in a hierarchical Bayesian model. Therefore, the posterior distribution of the model

parameter is obtained automatically based on the most probable hyperparameters.

Note that this removes the necessity of the time-consuming hyperparameter tuning

procedure required in most of the frequentist methods. This is a particularly attrac-

tive property for large-scale datasets because each experiment of the cross-validation

becomes expensive.

6

4. Prior knowledge and side information. In some applications, we often have useful

prior knowledge of the model parameter. Bayesian inference makes us easily incor-

porate prior knowledge to the model. For example, we can help a learning algorithm

avoid visiting some problematic or unrealistic area of the model parameter space by

designing a proper prior distribution (e.g., Laplace prior for sparsity). Some useful

side-information (e.g., demographic information of users in recommender systems) can

also be incorporated in the inference procedure in principled way using the prior dis-

tribution [Porteous et al., 2010].

5. Hierarchical modeling. A large dataset is often divided into several groups each of

which has different statistical properties. For example, in recommender systems, users

may have different average values of ratings (e.g., one may give two stars on average

while others like to give four stars). Likewise, subsets of the data associated with each

user may have different characteristics. Bayesian hierarchical modeling naturally fits

well in modeling such phenomena which are prevalent in large-scale problems.

1.3 Large-Scale Machine Learning

Despite such advantages of Bayesian inference, most of the large-scale problems in machine

learning have been dominated so far by the frequentist approach. This is because an efficient

minibatch based training algorithm, i.e., the stochastic gradient descent (SGD), is easily

applicable to frequentist approaches, whereas Bayesian approaches use the entire dataset

per iteration.

Specifically, assuming that the data points in D are i.i.d., we can easily obtain an unbiased

estimator of the gradient of the objective function in Equation (1.1) using a minibatch Dn

7

of size n. That is,

∇θLf (θ;D) =
1

N

N∑
i=1

∇θ`(f(xi; θ), yi) = EDn

 1

n

∑
(x,y)∈Dn

∇θ`(f(x; θ), y)

 . (1.5)

The stochastic approximation theory [Robbins and Monro, 1951] says that we can find a

local minimum of the objective function using the following update rule

θt+1 ← θt + εtg(θt;Dn). (1.6)

Here, g(θ;Dn) = 1
n

∑
(x,y)∈Dn ∇θ`(f(x; θ), y) and the step size εt is required to satisfy the

following conditions

∞∑
t=1

εt =∞,
∞∑
t=1

ε2t <∞. (1.7)

The success of SGD on the single machine setting has also led to recent advances in paral-

lel/distributed SGD algorithms [Hall et al., 2010, McDonald et al., 2010, Mann et al., 2009,

Zinkevich et al., 2010].

On the other hand, the assumption used in most of the Bayesian methods, that the likelihood

term p(D|θ) =
∏N

i=1 p(di|θ) is easy to compute, became problematic as N becomes very

large. It is only very recent that we have the minibatch based algorithms for Bayesian

inference. For variational inference, the stochastic variational Bayes (SVB) [Hoffman et al.,

2013] and the stochastic gradient variational Bayes (SGVB) [Kingma and Welling, 2014]

are proposed recently. And for MCMC, to the best of our knowledge there has been no

minibatch based algorithm before the class of algorithms introduced in this thesis. Therefore,

the toolbox of large-scale machine learning has been limited to those of frequentist methods

and consequently the powerful advantages of Bayesian inference have not been accessible.

8

When it comes to scalable Bayesian inference methods for large N , it is particularly inter-

esting to note one specific misconception regarding the relationship between uncertainty and

the dataset size. One might argue that,

1. Bayesian inference is all about dealing with uncertainty.

2. But uncertainty will be negligible when a dataset is very large.

3. Thus, the frequentist approach should be good enough for large-scale problems.

The problem of this argument is that it fails to relate the model flexibility (complexity)

to the dataset size. That is, when we obtain more observations, we are also likely to have

more information which can be modeled by using a more flexible model. Therefore, a proper

approach in the case of increasing dataset size is to increase accordingly the model complexity

as well so as to capture more information. Otherwise, our model will underfit. That is, a

simple model cannot model some important information provided by the increased dataset.

A good example is given by a rule of thumb in choosing a proper number of hidden layers in

deep neural networks (or the width of a hidden layer): “increase the number of hidden layers

until you see some overfitting and then begin to regularize from that model”. As such, in

many real-world problems, the need for dealing with uncertainty and the risk of overfitting

will still exist regardless of the dataset size, unless the user is satisfied with settling down on

sub-optimal performance of a simple model, thus giving up the full power of the available

dataset.

Also, in many cases the term “large-scale” is about a situation where the dimension of the

model parameter is very large rather than the number of observations. For this type of

models, Bayesian inference has traditionally outperformed the frequentist approach [Neal

and Zhang, 2006].

9

1.4 Research Challenges

While the breakthrough by the stochastic gradient Langevin dynamics (SGLD) [Welling and

Teh, 2011] has opened a way towards scalable MCMC, in order to be more scalable and

practical, further innovations are still required for some of the core challenges. We itemize

such important research challenges (RC) below which are also the contributions of the thesis.

• [RC1] Improving mixing rate: in SGLD, the stepsize plays the role of a knob

which controls trade-off between the mixing rate and the approximation level. One

drawback of SGLD here is that we are limited to use relatively small stepsizes to

obtain reasonably accurate samples and thus the mixing rate becomes low. Using

large step-sizes to increase the mixing rate can result in a large discrepancy between

the stationary distribution and the true posterior distribution. Therefore, improving

the mixing rate while keeping the stationary distribution not diverge too far from the

true posterior distribution is an important problem.

• [RC2] Efficient distributed SG-MCMC algorithm: datasets in most of the in-

dustrial large-scale problems cannot be stored in a single machine. Besides, it is also

desired to reduce the training time by providing multiple machines. Although SGLD

is a scalable sampler in the sense that an update iteration can be completed using

only a minibatch, it is still limited to the single machine setting. Therefore, in order

to be a practical tool for industry sized large-scale problems, developing an efficient

distributed SG-MCMC algorithm is important.

• [RC3] Applications to industry sized large-scale problems: Although SGLD

has opened a way to the minibatch based MCMC, making it practically applicable to

industry sized large-scale problems, each of which has its own unique challenges, is not

straightforward. For example, in matrix factorization for recommender systems, the

parameters have special dependency to only some subset of the observations, and in

10

some social network analysis, we have to deal with a very large number of communities,

etc. Among many, (i) latent Dirichlet allocation for topic modeling, (ii) matrix factor-

ization for recommender systems, and (ii) community detection in social networks are

among the most important problems on which successful application of the SG-MCMC

method can make a large impact.

1.5 Outline of the Thesis

The remainder of the thesis is outlined as follows. As a preliminary chapter, we first start

by reviewing the theory and principles of MCMC in Chapter 2.

The following chapters are then divided into two parts. In the first part, we cover the

stochastic gradient MCMC algorithms (SG-MCMC). Specifically, in Chapter 3 we introduce

the first SG-MCMC algorithm, called the stochastic gradient Langevin dynamics (SGLD),

and in Chapter 4 the stochastic gradient Fisher scoring (SGFS) which improves some draw-

backs of SGLD. We close the first part in Chapter 5 by introducing an important extension

of SGLD toward distributed computing, called D-SGLD.

The second part of the thesis introduces practical large-scale applications of the algorithms

introduced in the first part. We first show in Chapter 6 how we obtained the state-of-the-art

result using D-SGLD on the distributed inference problem for the latent Dirichlet allocation

model which has been one of the most important large-scale problems in machine learning.

The matrix factorization for recommender systems which is another important problem is

followed in Chapter 7. In particular, this chapter shows that the Bayesian approach can

significantly outperform the state-of-the-art frequentist method by adopting our stochastic

gradient MCMC method. In Chapter 8, we introduce our last application, a scalable Bayesian

11

inference method for overlapping community detection of very large networks. We then

conclude the thesis in Chapter 9.

12

Chapter 2

Markov Chain Monte Carlo

As the name implies, the Markov chain Monte Carlo (MCMC) method combines the theory of

Markov chain and Monte Carlo method: a Markov chain is used to sample from a distribution

of our interest (e.g., the posterior distribution), and then the Monte Carlo method uses the

samples to approximate an expectation whose exact solution is expensive to compute. In

this chapter, we first introduce the theory of the Monte Carlo method and then move to

the Markov chain. Then, we review some important traditional MCMC algorithms such as

the Metropolis-Hastings algorithm, and discuss why traditional MCMC is not scalable for

large-scale problems.

2.1 Monte Carlo Method

In many applications of machine learning, we are interested in computing an expectation

f ∗ = E[f(θ)] w.r.t. a distribution p(θ). The Monte Carlo method is used to approximate the

expectation (integration) when computing the exact value is intractable. The general idea

of the Monte Carlo method is to approximate the intractable integration as a sum of finite

13

samples drawn from the distribution p(θ). More specifically, given L samples {θ(l)}Ll=1 from

p(θ), we estimate the expectation by

f ∗ ≈ fL =
1

L

L∑
l=1

f(θ(l)). (2.1)

For example, in Bayesian inference we can use samples from the posterior distribution to

approximate the posterior predictive distribution. That is,

p(y′|x′,D) = Eθ|D[p(y′|x′, θ)] =

∫
p(y′|x′, θ)p(θ|D)dθ

≈ 1

L

L∑
l=1

p(y′|x′, θ(l)). (2.2)

Here θ(l) ∼ p(θ|D).

The Monte Carlo estimator is unbiased because E[fL] = f ∗, and consistent because by the

strong law of large numbers it converges almost surely to the true value as the number of

samples increases

fL
a.s.−−−→
L→∞

f ∗. (2.3)

Also, by central limit theorem, the variance of the Monte Carlo estimator is:

var[fL] =
var[f]

L
. (2.4)

Thus, the more samples we have, the better accuracy we obtain.

Now the problem is how to obtain samples from a target distribution, especially when we

can evaluate only the unnormalized part p̃(θ) of the distribution p(θ). There have been

many sampling methods such as the inverse cdf method, rejection sampling, and importance

sampling [Bishop, 2006]. However, they either are applicable only to some specific cases

14

(e.g., computing the inverse cdf is not always possible) or perform very inefficiently in high-

dimensional spaces (e.g., it is difficult to obtain a good proposal distribution in rejection

sampling and importance sampling). The goal of Markov chain Monte Carlo is to resolve

these problems.

2.2 Markov Chains

A series of random variables θ(1), . . . , θ(T) is a first-order Markov chain if the following con-

ditional independence holds for t = 1, . . . , T

p(θ(t+1)|θ(t), . . . , θ(1)) = p(θ(t+1)|θ(t)). (2.5)

We can specify a Markov chain by defining the initial distribution p(θ(0)) and the transition

probabilities pt(θ
(t+1)|θ(t)) for all t. A Markov chain is called homogeneous or time invariant

when the transition probabilities are the same for all t. A distribution is said to be invariant

w.r.t. a Markov chain if the transition probabilities do not change the distribution. For a

homogeneous Markov chain, a distribution p∗(θ) is invariant if

p∗(θ′) =
∑
θ

p(θ′|θ)p∗(θ). (2.6)

In MCMC, we want a Markov chain to have a specific invariant distribution, i.e., the distribu-

tion whose samples we use for the Monte Carlo estimation (e.g., the posterior distribution).

One way to ensure this is to design a transition probability in such a way that it satisfies

the detailed balance condition defined by

p(θ′|θ)p∗(θ) = p(θ|θ′)p∗(θ′). (2.7)

15

What the detailed balance condition says is that the rates of flows between two states θ and

θ′ are always the same in both directions, θ → θ′ and θ′ → θ. Thus, a Markov chain that

satisfies the detailed balance is also called reversible. It is easy to show that this is a sufficient

(but not necessary) condition to have p∗(θ) as the invariant distribution of a Markov chain

∑
θ

p(θ′|θ)p∗(θ) =
∑
θ

p(θ|θ′)p∗(θ′) = p∗(θ′)
∑
θ

p(θ|θ′) = p∗(θ′). (2.8)

Another important property is ergodicity. A Markov chain is called ergodic if it converges to

the invariant distribution as t→∞ regardless of the choice of the initial distribution p(θ(0)).

An ergodic Markov chain has only one invariant distribution, called equilibrium distribution.

A homogeneous Markov chain is ergodic subject to some weak restrictions on the invariant

distribution and the transition probabilities [Neal93].

Technically, samples generated by an MCMC algorithm are not independent because every

state (except the initial state) is dependent on its previous state. Because highly corre-

lated samples can increase the variance of the MCMC estimate (provided a finite number

of samples), a good MCMC sampler is required to generate samples of low correlation. One

way to measure how much the samples are correlated to each other is to use the following

auto-correlation function (ACF) [Murphy, 2012]:

ρt =
1
S−t
∑S−t

s=1(fs − f̄)(fs+t − f̄)
1

S−1

∑S
s=1(fs − f̄)2

. (2.9)

Here, f̄ = 1
S

∑S
s=1 fs and t is the time lag. The lower the ACF value is, the more independent

the samples are. Also, when the samples of a MCMC method become more independent on

their previous states, we say that the MCMC algorithm mixes better or has better mixing

rate.

16

Algorithm 1 Metropolis-Hastings algorithm

Input: proposal distribution q(θ′|θ)
Draw initial state θ(0) from p(θ(0))
for t = 0, 1, . . . , T do

Draw a proposal state θ′ from a proposal distribution q(θ(t+1)|θ(t))
Compute the accept-reject probability α(θ′|θ(t))
Draw u from a uniform distribution of a range [0, 1].
if αt > u then

Accept: θ(t+1) ← θ′

else
Reject: θ(t+1) ← θ(t)

end if
end for

2.3 MCMC Algorithms

2.3.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is the most generally applicable type of MCMC algo-

rithm. The algorithm works as follows. At iteration t where the current state is θ(t), we

draw a proposal sample θ′ from a proposal distribution q(θ′|θ(t)) which is introduced by the

user. Then, the proposed sample θ′ is passed to the accept-reject test in which the acceptance

probability is computed by

α(θ′|θ(t)) = min

(
1,

q(θ(t)|θ′)p̃(θ′)
q(θ′|θ(t))p̃(θ(t))

)
. (2.10)

Note here that we only need to evaluate the unnormalized probability density p̃(θ). Given the

acceptance probability, we accept the proposed sample θ′ as the next state of the chain if a

sample from a uniform distribution is less than the acceptance probability α. Otherwise, the

current state θ(t) is copied to the next state. The pseudo-code is described in the Algorithm

1.

17

It is easy to show that the Metropolis-Hastings algorithm ensures p(θ) to be the invariant

distribution

p(θ)q(θ′|θ)α(θ′|θ) = min(p(θ)q(θ′|θ), p(θ′)q(θ|θ′))

= min(p(θ′)q(θ|θ′), p(θ)q(θ′|θ))

= p(θ′)q(θ|θ′)α(θ|θ′). (2.11)

For continuous space, a simple choice for the proposal distribution is to use a Gaussian

distribution where the mean is set to the current state and the variance is chosen by the

user. This specific algorithm is called the random walk Metropolis (RWM) algorithm. In

RWM, it is important to set the variance parameter of the Gaussian proposal distribution

properly. Using a small value may give us high acceptance rate but the mixing rate can

be poor. Conversely, by using a large variance, the chain can move by a large step when

accepted. However, the acceptance rate can be low.

One problem of using a Gaussian proposal distribution is that it does not consider to give

a preference to an obvious direction of high acceptance probability which we can actually

identify using the gradient of the target probability distribution. We will see an example of

this type of algorithm in Section 2.3.3.

2.3.2 Gibbs Sampling

Gibbs sampling is a powerful MCMC algorithm which we can use when it is possible to sample

efficiently from a subset (often only a single component) of the posterior random variables

while conditioning on the other random variables. Thus, we can see Gibbs sampling as a

coordinate-wise sampling method.

18

More specifically, consider a distribution p(θ) = p(θ1, . . . , θD) from which we want to sample.

We use θi to denote ith component of θ, and θ\i to denote all θ1, . . . , θD except θi. Gibbs sam-

pling uses the conditional distribution p(θi|θ\i) as a proposal distribution while alternating

the component index i. For example, when D = 3, at each iteration t, we iterate sampling

from θ
(t+1)
1 ∼ p(θ1|θ(t)

2 , θ
(t)
3), θ

(t+1)
2 ∼ p(θ2|θ(t+1)

1 , θ
(t)
3), and θ

(t+1)
3 ∼ p(θ3|θ(t+1)

1 , θ
(t+1)
2). The

pseudo-code of the algorithm is described in Algorithm 2.

Each update of Gibbs sampling preserves the distribution invariant. When we update ith

component, the marginal distribution p(θ\i) does not change because we do not update

the remaining variables θ\i. And by definition we sample exactly from the conditional

distribution p(θi|θ\i). Thus, the joint distribution is invariant.

Gibbs sampling can also be seen as a special case of the Metropolis-Hastings algorithm

where the proposal distribution is set to the conditional distribution, i.e., q(θi|θ) = p(θi|θ\i).

Then, the ratio r in the min(1, r) of the acceptance probability is always 1 and thus we

always accept the proposal1

p(θ′i|θ\i)p(θ\i)
p(θi|θ\i)p(θ\i)

×
p(θi|θ\i)
p(θ′i|θ\i)

= 1. (2.12)

Here, the second term in the LHS is the ratio of the proposal distributions.

The main limitation of Gibbs sampling is that it must be easy to sample from the conditional

posterior distribution. This is often not the case in many applications of practical interest.

1Note that, if the parameters are updated in a fixed order, this argument is not satisfied because in this
case the reversibility is not satisfied.

19

Algorithm 2 Gibbs sampling

Initialize θ
for t = 1, . . . , T do

Sample θ1 ∼ p(θ1|θ\1)
Sample θ2 ∼ p(θ2|θ\2)
· · ·
Sample θD ∼ p(θD|θ\D)

θ(t) ← θ
end for

2.3.3 Langevin Monte Carlo

One way to design an efficient proposal distribution for the Metropolis-Hastings algorithm

is to use the gradient of the target distribution. Langevin Monte Carlo (LMC), a.k.a. the

Metropolis-Adjusted Langevin Algorithm (MALA), uses the Langevin dynamics to obtain an

efficient proposal distribution. The Langevin dynamics is modeled by the following stochastic

differential equation called Langevin equation:

dθt =
1

2
∇θ log p(θt) + dηt. (2.13)

Here θ ∈ RD and ηt is the D-dimension standard Brownian motion. The Langevin equation

is used to model the dynamics of molecular systems whose equilibrium distribution conforms

to the distribution p(θ).

Because this continuous-time dynamics cannot be simulated exactly in digital computers,

the following discretized simulation is used for update:

θt+1 ← θt +
ε

2
∇θt log p(θt) + ηt, where ηt ∼ N (0, ε). (2.14)

However, the above discretization leads to some drift (error) from exact simulation, and

therefore the equilibrium distribution of the discrete simulation results in a distribution

pε(θ) which is not the same as the target distribution p(θ). To mitigate the discrepancy

20

Algorithm 3 Langevin Monte Carlo

Initialize θ
for t = 1, . . . , T do
ηt ∼ N (0, ε)
Propose θ′ ← θt + ε

2
∇θt logP (θt) + ηt

Compute the accept-reject probability α(θ′|θt) =
p(θ′)N(θt|θ′+ ε

2
∇θ′ logP (θ′),ε)

p(θt)N(θ′|θt+ ε
2
∇θt logP (θt),ε)

Draw u from a uniform distribution of a range [0, 1].
if αt > u then

Accept: θ(t+1) ← θ′

else
Reject: θ(t+1) ← θ(t)

end if
end for

between pε(θ) and p(θ), the Langevin Monte Carlo thus performs the Metropolis-Hastings

accept-reject test with the following proposal distribution

q(θt+1|θt) = N
(
θt+1|θt +

ε

2
∇θt log p(θt), ε

)
. (2.15)

Note that as the step size ε → 0, the discretization error becomes negligible and thus the

acceptance probability approaches to 1. The pseudo-code is given in Algorithm 3.

2.4 Scalability of Traditional MCMC

The main problem of traditional MCMC algorithms for large-scale problems is that it requires

O(N) computations per iteration. For instance, the Metropolis-Hastings method requires to

compute an acceptance probability at every iteration which involves evaluating the posterior

distribution p(θ)
∏N

i=1 p(xi|θ) (up to a normalization constant) in both the numerator and

the denominator. Note that here the N will be 1.4 billion if it is the number of Facebook

users in 2015 and 253 millions if it is the number of products sold in Amazon USA in 2014.

Thus, computing the product (or summation in the log domain) of the likelihood for all

21

the observations will be prohibitively expensive computation. (The accept-reject test is also

statistically inefficient because the computation used for the acceptance probability becomes

wasteful if a proposal is rejected.) Furthermore, in the Langevin Monte Carlo method, the

computation of the gradient is another bottleneck requiring another O(N) computations.

Although, unlike the Metropolis-Hastings algorithm, Gibbs sampling is free from the ex-

pensive accept-reject tests, it has a limitation in its general applicability because in many

applications exact sampling from the conditional posterior distribution is not easy.

According to Korattikara [2014], we can analyze the error of traditional MCMC estimators

using the variance-bias decomposition. Consider fT an estimate obtained by using T samples

from an MCMC algorithm, i.e., fT = 1
T

∑T
t=1 f(θ(t)), and f ∗ the true value, i.e., f ∗ =∫

p(θ)f(θ)dθ. Then, the expected squared error can be decomposed as follows:

E[(fT − f ∗)2] = E[(fT − f̄T + f̄T − f ∗)2]

= E[(fT − f̄T)2] + 2E[(fT − f̄T)(f̄T − f ∗)] + E[(f̄T − f ∗)2]

= E[(fT − f̄T)2] + (f̄T − f ∗)2

= var[fT] + bias[fT]2. (2.16)

Here, we used f̄T to denote E[fT].

Assuming that collected samples are unbiased samples of the true target distribution p(θ), we

have f̄T = f ∗. Therefore, the error of the traditional MCMC depends only on the variance of

fT which collapses to zero when T →∞ because of var[fT] = var[f]/T . However, the problem

is that given a finite amount of time it is difficult in practice to collect such large amount

of samples for the scale of modern industrial/web datasets. Consequently, the traditional

MCMC estimator will have a large error due to the large variance (i.e. small number of

samples) despite the asymptotic unbiasedness.

22

Variance Bias2 Error Variance Bias2 Error

Figure 2.1: (left, traditional MCMC): the error solely comes from the variance error because
the samples are unbiased, (right, SG-MCMC): large variance error is reduced by sampling
much faster at the expense of allowing some bias error.

The key idea behind the SG-MCMC method introduced in this thesis can be understood

through this variance-bias analysis. That is, observing that in large-scale problems variance

is a dominant factor of the overall error, we propose a class of algorithms which focus

more on reducing large variance by significantly speeding-up the sampling process at the

cost of allowing some (small) level of bias (that is, the samples are collected from a biased

distribution). Consequently, the overall accuracy is expected to improve as illustrated in

Figure 2.1.

23

Chapter 3

Stochastic Gradient Langevin

Dynamics

When a dataset has a billion data-cases (as is not uncommon these days) the traditional

MCMC algorithms will not even have generated a single (burn-in) sample when a clever

learning algorithm based on stochastic gradients may already be making fairly good pre-

dictions. In fact, the intriguing results of Bottou and Bousquet [2008] seem to indicate

that in terms of “number of bits learned per unit of computation”, an algorithm as sim-

ple as stochastic gradient descent is almost optimally efficient. We therefore argue that for

Bayesian methods to remain useful in an age when the datasets grow at an exponential rate,

they need to embrace the ideas of the stochastic optimization literature.

In this chapter, we review the first attempt in this direction, the stochastic gradient Langevin

dynamics (SGLD), proposed by Welling and Teh [2011].

24

3.1 Stochastic Gradient Langevin Dynamics

The stochastic gradient Langevin dynamics (SGLD) is related to the Langevin Monte Carlo

(LMC) algorithm which we briefly reviewed in Section 2.3.3. The LMC uses the following

discretized simulation of the Langevin equation as a proposal distribution of the Metropolis-

Hastings algorithm

θt+1 ← θt +
ε

2
∇θt log p(θt|X) + ηt, where ηt ∼ N (0, ε). (3.1)

where the gradient of the log posterior is

∇θt log p(θt|X) = ∇θt log p(θt) +
N∑
i=1

∇θt log p(xi|θt). (3.2)

Although the equilibrium distribution of the Langevin equation in Equation (2.13) is equal

to the target distribution p(θ|X), we cannot exactly simulate this continuous-time dynamics

due to the discretization required in the digital computer. To resolve this problem, LMC

uses the following discretized Langevin dynamics

q(θ′|θ) = N
(
θ′|θ +

ε

2
∇θ log p(θ|X), ε

)
. (3.3)

Then, the Metropolis-Masting accept-reject test is followed to correct the discrepancy be-

tween the discretized simulation and the exact continuous-time simulation. As a result,

LMC remains as an asymptotically unbiased MCMC algorithm at the expense of the O(N)

computations both in the proposal stage and the accept-reject stage.

SGLD applies two major changes to the LMC in order to obtain scalability desired for the

large-scale MCMC. First, exact gradients used in the proposal stage is replaced by stochastic

gradients which can be computed using only a small mini-batch of size n� N . A mini-batch

25

Xn
t is randomly sampled from the entire dataset at every iteration t. The resulting update

equation becomes:

θt+1 ← θt +
εt
2

∇θt log p(θt) +
N

n

∑
x∈Xn

t

∇θt log p(x|θt)

+ ηt,

where ηt ∼ N (0, εt). (3.4)

The second modification from LMC to SGLD is to omit the accept-reject test, another source

of the O(N) computations. In other words, in SGLD all states obtained by applying the

above update equation are simply accepted. Therefore, the overall computation complexity

becomes O(n). Welling and Teh [2011] showed that, as t → ∞ and the step-size εt goes to

zero at a certain rate satisfying the following condition1

∞∑
t=1

εt =∞,
∞∑
t=1

ε2t <∞, (3.5)

the update rule in Equation (3.4) generates samples from the posterior distribution despite

the absence of the accept-reject test. Sato and Nakagawa [2014] later showed more detailed

proof on the convergence properties of SGLD.

The basic idea behind the justification of SGLD as a posterior sampler is as follows. Assuming

that the stochastic gradients are unbiased, we can see a stochastic gradient as a sum of the

true gradient and the subsampling noise. Then, because the order of the subsampling noise is

O(ε2) and that of the injected noise is O(ε) (by the variance of the Gaussian noise), as εt → 0

the injected Gaussian noise dominates the subsampling noise of the stochastic gradient. As

a result, the remaining true gradient and injected Gaussian noise make SGLD imitate the

discrete simulation of the Langevin dynamics in Eqn. (3.1). Noticing that the discretization

error in turn disappears as εt → 0, the acceptance probability approaches 1 and thus SGLD

generates samples from the posterior distribution without the accept-reject test.

1A practical rule of setting the step-size is to use a function εt = a(b+ t)−γ where γ ∈ (0.5, 1].

26

3.1.1 SGLD with a constant step-size

Although in theory SGLD samples from the posterior distribution as εt → ∞, such small

step-sizes can make the mixing very poor. Therefore, in practice we often stop the annealing

procedure at a certain constant step-size ε0 which is large enough to obtain reasonable

mixing performance but also small enough to ignore the accept-reject test. Because of

this and the absence of the accept-reject test, SGLD allows some discretization error (the

larger the constant step-size ε0, the larger the error) and thus remains as an approximate

MCMC sampler which samples from an approximate posterior pε0(θ|X). One particularly

interesting property of SGLD analyzed by Sato and Nakagawa [2014] is that, subject to

some weak conditions, we can use SGLD with a small constant stepsize for the purpose of

the approximate Bayesian prediction using posterior averaging.

Also, as we have analyzed in Section 2.4 using the variance-bias decomposition, in prac-

tice we are expected to obtain better overall accuracy using SGLD than the traditional

asymptotically unbiased sampler because, under the constrained training time-budget in the

large-scale data analysis tasks, SGLD can collect a larger number of samples, consequently

leading to a great reduction in the variance error. Furthermore, given more time-budget

available, we can reduce the constant step-size further to increase the accuracy. Therefore,

using the step-size as a knob trading off between mixing performance and asymptotic accu-

racy, SGLD provides a mechanism to strategically obtain the best performance according to

the allowed time-budget.

3.1.2 SGLD during burn-in

MCMC starts from a random initial state and thus requires some iterations until it ap-

proaches where significant probability density of the target distribution (e.g., a mode) is

located. These iterations are called the burn-in period. Because during burn-in period an

27

MCMC sampler is not sampling from the stationary distribution, we simply discard the

samples collected during burn-in. The burn-in in the traditional MCMC is particularly re-

garded as an inefficient part due to the accept-reject test and the random-walk behavior

(not all updates move toward the target distribution). Thus, to resolve this inefficiency of

the traditional MCMC algorithms, often a separate optimization algorithm is applied as a

preliminary phase to find an important area to start sampling. However, this also raises

additional overheads, e.g., because we have to find another set of hyper-parameters for the

extra preliminary optimization algorithm. Note that this can be a severe problem when it

comes to large-scale datasets because the execution of a single experiment can require a large

computation time.

Efficiency during burn-in is another advantage of SGLD. By the above argument of the

previous section, when the step-size εt is large, we can ignore the injected Gaussian noise

O(εt) because it is dominated by the subsampling noise O(ε2t) of the stochastic gradient. As

a result, during burn-in SGLD behaves like the efficient stochastic gradient ascent optimizer

and removes the necessity of running a preliminary optimization algorithm separately.

28

Chapter 4

Stochastic Gradient Fisher Scoring

Having a good mixing rate is the most important factor of an efficient MCMC algorithm.

Especially, when the target distribution has high correlation among the parameters, MCMC

usually shows a poor mixing rate and takes a long time to converge. Similar to the Newton

method in optimization, incorporating the curvature information of the target distribution

is crucial for improving the mixing rate of an MCMC algorithm [Girolami and Calderhead,

2011].

This chapter is based on results from Ahn et al. [2012]. Max Welling proposed the initial

version of the algorithm, and Anoop Korattikara and I helped elaborating it. I performed

the experiments in section 4.5.1 and 4.5.2. Anoop Korattikara performed the experiment in

section 4.5.3.

4.1 Motivation

While SGLD succeeds in (asymptotically) generating samples from the posterior at O(n)

computational cost with (n� N) it’s mixing rate is unnecessarily slow. This can be traced

29

back to its lack of a proper pre-conditioner: SGLD takes large steps in directions of small

variance and conversely, small steps in directions of large variance which hinders convergence

of the Markov chain. Our work builds on top of Welling and Teh [2011]. We leverage the

“Bayesian Central Limit Theorem” which states that when N is large (and under certain

conditions) the posterior will be well approximated by a normal distribution. Our algorithm

is designed so that for large stepsizes (and thus at high mixing rates) it will sample from

this approximate normal distribution, while at smaller stepsizes (and thus at slower mixing

rates) it will generate samples from an increasingly accurate (non-Gaussian) approximation

of the posterior. Our main claim is therefore that we can trade-in a usually small bias in our

estimate of the posterior distribution against a potentially very large computational gain,

which could in turn be used to draw more samples and reduce sampling variance.

From an optimization perspective one may view this algorithm as a Fisher scoring method

based on stochastic gradients (see e.g. [Schraudolph et al., 2007]) but in such a way that

the randomness introduced in the subsampling process is used to sample from the posterior

distribution when we arrive at its mode. Hence, it is an efficient optimization algorithm that

smoothly turns into a sampler when the correct (statistical) scale of precision is reached.

4.2 Preliminaries and Notation

We will start with some notation, definitions and preliminaries. We have a large dataset XN

consisting of N i.i.d. data-points {x1...xN} and we use a family of distributions parametrized

by θ ∈ RD to model the distribution of the xi’s. We choose a prior distribution p(θ) and are

interested in obtaining samples from the posterior distribution, p(θ|XN) ∝ p(XN |θ)p(θ).

As is common in Bayesian asymptotic theory, we will also make use of some frequentist

concepts in the development of our method. We assume that the true data generating

30

distribution is in our family of models and denote the true parameter which generated the

dataset XN by θ0. We denote the score or the gradient of the log likelihood w.r.t. data-

point xi by gi(θ) = g(θ;xi) = ∇θ log p(θ;xi). We denote the sum of scores of a batch of n

data-points Xr = {xr1 ...xrn} by Gn(θ;Xr) =
∑n

i=1 g(θ;xri) and the average by gn(θ;Xr) =

1
n
Gn(θ;Xr). Sometimes we will drop the argument Xr and instead simply write Gn(θ) and

gn(θ) for convenience.

The covariance of the gradients is called the Fisher information defined as

I(θ) = Ex[g(θ;x)g(θ;x)T],

where Ex denotes expectation w.r.t the distribution p(x; θ) and we have used the fact that

Ex[g(θ;x)] = 0. It can also be shown that I(θ) = −Ex[H(θ;x)], where H is the Hessian of

the log likelihood.

Since we are dealing with a dataset with samples only from p(x; θ0) we will henceforth be

interested only in I(θ0) which we will denote by I1. It is easy to see that the Fisher infor-

mation of n data-points In is equal to nI1. The empirical covariance of the scores computed

from a batch of n data-points is called the empirical Fisher information [Scott, 2002],

V (θ;Xr) =
1

n− 1

n∑
i=1

(gri(θ)− gn(θ)) (gri(θ)− gn(θ))T .

Also, it can be shown that V (θ0) is a consistent estimator of I1 = I(θ0).

We now introduce an important result in Bayesian asymptotic theory. As N becomes large,

the posterior distribution becomes concentrated in a small neighbourhood around θ0 and

becomes asymptotically Gaussian. This is formalized by the Bernstein-von Mises theorem,

a.k.a the Bayesian Central Limit Theorem, [Le Cam, 1986], which states that under suitable

regularity conditions, p(θ| {x1...xN}) approximately equals N (θ0, I
−1
N) as N →∞.

31

4.3 Stochastic Gradient Fisher Scoring

We are now ready to derive our Stochastic Gradient Fisher Scoring (SGFS) algorithm. The

starting point in the derivation of our method is the Stochastic Gradient Langevin Dynamics

(SGLD) which has the following update equation:

θt+1 ← θt +
εC

2

{
∇ log p(θt) +Ngn(θt;X

t
n)
}

+ ν,

where ν ∼ N (0, εC). (4.1)

Here C is called the preconditioning matrix [Girolami and Calderhead, 2010]. SGLD can

sample accurately from the posterior but suffers from a low mixing rate. In Section 4.3.1,

we show that it is easy to construct a Markov chain that can sample from a normal approxi-

mation of the posterior at any mixing rate. We will then combine these methods to develop

our Stochastic Gradient Fisher Scoring (SGFS) algorithm in Section 4.3.2.

4.3.1 Sampling from the Gaussian Approximate Posterior

Since it is not clear how to use Equation (4.1) at high step sizes, we will move away from

Langevin dynamics and explore a different approach. As mentioned in Section 4.2, the

posterior distribution can be shown to approach a normal distribution, N (θ0, I
−1
N), as the

size of the dataset becomes very large. It is easy to construct a Markov chain which will

sample from this approximation of the posterior at any step size. We will now show that the

following update equation achieves this:

θt+1 ← θt +
εC

2
{−IN(θt − θ0)}+ ω,

where ω ∼ N
(

0, εC − ε2

4
CINC

)
. (4.2)

32

The update is an affine transformation of θt plus injected independent Gaussian noise, ω.

Thus if θt has a Gaussian distribution N (µt,Σt), θt+1 will also have a Gaussian distribution,

which we will denote as N (µt+1,Σt+1). These distributions are related by:

µt+1 =

(
I − εC

2
IN

)
µt +

εC

2
INθ0,

Σt+1 =

(
I − εC

2
IN

)
Σt

(
I − εC

2
IN

)T
+ εC − ε2

4
CINC. (4.3)

If we choose C to be symmetric, it is easy to see that the approximate posterior distribution,

N (θ0, I
−1
N), is an invariant distribution of this Markov chain. Since Equation (4.2) is not a

Langevin equation, it samples from the approximate posterior at large step-size and does not

require any MH accept/reject steps. The only requirement is that C should be symmetric

and should be chosen so that the covariance matrix of the injected noise in Equation (4.2)

is positive-definite.

4.3.2 Stochastic Gradient Fisher Scoring

In practical problems both sampling accuracy and mixing rate are important, and the ex-

treme regimes dictated by both the above methods are very limiting. If the posterior is close

to Gaussian (as is usually the case), we would like to take advantage of the high mixing

rate. However, if we need to capture a highly non-Gaussian posterior, we should be able

to trade-off mixing rate for sampling accuracy. One could also think about doing this in

an “anytime” fashion where if the posterior is somewhat close to Gaussian, we can start by

sampling from a Gaussian approximation at high mixing rates, but slow down the mixing

rate to capture the non-Gaussian structure if more computation becomes available. In other

words, one should have the freedom to manage the right trade off between sampling accuracy

and mixing rate depending on the problem at hand.

33

With this goal in mind, we combine the above methods to develop our Stochastic Gradi-

ent Fisher Scoring (SGFS) algorithm. We accomplish this using a Markov chain with the

following update equation:

θt+1 ← θt +
εC

2

{
∇ log p(θt) +Ngn(θt;X

t
n)
}

+ τ

where τ ∼ N (0, Q). (4.4)

When the step size is small, we want to choose Q = εC so that it behaves like the Markov

chain in Eqn (4.1). Now we will see how to choose Q so that when the step size is large

and the posterior is approximately Gaussian, our algorithm behaves like the Markov chain

in Equation (4.2). First, note that if n is large enough for the central limit theorem to hold,

we have:

gn(θt;X
t
n) ∼ N

(
Ex[g(θt;x)],

1

n
Cov [g(θt;x)]

)
. (4.5)

Here Cov [g(θt;x)] is the covariance of the scores at θt. Using NCov [g(θt;x)] ≈ IN and

NEx[g(θt;x)] ≈ GN(θt;XN), we have:

∇ log p(θt) +Ngn(θt;X
t
n)

≈ ∇ log p(θt) +GN(θt;XN) + φ

where φ ∼ N
(

0,
NIN
n

)
. (4.6)

Now, ∇ log p(θt) + GN(θt;XN) = ∇ log p(θt|XN), the gradient of the log posterior. If

we assume that the posterior is close to its Bernstein-von Mises approximation, we have

∇ log p(θt|XN) = −IN(θt − θ0). Using this in Equation (4.6) and then substituting in Equa-

tion (4.4), we have:

θt+1 ← θt +
εC

2
{−IN(θt − θ0)}+ ψ + τ (4.7)

34

where,

ψ ∼ N
(

0,
ε2

4

N

n
CINC

)
and τ ∼ N (0, Q).

Comparing Equation (4.7) and Equation (4.2), we see that at high step sizes, we need:

Q+
ε2

4

N

n
CINC = εC − ε2

4
CINC ⇒

Q = εC − ε2

4

N + n

n
CINC. (4.8)

Thus, we should choose Q such that:

Q =

 εC for small ε

εC − ε2

4
γCINC for large ε

where we have defined γ = N+n
n

. Since ε dominates ε2 when ε is small, we can choose

Q = εC − ε2

4
γCINC for both the cases above. With this, our update equation becomes:

θt+1 ← θt +
εC

2

{
∇ log p(θt) +Ngn(θt;X

t
n)
}

+ τ

where τ ∼ N
(

0, εC − ε2

4
γCINC

)
. (4.9)

Now, we have to choose C so that the covariance matrix of the injected noise in Equation

(4.9) is positive-definite. One way to enforce this, is by setting:

εC − ε2

4
γCINC = εCBC ⇒ C = 4 [εγIN + 4B]−1 (4.10)

35

where B is any symmetric positive-definite matrix. Plugging in this choice of C in Equation

4.9, we get:

θt+1 ← θt + 2

[
γIN +

4B

ε

]−1

×

{∇ log p(θt) +Ngn(θt;Xt) + η}

where η ∼ N
(

0,
4B

ε

)
. (4.11)

However, the above method considers IN to be a known constant. In practice, we use NÎ1,t

as an estimate of IN , where Î1,t is an online average of the empirical covariance of gradients

(empirical Fisher information) computed at each θt.

Î1,t = (1− κt)Î1,t−1 + κtV (θt;X
t
n) (4.12)

where κt = 1/t. In the supplementary material we prove that this online average converges

to I1 plus O(1/N) corrections if we assume that the samples are actually drawn from the

posterior:

Theorem 4.3.1. Consider a sampling algorithm which generates a sample θt from the pos-

terior distribution of the model parameters p(θ|XN) in each iteration t. In each iteration, we

draw a random mini-batch of size n, X t
n = {xt1 ...xtn}, and compute the empirical covariance

of the scores V (θt;X
t
n) = 1

n−1

∑n
i=1 {g(θt;xti)− gn(θt)} {g(θt;xti)− gn(θt)}T . Let VT be the

average of V (θt) across T iterations. For large N , as T → ∞, VT converges to the Fisher

information I(θ0) plus O(1
N

) corrections, i.e.

lim
T→∞

[
VT ,

1

T

T∑
t=1

V (θt;X
t
n)

]
= I(θ0) +O(

1

N
). (4.13)

Note that this is not a proof of convergence of the Markov chain to the correct distribution.

Rather, assuming that the samples are from the posterior, it shows that the online average

36

of the covariance of the gradients converges to the Fisher information (as desired). Thus,

it strengthens our confidence that if the samples are almost from the posterior, the learned

pre-conditioner converges to something sensible. What we do know is that if we anneal the

stepsizes according to a certain polynomial schedule, and we keep the pre-conditioner fixed,

then SGFS is a version of SGLD which was shown to converge to the correct equilibrium

distribution [Welling and Teh, 2011]. We believe the adaptation of the Fisher information

through an online average is slow enough for the resulting Markov chain to still be valid, but

a proof is currently lacking. The theory of adaptive MCMC [Andrieu and Thoms, 2008] or

two time scale stochastic approximations [Borkar, 1997] might hold the key to such a proof

which we leave for future work. Putting it all together, we arrive at Algorithm 4 below.

Algorithm 4 Stochastic Gradient Fisher Scoring (SGFS)

Input: n, B, {κt}t=1:T

Output: {θt}t=1:T

1: Initialize θ1, Î1,0

2: γ ← n+N
n

3: for t = 1 : T do
4: Choose random minibatch X t

n = {xt1 ...xtn}
5: gn(θt)← 1

n

∑n
i=1 gti(θt)

6: V (θt)←
1

n−1

∑n
i=1 {gti(θt)− gn(θt)} {gti(θt)− gn(θt)}T

7: Î1,t ← (1− κt)Î1,t−1 + κtV (θt)
8: Draw η ∼ N [0, 4B

ε
]

9: θt+1 ← θt+

2
(
γNÎ1,t + 4B

ε

)−1

{∇ log p(θt) +Ngn(θt) + η}
10: end for

The general method still has a free symmetric positive-definite matrix, B, which may be

chosen according to our convenience. Examine the limit ε → 0. In this case our method

becomes SGLD with preconditioning matrix B−1 and step size ε.

If the posterior is Gaussian, as is usually the case when N is large, the proposed SGFS

algorithm will sample correctly for arbitrary choice of B even when the step size ε is large.

However, for some models the conditions of the Bernstein-von Mises theorem are violated and

37

the posterior may not be well approximated by a Gaussian. This is the case for e.g. neural

networks and discriminative RBMs, where the identifiability condition of the parameters

do not hold. In this case, we have to choose a small ε to achieve accurate sampling (see

Section 4.5). These two extremes can be combined in a single “anytime” algorithm by

slowly annealing the stepsize. For a non-adaptive version of our algorithm (i.e. where we

would stop changing Î1) after a fixed number of iterations) this would according to the results

from Welling and Teh [2011] lead to a valid Markov chain for posterior sampling.

We recommend choosing B ∝ IN . With this choice, our method is highly reminiscent of

“Fisher scoring” which is why we named it “Stochastic Gradient Fisher Scoring” (SGFS).

In fact we can think of the proposed updates as a stochastic version of Fisher scoring based

on small mini-batches of gradients. But remarkably, the proposed algorithm is not only

much faster than Fisher scoring (because it only requires small mini-batches to compute an

update), it also samples approximately from the posterior distribution. So the knife cuts on

both sides: SGFS is a faster optimization algorithm but also doesn’t overfit due to the fact

that it switches to sampling when the right statistical scale of precision is reached.

4.4 Computational Efficiency

Clearly, the main computational benefit relative to standard MCMC algorithms comes from

the fact that we use stochastic mini-batches instead of the entire dataset at every iteration.

However, for a model with a large number of parameters another source of significant com-

putational effort is the computation of the D × D matrix γNÎ1,t + 4B
ε

and multiplying its

inverse with the mean gradient resulting in a total computational complexity of O(D3) per

iteration. In the case n < D the computational complexity per iteration can be brought

down to O(nD2) by using the Sherman-Morrison-Woodbury equation. A more numerically

stable alternative is to update Cholesky factors [Seeger, 2004].

38

In case even this is infeasible one can factor the Fisher information into k independent blocks

of variables of, say size d, in which case we have brought down the complexity to O(kd3).

The extreme case of this is when we treat every parameter as independent which boils down

to replacing the Fisher information by a diagonal matrix with the variances of the individual

parameters populating the diagonal. While for a large stepsize this algorithm will not sample

from the correct Gaussian approximation, it will still sample correctly from the posterior for

very small stepsize. In fact, it is expected to do this more efficiently than SGLD which does

not rescale its stepsizes at all. We have used the full covariance algorithm (SGFS-f) and the

diagonal covariance algorithm (SGFS-d) in the experiment section.

4.5 Experiments

Below we report experimental results where we test SGFS-f, SGFS-d, SGLD, SGD and HMC

on three different models: logistic regression, neural networks and discriminative RBMs.

The experiments share the following practice in common. Stepsizes for SGD and SGLD are

always selected through cross-validation for at least five settings. The minibatch size n is

set to either 300 or 500, but the results are not sensitive to the precise value as long as it

is large enough for the central limit theorem to hold (typically, n > 100 is recommended).

Also, we used κt = 1
t
.

4.5.1 Logistic Regression

A logistic regression model (LR) was trained on the MNIST dataset for binary classification

of two digits 7 and 9 using a total of 10,000 data-items. We used a 50 dimensional random

projection of the original features and ran SGFS with λ = 1. We used B = γIN and tested

the algorithm for a number of α values (where α = 2√
ε
). We ran the algorithm for 3,000 burn-

39

0.5 0.6 0.7 0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SGFS−f (BEST)
−0.4 −0.3 −0.2 −0.1

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

SGFS−f (WORST)

0.5 0.6 0.7 0.8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SGFS−d (BEST)
−0.4 −0.3 −0.2 −0.1

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

SGFS−d (WORST)

Figure 4.1: 2-d marginal posterior distributions for logistic regression. Grey colors corre-
spond to samples from SGFS. Red solid and blue dotted ellipses represent iso-probability
contours at two standard deviations away from the mean computed from HMC and SGFS,
respectively. Top plots are the results for SGFS-f and bottom plots represent SGFS-d. Plots
on the left represent the 2-d marginals with the smallest difference between HMC and SGFS
while the plots on the right represent the 2-d marginals with the largest difference. Value
for α is 0 meaning that no additional noise was added.

in iterations and then collected 100,000 samples. We compare the algorithm to Hamilton

Monte Carlo sampling [Neal, 1993] and to SGLD [Welling and Teh, 2011]. For HMC, the

“leapfrogstep” size was adapted during burn-in so that the acceptance ratio was around 0.8.

For SGLD we also used a range of fixed stepsizes.

In figure 4.1 we show 2-d marginal distributions of SGFS compared to the ground truth from

a long HMC run where we used α = 0 for SGFS. From this we conclude that even for the

largest possible stepsize the fit for SGFS-f is almost perfect while SGFS-d underestimates

the variance in this case (note however that for smaller stepsizes (larger α) SGFS-d becomes

very similar to SGLD and is thus guaranteed to sample correctly albeit with a low mixing

rate).

40

10
−2

10
−1

10
0

10
110

−3

10
−2

10
−1

R
el

at
iv

e
E

rr
or

 in
 M

ea
n

at
 1

00
 s

ec
.

Mixing Rate (1/ATUC)

SGLDHMC

SGFS−f

SGFS−d

10
−2

10
−1

10
0

10
110

−3

10
−2

10
−1

R
el

at
iv

e
E

rr
or

 in
 M

ea
n

at
 3

00
0

se
c.

Mixing Rate (1/ATUC)

HMC
SGLD

SGFS−f

SGFS−d

10
−2

10
0

10
−1

10
0

R
el

at
iv

e
E

rr
or

 in
 C

ov
 a

t 1
00

 s
ec

.

Mixing Rate (1/ATUC)

HMC
SGLD

SGFS−d

SGFS−f

10
−2

10
0

10
−1

10
0

R
el

at
iv

e
E

rr
or

 in
 C

ov
 a

t 3
00

0
se

c.

Mixing Rate (1/ATUC)

HMC

SGLD

SGFS−d

SGFS−f

Figure 4.2: Final error of logistic regression at time T versus mixing rate for the mean (top)
and covariance (bottom) estimates after 100 (left) and 3000 (right) seconds of computation.
See main text for detailed explanation.

Next, we studied the inverse autocorrelation time per unit computation (ATUC)1 averaged

over the 51 parameters and compared this with the relative error after a fixed amount of

computation time. The relative error is computed as follows: first compute the mean and

covariance of the parameter samples up to time t : θt = 1
t

∑t
t′=1 θt′ and Ct = 1

t

∑t
t′=1(θt′ −

θt)(θt′ − θt)T . We do the same for the long HMC run which we indicate with θ∞ and C∞.

Finally we compute

E1t =

∑
i |θti − θ∞i |∑

i |θ∞i |
, E2t =

∑
ij |Ct

ij − C∞ij |∑
ij |C∞ij |

. (4.14)

1ATUC = Autocorrelation Time × Time per Sample. Autocorrelation time is defined as 1 + 2
∑∞
s=1 ρ(s)

with ρ(s) the autocorrelation at lag s Neal [1993].

41

In Figure 4.2 we plot the “Error at time T” for two values of T (T=100, T=3000) as a function

of the inverse ATUC, which is a measure of the mixing rate. Top plots show the results for

the mean and bottom plots for the covariance. Each point denoted by a cross is obtained

from a different setting of parameters that control the mixing rate: α = [0, 1, 2, 3, 4, 5, 6] for

SGFS, stepsizes ε = [1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6] for SGLD, and number

of leapfrog steps s = [50, 40, 30, 20, 10, 1] for HMC. The circle is the result for the fastest

mixing chain.

For SGFS and SGLD, if the slope of the curve is negative (downward trend) then the cor-

responding algorithm was still in the phase of reducing error by reducing sampling variance

at time T . However, when the curve bends upwards and develops a positive slope the algo-

rithm has reached its error floor corresponding to the approximation bias. The situation is

different for HMC, (which has no bias) but where the bending occurs because the number of

leapfrog steps has become so large that it is turning back on itself. HMC is not faring well

because it is computationally expensive to run (which hurts both its mixing rate and error

at time T). We also observe that in the allowed running time SGFS-f has not reached its

error floor (both for the mean and the covariance). SGFS-d is reaching its error floor only

for the covariance (which is consistent with Figure 4.1 bottom) but still fares well in terms

of the mean. Finally, for SGLD we clearly see that in order to obtain a high mixing rate (low

ATUC) it has to pay the price of a large bias. These plots clearly illustrate the advantage

of SGFS over both HMC as well as SGLD.

4.5.2 SGFS on Neural Networks

We also applied our methods to a 3 layer neural network (NN) with logistic activation

functions. Below we describe classification results for two datasets.

42

104 10510-0.35

10-0.34

10-0.33

10-0.32

Iteration Number (Log)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (L
og

)

SGD-Avg (= 0)
SGD-Avg (= 0.1)
SGLD-Avg (= 0)
SGLD-Avg (= 0.1)
SGFS-d-Avg (= 0, = 6)
SGFS-d-Avg (= 0.1, = 6)

SGD SGFS-dSGLD
100 102 104

10-0.7

10-0.5

10-0.3

10-0.1

Iteration Number (Log)

C
la

ss
ifi

ca
tio

n
E

rr
or

 (L
og

)

SGFS-f-Avg (= 0.001, = 2)
SGFS-d-Avg (= 0.001, = 2)
SGLD-Avg (= 0.001, = [10-3,10-7])
SGD-Avg (= 0.001, = [10-3,10-7])

SGDSGLD

SGFS-f

SGFS-d

Figure 4.3: Test-set classification error of neural networks trained with SGFS-f, SGFS-d,
SGLD and SGD on the HHP dataset (left) and the MNIST dataset (right)

Heritage Health Prize (HHP)

The goal of this competition is to predict how many days between [0 − 15] a person will

stay in a hospital given his/her past three years of hospitalization records2. We used the

same features as the team market makers that won the first milestone prize. Integrating the

first and second year data, we obtained 147,473 data-items with 139 feature dimensions and

then used a randomly selected 70% for training and the remainder for testing. NNs with 30

hidden units were used because more hidden units did not noticeably improved the results.

Although we used α = 6 for SGFS-d, there was no significant difference for values in the

range 3 ≤ α ≤ 6. However, α < 3 didn’t work for this dataset due to the fact that many

features had values 0.

For SGD, we used stepsizes from a polynomial annealing schedule a(b + t)−δ. Because the

training error decreased slowly in a valid range δ = [0.5, 1], we used δ = 3, a = 1014,

b = 2.2 × 105 instead which was found optimal through cross-validation. (This setting

reduced the stepsize from 10−2 to 10−6 during 1e+7 iterations). For SGLD, a = 1, b = 104,

and δ = 1 reducing the step size from 10−4 to 10−6 was used. Figure 4.3 (left) shows the

2http://www.heritagehealthprize.com

43

classification errors averaged over the posterior samples for two regularizer values, λ = 0

and the best regularizer value λ found through cross-validation. First, we clearly see that

SGD severely overfits without a regularizer while SGLD and SGFS prevent it because they

average predictions over samples from a posterior mode. Furthermore, we see that when the

best regularizer is used, SGFS (marginally) outperforms both SGD and SGLD. The result

from SGFS-d submitted to the actual competition leaderboard gave us an error of 0.4635

which is comparable to 0.4632 obtained by the milestone winner with a fine-tuned Gradient

Boosting Machine.

Character Recognition

We also tested our methods on the MNIST dataset for 10 digit classification which has

60,000 training instances and 10,000 test instances. In order to test with SGFS-f, we used

inputs from 20 dimensional random projections and 30 hidden units so that the number

of parameters equals 940. Moreover, we increased the mini-batch size to 2,000 to reduce

the time required to reach a good approximation of the 940 × 940 covariance matrix. The

classification error averaged over the samples is shown in Figure 4.3 (right). Here, we used a

small regularization parameter of λ = 0.001 for all methods as overfitting was not an issue.

For SGFS, α = 2 is used while for both SGD and SGLD the stepsizes were annealed from

10−3 to 10−7 using a = 1, b = 1000, and γ = 1.

4.5.3 Discriminative Restricted Boltzmann Machine (DRBM)

We trained a DRBM [Larochelle and Bengio, 2008] on the KDD99 dataset which consists of

4,898,430 datapoints with 40 features, belonging to a total of 23 classes. We first tested the

classification performance by training the DRBM using SGLD, SGFS-f, SGFS-d and SGD.

For this experiment the dataset was divided into a 90% training set, 5% validation and 5%

44

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SGFS−f (BEST)
−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

SGFS−f (WORST)

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SGLD (BEST)
−2 −1.5 −1 −0.5 0 0.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

SGLD (WORST)

Figure 4.4: 2-d marginal posterior distributions of DRBM. Grey colors correspond to sam-
ples from SGFS/SGLD. Thick red solid lines correspond to iso-probability contours at two
standard deviations away from the mean computed from HMC samples. Thin red solid lines
correspond to HMC results based on subsets of the samples. The thick blue dashed lines
correspond to SGFS-f (top) and SGLD (bottom) runs. Plots on the left represent the 2-d
marginals with the smallest difference between HMC and SGFS/SGLD while the plots on
the right represent the 2-d marginals with the largest difference.

test set. We used 41 hidden units giving us a total of 2647 parameters in the model. We

used λ = 10 and B = γIN . We tried 6 different (α, ε) combinations for SGFS-f and SGFS-d

and tried 18 annealing schedules for SGD and SGLD, and used the validation set to pick the

best one. The best results were obtained with an α value of 8.95 for SGFS-f and SGFS-d,

and [a = 0.1, b = 100000, δ = 0.9] for SGD and SGLD. We ran all algorithms for 100,000

iterations. Although we experimented with different burn-in iterations, the algorithms were

insensitive to this choice. The final error rates are given in table 4.1 from which we conclude

that the samplers based on stochastic gradients can act as effective optimizers whereas HMC

45

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10 5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

. E
rr.

 in
 M

ea
n

at
 6

79
0

se
c.

Mixing Rate (1/ATUC)

SGFS f

SGLD

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10 5

1

2

3

4

5

6

7

R
el

. E
rr.

 in
 C

ov
 a

t 6
79

0
se

c.

Mixing Rate (1/ATUC)

SGFS f

SGLD

Figure 4.5: Final error for DRBM at time T versus mixing rate for the mean (left) and
covariance (right) estimates after 6790 seconds of computation on a subset of KDD99.

SGD SGLD SGFS-d SGFS-f
8.010−4 6.610−4 4.210−4 4.410−4

Table 4.1: Final test error rate on the KDD99 dataset.

on the full dataset becomes completely impractical because it has to compute 11.7 billion

gradients per iteration which takes around 7.5 minutes per sample (4408587 datapoints ×

2647 parameters).

To compare the quality of the samples drawn after burn-in, we created a 10% subset of

the original dataset. This time we picked only the 6 most populous classes. We tested all

algorithms with 41, 10 and 5 hidden units, but since the posterior is highly multi-modal,

the different algorithms ended up sampling from different modes. In an attempt to get

a meaningful comparison, we therefore reduced the number of hidden units to 2. This

improved the situation to some degree, but did not entirely get rid of the multi-modal and

non-Gaussian structure of the posterior. We compare results of SGFS-f/SGLD with 30

independent HMC runs, each providing 4000 samples for a total of 120,000 samples. Since

HMC was very slow (even on the reduced set) we initialized at a mode and used the Fisher

information at the mode as a pre-conditioner. We used 1 leapfrog step and tuned the step-

size to get an acceptance rate of 0.8. We ran SGFS-f with α = [2, 3, 4, 5, 10] and SGLD with

46

fixed step sizes of [5e-4, 1e-4, 5e-5, 1e-5, 5e-6]. Both algorithms were initialized at the same

mode and ran for 1 million iterations. We looked at the marginal distributions of the top

25 pairs of variables which had the highest correlation coefficient. In Figure 4.4 (top-left

and bottom-left) we show a set of parameters where both SGFS-f and SGLD obtained an

accurate estimate of the marginal posterior. In Figure 4.4 (top-right and bottom-right) we

show an example where SGLD failed. The thin solid red lines correspond to HMC runs

computed from various subsets of the samples, whereas the thick solid red line is computed

using the all samples from all HMC runs. We have shown marginal posterior estimates of

the SGFS-f/SGLD algorithms with a thick dashed blue ellipse. After inspection, it seemed

that the posterior structure was highly non-Gaussian with regions where the probability very

sharply decreased. SGLD regularly stepped into these regions and then got catapulted away

due to the large gradients there. SGFS-f presumably avoided those regions by adapting to

the local covariance structure. We found that in this region even the HMC runs are not

consistent with one another. Note that the SGFS-f contours seem to agree with the HMC

contours as much as the HMC contours agree with the results of its own subsets, in both

the easy and the hard case.

Finally, we plot the error after 6790 seconds of computation versus the mixing rate. Figure

4.5-left shows the results for the mean and the right for the covariance (for an explanation

of the various quantities see discussion in Section 4.5.1). We note again that SGLD incurs a

significantly larger approximation bias at the same mixing rate as SGFS-f.

4.6 Discussion

In this chapter, we have introduced a novel method, “Stochastic Gradient Fisher Scoring”

(SGFS) for approximate Bayesian learning. The main idea is to use stochastic gradients in

the Langevin equation and leverage the central limit theorem to estimate the noise induced

47

by the subsampling process. This subsampling noise is combined with artificially injected

noise and multiplied by the estimated inverse Fisher information matrix to approximately

sample from the posterior. This leads to the following desirable properties.

• Unlike regular MCMC methods, SGFS is fast because it uses only stochastic gradients

based on small mini-batches to draw samples.

• Unlike stochastic gradient descent, SGFS samples (approximately) from the posterior

distribution.

• Unlike SGLD, SGFS samples from a Gaussian approximation of the posterior distri-

bution (that is correct for N →∞) for large step-sizes.

• By annealing the stepsize, SGFS becomes an anytime method capturing more non-

Gaussian structure with smaller step-sizes but at the cost of slower mixing.

• During its burn-in phase, SGFS is an efficient optimizer because like Fisher scoring

and Gauss-Newton methods, it is based on the natural gradient.

For an appropriate annealing schedule, SGFS thus goes through three distinct phases: 1)

during burn-in we use a large stepsize and the method is similar to a stochastic gradient

version of Fisher scoring, 2) when the stepsize is still large, but when we have reached the

mode of the distribution, SGFS samples from the asymptotic Gaussian approximation of the

posterior, and 3) when the stepsize is further annealed, SGFS will behave like SGLD with a

pre-conditioning matrix and generate increasingly accurate samples from the true posterior.

48

Chapter 5

Distributed Stochastic Gradient

Langevin Dynamics

In the previous two chapters, we introduced stochastic gradient MCMC methods which

make it possible to complete each iteration only using a random mini-batch of the dataset.

However, considering that many large-scale datasets cannot be stored in a single machine,

it is an important direction to develop an efficient “distributed” stochastic gradient MCMC

method.

This chapter introduces the first fully distributed MCMC algorithm based on stochastic

gradients. We argue that stochastic gradient MCMC algorithms are particularly suited for

distributed inference because individual chains can draw minibatches from their local pool

of data for a flexible amount of time before jumping to or syncing with other chains. This

greatly reduces communication overhead and allows adaptive load balancing.

In this work, under the guidance of Max Welling, I developed the algorithm and performed

the experiments . Babak Shahbaba provided important comments and discussions and helped

writing.

49

5.1 Motivation

The most straightforward, embarrassingly parallel implementation would be to copy the full

dataset to each worker, run separate Markov chains and use their results as independent

samples (see e.g. Wilkinson [2006], Laskey and Myers [2003], Ahn et al. [2013]). However,

the size of modern day datasets can be so large that a single machine cannot store the full

dataset. In this case, one can still parallelize most MCMC algorithms by performing data-

specific computations (e.g. the gradient of the log-probability for one data-case) locally on

each relevant worker and combining these computations in a master server. These methods

however lead to very high communication costs.

We argue that MCMC algorithms based on stochastic mini-batches have a key property

that make them ideally suited for parallelization, namely that each Markov chain can in-

dependently generate samples for a variable amount of time, which can later be combined.

The reason is that each chain can draw mini-batches from its local pool of data in order to

generate samples. Chains must jump to other machines (synchronously or asynchronously)

in order to generate unbiased estimates of the posterior in the limit, but the time spend on

each worker is flexible provided that the chain’s hyper-parameters are properly adjusted to

remove potential bias. This flexibility leads to less communication (because chains can run

longer on individual workers) and entirely removes the problem that fast workers are blocked

by slow workers because they depend on their results in order to proceed.

5.2 Preliminaries and Notations

Let X = {x1, . . . , xN} be a dataset of N i.i.d. data points assumed to be sampled from

a parameterized distribution p(x|θ) where θ ∈ Rd has a prior distribution p(θ). We are

interested in collecting samples from the posterior distribution p(θ|X) ∝ p(X|θ)p(θ). As

50

discussed above, we assume that the dataset X is too large to reside in a single machine.

Therefore, it is partitioned into S subsets, called shards : X1, . . . , XS such that X = ∪sXs and

N =
∑

sNs. We assign shardXs = {xs1, . . . , xsNs} to worker s, where s = 1, . . . , S. We refer to

the posterior distribution based on a specific shard as local posterior : p(θ|Xs) ∝ p(Xs|θ)p(θ).

The score function or the gradient of the log likelihood given a data point x is denoted by

g(θ;x) = ∇θ log p(θ;x). We also denote a mini-batch of n data points by Xn when sampled

from X and by Xn
s when sampled from shard Xs. Additional time index t is used sometimes

to distinguish mini-batches sampled over iterations: Xn
s,t. The sum and mean of scores over

all elements of a set, X, are denoted by G(θ;X) =
∑

x∈X g(θ;x) and ḡ(θ;X) = 1
|X|G(θ;X)

respectively. We now review two approaches to scale up MCMC algorithms; one by using

mini-batches and the other by using distributed computational resources.

The stochastic gradient Langevin dynamics (SGLD) proposed by Welling and Teh [2011]

is the first sequential mini-batch-based MCMC algorithm. In SGLD, the parameters are

updated as follows:

θt+1 ← θt +
εt
2
{∇ log p(θt) +Nḡ(θt;X

n
t)}+ νt. (5.1)

We can generalize the SGLD update rule in Eqn. (5.1) by replacing the mean score ḡ(θt;X
n
t)

to a general form of score estimator f(θt, Z;X), where Z is a set of auxiliary random variables

associated with the estimator. According to Welling and Teh [2011], an estimator f(θt, Z;X)

is guaranteed to converge to the correct posterior if (i) f(θt, Z;X) is an unbiased estimator

of ḡ(θt;X) = 1
N

∑
x∈X g(θt;x) (assuming the variance of f is finite) and (ii) the step size is

annealed to zero by a schedule satisfying
∑∞

t=1 εt =∞ and
∑∞

t=1 ε
2
t <∞.

51

Definition 1. We define an estimator f(θ, Z;X) as a valid SGLD estimator if it is an

unbiased estimator of ḡ(θ;X), i.e., EZ [f(θ, Z;X)] = ḡ(θ;X), where EZ denotes expectation

w.r.t. the distribution p(Z;X), and it has finite variance VZ [f(θ, Z;X)] <∞.

5.3 SGLD on Partitioned Datasets

We begin the exposition of our algorithm with the following question: “Is an SGLD algorithm

that samples mini-batches from randomly chosen local shards valid?” The number of possible

combinations of mini-batches that can be generated by this procedure is significantly smaller

set than that of the standard SGLD. The answer will clearly depend on quantities like the

shard sizes and shard selection probabilities. We now introduce an estimator ḡd in the

proposition below as an answer to the above question (the proof is provided in the Appendix).

Proposition 5.3.1. For each shard s = 1, . . . , S, given the shard size, Ns, and the nor-

malized shard selection frequency, qs, such that Ns > 0,
∑S

s=1Ns = N , qs ∈ (0, 1), and∑S
s=1 qs = 1, the following estimator is a valid SGLD estimator,

ḡd(θ;X
n
s)

def
=

Ns

Nqs
ḡ(θ;Xn

s) (5.2)

where shard s is sampled by a scheduler h(Q) with frequencies Q = {q1, . . . , qS}.

For example, we can (1) choose a shard by sampling s ∼ h(Q) = Category (q1, . . . , qS), (2)

sample a mini-batch Xn
s from the selected shard, (3) compute mean score ḡ(θ;Xn

s) using

that mini-batch, and then (4) multiply the mean score by Ns
Nqs

to correct the bias. Then, the

resulting SGLD update rule becomes

θt+1 ← θt +
εt
2

{
∇ log p(θt) +

Nst

qst
ḡ(θt;X

n
st)

}
+ νt. (5.3)

52

We can interpret this as a correction to the step sizes for the ḡ(θt;X
n
st) term. That is, the

algorithm takes larger steps for shards that are relatively larger in size and/or used less

frequently than others. This implies that every data-case contributes equally to the mixing

of the chain. Note that Q represent free parameters that we can choose depending on the

system properties.

5.4 Distributed Stochastic Gradient Langevin Dynam-

ics

5.4.1 Traveling Worker Parallel Chains

Now assume that the shards are distributed between the workers, so from now on selecting

shard s is equivalent to choosing worker s. We note that running the above algorithm

occupies only a single worker at a time. Therefore, assuming single-core workers, it is

possible to run C (≤ S) independent and valid SGLD chains in parallel, i.e., one chain per

worker.

This approach, however, has some shortcomings. First, the communication cycle is still short

O(n) because each chain is required to jump to a new worker at every iteration. Second, it

can suffer from the block-by-the-slowest problem if its next scheduled worker is still occupied

by another chain due to workers’ imbalanced response delays. The response delay, denoted

by ds, is defined as the elapsed time that worker s spends to process a O(n) workload. In

the following sections, we present our method to address these issues.

53

5.4.2 Distributed Trajectory Sampling

To deal with the “short-communication-cycle” problem, we propose to use trajectory sam-

pling : instead of jumping to another worker at every iteration, each chain c takes τ consec-

utive updates in each visit to a worker. Then, after τ updates, only the last (τth) state is

passed to the next worker of the chain. Trajectory sampling reduces communication over-

head by increasing the communication cycle from O(n) to O(τn). Furthermore, instead

of transferring all samples collected over a trajectory to the master, we can store them in

a distributed way by caching each trajectory at its corresponding worker. This keeps the

packet size at O(1) regardless of the trajectory length, and mitigates the memory problem

caused by storing many high-dimension samples at a single machine.

In trajectory sampling for parallel chains, we employ a scheduler hc(Q) for each chain c

to choose the next worker from which the next trajectory is sampled. Note here that the

scheduler is now called with an interval τ . Because there are a total of C such schedulers

(one per chain), the schedulers should avoid two situations in order to be efficient: (1)

collision (i.e., multiple chains visit a worker at the same time), and (2) jump-in-place (i.e.,

jumping to the current worker) can negatively affect mixing across shards. One way to avoid

these issues is to set Q uniform, and simply use a random permutation (or, cyclic rotation)

to assign chains to workers. That is, we can sample the chain-to-worker assignments by

(s1, . . . , sC) ∼ (h1(Q), . . . , hC(Q)) = randperm(S). Here, sc denotes a worker that chain c

is scheduled to visit; we assume C = S for simplicity.

Similar to the effect of step sizes in standard SGLD, trajectory lengths can also be used to

control the level of approximation by trading off computation time with asymptotic accuracy.

As both the trajectory length and the annealed step sizes {εt} can affect the equilibrium

distribution of the chain, we consider first that ε is fixed. Then, with a long trajectory, we

can reduce the communication overhead at the cost of some loss in asymptotic accuracy.

54

In fact, it is not difficult to see that in this case our method samples from a mixture of

local posteriors, 1
S

∑S
s=1 pε(θ|Xs) at one end of the spectrum where long trajectory lengths

are used, and it approaches the true posterior at the other end of the spectrum with short

trajectory lengths (ε is small enough).

Note that this is indeed the desired behavior when dealing with massive datasets. That

is, as N → ∞, the local posteriors become close to the true posterior and thus the error

decreases by the central limit theorem (provided Xs is a uniform random partition of X):

ḡ(θ;Xs) ∼ N (E[g(θ;x)],Cov[g(θ;x)]/Ns). Therefore, as the dataset increases, we can in-

crease the trajectory length accordingly without a significant loss in asymptotic accuracy.

The following Corollary 5.4.1 states that for any finite τ , trajectory sampling is a valid SGLD

(assuming the step sizes decrease to zero over time).

Corollary 5.4.1. A trajectory sampler with a finite τ ≥ 1, obtained by redefining the worker

(shard) selection process h(Q) in Proposition 5.3.1 by the process h(Q, τ) below, is a valid

SGLD sampler. h(Q, τ) : for chain c at iteration t, choose the next worker sct+1 by

sct+1 =

h̃(Q), if t = kτ for k = 0, 1, 2, . . .

sct , otherwise,

(5.4)

where h̃(Q) is an arbitrary scheduler with selection probabilities Q.

5.4.3 Adaptive Load Balancing

Using trajectory sampling, we can mitigate the short-communication-cycle problem. More-

over, if response delays are balanced, we can set Q to be uniform and use a random per-

mutation scheduler to keep the block-by-the-slowest delay small. However, for imbalanced

response delays, using uniform Q would lead to long block-by-the-slowest delays (See, Fig.

55

m1!

m2!

m3!

m4!

(a) Without load balancing, τ = 3

m1!

m2!

m3!

m4!

(b) With load balancing, τ̄ = 25/4

m2!

m3!

m4!

m1!

(c) With load balancing, τ̄ = 75/16

Figure 5.1: Illustration of adaptive load balancing. Each row represents a worker and the
chains are represented by different colors. The box filled by diagonal lines are block-time,
and at the vertical dotted lines represent chains jumping to other workers. A sample is
collected at each arrow whose length represents the time required to collect the sample. In
the present example, four workers have different response delays, 3, 1, 2, and 4, respectively.
In (a) τ is set to a constant τ = 3 for all workers, and in (b) with τ̄ = 25

4
, the trajectory

plan becomes T = (4, 12, 6, 3), and in (c), T = (3, 9, 4.5, 2.25) with τ̄ = 75
16

.

5.1 (a)). In this section, we propose a solution to balance the workloads by adapting Q to

the worker response delays.

The basic idea is to make the faster workers work longer until the slower workers finish their

tasks so that the overall response times of the workers become as balanced as possible. For

instance, twice longer trajectories can be used for a worker that is twice as fast. More specif-

ically, we achieve this by (1) having uniform worker selection and (2) setting the trajectory

length τs of worker s to τs = qsτ̄S; here, qs is set to d−1
s /

∑S
z=1 d

−1
z (i.e., the relative speed

56

of worker s), and τ̄ is a user-defined mean trajectory length: E[τs] =
∑

s
1
S
qsτ̄S = τ̄ (the

expectation is w.r.t. the worker selection probability 1/S).

In other words, we select a worker uniformly and perform trajectory sampling of length τs,

which is proportional to the relative speed of the worker, qs. (If τs is not an integer, we

can either adjust τ̄ to make it integer or take simply the closest integer.) Note that using

unequal trajectory lengths across the workers remains a valid SGLD because the step sizes

are properly corrected by Eqn. (5.2) where qs ∝ τs.

This is illustrated in Figure 5.1 and stated in Corollary 5.4.2.

Corollary 5.4.2. Given τs, where 1 ≤ τs < ∞ for s = 1, . . . , S, the adaptive trajectory

sampler, obtained by redefining the worker (shard) selection process h(Q) in Proposition

5.3.1 by the process h(Q, {τs}) below, is a valid SGLD sampler. h(Q, {τs}) : for chain c at

iteration t, choose the next worker sct+1 by

sct+1 =

h̃(1/S), if t = kτsct for k = 0, 1, 2, . . .

sct , otherwise,

(5.5)

where h̃(1/S) is a scheduler with uniform selection probabilities.

Our method can deal with temporal imbalances as well. To this end, the master needs

to monitor the changes in response delays; when a substantial change is detected, a new

trajectory plan can replace the old one. Note that although this online adaptation affects

the Markov property, it can still converge to correct target distribution assuming that the

adaptation satisfies the Corollary 5.4.2 and the response delays converge fast enough. Refer

to Andrieu and Thoms [2008] for the details of the “fast enough” condition. Pseudo code

for the proposed D-SGLD method is presented in Algorithm 5.

57

Algorithm 5 D-SGLD Pseudo Code

1: function Master(S,C, τ̄)
2: while sampling do
3: Monitor response delays {ds}
4: if {ds} are changed enough then
5: Adapt τs ← τ̄Sd−1

s /
∑S

z=1 d
−1
z , ∀s

6: end if
7: Assign workers (s1, . . . , sC) ∼ randperm(S)
8: for each chain c parallel do
9: θc ← sample traj(sc, c, θc, τs) (line 13)

10: end for
11: end while
12: end function
13: function sample traj(c, θ, τs)
14: Initialize θ1 ← θ
15: for t = 1 : τs do
16: Sample a mini-batch Xn

s and noise ν ∼ N (0, ε)
17: Obtain θt+1 by Eqn. (5.3) (set qs = τs

τ̄S
)

18: end for
19: Set trajectory, Tc ← (θ1, . . . , θτs−1)
20: Store (append) trajectory, Θc

s ← [Θc
s, Tc]

21: Send the last state θτs to the master
22: end function

5.4.4 Variance Reduction by Chain Coupling

Here, we introduce one approach that could reduce the variance of the gradient estimator in

Eqn (5.2) by having some interactions among the chains. The basic idea is to “tie” a group

of chains by averaging their corresponding samples. More specifically, consider R ≤ S chains

forming a group and staying at a state θt at time t, i.e., θrt = θt for r = 1, . . . , R. After

an update using the standard SGLD update rule in Eqn. (5.1), we have R different states

θ1
t+1, . . . , θ

R
t+1. By averaging the new states, we have θt+1 = 1

R

∑R
r=1 θ

r
t+1, which is

θt +
εt
2

∇ log p(θt) +
N

nR

∑
x∈∪rXn

t,r

g(θt;x)

+ ν̄t (5.6)

58

Here we used 1
R

∑R
r=1∇ log p(θrt) = ∇ log p(θt) and 1

R

∑R
r=1 θ

r
t = θt noting that θrt = θt for all

r. Note that although the averaged noise ν̄t = 1
R

∑R
r=1 ν

r
t has smaller variance N (0, εt

R
) than

the standard SGLD, we can recover a valid SGLD with additional noise1 ηt ∼ N (0, R−1
R
εt)

so that ν̄t + ηt ∼ N (0, εt). By the central limit theorem, the variance of the estimator of

ḡ(θt;X) reduces from Cov[g(θ;x)]
n

to Cov[g(θ;x)]
Rn

.

Although this approach leads to a valid SGLD with reduced variance in the gradient esti-

mation, unfortunately it is difficult to perform the trajectory sampling in this case since it

requires communication among chains at each update. One way to bypass this issue is to

employ the averaging strategy only at the end of each trajectory during the burn-in period.

Alternatively, we can also gradually reduce the number of chains being coupled. Note that

although coupling chains imposes algorithmic dependency, it is weaker than other algorithms

(e.g., AD-LDA) that require synchronizations for all workers since (i) the number of depen-

dent chains, R, in our method is relatively small (R < S), and (ii) the response delays are

already balanced by the adaptive trajectory sampling.

5.5 Experiments

5.5.1 Simple Demonstration

We illustrate our proposed method based on sampling from a multivariate normal posterior

distribution obtained by assuming a normal prior N (µx;µ0,Σ0) on the d-dimension mean

µx of a normal distribution N (x;µx,Σx) from which we have observed N samples. Because

this is a conjugate prior, the posterior distribution is also a normal distribution.

1The correction cannot be used for the LDA experiments because for SGRLD the noise term depends on
current state θrt .

59

−0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) Without correction

−0.1 0 0.1 0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b) With correction

(c) τ = 10,000 (d) τ = 200

Figure 5.2: Bias correction and trajectory length effects.

To examine the bias correction effect, we allocated a total of 20,000 data points to a cluster

of 20 workers. Furthermore, we made the shard sizes {Ns} highly imbalanced by setting

Ns = 500 for 10 workers and setting Ns = 1500 for the remaining 10 workers. Then, to

impose a higher level of imbalance, we also used the small shards 7 times more often than

the large shards by setting the trajectory lengths for the small shards to 70 and those for

the large shards to 10. We set the step size ε to 10−7 and the mini-batch size to n = 300.

In Fig. 5.2 (a) and (b), the black dotted circles represent the 2-d marginal covariance centered

at the mean of the 20 local posteriors. Note that these are rescaled such that small circles

represent the local posteriors based on small shards, whereas the large circles represent the

local posteriors based on large shards. Also, the red circle represents the true posterior, and

the dotted blue circle represents the empirical distribution based on our samples. As we can

60

see, our algorithm corrects the bias. We have evaluated our method for various dimensions

(up to d = 100) and found similar results.

The effect of trajectory lengths is also tested in Fig. 5.2 (c) and (d) using two different

trajectory lengths, τ = 10, 000 and τ = 200, for a cluster of 4 workers. Here, the shard size

was set to 2,000 for each worker, the trajectory lengths were kept the same for all workers,

and the step size, ε, was set to 2 × 10−6. As described in section 5.4.2, we can see that

D-SGLD samples from a mixture of the local posteriors with long trajectory lengths and

becomes close to the standard SGLD posterior as the length decreases.

5.6 Discussion

We have introduced a novel algorithm, “distributed stochastic gradient Langevin dynamics

(D-SGLD)”. Using D-SGLD, the advantages of the sequential mini-batch-based MCMC are

extended to distributed computing environments. We showed that (i) by adding a proper

correction term, our algorithm prevents the local-subset-bias while (ii) reducing communi-

cation overhead through trajectory sampling and adaptive load balancing. Furthermore,

(iii) it improved convergence speed using a variance reduction strategy. Finally, in several

experiments for LDA, we have shown at least an order of magnitude faster convergence

speed of D-SGLD over the state of the art both in sequential mini-batch-based MCMC and

distributed MCMC. We believe that D-SGLD is just one example of a much larger class

of powerful MCMC algorithms that combine sampling updates based on mini-batches with

distributed computation.

61

Chapter 6

Large-Scale Distributed Inference for

Latent Dirichlet Allocation

In this chapter, we apply D-SGLD to the distributed inference of latent Dirichlet allocation

(LDA). The LDA model used most frequently for topic modeling has been one of the most

popular large-scale problems in machine learning and data mining.

The results in this chapter is based on Ahn et al. [2014]. Max Welling and I developed the

D-SGLD algorithm using SGRLD as the local sampler. I performed the experiments, and

Max Welling and Babak Shahbaba provided important comments and helped writing.

6.1 Motivation

The scale of the document corpus used in topic modeling easily exceeds millions of documents

and hundreds of millions of tokens. For example, considering that the New York Times alone

produces more than 1,500 articles and around 300 blog posts every day1 and 113-million blogs

1https://www.quora.com/How-many-articles-does-nytimes-com-publish-every-day

62

are posted on Tumblr every day2, a personalized news/blog recommendation system, that

needs to handle many of such content providers, would be required to analyze the topics

of millions of articles every day or week. Therefore, an efficient scalable and distributed

inference algorithm is indispensable component in successful application of topic modeling

to the industry problems of practical interest.

For single machine settings, a variant of SGLD, called stochastic gradient Riemannian

Langevin dynamics (SGRLD) [Patterson and Teh, 2013], has recently been proposed and

showed the-state-of-the-art performance outperforming the online variational inference [Hoff-

man et al., 2010b]. For distributed computing environment, a number of MCMC algorithms

have also been developed. In particular, in the approximate distributed LDA (AD-LDA) by

Newman et al. [2007], the computation cost per sample is reduced to O(N/S), where S the

number of workers, by allowing each worker to perform collapsed Gibbs sampling only on

its local shard. AD-LDA also corrects (approximately) the biases in the local copies of the

global states by performing global synchronization regularly.

AD-LDA, however, suffers from some shortcomings. First, due to the O(N/S) computation

complexity, it becomes slower as the dataset size N increases, unless additional workers

are provided. Second, due to the global synchronization, it suffers from the “block-by-the-

slowest” problem, meaning that some workers are blocked until the slowest worker finishes

its task. Lastly, running parallel chains usually adds a large overhead. The Yahoo-LDA

(Y-LDA) algorithm [Ahmed et al., 2012] has improved upon the AD-LDA in such a way to

make the updates asynchronous to resolve the block-by-the-slowest problem. However, it is

also shown that the asynchronous updates could severely deteriorate performance if it is not

tightly bounded [Ho et al., 2013].

In this chapter, we introduce a distributed inference algorithm for LDA using D-SGLD. In

particular, we extend D-SGLD to use the SGRLD as the local sampler. Our experiments

2http://expandedramblings.com/index.php/tumblr-user-stats-fact/

63

for LDA on Wikipedia and Pubmed datasets show that, relative to both the current fastest

sequential MCMC sampler [Patterson and Teh, 2013] and the fastest distributed MCMC

samplers [Newman et al., 2007, Ahmed et al., 2012, Smola and Narayanamurthy, 2010], D-

SGLD reduces the computation-time from 27 hours to half an hour in order to reach the

same level of perplexity.

6.2 LDA and SGRLD

In LDA, given D documents and a vocabulary of W words, the goal is to obtain K topic

distributions πk, and a mixing proportion ηd of the topics for each document d. A topic πk

is a W -dimension distribution over the vocabulary words drawn from a symmetric Dirichlet

distribution with hyper-parameter β. The mixing proportion ηd is modeled by a K-dimension

Dirichlet distribution with hyper-parameter α. Then, the generative process of a document

d, represented as bag-of-words, is modeled by drawing a latent topic assignment zdi for each

word wdi in document d and then drawing a word wdi from the topic distribution πzdi . Then

we have the posterior distribution:

p(η, π, z|W,α, β) ∝
D∏
d=1

p(ηd|α)
K∏
k=1

p(πk|β)
D∏
d=1

Nd∏
i=1

p(wdi|πzdi)p(zdi|ηd). (6.1)

SGRLD is a sampler for probability simplex φ with the following constraints

φ = {(φ1, . . . , φK) : φk ≥ 0,
∑
k

φk = 1} ∈ RK .

To satisfy this constraint, SGRLD for LDA uses a reparameterization technique, called

expand-mean parameterization: for each topic πk, introduces W -dimension unnormalized pa-

rameter θk from a Gamma distribution p(θk) ∝
∏W

w=1 θ
βw−1
kw exp−θkw and set πkw = θkw∑W

w′=1 θkw′
.

One advantage of the expand-mean parameterization, in addition to satisfying the proba-

64

bility simplex contition, is that by converting the sampling space to θkw we can obtain a

computationally efficient Riemannian metric G(θ) = diag(θ11, . . . , θ1W , . . . , θK1, . . . , θKW).

Using this reparameterization and the Riemannian Langevin dynamics [Girolami and Calder-

head, 2010], Patterson and Teh [2013] derived the following SGRLD update equation

θ∗kw ←

∣∣∣∣∣θkw +
ε

2

(
β − θkw +

|D|
|Mt|

∑
d∈Mt

Ezd|wd,θ,α[ndkw − πkwηkd·] + (θkw)
1
2 ξkw

)∣∣∣∣∣ (6.2)

where ξkw ∼ N (0, ε) and Mt is the size of the mini-batch documents. We use ndkw to

denote the appearance count of word w assigned to topic k in document d. To compute

the expectation in the above equation, we use collapsed Gibbs sampling with the following

conditional distribution on the latent topic assignment,

p(zdi = k|wd, θ, α) =

(
α + n

\i
dk·

)
θkwdi∑K

k′=1

(
α + n

\i
dk′·

)
θk′wdi

. (6.3)

Here, we use n
\i
dk· to denote the appearance count of words assigned to topic k in document

d but excluding word i that we are currently updating. Refer to Patterson and Teh [2013]

for the detail derivation of the update equation.

6.3 D-SGLD for LDA

Using SGRLD as the local sampler of D-SGLD is straightforward. By applying the D-SGLD

estimator in Eqn. (5.3) in Chapter 5, we obtain the following D-SGLD update equation for

LDA

θ∗kw ←

∣∣∣∣∣∣θkw +
ε

2

β − θkw +
|Dst |
qst |Mst |

∑
d∈Mst

Ezd|wd,θ,α[ndkw − πkwηkd·] + (θkw)
1
2 ξkw

∣∣∣∣∣∣ . (6.4)

65

Here, Mst is a mini-batch sampled from a shard st and Dst is the total size of the local shard

st. We use qst to denote the shard selection frequency.

6.4 Experiments

In the experiments below, we use the following datasets: (i) Wikipedia corpus, which contains

4.6M articles of approximately 811M tokens in total. We used the same vocabulary of 7702

words as used by Hoffman et al. [2010a]. (ii) PubMed Abstract corpus contains 8.2M articles

of approximately 730M tokens in total. After removing stopwords and low occurrence (less

than 300) words, we obtained a vocabulary of 39,987 words. For our Python implementation,

each of the datasets has 47GB memory footprint.

The algorithms we compare to the D-SGLD are as follows:

1. AD-LDA: In AD-LDA, to obtain a single sample, each worker s performs collapsed

Gibbs iterations only on the full local shard (and is thus approximate), and then

synchronizes the local topic assignments nskw of shard s at the master to obtain the

global state nkw based on the update rule nkw ← nkw +
∑S

s=1(nkw − nskw). Then,

the local states are globally updated by the new global state, nskw ← nkw for all s.

It is shown that in practice AD-LDA shows comparable perplexities to the standard

collapsed Gibbs sampling in a single machine but at much fast speed.

2. Async-LDA (Y-LDA): Unlike AD-LDA, Y-LDA [Ahmed et al., 2012, Smola and Narayana-

murthy, 2010] performs asynchronous updates for the global state by executing the

following update rule, nk,w ← nk,w +
∑S

s=1(ñsk,w − nsk,w). Here, ñsk,w is a copy of the

old local state at the time of previous synchronization. Because the original Y-LDA

proposed in Ahmed et al. [2012], Smola and Narayanamurthy [2010] is a specific imple-

mentation optimized along with many other dimensions, we implemented an algorithm

66

called Async-LDA which replaces the update of AD-LDA with the asynchronous up-

date of Y-LDA. Async-LDA was used to compare to D-SGLD in terms of the load

balancing ability (i.e. when each worker has different processing speed).

3. SGRLD : The above two algorithms perform distributed inference on many workers

but are not mini-batch based algorithm. Because there has been no mini-batch based

distributed algorithm, we also use SGRLD as the state-of-the-art mini-batch method

running on a single machine. Following Patterson and Teh [2013], we set the mini-

batch size to 50 documents, and to compute the expectation in the computation of

the gradient, we ran 100 Gibbs iterations for each document in the mini-batch. The

step-sizes were annealed by a schedule εt = a(1 + t/b)−c. As we fixed b = 1000

and c = 0.6, the entire schedule was set by a which we choose by running parallel

chains with different a’s and then choosing the best. Note that in SGRLD there is no

communication overhead.

4. D-SGLD : We used cyclic rotation as the chain-to-worker scheduler and set the tra-

jectory length τ = 10 for all workers while we kept other parameters the same as for

SGRLD by default.

In particular, to see the effect of the variance reduction (i.e., sample averaging), we imple-

mented three different versions of D-SGLD, (i) Complete Coupling (D-CC), (ii) Complete

Independent (D-CI), and (iii) Hybrid (D-Hybrid). D-CC couples all chains; whereas, D-

CI runs independent chains without any interaction among them. D-Hybrid partitions the

chains into groups and the averaging is performed only for the chains in the same group.

When the variance reduction is used, it was performed at the end of each trajectory; we did

not inject any additional noise for correction.

Additionally, we used the following settings for all algorithms. The predictive perplexities

were computed on 1000 separate holdout set, with a 90/10 (training/test) split, and LDA’s

67

10
1

10
2

10
3

10
4

10
5

800

1000

1200

1400

1600

1800

2000

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

D−Hybrid
D−CC
D−CI
SGRLD
AD−LDA

10
1

10
2

10
3

10
4

10
5

1500

2000

2500

3000

3500

4000

4500

5000

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

D−Hybrid
D−CC
D−CI
SGRLD
AD−LDA

Figure 6.1: Perplexity. Left: Wikipedia, Right: Pubmed.

D-SGLD SGRLD AD-LDA

Wikipedia 10 min. 2.6 hr. 27.7 hr.
Pubmed 33 min. 16.7 hr. 27.7 hr.

Table 6.1: Required time to reach the perplexity that AD-LDA obtains after running 105

seconds (27.7 hours).

hyper-parameters were set to α = 0.01 and β = 0.0001 following Patterson and Teh [2013].

The number of topics K was set to 100. Parallelism within a worker is not considered,

although D-SGLD can be easily parallelized within a worker.

6.4.1 Perplexity

We first compare the above algorithms in terms of the convergence in perplexity over wall-

clock time on 20 homogeneous workers dedicated to the given task only. For D-Hybrid,

we set the number of groups, G, to 5 and 3 for Wikipedia and Pubmed respectively. For

Wikipedia, we set the group size to R = 4. For Pubmed, we set the sizes of the three groups

to 7,7, and 6. To examine the effect of the variance reduction strategy, it was continued until

the end of the experiment, as opposed to stopping at some point. The step size parameter

a was set to 0.0001 for Wikipedia and to 0.0005 for Pubmed.

68

10
1

10
2

10
3

10
4

850

1050

1250

1450

1650

1850

2050

Iteration (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

R=1 (G=1)
R=2 (G=1)
R=4 (G=1)
R=10 (G=1)
R=20 (G=1)

10
1

10
2

10
3

10
4

1500

2000

2500

3000

3500

4000

4500

Iteration (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

R=1 (G=1)
R=2 (G=1)
R=4 (G=1)
R=10 (G=1)
R=20 (G=1)

10
1

10
2

10
3

10
4

850

950

1050

1150

1250

1350

1450

1550

Iteration (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

G=1 (R=4)
G=3 (R=4)
G=5 (R=4)
G=10 (R=4)

10
1

10
2

10
3

10
4

1500

1800

2100

2400

2700

3000

3300

3600
3900

Iteration (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

G=1 (R=4)
G=3 (R=4)
G=5 (R=4)
G=10 (R=4)

Figure 6.2: Group size and number of groups. Top: group size, Bottom: number of groups,
Left: Wikipedia, Right: Pubmed.

In Fig. 6.1 (a) and (b), we first see that all the variants of D-SGLD significantly outperform

both AD-LDA and SGRLD. Note that AD-LDA ran in an ideal setting where each worker has

equal workloads (in terms of shard size) resulting in negligible block-by-the-slowest delays.

As shown in Table 6.1, D-SGLD required substantially shorter times than AD-LDA and

SGRLD to reach the same perplexity level that AD-LDA achieves after running 105 seconds

(27.7 hours) indicated by the black horizontal dotted line. Throughout the experiments,

Async-LDA always performed worse than AD-LDA given balanced workloads.

For the three different versions of D-SGLD, we see that D-CC and D-Hybrid (which use

the sample averaging) converge faster than D-CI (which uses independent chains). However,

when we couple too many chains as shown in D-CC, it could lead to some lose of accuracy

(possibly, due to the bias by the coupling). Hence, in the following experiments, we only use

69

hybrid D-SGLD; a proper group configuration is chosen by cross-validation. Fig. 6.2 shows

other effects of the group configuration by increasing group size (R) and number of groups

(G).

6.4.2 Dataset size

In D-SGLD the computation cost per sample O(n) is independent of N . AD-LDA, on

the other hand, becomes slower as N increases. To see the effect of N , we examined the

algorithms on random subsets of the full dataset with different sizes, 100K, 1000K, and full,

using 20 homogeneous workers. For N=[100K, 1000K, full], the initial step sizes a were

set to respectively a=[0.005, 0.0005, 0.0001] for Wikipedia and a=[0.01, 0.005, 0.0005] for

Pubmed.

As shown in Fig. 6.3, for Wikipedia, D-SGLD showed similar convergence in perplexity (they

increase slightly as the size of datasets decreases) while providing better results than AD-

LDA in all settings. However, for Pubmed, which has a larger vocabulary and is expected to

have a larger number of topics, D-SGLD was not better than AD-LDA for the small (100K)

dataset while still had better performance for larger datasets. In fact, SGRLD seemed to

work less efficiently (and so does D-SGLD) for rather small datasets as shown by Patterson

and Teh [2013] based on the NIPS corpus. Nevertheless, we found that (results not shown

here) D-SGLD outperforms a single SGRLD based on a 100K dataset.

6.4.3 Number of workers

We also varied the number of workers while fixing the dataset size to the full. In Fig. 6.4,

we show the results for three cluster sizes, S = [20, 40, 60]. As expected, AD-LDA improves

linearly by increasing the number of workers (i.e., by reducing local shard sizes). For D-

70

10
1

10
2

10
3

10
4

10
5

800

1000

1200

1400

1600

1800

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

D−SGLD(100K)
D−SGLD(1M)
D−SGLD(4.6M)
AD−LDA(100K)
AD−LDA(1M)
AD−LDA(4.6M)

10
1

10
2

10
3

10
4

10
5

1400

2000

2600

3200

3800

4400

5000
5600

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

D−SGLD(100K)
D−SGLD(1M)
D−SGLD(8.2M)
AD−LDA(100K)
AD−LDA(1M)
AD−LDA(8.2M)

Figure 6.3: Dataset size. Left: Wikipedia, Right: Pubmed

10
1

10
2

10
3

10
4

10
5

800

1000

1200

1400

1600

1800

2000

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

D−SGLD(S=20)
D−SGLD(S=40)
D−SGLD(S=60)
AD−LDA(S=20)
AD−LDA(S=40)
AD−LDA(S=60)
(AD−LDA(S=2000))

10
1

10
2

10
3

10
4

10
5

1500

2000

2500

3000

3500

4000

4500
5000

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

D−SGLD(S=20)
D−SGLD(S=40)
D−SGLD(S=60)
AD−LDA(S=20)
AD−LDA(S=40)
AD−LDA(S=60)
(AD−LDA(S=800))

Figure 6.4: Number of workers. Left: Wikipedia, Right: Pubmed

SGLD, we fixed G to 5 and increased only the group size R to 4, 8, 12. Although more

workers imposed more communication overhead during sample averaging, D-SGLD showed

its scalability by keeping the performance at a similar level (for Pubmed, it is improved).

From this result, we calculated the number of workers required by AD-LDA to show a similar

speed as D-SGLD with 20 workers. As shown in the Fig. 6.4, AD-LDA needs 2000 workers

for Wikipedia and 800 workers for Pubmed to obtain a similar speed as D-SGLD. (This

simple calculation does not include the communication overhead.)

71

10
1

10
2

10
3

10
4

10
5

850

1100

1350

1600

1850

2100

2350

2600

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

(1:1)
LB(1:5)
LB(1:10)
No−LB(1:5)
No−LB(1:10)
Async−LDA(1:1)
Async−LDA(1:5)
Async−LDA(1:10)

10
1

10
2

10
3

10
4

10
5

1500

2000

2500

3000

3500

4000

4500
5000
5500

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

(1:1)
LB(1:5)
LB(1:10)
No−LB(1:5)
No−LB(1:10)
Async−LDA(1:1)
Async−LDA(1:5)
Async−LDA(1:10)

Figure 6.5: Load balancing. Left: Wikipedia, Right: Pubmed.

6.4.4 Load balancing

We also examined D-SGLD’s ability to balance the workloads and thus mitigate the block-

by-the-slowest problem on 20 workers. To do this, we added dummy delays to half of the

workers to make them D times slower. We denote this setting by (1:D) and used three

settings: D = [1, 5, 10]. The actual response delays then became equal, for example, by

setting the trajectory length to 10 for slow workers and to D × 10 for fast ones. The initial

step size a was set to 0.005 for all settings of Wikipedia and to 0.001 for all settings of

Pubmed. Here, we used 100K Wikipedia and 1000K Pubmed corpus because the Async-

LDAs (as well as AD-LDA) were too slow for the full datasets. As shown in Fig. 6.5,

D-SGLD with load-balancing through adaptive trajectory sampling converges much faster

than those without load-balancing; it also converges faster than Async-LDA.

6.4.5 Number of topics

We tested the effect of the number of topics K by examining K=[100,200,300,400,500] on

20 homogeneous workers. As shown in Fig.6.6, although the packet size increases for large

K, D-SGLD consistently outperforms SGRLD for all K.

72

10
1

10
2

10
3

10
4

10
5

650

850

1050

1250

1450

1650

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

SGRLD(K=100)
SGRLD(K=300)
SGRLD(K=500)
D−SGLD(K=100)
D−SGLD(K=300)
D−SGLD(K=500)

100 200 300 400 500
650

700

750

800

850

900

950

Number of Topics

P
e
rp

le
x
it
y

SGRLD
D−SGLD

10
1

10
2

10
3

10
4

10
5

900

1600

2300

3000

3700

4400
5100
5800

Seconds (Log)

P
e

rp
le

x
it
y
 (

L
o

g
)

SGRLD(K=100)
SGRLD(K=300)
SGRLD(K=500)
D−SGLD(K=100)
D−SGLD(K=300)
D−SGLD(K=500)

100 200 300 400 500

1000

1200

1400

1600

1800

Number of Topics

P
e
rp

le
x
it
y

SGRLD
D−SGLD

Figure 6.6: Number of topics. Top: Wikipedia, Bottom: Pubmed. Right: Perplexity after
104 updates (that is, the end points of each line in the left plots).

73

Chapter 7

Large-Scale Distributed Bayesian

Matrix Factorization

Despite having various attractive qualities such as high prediction accuracy, the ability to

quantify uncertainty, and avoiding over-fitting, Bayesian Matrix Factorization has not been

widely adopted because of the prohibitive cost of inference. In this chapter, we propose a scal-

able distributed Bayesian matrix factorization algorithm using stochastic gradient MCMC.

Our algorithm, based on Distributed Stochastic Gradient Langevin Dynamics (D-SGLD),

can not only match the prediction accuracy of standard MCMC methods like Gibbs sam-

pling, but at the same time is as fast and simple as stochastic gradient descent. In our

experiments, we show that our algorithm can achieve the same level of prediction accuracy

as Gibbs sampling an order of magnitude faster. We also show that our method reduces the

prediction error as fast as distributed stochastic gradient descent, achieving a 4.1% improve-

ment in RMSE for the Netflix dataset and an 1.8% for the Yahoo music dataset.

This work is a joint work with UC Irvine (Max Welling, Anoop Korattikara, and I) and Yahoo

Labs (Nathan Liu and Suju Rajan) and performed partly while I was an intern researcher at

74

Yahoo labs. I developed the algorithm and performed the experiments. Anoop Korattikara

helped developing the single machine version of the algorithm. And, Max Welling, Nathan

Liu and Suju Rajan provided important comments on the algorithm and the experiments.

7.1 Motivation

Recommender systems have become a pervasive tool in industry to understand customers

and their interests in products. Examples range between music recommendation (Pandora),

book recommendation (Amazon), movie recommendation (Netflix), news recommendation

(Yahoo) to partner recommendation (eHarmony). Recommender systems represent a per-

sonalized technology that can help filter at an individual level the enormous amounts of

information that is available to us. Given the exponential growth of data, recommender

systems are likely to play an increasingly important role to manage our information streams.

During 2006-2011 Netflix [Bennett and Lanning, 2007] ran a competition where teams around

the world could develop and test new recommender technology on Netflix movie rating

data. A few valuable lessons were learnt from that exercise. First, matrix factorization

methods work very well compared to nearest neighbor type models. Second, averaging over

many different models pays off in terms of prediction accuracy. One particularly effective

model was Bayesian probabilistic matrix factorization (BPMF) [Salakhutdinov and Mnih,

2008] where predictions are averaged over samples from the posterior distribution. Besides

improved prediction accuracy, a full Bayesian analysis also comes with additional advantages

such as probabilities over models, confidence intervals, robustness against overfitting, and

incorporating prior knowledge and side-information [Adams et al., 2010, Porteous et al.,

2010].

75

Unfortunately, since the number of user-product interactions can easily run into the billions,

posterior inference is usually too expensive to be practical. Learning at that scale requires

data and computation to be distributed over many machines and learning updates to only

depend on small minibatches of the data. Effective distributed learning algorithms have

been devised for alternating least squares (ALS) and stochastic gradient descent (SGD)

[Gemulla et al., 2011, Recht and Re, 2013, Zhuang et al., 2013, Teflioudi et al., 2012, Niu

et al., 2011, Hall et al., 2010, McDonald et al., 2010, Mann et al., 2009, Zinkevich et al.,

2010]. In particular, Distributed Stochastic Gradient Descent (DSGD) [Gemulla et al., 2011]

has achieved a significant speed-up by assigning partitioned rating matrix blocks to workers

and then by updating some “orthogonal” blocks in parallel using “stratified” SGD. DSGD

outperformed other parallel SGD approaches such as PSGD [Hall et al., 2010, McDonald

et al., 2010] and ISGD [Mann et al., 2009, Zinkevich et al., 2010] where SGD is applied also

on some subsets of the ratings while synchronizing globally after each sub-epoch (PSGD) or

once at the end of the training (ISGD). Unfortunately, so far it has proven difficult to apply

these advances in distributed learning to posterior sampling in Bayesian matrix factorization

models. For instance, for BPMF which requires O((L + M)D3) computation per iteration

(with L and M are number of users and items, and D is latent feature dimension), distributed

computation has not nearly been as effective.

In this chapter, we propose a scalable and distributed Bayesian matrix factorization method

which combines the predictive accuracy of Bayesian inference and the learning efficiency of

stochastic gradient updates. To this end, we extend a recently developed distributed MCMC

method, called Distributed Stochastic Gradient Langevin Dynamics (D-SGLD) [Ahn et al.,

2014], so that the updates become efficient in the setting of distributed, large-scale matrix

factorization. We adapt the SGLD updates to make them suitable for distributed learning

on subsets of users and products (or blocks). Each worker manages only a small block of

the rating matrix, and updates and communicates only a small subset of the parameters in

a fully-asynchronous or weakly-synchronous fashion. Unlike distributed SGD where a single

76

model is learnt, our method deploys multiple parallel chains over workers. Consequently,

samples are collected at a much faster rate than ordinary MCMC and the multiple parallel

chains can explore different modes of parameter space. Both features contribute to reducing

the variance and increasing the accuracies of our predictions.

In the experiments on the Netflix and Yahoo music datasets (the latter being one of the

largest publicly available dataset for recommendation problems), we show that our method

achieves the same level of accuracy as BPMF but an order of magnitude faster. Reversely, at

almost the same efficiency as distributed SGD, our method achieves much better accuracy

(4.1% RMSE improvement for the Netflix dataset and 1.8% for Yahoo music dataset). As

such we believe that the method proposed in this chapter is currently the most competitive

matrix factorization method for industry scale problems.

7.2 Bayesian Matrix Factorization

Suppose we have L users and M items. Our goal is to learn latent feature vectors Ui, Vj ∈ RD

such that the rating Rij for item j by user i can be predicted as Rij ≈ U>i Vj. We denote

the entire rating matrix by R ∈ RL×M , and the latent feature matrices by U ∈ RD×L and

V ∈ RD×M , so that R ≈ U>V. Assuming a Gaussian error model, the likelihood of the

parameters U and V can be written as:

p(R|U,V, τ) =
L∏
i=1

M∏
j=1

[
N (Rij|U>i Vj, τ−1)

]Iij
. (7.1)

where Iij is equal to 1 if user i rated item j and 0 otherwise. Throughout the chapter, we

fixed τ = 1 for simplicity1. Although, in theory, U and V can be learned by maximizing the

1All update equations are derived with τ = 1.

77

likelihood above, this results in severe over-fitting because only a few ratings are known (i.e.

R is very sparse).

Therefore, a Bayesian Probabilistic Matrix Factorization (BPMF) model was proposed to

overcome this problem [Salakhutdinov and Mnih, 2008]. In addition to controlling over-

fitting through posterior averaging, BPMF also provides estimates of uncertainty through

the posterior predictive distribution. The BPMF model as proposed in [Salakhutdinov and

Mnih, 2008] is as follows. We place priors on U and V as:

p(U|µU ,ΛU) =
L∏
i=1

N (Ui|µU ,Λ−1
U), (7.2)

p(V|µV ,ΛV) =
M∏
j=1

N (Vj|µV ,Λ−1
V). (7.3)

We further place Gaussian-Wishart hyper-priors on the user and item hyperparameters ΘU =

{µU ,ΛU} and ΘV = {µV ,ΛV }:

p(ΘU |Θ0) = N (µU |µ0, (β0ΛU)−1)W(ΛU |W0, ν0), (7.4)

p(ΘV |Θ0) = N (µV |µ0, (β0ΛV)−1)W(ΛV |W0, ν0), (7.5)

where ν0 is the number of degrees of freedom and W0 is a D×D scale matrix. We collectively

denote the parameters of the hyper-prior by Θ0 = {µ0, β0, ν0,W0}.

At test time, the predictive distribution of an unknown rating R∗ij can be obtained by

marginalizing over both model parameters U,V and hyper-parameters ΘU ,ΘV ,

p(R∗ij|R,Θ0) =

∫ ∫
p(R∗ij|Ui, Vj)p(U,V|R,ΘU ,ΘV)

p(ΘU ,ΘV |Θ0)d{U,V}d{ΘU ,ΘV } (7.6)

78

Algorithm 6 Gibbs Sampling for BPMF

1: Initialize model parameters U(1),V(1)

2: for t = 1 : T do
3: // Sample hyperparameters

Θ(t)

U ∼ p(ΘU |U(t),Θ0), Θ(t)

V ∼ p(ΘV |V(t),Θ0)
4: for i = 1 : L in parallel do
5: U (t+ 1)

i ∼ p(Ui|R,V(t),Θ(t)

U) // sample user features
6: end for
7: for j = 1 : M in parallel do
8: V (t+ 1)

j ∼ p(Vj|R,U(t),Θ(t)

V) // sample item features
9: end for

10: end for

We can estimate this using a Monte Carlo approximation:

p(R∗ij|R,Θ0) ≈ 1

T

T∑
t=1

p(R∗ij|U
(t)
i , V

(t)
j). (7.7)

where
{
U (t)

i , V
(t)

j

}
is the t-th sample from the posterior distribution:

p(U,V,ΘU ,ΘV |R,Θ0). (7.8)

These samples can be generated using Gibbs sampling (Algorithm 6), since by conjugacy the

conditional distributions of Ui and Vj are Gaussian, and those of ΘU and ΘV are Gaussian-

Wishart. However, sampling from the conditional distribution of Ui or Vj involves O(D3)

computations (for inverting a D×D precision matrix) and since this has to be done for each

user and item, results in a total of O((L+M)D3) computations per iteration. Thus, BPMF

using Gibbs sampling cannot scale up to real world recommender systems with millions of

users and / or items.

Although it is possible to parallelize BPMF using MapReduce style synchronous global

updates, the cubic order complexity still limits its applicability to small D. Also, we require

a large number of workers to effectively distribute the L + M cubic-order computations.

Furthermore, since running the Gibbs sampler from scratch is too expensive, a separate

79

SGD optimizer is usually deployed to reach near the Maximum-a-Posteriori (MAP) state

before starting the Gibbs sampler. However, running two different large-scale distributed

algorithms, each of which requires different optimal settings for the distribution of data and

parameters, as well as cluster architectures, adds another considerable level of complexity.

7.3 Bayesian Matrix Factorization using SGLD

We will now show how DSGLD can be used for BPMF. Instead of the model described in

Section 7.2, we will use a slightly simplified model [Mnih and Salakhutdinov, 2007, Chen

et al., 2014]. We use the same likelihood as in eqn. 7.1, but choose simpler priors:

p(U|ΛU) =
L∏
i=1

N (Ui|0,Λ−1
U), (7.9)

p(V|ΛV) =
M∏
j=1

N (Vj|0,Λ−1
V). (7.10)

Here, ΛU and ΛV are D-dimension diagonal matrices whose d-th diagonal elements are λUd

and λVd respectively. We also choose the following hyper-priors:

λUd , λVd ∼ Gamma(α0, β0). (7.11)

We choose this simplified model because the proposed method benefits mainly from per-

forming a large number of inexpensive updates (i.e. collecting many samples) per unit time

rather than very expensive but high quality updates. The above model is well suited for

this because each latent vector can be updated in linear O(D) time. At the same time, we

still benefit from the power of Bayesian inference through marginalization of the important

regularization parameters Λ = {ΛU ,ΛV } as well as U and V.

80

Although it is possible to apply our method to the model in Section 7.2, updating the full

covariance matrix is more expensive (O(D2) time per update) and therefore requires more

time to converge without significant gain in accuracy (as per our pilot experiments).

In the following section, we first present our algorithm in a single machine setting and later

extend it for distributed inference. We alternate between sampling from p(U,V|R,Λ) using

SGLD and sampling from p(Λ|R,U,V) using Gibbs.

7.3.1 Sampling from P (U,V|R,Λ) using SGLD

Since, usually only N �M × L ratings are observed, the rating matrix R is stored using a

sparse representation as X = {xn = (pn, qn, rn)}Nn=1, where each xn is a (user, item, rating)

tuple and N is the number of observed ratings. The gradient of the log-posterior w.r.t.2 Ui

is:

G(X) =
N∑
n=1

gn(Ui;X)− ΛUUi (7.12)

where

gn(Ui;X) = I[pn = i|X](rn − U>pnVqn)Vqn (7.13)

Here I[pn = i|X] is an indicator function that equals 1 if the n-th tuple in X pertains to user

i and 0 otherwise. To use SGLD, we need an unbiased estimate of this gradient that can be

computed cheaply from a mini-batch.

2We derive only w.r.t. Ui. Update rules for other parameters can be obtained by the same procedure.

81

One way to obtain this is by subsampling a mini-batch M = {(pn, qn, rn)}mn=1 of m tuples

from X and computing the following stochastic approximation of the gradient:

G1(M) = Nḡ(Ui;M)− ΛUUi (7.14)

where, ḡ(Ui;M) = 1
m

∑m
n=1 gn(Ui;M). Note that the mini-batch is subsampled from the

complete dataset X and not just from the tuples associated with user i. The expectation of

G1 over all possible mini-batches is:

EM[G1(M)] = EM [Nḡ(Ui;M)]− ΛUUi

=
N∑
n=1

gn(Ui;X)− ΛUUi

= G(X).

Since G1 is an unbiased estimator of the true gradient, we can use it for computing SGLD

updates. However, note that G1 is non-zero even for users that are not in the mini-batchM,

because of the prior gradient term −ΛUUi. Therefore, we have to update the parameters for

all users in every iteration, which is very expensive.

If we were to update only the parameters of users who have ratings in the mini-batch M,

the estimator can be written as:

G2(M) = Nḡ(Ui;M)− I[i ∈Mp]ΛUUi (7.15)

where I[i ∈ Mp] is equal to 1 if M contains a tuple associated with user i and 0 otherwise.

However, G2 is not an unbiased estimator of the true gradient:

EM[G2(M)] =
N∑
n=1

gn(Ui;X)− hi∗ΛUUi. (7.16)

82

where hi∗ = EM[I[i ∈Mp]], i.e. the fraction of mini-batches that contains at least one tuple

associated with user i (among all possible mini-batches). If the mini-batches are sampled

with replacement, we can compute this as:

hi∗ = 1−
(

1− Ni∗

N

)m
(7.17)

where Ni∗ =
∑N

n=1 I[pn = i|X], the number of ratings by user i in the complete dataset X .

Thus, we can remove the bias in G2 by multiplying the gradient of the prior term with h−1
i∗

as follows:

G3(M) = Nḡ(Ui;M)− I[i ∈Mp]h
−1
i∗ ΛUUi. (7.18)

G3 is an unbiased estimator of the true gradient G and is non-zero only for users that have

at least one rating in M. Thus we need to update only a subset of user features in each

iteration. The SGLD update rule (for users with ratings in Mt) is:

Ui,t+1 ← Ui,t +
εt
2

{
Nḡ(Ui,t;Mt)−

ΛUUi,t
hi∗

}
+ νt (7.19)

where νt ∼ N (0, εt).

7.3.2 Sampling from P (Λ|U,V) using Gibbs sampling

Due to the conditional conjugacy, we can easily sample from the conditional distribution

p(Λ|U,V) using Gibbs sampling:

λUd |U,V ∼ Gamma

(
α0 +

L

2
, β0 +

1

2

L∑
i=1

U2
di

)
, (7.20)

λVd |U,V ∼ Gamma

(
α0 +

M

2
, β0 +

1

2

M∑
i=1

V 2
dj

)
. (7.21)

83

1	
 2	

3	
 4	

(a) square

1	

2	

3	

4	

(b) column

1	
 2	

3	
 4	

5	
 6	

7	
 8	

(c) hybrid

Figure 7.1: Block split schemes.

Note that, if this is also computationally demanding, we can consider updating Λ using

SGLD or the mini-batch Metropolis-Hastings algorithm [Korattikara et al., 2014, Bardenet

et al., 2014].

7.4 Distributed Inference

For distributed inference, we partition the rating matrix R into a number of blocks. Fig. 7.1

shows a few different ways of partitioning R. Two blocks are said to be orthogonal to each

other if the users and items in one block do not appear in the other block. A set of two or

more mutually orthogonal blocks is called an orthogonal block group (or simply, orthogonal

group). For example, the two gray-colored blocks (1 and 4) in Fig. 7.1 (a) are orthogonal to

each other and thus form an orthogonal group. In Fig. 7.1 (b), the blocks are not orthogonal

because all columns are shared. In this case, we say that each block by itself is an orthogonal

group.

The blocks are then distributed to workers in such a way that all blocks are assigned and a

worker has at least one block. In the following, we assume for simplicity that each worker is

a single-core machine. However, it is easy to generalize our algorithm to take advantage of

multi-core (or threads) workers with shared memory support.

84

We will now describe our distributed algorithm for BPMF. First, imagine that there is only

one Markov chain c (but the dataset is distributed across multiple workers). A central

parameter server holds the global parameters Uc and Vc of chain c. Since Λ depends only on

Uc and Vc, it is easy to update Λ at the parameter server using Gibbs as per Eqns. 7.21 and

7.20. Thus, we will focus on the DSGLD part of the chain that samples from p(U,V|R,Λ).

Each sampling round consists of the following steps: (1) The parameter server picks a block

s via a block-scheduler and sends the corresponding sub-parameter U(c, s) and V(c, s) to the

block’s worker. (2) The worker updates the sub-parameter by running DSGLD (see section

7.4.1 for update equations) for a number of iterations using its local block of ratings. (3) The

worker sends the final sub-parameter state back to the parameter server. (4) The parameter

server updates its global copy to the new sub-parameter state.

Thus, the Markov chain jumps among the distributed blocks through the corresponding

workers and updates the sub-parameters associated with the block chosen in each round.

Since each iteration of local DSGLD updates requires only a mini-batch of data, sampling

is very fast. Also, communication overhead is low because a) the multiple local updates

(iterations) performed within a round do not require any communication b) only a small

sub-parameter associated with a specific block is transferred in each round. There are two

levels of parallelization that we use to further speed up sampling.

1. Parallel updates within a chain: a chain can update sub-parameters U(c, s1) and

U(c, s2) in parallel if the blocks s1 and s2 are orthogonal to each other. For example, in

Fig. 7.1 (a), updating block 1 and then block 4 produces the same result as updating

both in parallel. This makes the algorithm progress faster in terms of number of

updated parameters per round. The actual performance improvement is dependent on

the size of the orthogonal group. For instance, with a 4 × 4 split, the algorithm will

update the parameters faster than with a 2×2 split because more parameter blocks can

85

be updated in parallel. However, updates in smaller blocks can be noisier, because the

gradients computed from smaller blocks will have higher variance. Therefore, at some

point the loss in performance caused by noisier updates on small blocks can exceed the

gain obtained by faster updating of the parameters.

2. Multiple parallel chains: we can run as many chains in parallel as we like, subject

to only computational resource constraints. Each chain can update its parameters in

parallel independent of other chains. Hence, the chains are asynchronous in the sense

that the status of a chain does not block other chains unless the chains conflict for

computation resources. For the split in Fig. 7.1 (a), one chain can update using the

gray block group while another chain is using the white block group. Or both chains

can use the same block if we assume a shared memory multi-threaded implementation.

By running multiple chains in parallel, we effectively multiply the number of collected

samples by the number of parallel chains. Since the variance of an MCMC estimator

is inversely proportional to the number of samples, fast sample generation will com-

pensate for the low mixing rate of SGLD. Also, by initializing the different chains in

different places of parameter space, we can explore multiple local minima. This is

especially important for large-scale high dimensional problems where the time budget

is usually not enough for a single chain to mix between different local minima.

An illustration of these ideas is given in Fig. 7.2. Algorithms 7 and 8 describe the operations

at the parameter server and workers respectively.

A proper block splitting scheme can be chosen according to the characteristics of the problem

and available resources. In other words, we can trade-off within-chain parallelization and

between-chain parallelization. For example, given S workers, by using a squared split as

in Fig. 7.1 (a), we can run
√
S chains in parallel where each chain updates

√
S blocks

in parallel. This way we maximize the within-chain parallelism. On the other hand, by

reducing the size of orthogonal groups, we can decrease the within-chain parallelism in order

86

worker 1	

t = 1	

Ua1	

Ua2	

Ub1	

Ub2	

Va1	
 Va2	

Vb1	
 Vb2	

B11	
 B12	

B22	
B21	

Ua1	

Va1	

Ua2	

Va2	

Ub1	

Vb2	

Ub2	

Vb1	

worker 2	
 worker 3	
 worker 4	

t = 2	

B11	
 B22	
 B21	
B12	

Ub1	

Vb1	

Ub2	

Vb2	

Ua1	

Va2	

Ua2	

Va1	

B11	
 B22	
 B21	
B12	

R	

Figure 7.2: An example illustration. On the left, a matrix R is partitioned into 2 × 2
blocks, B11, · · · ,B22. There are two orthogonal groups (the gray (B11,B22) group and the
white (B12,B21) group). We run two independent chains, chain a with parameters Ua and
Va (solid-line rectangles) and chain b, with parameters Ub and Vb (dotted-line rectangles).
Given four workers, we assign a block to each worker. At round t = 1, chain a updates
using the gray orthogonal group and chain b using the white orthogonal group. Note that
the entire U and V matrices of both chains are updated in this single round. In the next
round, the chains are assigned to the next orthogonal groups by the block-scheduler.

to increase the between-chain parallelization, i.e. number of parallel chains. At an extreme of

this approach, we can let each block become an orthogonal group by itself as in Fig. 7.1 (b)

and run S independent chains in parallel. Note that in this case, we can choose not only the

column splitting but any splitting scheme. Our experiment results suggest to maximize the

within-chain parallelism as the dataset size increases. For smaller datasets, we may benefit

more from the generalization performance of a large number of parallel chains than from a

smaller number of chains using the block orthogonality.

7.4.1 Distributed SGLD Update

Since X (the sparse representation of R) is partitioned into S blocks X (1), . . . ,X (S), each

worker uses only one of the X (s) for computing updates. Thus, we need to modify the

bias correctors in Eqn. (7.17) so that the gradient estimator remains unbiased under this

constraint. If we assume ∪Ss=1X (s) = X and ∩Ss=1X (s) = ∅, and that worker s is visited with

normalized frequency v(s), the correction factors for users and items can be shown to be,

87

Algorithm 7 DSGLD for BPMF at the parameter server

1: Initialize model parameters of each chain {Uc
1,V

c
1,Λ

c
1}Cc=1, step sizes {εt}

2: for each chain c parallel do
3: for t=1:max iter do
4: Bc ← get ortho block group(c, t)
5: for worker s ∈ Bc do
6: U(c, s)

t+1 ,V
(c, s)
t+1 ← wkr round(U(c, s)

t ,V(c, s)
t ,Λ(c)

t , εt)
7: end for
8: if not burn-in then
9: Store U(c)

t+1,V
(c)
t+1 as a sample of chain c

10: Sample Λ(c)
t+1|U

(c)
t+1,V

(c)
t+1 using Eqn. (7.20) and (7.21)

11: end if
12: end for
13: end for

Algorithm 8 DSGLD for BPMF at worker s

1: Initialize h̄i∗, h̄∗j, round length γ, mini-batch size m
2: function wkr round(U(c, s),V(c, s),Λ(c), εt)
3: for t = 1 : γ do
4: Sample a mini-batch Mt from X (s)

5: for each user i and item j in Mt parallel do
6: Update Ui, Vj using Eqn. (7.25) and (7.26)
7: end for
8: end for
9: Send updated U(c, s) and V(c, s) to the parameter server

10: end function

respectively:

h̄i∗ =
S∑
s=1

v(s)h(s)
i∗ , h̄∗j =

S∑
s=1

v(s)h(s)
∗j (7.22)

where:

h(s)
i∗ = 1−

(
1− N (s)

i∗
N (s)

)m

, h(s)
∗j = 1−

(
1−

N (s)
∗j

N (s)

)m

(7.23)

88

here N (s) = |X (s)|, the total number of ratings in s, and

N (s)

i∗ =
N (s)∑
n=1

I[pn = i|X (s)], N (s)

∗j =
N (s)∑
n=1

I[qn = j|X (s)]. (7.24)

i.e. the number of ratings by user i and of item j respectively in s. Therefore, the local

DSGLD update rule using block X (s) is:

Ui,t+1 ← Ui,t +
εt
2

{
N (s)

v(s)
ḡ(Ui,t;M(s)

t)− ΛUUi,t
h̄i∗

}
+ νt (7.25)

Vj,t+1 ← Vj,t +
εt
2

{
N (s)

v(s)
ḡ(Vj,t;M(s)

t)− ΛV Vj,t
h̄∗j

}
+ νt. (7.26)

The above rule updates only the sub-parameter associated with block s using only rating

tuples in s.

7.5 Experiments

7.5.1 Algorithms and Models

Optimization MCMC
Single Machine SGD SGLD, Gibbs

Distributed DSGD DSGLD

Table 7.1: Algorithms.

We compared five algorithms: SGD, DSGD, SGLD, DSGLD, and Gibbs sampling. As

shown in Table 7.1, each algorithm can be classified based on whether it is running on a

single machine or a distributed architecture, and also based on whether it is an optimization

or MCMC algorithm. Since Gibbs sampling was very slow, we update user/item features in

parallel (as suggested in [Salakhutdinov and Mnih, 2008]) using multiple cores of a single

89

machine. Thus, by Gibbs sampling we will mean the parallelized (but not distributed)

version from now on.

For DSGLD, we tested two block-splitting schemes. Given S workers, DSGLD-S (‘S’ stands

for square) partitions R into
√
S ×

√
S blocks as in Fig. 7.1 (a), i.e. DSGLD-S tries to

maximize the within-chain parallelism by using as many orthogonal blocks as possible. We

run
√
S parallel chains, where each chain updates

√
S sub-parameter blocks in parallel using

√
S workers. Therefore, all chains can update all parameter at every round. The second

splitting scheme, called DSGLD-C (‘C’ stands for column blocks) divides R into S blocks as

shown in Fig. 7.1(b). We split R along the rows because in our experiments we have many

more users than items. The blocks in DSGLD-C are not orthogonal because all columns are

shared, so we just run S independent parallel chains.

For Gibbs sampling, we use the original BPMF model3 described in Section 7.2. For the

other algorithms, we slightly extend the model described in Section 7.3 (as in Chen et al.

[2014], Koren et al. [2009]). The extension includes user and item specific bias terms ai and

bj respectively so that the predictions are modeled as:

Rij ≈ U>i Vj + ai + bj (7.27)

We use the following priors and hyper-priors for ai and bj:

ai ∼ N (0, λ−1
a), bj ∼ N (0, λ−1

b),

λa, λb ∼ Gamma(α0, β0).

For U and V, we use the same priors and hyper-priors as described in Section 7.3. Note

that, in the new model, we have to sample ai, bj, λa, λb in addition to U,V,ΛU ,ΛV . The

3Using the simplified model does not reduce the computation complexity of the Gibbs sampling.

90

DSGLD update rules for ai and bj are:

ai,t+1 ← ai,t +
εt
2

{
N (s)

v(s)
ḡ(ai,t;M(s)

t)− λaai,t
h̄i∗

}
+ νt (7.28)

bj,t+1 ← bj,t +
εt
2

{
N (s)

v(s)
ḡ(bj,t;M(s)

t)− λbbj,t
h̄∗j

}
+ νt. (7.29)

The main goal of our experiments is to answer the following questions:

• Accuracy : How does DSGLD compare to other methods in terms of prediction RMSE?

• Speed : How fast can DSGLD achieve the RMSE obtained by 1) optimization algorithms

(SGD, DSGLD) 2) Gibbs sampling?

• Factors which affect the above: The number of workers, number of chains, block split-

ting schemes and the latent factor dimension.

7.5.2 Setup

Dataset # users # items # ratings
Netflix 480K 18K 100M
Yahoo 1.8M 136K 700M

Table 7.2: Datasets.

We compare all 5 algorithms on two large datasets, Netflix movie ratings [Bennett and

Lanning, 2007] and Yahoo music ratings (details in Table 7.2). To the best of our knowledge,

the Yahoo dataset was one of the largest publicly available datasets when we performed the

experiments. Note that the Yahoo dataset we use here is different from the one used in

the KDD’11 Cup [Dror et al., 2012] (which has ∼250M music ratings and is often referred

to by the same name). For the Netflix dataset, we use 80% of the ratings for training and

the remaining 20% for testing as in [Ding et al., 2014]. For the Yahoo dataset, the memory

footprint was around 17GB for the train and test ratings, and around 1GB for U and V

91

with D = 60 in our 64-bit float based implementation. The memory footprint of the Netflix

dataset was relatively small.

We used Julia [Bezanson et al., 2014] to configure the cluster and execute the core routines

of the algorithms. The core routines were implemented in C for high performance. For dis-

tributed computing, we used Amazon EC2 instances [ama] of type “r3” which were equipped

with Intel Xeon 2.5 GHz CPUs and had memory configurable up to 244GB. Although the

instances had multiple cores, we restricted all algorithms, except Gibbs sampling, to run on

a single-core. For Gibbs sampling, we used a 12-core machine with the same CPU speed.

All algorithms were implemented as an in-memory execution model and thus no disk I/O

overheads were considered.

We annealed the step size according to the schedule εt = ε0(1 + t/κ)−γ, (as in [Ahn et al.,

2012, Patterson and Teh, 2013]) which satisfies the convergence conditions in Eqn. (??). We

found κ, which controls the decay rate, over the range κ = [10, 50, 100, 500, 1000, 1500]. The

initial step size ε0 was also selected from [9e-6,1e-6] for Netflix and [3e-6,8e-7] for Yahoo.

More detailed settings are given in the Appendix. We decreased the stepsize after every

round which we set to 50 updates. We used γ = 0.51 in all experiments.

We set the hyperparameters τ = 2.0 and α0 = 1.0 for all experiments. We used β0 = 1.0 for

all algorithms except SGLD and DSGLD. For SGLD and DSGLD, the scale of the prior gra-

dients sometimes became large due to multiplication by the bias correctors 1/hi∗ and 1/h∗j.

In this case, instead of increasing the mini-batch size to reduce the scale of the correctors,

we used a more appropriate scale parameter for the Gamma prior distribution (β0 = 300),

to stabilize the scale of precisions sampled from the posterior Gamma distribution.

Mini-batch sizes were set to 50K data points for Netflix and 100K for Yahoo. The initial val-

ues for the precisions Λ were all chosen to be 2.0 after testing over a range [10, 5, 2, 1, 0.1, 0.01].

In SGLD and DSGLD, the precision parameters were sampled every 50 rounds after burn-in.

92

We discarded (burned) samples until the RMSE reached 0.85 for Netflix and 1.08 for Yahoo.

For DSGLD, which deploys multiple chains, we used the arithmetic mean of the RMSE of

all chains to determine whether burn-in has completed. We set the thinning interval to 10

rounds, i.e. we use only every 10th sample to compute the average prediction. The Gibbs

sampler in our experiments was initialized near a MAP state which we found using SGD

during burn-in.

Running DSGLD requires a block scheduler (line 4 in Algorithm 7) that determines which

blocks (workers) are used by each chain in a round. In our experiments, the blocks and

the orthogonal groups were chosen beforehand and were assigned to chains deterministically

using a cyclic-shift (rotation) at every round with equal visiting frequency. This scheduling

policy is illustrated in Fig. 7.2.

7.5.3 Results

Convergence and wall-clock time

We first compare the RMSE of the algorithms as a function of computational time. In this

experiment, we set D=30 for both datasets and used 9 workers for Netflix and 16 workers

for Yahoo. Given S workers, we used a
√
S ×
√
S block-split for DSGLD-S, S × 1 split for

DSGLD-C and S×S split for DSGD. The total runtime was set to 50K seconds (≈14 hours)

for Netflix and 100K seconds (≈27 hours) for Yahoo. In both Figs. 7.3 and 7.4, the x-axis

is in log-scale for the figure on the left and in linear-scale for the figure on the right.

In Fig. 7.3, we show results on the Netflix dataset (which is smaller than the Yahoo dataset).

We see that in the early (burn-in) stage, all algorithms except Gibbs reduce error at a

similar rate. Even though DSGLD-S and DSGD uses block orthogonality to update the

sub-parameters of a chain in parallel, because of communication overheads, the gain in

93

102 103 104

Sec.

0.82

0.84

0.86

0.88

0.90

0.92
R

M
S
E

DSGLD-S (3x3)

DSGLD-C (9x1)

DSGD (9x9)

SGLD

Gibbs

SGD

0 2000 4000 6000 8000 10000
Sec.

0.81

0.82

0.83

0.84

0.85

0.86

R
M

S
E

DSGLD-S (3x3)

DSGLD-C (9x1)

DSGD (9x9)

SGLD

Gibbs

SGD

Figure 7.3: Netflix dataset (D = 30).

102 103 104 105

Sec.

1.03

1.13

1.23

1.33

1.43

R
M

S
E

DSGLD-S (4x4)

DSGLD-C (16x1)

DSGD (16x16)

SGLD

Gibbs

SGD

0 20000 40000 60000 80000 100000
Sec.

1.04

1.05

1.06

1.07

1.08

1.09

R
M

S
E

DSGLD-S (4x4)

DSGLD-C (16x1)

DSGD (16x16)

SGLD

Gibbs

SGD

Figure 7.4: Yahoo Music Rating dataset (D = 30).

speed-up is not enough to outperform a non-distributed algorithm like SGLD which is able

to reduce the error at a similar rate (because the dataset size is not very large) without any

communication overhead. Note that because there are many chains for DSGLD, we plot the

RMSE from only one chain during burn-in. The variance of RMSE across the chains was

small during burn-in.

When the burn-in phase ends at around 500 - 700 seconds, MCMC algorithms (SGLD, DS-

GLD, and Gibbs) begin to collect samples and average their predictions over the samples,

while DSGD does not and begins to overfit. Interestingly, at this point, we see a remark-

ably steep decrease in error for both DSGLD-S and DSGLD-C. In particular, we see the

largest decrease for DSGLD-C which deploys 9 independent chains (whereas DSGLD-S uses

94

3 chains). Note that this is not solely a consequence of collecting a larger number of sam-

ples from multiple chains. We believe that the averaged prediction using many independent

chains provides better generalization because many modes are likely to be explored (or, a

large area of a single broad mode can be covered quickly if many chains reside there). After

more investigation, we indeed observed that the same number of samples collected from a

single chain (e.g. SGLD) cannot achieve the same level of accuracy obtained with multiple

randomly initialized chains. Furthermore, we observed that given a lot more computational

time, SGLD and DSGLD-S can approach the RMSE obtained by DSGLD-C as they also

get a chance to explore other modes or to cover a larger area of a single mode. We will

revisit the effect of multiple chains in more detail in the next section. Finally, note that

Gibbs sampling achieves lower RMSE than DGSLD-C after around 20K seconds (5.5 hours)

as shown in Fig. 7.3 left (but the difference to DSGLD-C is very small). Note that for this

dataset, D and L + M were not too large and we used 12-core single machine for parallel

Gibbs sampling. Therefore the computational cost of each iteration was not extremely high.

We present our results on the Yahoo dataset in Fig. 7.4 with S = 16 workers. A remarkable

point is that, here, unlike with the Netflix dataset, DSGLD-S outperforms DSGLD-C. This

is because using orthogonal blocks increases the number of parameters updated per round,

resulting in increased convergence speed even after offsetting the communication overhead.

As expected, a similar effect is observed for DSGD. The progress of parameter updates in

DSGLD-C is relatively slow, requiring S = 16 rounds to update all the parameters. Besides,

DSGLD-C has a much larger communication overhead because the full matrix V has to

be transferred between the parameter server and each of the workers, whereas only a small

block of V is transferred in DSGLD-S. Specifically, in DSGLD-C the parameter server sends

and receives packets of total size O((L+ SM)D) per round whereas in DSGLD-S the total

packet size is only O((L + M)D). Although DSGLD-C is rather slow during burn-in, after

burn-in we still see a faster decrease in RMSE compared to SGLD because multiple chains

can mix better. Gibbs sampling converges slower than it does on the Netflix dataset because

95

for the Yahoo dataset the number of latent vectors to update, i.e. L + M , increases by a

factor of four, and the number of ratings, N , by a factor of seven.

For the Netflix dataset, after 1K seconds, DSGLD-C achieved the RMSE (0.8145) that the

Gibbs sampler obtains at 10K seconds. Similarly, after 11K seconds, DSGLD-S achieved the

RMSE (1.0454) that the Gibbs sampler obtains at 100K seconds. Therefore, the proposed

method converges an order of magnitude faster than Gibbs sampling on both datasets, which

is especially important when we only have a limited computational budget.

DSGD converges to a prediction RMSE of 0.8462 on Netflix and 1.0576 on Yahoo after

1K seconds and 10K seconds respectively. Given the same amount of computational time,

DSGLD achieves an error of 0.8161 on Netflix and 1.0465 on Yahoo, a relative improvement

of 3.7% and 1.1%. After convergence, the RI increases to 4.1% for Netflix and 1.8% for

Yahoo (See Table. 7.4 and Table. 7.3).

Number of chains and workers

We also investigated the effect of the number of chains and the number of workers. The results

are presented in Fig. 7.5. According to the observations from the previous experiment, we

used DSGLD-C for Netflix and DSGD-S for Yahoo to study this effect. The latent feature

dimension was set to D=30.

In Fig. 7.5 (a), we compare DSGLD-C with [1, 3, 6, 9] chains (and workers) and in each case

we evenly split the rows of the rating matrix between the chains. Note that DSGLD-C (1x1)

is the same as SGLD running on a single-machine. We see that during burn-in DSGLD-C

(1x1) converges faster than the other splits because there is no communication overhead.

After burn-in, when the chains start averaging predictions, we see a sharp decrease in error

for the other splits. Although splits with more chains decrease error much faster, they all

96

102 103 104

Sec.

0.82

0.84

0.86

0.88

0.90

0.92
R

M
S

E
DSGLD-C (1x1)

DSGLD-C (3x1)

DSGLD-C (6x1)

DSGLD-C (9x1)

(a) DSGLD-C on the Netflix dataset

102 103 104 105

Sec.

1.03

1.13

1.23

1.33

1.43

R
M

S
E

DSGLD-S (1x1, S=1)

DSGLD-S (2x2, S=4)

DSGLD-S (4x4, S=16)

DSGLD-S (6x6, S=36)

(b) DSGLD-S on the Yahoo dataset

Figure 7.5: The effect of the number of chains, number of workers, and block split.

eventually converge to a similar value. Due to poor mixing, a single chain (i.e. SGLD)

converges very slowly.

In Fig. 7.5 (b), we show results for DSGLD-S on the Yahoo dataset. We increased the number

of workers to [1, 4, 16, 36] to compare [1, 2, 4, 6] parallel chains. Again DSGLD-S (1x1) denotes

SGLD running on a single machine. We see that SGLD converges much more slowly because

the dataset is larger than Netflix and SGLD has to update more parameters sequentially.

Using more orthogonal blocks, DSGLD-S can update more parameters in parallel and we

see more speed-up as we increase the number of workers. Although we increase the number

of workers quadratically between the experiments, the packet size transferred between the

parameter server and the workers stays constant at O((L+M)D) because the block size also

reduces accordingly. Even after burn-in (horizontal dotted black line at 1.08 RMSE) we see

that with more chains we can decrease the error faster. This is because (i) multiple chains

help to mix better by exploring a broader space (ii) each chain can mix faster by updating

orthogonal blocks in parallel.

97

D SGD DSGD SGLD DSGLD-C Gibbs

30 0.8421 0.8462 0.8143 0.8126 0.8118
-3.63% -4.13% -0.21% - +0.09%

60 0.8447 0.8428 0.8097 0.8074 0.8259
-4.62% -4.38% -0.28% - -2.29%

100 0.8415 0.8395 0.8082 0.8043 0.8339
-4.63% -4.37% -0.48% - -3.68%

Table 7.3: RMSE and relative improvement (RI). Netflix. The percentage shown below each
RMSE value is the relative improvement.

D SGD DSGD SGLD DSGLD-S Gibbs

30 1.0578 1.0576 1.0448 1.0387 1.0454
-1.83% -1.82% -0.58 % - -0.64%

60 1.0548 1.0588 1.0351 1.0267 1.0364
-2.73% -3.13% -0.82% - -0.94%

100 1.0567 1.0631 1.0335 1.0229 1.0339
-3.30% -3.93% -1.04% - -1.08%

Table 7.4: RMSE and relative improvement (RI). Yahoo. The percentage shown below each
RMSE value is the relative improvement.

Latent feature dimension

In Fig. 7.6, we show how the latent feature dimension affects the final RMSE. The final

RMSE on Netflix is measured after 50K seconds (14 hours) of computational time, because

by then all algorithms had converged (except Gibbs sampling which is expected to take much

longer). On the Yahoo dataset, we increased the computational time to 100K secs (1 day),

200K secs (2.3 days), and 300K secs (3.5 days) for D=[30,60,100], respectively, to give the

Gibbs sampler more time to converge. In table 7.3 and 7.4, we show the RMSEs of the

different algorithms and the relative improvement (or deterioration) compared to DSGLD.

The Relative Improvement (RI) of an algorithm x is defined as RI(x) = (rd − rx)/rd, where

rx is the RMSE achieved by algorithm x and rd is the RMSE obtained using DSGLD.

In both Fig. 7.6 (a) and (b), we see a large difference in performance between SG-MCMC

(SGLD and DSGLD) and the optimization methods (SGD and DSGD). The RI is 3.6%−4.6%

98

30 60 100
D

0.80

0.81

0.82

0.83

0.84

0.85

R
M

S
E

SGD

DSGD

SGLD

DSGLD-C

Gibbs

(a) RMSE on Netflix

30 60 100
D

1.022

1.032

1.042

1.052

1.062

R
M

S
E

SGD

DSGD

SGLD

DSGLD-S

Gibbs

(b) RMSE on Yahoo

30 60 100
D

102

103

104

105

S
e
co

n
d
s

SGLD

DSGLD-S

Gibbs

(c) Required time per sample

Figure 7.6: The effect of the latent feature dimension. (a) and (b) show RMSE for D =
[30, 60, 100] on (a) the Neflix dataset and (b) the Yahoo music ratings dataset. The maximum
computational time was set to 50K seconds for Netflix and 100K (D=30), 200K (D=60),
and 300K (D=100) seconds for Yahoo. (c) shows time (in seconds) required to draw a single
sample on the Yahoo dataset.

on Netflix and 1.8%−3.9% on the Yahoo dataset. As observed in [Salakhutdinov and Mnih,

2008], we see that the optimization methods do not consistently improve with increasing D.

One reason is that optimization methods are highly sensitive to the hyperparameter values

which become difficult to tune as the model becomes more complex. However, our method

consistently improves as we increase D, because the hyper-parameters are sampled from

their posterior distributions. We also see that the performance of Gibbs sampling on Netflix

gets worse as D increases, because we used the same amount of computational budget for

all D although the computation complexity increases as D does. On the Yahoo dataset on

99

which we increase computational time as we increase D, we see that the RMSE for Gibbs

increases as D increases, but is still lower than that of DSGLD.

In Fig. 7.6 (c), we compare the time (in seconds) required to draw a single sample for

the three sampling algorithms at different values of D on the Yahoo dataset. We see that

Gibbs sampling is almost two orders of magnitude slower than SGLD. For D=100, SGLD,

DSGLD-S, and Gibbs generated 688, 460, and 8 samples respectively in 300K seconds of

computational time. For Netflix, Gibbs generated around 100 samples in 50K seconds for

D=30. Thus, even though the Gibbs sampler can produce higher quality samples (in terms

of lower auto-correlation), the sampling speed is so slow that it cannot satisfactorily handle

large scale datasets.

7.6 Discussion

Most applications of matrix factorization to recommender systems are based on stochastic

gradient optimization algorithms because these are the only ones that can computationally

handle very large datasets. However, by restricting ourselves to such simple algorithms, we

miss out on all the advantages of Bayesian modelling such as quantifying uncertainty, con-

trolling over-fitting, incorporating prior information and better prediction accuracy. In this

chapter, we introduced a novel algorithm for scalable distributed Bayesian matrix factor-

ization that achieves the best of both worlds, i.e. it inherits all the advantages of Bayesian

inference at the speed of stochastic gradient optimization.

Our algorithm, based on Distributed Stochastic Gradient Langevin Dynamics, uses only

a mini-batch of ratings to make each update as in Stochastic Gradient Descent optimiza-

tion. By running multiple chains in parallel, and also using multiple workers within a chain

to update orthogonal blocks, we can scale up Bayesian Matrix Factorization to very large

100

datasets. Parallel chains with different random initializations also help us to average predic-

tions from multiple modes and improve accuracy. Moreover, our algorithm can effectively

handle datasets that are distributed across multiple machines unlike traditional MCMC al-

gorithms.

We believe that our method is just one example of a much larger class of scalable distributed

Bayesian matrix factorization methods. For example, we can consider using more sophisti-

cated stochastic gradient algorithms [Ahn et al., 2012, Patterson and Teh, 2013, Chen et al.,

2014, Ding et al., 2014] in place of SGLD to further improve the mixing rate.

101

Chapter 8

Scalable MCMC for Mixed

Membership Stochastic Blockmodels

This chapter introduces a stochastic gradient Markov chain Monte Carlo (SG-MCMC) algo-

rithm for scalable inference in the mixed-membership stochastic blockmodels (MMSB). Our

algorithm is based on the stochastic gradient Riemannian Langevin dynamics (SGRLD) and

achieves both faster speed and higher accuracy at every iteration than the current state-

of-the-art algorithm based on stochastic variational inference. In addition, we develop an

approximation that can handle models that entertain a very large number of communities.

The experimental results show that SG-MCMC outperforms the competing algorithms and

is much more efficient for a large number of communities.

This work is a joint work with Wenzhe Li at USC. I proposed the initial version of the

algorithm. Then, Max Welling and Wenzhe Li helped elaborating the algorithm. Wenzhe Li

performed the experiments.

102

8.1 Motivation

Probabilistic graphical models represent a convenient paradigm for modeling complex rela-

tionships between a potentially very large number of random variables. Bayesian graphical

models [Wainwright and Jordan, 2008], where we define priors and infer posteriors over

parameters also allow us to quantify model uncertainty and facilitate model selection and

averaging. But an increasingly urgent question is whether these models and their inference

procedures will be up to the challenge of handling very large “big data” problems.

A large subclass of Bayesian graphical models is represented by so called “topic models”

such as latent Dirichlet allocation [Blei et al., 2003]. For these type of models very efficient

inference algorithms have recently been developed, either based on stochastic variational

Bayesian inference (SVB) [Hoffman et al., 2013, 2010a] or on stochastic gradient Markov

chain Monte Carlo (SG-MCMC) [Welling and Teh, 2011, Ahn et al., 2012, 2014, Patterson

and Teh, 2013]. Both methods have the important property that they only require a small

subset of the data-items for every iteration. In other words, they can be applied to (infinite)

streaming data.

An important class of “big data” problems are given by networks. Large networks such as

social networks easily run into billions of edges and tens of millions of nodes. An interesting

problem in this area is the discovery of communities: densely connected groups of nodes that

are only sparsely connected to the rest of the network. Large networks may contain millions

of such communities. To model overlapping communities the mixed membership stochas-

tic blockmodel (MMSB) was introduced in Airoldi et al. [2009]. Very recently, an efficient

stochastic variational inference algorithm was developed for a special case, the assortative

MMSB (a-MMSB) [Gopalan et al., 2012], greatly extending the reach of Bayesian posterior

inference to realistic large scale problem settings. Inspired by this work, and earlier com-

parisons between SVB and SG-MCMC on LDA [Patterson and Teh, 2013] we developed a

103

scalable SG-MCMC algorithm for a-MMSB and compared it against SVB on the community

detection problem.

Our conclusion is consistent with the findings of [Patterson and Teh, 2013], namely that

SG-MCMC is also both faster and more accurate than SVB algorithms in this domain.

While one should expect SG-MCMC to be more accurate than SVB asymptotically (SVB is

asymptotically biased while SG-MCMC is not), it is interesting to observe that SG-MCMC

dominates SVB across all iterations, despite the fact that SG-MCMC should have a larger

variance contribution to the error.

8.2 Assortative Mixed-Membership Stochastic Block-

models

Assortative mixed-membership stochastic blockmodel (a-MMSB) is a special case of MMSB

that models the group-structure in a network of N nodes. In particular, each node a in

the node set V∗ has a K-dimension probability distribution πa of participating in the K

members of the community set K. For every possible peer b in the network, each node a

randomly draws a community zab. If a pair of nodes (a, b) in the edge set E∗ are in the

same community: zab = zba = k, then they have a significant probability βk to connect, i.e.,

yab = 1. Otherwise this probability is small. Each community has its connection strength

βk ∈ (0, 1) which explains how likely its members are linked each other.

The generative process of a-MMSB is then given by,

1. For each community k, draw community strength βk ∼ Beta(η)

2. For each node a, draw community memberships πa ∼ Dirichlet(α)

3. For each pair of nodes a and b,

104

(a) Draw interaction indicator zab ∼ πa

(b) Draw interaction indicator zba ∼ πb

(c) Draw link yab ∼ Bernoulli(r), where r = βk if zab = zba = k and r = ε otherwise.

Unlike the a-MMSB, the original MMSB maintains pair-wise community strength βk,k′ for

all pairs of the communities. Note that it is trivial to extend the results that we obtain in

this chapter to the general MMSB model. The joint probability of the above process can be

written as:

p(y, z, π, β|α, η) =
N∏
a=1

N∏
b>a

p(yab|zab, zba, β)p(zab|πa)p(zba|πb)
N∏
a=1

p(πa|α)
K∏
k=1

p(βk|η). (8.1)

Both variational inference [Jordan et al., 1999] and collapsed Gibbs sampling algorithms

[Griffiths and Steyvers, 2004] have been used successfully for small to medium scale problems.

However, the O(N2) computational complexity per update prevents it from being applied

to large scale networks. A stochastic variational algorithm was developed in Gopalan et al.

[2012] to address this issue, where each update only depends on a small mini-batch of the

nodes in the network.

8.3 Scalable MCMC for a-MMSB

Our algorithm iterates updating local parameters π and a global parameter β. Because

both parameters lie on the probability simplex, we use SGRLD introduced in Section 6.2.

Introducing the expand-mean parameters φ and θ to re-parameterize π and β respectively,

the update rule is

θ∗k ←

∣∣∣∣∣θk +
ε

2

(
η − θk +

N

|Dn|
∑
d∈Dn

gd(θk)

)
+ (θk)

1
2 ξ

∣∣∣∣∣ , (8.2)

105

here ξ ∼ N (0, ε), gd(θk) is the gradient of the log posterior w.r.t. θk on a data point d ∈ Dn,

and η is the hyperparameter of the Dirichlet distribution being updated.

We then alternatively samples in the φ and θ spaces, and then obtain π and β by normalizing

φ and θ. From the Eqn. 8.1, summing over the latent variable z, we begin with the following

joint probability,

p(y, π, β|α, η) =
∏
a

p(πa|α)
∏
k

p(βk|η)
∏
a

∏
b>a

∑
zab,zba

p(yab, zab, zba|β, πa, πb). (8.3)

8.3.1 Sampling the global parameter

By the re-parameterization, we have βk = θk1/(θk0+θk1), where θki ∼Gamma(η) ∝ θη−1
ki e−θki .

Because p(y, π, β|α, η) decomposes into p(y, β|π, η)p(π|α), replacing β by θ, we compute the

derivative of log of Eqn. 8.3 w.r.t. θki for i = {0, 1} as follows:

∂ ln p(y, θ|π, η)

∂θki
=

∂

∂θki
ln p(θki|η) +

∑
a

∑
b>a

gab(θki), (8.4)

where gab(θki) = ∂
∂θki

ln
∑

zab,zba
p(yab, zab, zba|θ, πa, πb) which, similar to SGRLD for LDA, we

can rewrite as

gab(θki) = E
[
I[zab = zba = k]

(
|1− i− yab|

θki
− 1

θk

)]
. (8.5)

where θk =
∑

i θki and I[S] is equal to 1 if a condition S is TRUE and 0 otherwise. The

expectation is w.r.t. the posterior distribution of latent variables zab and zba,

p(zab = k, zba = l|yab, πa, πb, β) ∝ f
(y)
ab (k, l) =

βyk(1− βk)(1−y)πakπbk, if k = l

εy(1− ε)(1−y)πakπbl, if k 6= l.

(8.6)

106

here we used simple notation y instead of yab. Unlike the SGRLD for LDA, we compute

the expectation in Eqn. (8.5) analytically by computing the normalization constant Z
(y)
ab =∑K

k=1

∑K
l=1 f

(y)
ab (k, l) which can be reduced to O(K) computation as follows

Z
(y)
ab = εy(1− ε)(1−y) +

K∑
k=1

(
βyk(1− βk)(1−y) − εy(1− ε)(1−y)

)
πakπbk. (8.7)

Then, the Eqn. (8.5) becomes

gab(θki) =
K∑
k=1

f
(y)
ab (k, k)

Z
(y)
ab

(
|1− i− yab|

θki
− 1

θk

)
. (8.8)

Plugging this into Eqn. 8.2, we obtain the update rule for the global parameter,

θ∗ki ←

∣∣∣∣∣∣θki +
ε

2

η − θki + h(Ent)
∑

(a,b)∈Ent

gab(θki)

+ (θki)
1
2 ξki

∣∣∣∣∣∣ , (8.9)

here Ent is a mini-batch of nt node pairs sampled from E∗ for which we use the following

strategy.

Stratified sampling: considering that the number of links are much smaller than that of

non-links, we can reduce the variance of the gradient using stratified sampling, similar to

the method used in [Gopalan et al., 2012]. For this, at every iteration we first randomly

select a node a and then toss a coin with probability 0.5 to decide whether to sample link

edges or non-link edges for node a. If it is a link, we assign all of the link edges of node a

to Ent . Otherwise, i.e. if it is non-link, we uniformly sample a mini-batch of N/m non-link

edges from the entire non-link edges and assign it to Ent . Here, the m is a hyper-parameter.

Note that the size of |Ent| will thus be much smaller than the entire N(N − 1)/2 edges when

m is reasonably large. Then, to ensure that the gradient is unbiased, a scaling parameter

h(Ent) is multiplied. Specifically, h(Ent) is set to N when Ent is a set of link edges and to

mN otherwise.

107

Because the global parameter changes not so dynamically compared to the local parameter,

in practice we update only a random subset of K at each iteration.

8.3.2 Sampling the local parameters

Similar to the global parameter, we re-parameterize the local parameter πa such that πak =

φak/
∑K

j=1 φaj, with φak ∼ Gamma(α) ∝ φα−1
ak e−φak . Then, taking the derivative of log of

Eqn. 8.3 w.r.t. φak, we obtain

∂ ln p(y, φ|β, α)

∂φak
=

∂

∂φak
ln p(φak|α) +

∑
b

gab(φak) (8.10)

where gab(φak) = ∂
∂φak

ln
∑

zab,zba
p(yab, zab, zba|β, φa, φb) which can be written as

gab(φak) = E
[
I[zab = k]

φak
− 1

φa·

]
. (8.11)

Here the expectation is w.r.t. the distribution in Eqn. (8.6). To compute the expectation

analytically, we first integrate out zba from Eqn. (8.6) because the expectation depends only

on zab, and obtain the following probability up to a normalization constant

f
(y)
ab (k) =

K∑
l=1

f
(y)
ab (k, l) = πak

{
βyk(1− βk)(1−y)πbk + εy(1− ε)(1−y)(1− πbk)

}
. (8.12)

Then we obtain the normalization term by Z
(y)
ab =

∑K
k=1 f

(y)
ab (k). Integrating out the expec-

tation in the Eqn. (8.11), we obtain

gab(φak) =
f

(y)
ab (k)

Z
(y)
ab φak

− 1

φa
. (8.13)

108

Plugging this to Eqn. 8.2, we obtain the SGRLD update rule for the local parameter φak

φ∗ak ←

∣∣∣∣∣φak +
ε

2

(
α− φak +

N

|Vn|
∑
b∈Vn

gab(φak)

)
+ (φak)

1
2 ξak

∣∣∣∣∣ . (8.14)

Here, the Vn is a random mini-batch of n nodes sampled from V∗. Note that |Vn| � |V∗| = N .

8.3.3 Scalable local updates for a large number of communities

In some applications, the number of communities can be very large so that the local update

becomes very inefficient due to its O(K|Vn|) computation per node in Ent and also O(KN)

space complexity. In this section, we extend the above algorithm further with a novel

approximation in order to make the algorithm scalable in terms of both speed and memory

usage even for very large number of communities which the SVI approach cannot achieve.

Community split: for each node a ∈ V∗, we first split the community set K into three

mutually exclusive subsets: the active set A(a), the candidate set C(a), and the bulk set

B(a) such that A(a) ∪ C(a) ∪ B(a) = K. Then, sorting the πa w.r.t. k in descending order,

we obtain a new order of communities k1, . . . , kK . The active set A(a) contains communities

whose cumulative distribution F (ki) is less than a threshold τ ∈ (0, 1], i.e. A(a) = {ki ∈

K|F (ki) < τ}. The candidate set C(a) includes communities which are in the active set of

at least one of the neighbors of node a, i.e. C(a) = {k ∈ K \A(a)|∃b ∈ N (a) s.t. k ∈ A(b)}.

The bulk set B(a) contains all the remainder, i.e. B(a) = K \ (A(a) ∪ C(a)). Here, we use

N (a) to denote the neighbors of node a.

The rationale behind this split scheme are two folds. First, due to sparsity, at each node

only a small number of communities will have meaningful probability while a large number of

communities will have very low probability πak. We want the communities of low probability

to belong to the bulk set, to share a single probability πaκ, and thus to be updated by

109

one-shot for all k ∈ B(a). We use κ to represent the representative community of a bulk set.

Second, due to the locality, neighboring nodes are likely to have a similar distribution over

communities (after all, the model only assigns high probability to links when the associated

nodes have high probability of sampling the same community). That is, when a neighbor

of node a has a community k in its active set, this community may be a good candidate to

become active for node a as well. By maintaining a candidate set we allow communities to

spread efficiently to neighboring nodes and thus through the network.

One-shot update: for communities k ∈ B(a), we apply the following approximation of the

unnormalized probability in Eqn. (8.12)

f
(y)
ab (k ∈ B(a)) ≈ f̃

(y)
ab (κ) = πaκ

{
β̄ya(1− β̄a)(1−y)π̄b + εy(1− ε)(1−y)(1− π̄b)

}
. (8.15)

That is, we replace πbk and βk in Eqn. (8.12) by π̄b = 1
m

∑
k∈Bm(a) πbk and β̄a = 1

m

∑
k∈Bm(a) βk

respectively using a random mini-batch Bm(a) of size m sampled from B(a). As a result,

all k ∈ B(a) share a single value f̃
(y)
ab (κ). Therefore, we can efficiently approximate the

normalization constant by

Z
(y)
ab =

∑
k∈K

f
(y)
ab (k) ≈ Z̃

(y)
ab = |B(a)|f̃ (y)

ab (κ) +
∑
k/∈B(a)

f
(y)
ab (k). (8.16)

Note that we only sum over |A(a) ∪ C(a)|+ 1 terms which will be a much smaller size than

|B(a)|. Now, to compute the gradient efficiently, we apply the stratified sampling1 for Vn

by sampling n1 nodes V1 from the neighbors N (a) and n0 nodes V0 from non-neighbors

V∗ \ N (a) such that Vn = V1 ∪ V0. Then, the sum of gradients for Vn in Eqn. (8.14) is

obtained by

N

|Vn|
∑
b∈Vn

gab(φak) ≈ c1

∑
b∈V1

(
f̃

(1)
ab (k)

Z̃
(1)
ab φak

− 1

φa

)
+ c0

∑
b′∈V0

(
f̃

(0)
ab′ (k)

Z̃
(0)
ab′φak

− 1

φa

)
. (8.17)

1Note that, to be more efficient under the approximation, we use a sampling method which is different
to the method used in the global update.

110

Here, we set c1 = |N (a)|/n1 and c0 = (N − |N (a)|)/n0 to ensure the unbiasedness of the

stratified sampling. Again, it is important to note that all states in B(a) share a single

current value φaκ and also the same update equation of Eqn. (8.17). Thus for B(a) we

compute Eqn. (8.17) only once and update all of them in one-shot. The computation

cost becomes O(|A(a) ∪ C(a)||Vn|) per node in Ent which we expect to be efficient because

|A(a) ∪ C(a)| � K due to the sparsity. For k /∈ B(a), we simply replace f̃
(y)
ab (k) in Eqn.

(8.17) by f
(y)
ab (k) in Eqn. (8.12), and update individually.

Promotion and demotion: after updating all |A(a) ∪ C(a)| + 1 states (communities),

we need to update the community split by promoting (e.g. to active or candidate set) or

demoting (e.g. to candidate or bulk set) some of the states. To do this, we sort and normalize

{φak}, and obtain the updated cdf F (ki). Then, we update A(a), C(a), and B(a) based on

the threshold τ and based on the communities that are active in the neighboring nodes. In

particular, if the cdf of the bulk state F (κ) is less than the threshold, we promote some states

in the bulk set by a random sampling. In this case, the number of states to promote is equal

to int((τ−F (κ−1))/πaκ). Here κ−1 denotes a state just left to the κ in the sorted community

sequence. We sample a state from the pool of states that are yet not represented anywhere in

the graph. The reason is that we wish to avoid creating disconnected communities of nodes,

which we believe represent suboptimal local modes in the posterior distribution. Finally, we

check which states in B(a) can be promoted to C(a) by checking the neighboring nodes. We

provide the pseudo code of the above algorithm in the Algorithm 9.

8.4 Experiments

We evaluate the efficiency and accuracy of our algorithm on five datasets: Synthetic, US-

AIR, NETSCIENCE, RELATIVITY, and HEP-PH, summarized in Table 8.1. We compare

four algorithms. As exact batch-mode MCMC methods, we use collapsed Gibbs sampling

111

Algorithm 9 Pseudo-code for each sampling iteration t

1: Sample a mini-batch E of nt node pairs from E∗
2: for each node a in E do
3: Sample a mini-batch of nodes Vn(a) = V1(a) ∪ V0(a) from V∗
4: Update φak for all k ∈ A(a) ∪ C(a) using Eqn. (8.17) and Eqn. (8.14)
5: Update φaκ only for the representative bulk state κ using Eqn. (8.17) and Eqn. (8.14)
6: Sort and normalize to obtain {πak} and the cdf F (ki) for all |A(a) ∪ C(a)|+ 1 states
7: Promote or demote some states using the updated cdf, threshold τ , and neighbor

information
8: end for
9: for k in a random subset of K do

10: Update θk{0,1} by Eqn. (8.9) using E and obtain βk from θk{0,1}
11: end for

of nodes % of link edges
Synthetic 75 30
US-AIR 1.1K 1.2

NETSCIENCE 1.6K 0.3
HEP PH 12K 0.16

Table 8.1: Datasets

(CGS) and Langevin Monte Carlo (LMC). We also compare to SVI as a state-of-the-art

method in variational Bayes. Finally, two of our algorithms are tested, one with and the

other without the approximation for large communities. We call these SGMC and SGMC-M,

respectively.

We used α = 1/K and η = 1 for all of the models and for all experiments unless otherwise

stated. For the stepsize annealing schedule we used εt = (τ0 + t)−κ with κ = 0.5 and

τ0 = 1024. For the stratified sampling of the global update in SVI and SGMCs, we used m

such that the size of non-link edges N/m to be 30 < N/m < 100. And for mini-batch size

of the stratified sampling of the local update in SGMCs, we used 20 samples with 10 from

neighbors and 10 from non-neighboring nodes. For SGMC-M, we used the threshold τ = 0.9

by default unless otherwise stated. Also, for the held-out test set, we used 1% of the total

links and non-links.

112

As the performance metric, we use perplexity which is defined as exponential of the negative

average log-likelihood of the data. Given a collection of T samples of the model parameters

{βt} and {πt}, the averaged perplexity on the held-out test set Eh is

perpavg(Eh|{βt}, {πt}) = exp

(
−
∑

(a,b)∈Eh log{(1/T)
∑T

t=1 p(yab|βt, πt)}
|Eh|

)
. (8.18)

8.4.1 Results

Comparison to exact batch MCMC: We first show the accuracy of our algorithm in

comparison to the exact batch-mode MCMC algorithms (CGS and LMC). For this, we use

two relatively small datasets, Synthetic and US-AIR, due to the slow speed of the batch

algorithms. The results are shown in Fig. 8.1(a) and Fig. 8.1(b).

As expected, for the smaller dataset (Synthetic) in Fig. 8.1(a), we see that CGS converges

very fast. However, it is interesting to observe that our stochastic gradient sampler (SGMC)

using fixed step-size converges to the same level of accuracy in comparable time, whereas

LMC converges much slower than both the collapsed Gibbs sampler and our algorithm due

to its full gradient computation and the Metropolis-Hastings accept-reject step. As we move

to larger network (US-AIR) in Fig. 8.1(b), we begin to see that our stochastic gradient

sampler outperforms in speed the collapsed Gibbs sampler as well as the Langevin Monte

Carlo. It is interesting to see that the approximation error of our algorithm due to the finite

step size and the absence of accept-reject tests is negligible compared to the perplexity of

the batch algorithms.

Effect of our approximation for large communities: In Fig. 8.2(a) and Fig. 8.2(b), on

two large datasets, HEP-PH and NETSCIENCE, we show the speed-up effect of our approxi-

mate method (SGMC-M) compared to the SGMC without the approximation. Here we mea-

sure the time per iteration for various community size K = [30, 50, 100, 200, 300, 500, 1000]

113

10
0

10
0

10
1

Synthetic (k=10)

Seconds (Log)

P
e
rp

le
x
it
y
 (

L
o
g
)

LMC

SGMC

CGS

(a)

10
0

10
1

seconds (Log)

p
e
rp

le
x
it
y
 (

L
o
g
)

US−AIR (K=20)

LMC

SGMC

CGS

(b)

Figure 8.1: Convergence of perplexity on (a) Synthetic and (b) US-AIR datasets.

0 200 400 600 800 1000
0

0.5

1

1.5
HEP−PH

number of communities

ti
m

e
 (

s
e
c
o
n
d
s
)

SGMC

SGMC−M

(a)

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02
NETSCIENCE

the number of communites

ti
m

e
(s

e
c
o
n
d
s
)

SGMC

SGMC−M

(b)

Figure 8.2: (a) Wall-clock time per iteration over increasing community sizes, on (a) HEP-PH
and (b) NETSCIENCE datasets.

and set the threshold to τ = 0.9. As shown, we can see that the approximate method

SGMC-M only slightly increase the wall-clock time per iteration even if the community size

increases. However, without the approximation (SGMC), the time per iteration increases

linearly w.r.t. the community size. In fact, we can obtain more time savings as the commu-

nity size increases further because the level of sparsity, i.e. the number of communities for

which each node has non-negligible probability of participation, does not change much when

we increase K.

114

0 20 40 60 80 100
2

4

6

8

10

12

14

number of communities

p
e
rp

le
x
it
y

US−AIR

SGMC

SGMC−M

SVI

(a)

20 40 60 80
5

10

15

20
NETSCIENCE

number of communities

p
e
rp

le
x
it
y

SGMC

SGMC−M

SVI

(b)

Figure 8.3: Converged perplexity for various community sizes on (a) US-AIR and (b)
NETSCIENCE datasets.

Furthermore, it is interesting to see in Fig. 8.3(a) and Fig. 8.3(b) that we do not lose

the accuracy much despite the approximation. In particular, for Fig. 8.3(a), the SGMC-M

performs as good as the SGMC. Although for Fig. 8.3(b) the SGMC-M performs worse

than the SGMC, it still outperforms the SVI. Note that the results are based on converged

perplexity which SGMC-M will reach much faster. The figures also reveal some interesting

facts. First, the predictive accuracy is dominated by SGMC for all choices of K. Second, the

curve of SVI has a V-shape indicating that the optimal value for K is in between the minimum

and maximum value of K we tested. However, for SGMC the accuracy remains relatively

stable as we increase K, making it less sensitive to the choice of this hyperparameter.

In Fig. 8.4(a), we also show how much memory usage the SGMC-M can reduce. In this

experiment we set the threshold τ = 0.9 for all datasets. As shown, the memory usage (i.e.

|A(a)∪ C(a)|/K) of SGMC-M decreases as the size of community increases. This is because

the sparsity usually does not change much even if the community size K increases. Note

that the memory usages of SVI and SGMC are always 100%. This is a significant feature

for large scale networks because without our approximation the space complexity is O(KN)

where both K and N can be very large. It is also interesting to see that at every node the

115

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

the number of communites

ra
te

 o
f
m

e
m

o
ry

 u
s
a
g
e

rate of memory usage when converged

hep−ph

netscience

us−air

(a)

0 1000 2000 3000
3

4

5

6

7

8

9

time (seconds)

p
e
rp

le
x
it
y

US−AIR (K=50)

p=0.3

p=0.5

p=0.7

p=0.9

p=1

(b)

Figure 8.4: (a) Memory usage over different community sizes and datasets. The memory
usage is defined as a ratio (|A| + |C| + 1)/K. (b) Convergence of perplexity for various
threshold values p on US-AIR dataset.

90% of the total density is allocated to only about 10% ∼ 20% of the communities e.g., for

K = 500, 1000.

Lastly, we investigate the effect of the threshold τ (in the plot we use p instead of τ) and

the results are shown in Fig. 8.4(b) using US-AIR dataset. As shown, with p = 0.9, we

obtain the best results. It is interesting because the SGMC-M only uses 50% of memory

compared to that of SGMC without the approximation (p = 1). As expected, as we decrease

the threshold, we represent smaller communities in the active and candidate set and lose

some accuracy while gaining some speed.

8.5 Discussion

Bayesian inference in large network models is important for a number of reasons. Firstly,

it naturally avoids overfitting by marginalizing over parameters. Secondly, it provides un-

certainty estimates for predicting who is likely to be connected to whom. And thirdly, it

supports active learning scenarios where, say, Facebook might not only suggest friends to

116

a user that have significant community overlap with high probability but also friends that

may have a high overlap but about which it is still uncertain. This type of serendipity is not

only appreciated by users, but it is also key to explore the space of potential friends more

efficiently.

In this chapter we have developed a new scalable MCMC algorithm based on stochastic gradi-

ent computations for Bayesian posterior inference in assortative mixed membership stochastic

blockmodels (a-MMSB). The algorithm represents a natural extension of stochastic gradient

Riemannian Langevin dynamics (SGRLD) to a-MMSBs. In line with the results reported

in Patterson and Teh [2013] for LDA, SGRLD also significantly outperforms its stochastic

variational Bayesian counterpart. Besides exploiting the sparsity and locality properties of

real world networks, we also introduce an efficient approximation to scale up our algorithm

further to very large number of communities which the standard SGRLD and the SVI cannot

achieve. As was shown in Ahn et al. [2014], SGRLD algorithms are particularly suited for

distributed implementation. We are currently working towards a distributed implementation

of our algorithm on a HPC infrastructure allowing us to perform full Bayesian inference on

very large networks of up to a billion edges and millions of communities.

117

Chapter 9

Conclusions and Discussions

The exponentially increasing size of modern datasets has challenged traditional machine

learning algorithms. Unlike the frequentist approach for which the efficient stochastic gra-

dient optimization algorithm is available, the traditional Bayesian inference methods such

as MCMC were difficult to apply to large-scale datasets because it required processing the

entire dataset at every iteration rather than using only a small subset of them. Further-

more, the traditional Bayesian inference algorithms were difficult to deploy on distributed

computing systems although in many industrial problems the dataset cannot be handled

in a single machine. Consequently, the powerful advantages of Bayesian inference such as

quantifying uncertainty, accurate prediction performance, and preventing overfitting, have

to be abandoned when it comes to large-scale problems, and the choice was limited to

optimization-based frequentist methods.

In this thesis, we have introduced recent advances in scalable Bayesian inference using

stochastic gradient MCMC as well as its applications. We have tackled the research chal-

lenges identified in Chapter 1 and the contributions are summarized below.

118

• [RC1] Improving mixing rate: one drawback of the SGLD is that it is limited to

use relatively small step-sizes and thus the mixing rate becomes low. To resolve this

problem, we have introduced the stochastic gradient Fisher scoring (SGFS) method

in Chapter 3. In SGFS, by exploiting the Bayesian central limit theorem, we have

made it possible to use large step sizes to improve the mixing rate. To do this, we

made the sampler behave as an (approximate) Gaussian distribution sampler when the

step size is large, and thus it became possible to control the discrepancy between the

approximate distribution and the true posterior even if the step size is very large. As

a bonus, this formulation also led us to define an efficient pre-conditioning matrix that

captures the curvature information of the target distribution. Thus, unlike SGLD, it

became possible to sample efficiently from highly correlated parameter spaces at all

step sizes.

One limitation of SGFS is that it requires to invert a D×D matrix at every iteration

(thus requiring O(nD3) computations per iteration) to obtain the preconditioning ma-

trix. (Here, D is the parameter dimension that can be very large in many interesting

problems like deep neural networks.) Although we have introduced some approxima-

tions for this, further innovations toward obtaining computationally efficient estimation

of the inversion (or, its multiplication to a gradient vector) are required.

• [RC2] Efficient distributed SG-MCMC algorithm: in Chapter 4, we have intro-

duced the distributed SGLD (D-SGLD) algorithm which is the first distributed sampler

using stochastic gradients. In particular, we showed that with the proposed D-SGLD

estimator, we can build a valid SGLD procedure when the minibatches are restricted

to be sampled only from one of the partitions of the dataset at a time. Then, the

extension to running parallel chains became straightforward. We showed that per-

forming multiple (but finite) updates at a worker without jumping to other workers is

allowed and helpful to reduce the communication overhead. Also, the D-SGLD method

resolved some notorious problems of distributed computing systems such as the “block-

119

by-the-slowest” problem. As a result, by extending the advantages of SG-MCMC to

distributed computing, D-SGLD improved scalability of SG-MCMC further to the level

of practical and large-scale problems of industrial interest.

One future direction regarding D-SGLD is to incorporate very recent SG-MCMC algo-

rithms such as SGHMC [Chen et al., 2014] and SGNHT [Ding et al., 2014] as the local

sampler of D-SGLD. This may be challenging because unlike SGLD some of the al-

gorithms contain some quantity which requires global updates. Also, considering that

multiple chains may converge to different modes from which each chain is not easy to

escape, improving the mixing rate of each chain using some information of other chains

(e.g., using parallel tempering [Earl and Deem, 2005]) will be an important problem.

• [RC3] Applications to industry sized large-scale problems: using SG-MCMC,

we have shown three important applications of large-scale machine learning: (1) topic

modeling using latent Dirichlet allocation, (2) recommender systems using matrix fac-

torization, and (3) overlapping community modeling in social networks using mixed-

membership stochastic blockmodels. Because each of the applications raises its own

particular challenges, we could not simply apply existing algorithms but had to devise

improved algorithms solving the challenges. For (1), we combined SGRLD to D-SGLD,

for (2) we proposed a modified SGLD update rule which makes it possible to update

only a subset of the parameters of the model. Also, we proposed an efficient paral-

lel update method using the orthogonal blocks of the rating matrix. Finally, for (3),

we proposed a fast SGRLD update rule and an approximation to handle a very large

number of communities.

One interesting application of the SG-MCMC method that we have not covered in this

thesis, is the Bayesian deep neural network. Our initial experiment using SGLD has

shown some success on a relatively small number of hidden units (less than 300) by

outperforming the dropout method. However, with a larger number of hidden units,

120

we could not make it outperform the dropout method. Also, the Bayesian neural

network combined with the recent innovation of Bayesian model (sample) compression

[Korattikara et al., 2015] will be an interesting future research direction of D-SGLD.

In conclusion, dealing with uncertainty will remain important for machine learning in the era

of big data, and Bayesian inference using MCMC will also remain a powerful tool in many

such problems. As an initial attempt towards scalable MCMC, we have introduced recent

advances using stochastic gradient MCMC methods and have shown some successful results

in terms of algorithms and applications. Although further innovations will still be desired

for Bayesian inference to be applied more broadly and also to be more scalable, we hope

that the results shown in this thesis will be helpful for many practitioners who seek further

improvements beyond the current system based on the traditional frequentist method. Also,

to many researchers, we hope this will be a guide in the journey of making innovations

towards scalable Bayesian inference.

121

Bibliography

Amazon ec2 instances. http://aws.amazon.com/ec2/instance-types/.

R. Adams, G. Dahl, and I. Murray. Incorporating side information in probabilistic matrix
factorization with gaussian processes. In Proceedings of the 26th Conference on Uncertainty
in Artificial Intelligence, 2010.

A. Ahmed, A. Aly, J. Gonzalez, S. Narayanamurthy, and A. Smola. Scalable inference in
latent variable models. In International conference on Web search and data mining, 2012.

S. Ahn, A. Korattikara, and M. Welling. Bayesian posterior sampling via stochastic gradient
fisher scoring. In International Conference on Machine Learning, 2012.

S. Ahn, Y. Chen, and M. Welling. Distributed and adaptive darting monte carlo through
regenerations. International Conference on Artificial Intelligence and Statistics, 2013.

S. Ahn, B. Shahbaba, and M. Welling. Distributed stochastic gradient mcmc. In International
Conference on Machine Learning (ICML), 2014.

E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic
blockmodels. In Advances in Neural Information Processing Systems, pages 33–40, 2009.

C. Andrieu and J. Thoms. A tutorial on adaptive mcmc. Statistics and Computing, 18:
343–373, 2008.

R. Bardenet, A. Doucet, and C. Holmes. Towards scaling up markov chain monte carlo: an
adaptive subsampling approach. In International Conference on Machine Learning, 2014.

J. Bennett and S. Lanning. The netflix prize. In KDD Cup and Workshop in conjunction
with KDD, 2007.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. CoRR, 2014. http://dblp.uni-trier.de/rec/bib/journals/corr/BezansonEKS14.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

122

V. Borkar. Stochastic approximation with two time scales. Systems and Control Letters, 29
(5):291–294, 1997.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems, volume 20, pages 161–168, 2008.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo. In Inter-
national Conference on Machine Learning (ICML), 2014.

T. G. Dietterich. Ensemble methods in machine learning. In Multiple classifier systems,
pages 1–15. Springer, 2000.

N. Ding, Y. Fang, R. Babbush, C. Chen, R. Skeel, and H. Neven. Bayesian sampling using
stochastic gradient thermostats. In Advances in Neural Information Processing Systems
(NIPS), 2014.

G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! music dataset and kdd-
cup’11. In Proceedings of KDD-Cup 2011 competition, 2012.

D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new perspectives.
Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis. Large-scale matrix factorization with
distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2011.

M. Girolami and B. Calderhead. Riemann manifold langevin and hamiltonian monte carlo.
Journal of the Royal Statistical Society B, 73 (2):1–37, 2010.

M. Girolami and B. Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73
(2):123–214, 2011.

P. K. Gopalan, S. Gerrish, M. Freedman, D. M. Blei, and D. M. Mimno. Scalable inference of
overlapping communities. In Advances in Neural Information Processing Systems, pages
2249–2257, 2012.

T. Griffiths and M. Steyvers. Finding scientific topics. In Proceedings of the National
Academy of Sciences (PNAS), pages 5228–5235, 2004.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A vision,
architectural elements, and future directions. Future Generation Computer Systems, 29
(7):1645–1660, 2013.

K. B. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable for distributed optimization. In
NIPS LCCC Workshop, 2010.

Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger, and
E. P. Xing. More effective distributed ml via a stale synchronous parallel parameter server.
In Advances in Neural Information Processing Systems, 2013.

123

M. Hoffman, F. Bach, and D. Blei. Online learning for latent dirichlet allocation. In Advances
in Neural Information Processing Systems, pages 856–864, 2010a.

M. Hoffman, D. Blei, and F. Bach. Online learning for latent dirichlet allocation. In Neural
Information Processing Systems, 2010b.

M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of
Machine Learning Research, 14:1303–1347, 2013.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods
for graphical models. Machine Learning, 37(2):183–233, 1999.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. International Conference
on Representation Learning, 2014.

A. Korattikara. Approximate Markov Chain Monte Carlo Algorithms for Large Scale
Bayesian Inference. PhD thesis, University of California, Irvine, 2014.

A. Korattikara, Y. Chen, and M. Welling. Austerity in mcmc land: Cutting the metropolis-
hastings budget. In International Conference on Machine Learning (ICML), 2014.

A. Korattikara, V. Rathod, K. Murphy, and M. Welling. Bayesian dark knowledge. In arXiv
preprint arXiv:1506.04416, 2015.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
In IEEE Computer, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

H. Larochelle and Y. Bengio. Classification using discriminative Restricted Boltzmann Ma-
chines. In Proceedings of the 25th International Conference on Machine learning, pages
536–543. ACM, 2008.

K. B. Laskey and J. W. Myers. Population markov chain monte carlo. Machine Learning,
50:175–196, 2003.

L. Le Cam. Asymptotic methods in statistical decision theory. Springer, 1986.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale
distributed training of conditional maximum entropy models. In Neural Information Pro-
cessing Systems, 2009.

R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured
perceptron. In HLT, 2010.

A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in Neural
Information Processing Systems, 2007.

124

K. P. Murphy. Machine learning: a probabilistic perspective. 2012.

R. Neal. Probabilistic inference using markov chain monte carlo methods. Technical Report
CRG-TR-93-1, University of Toronto, Computer Science, 1993.

R. M. Neal and J. Zhang. High dimensional classification with bayesian neural networks and
dirichlet diffusion trees. In Feature Extraction, pages 265–296. Springer, 2006.

D. Newman, P. Smyth, M. Welling, and A. Asuncion. Distributed inference for latent dirichlet
allocation. In Advances in Neural Information Processing Systems, pages 1081–1088, 2007.

F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. arXiv preprint arXiv:1106.5730, 2011.

S. Patterson and Y. W. Teh. Stochastic gradient riemannian langevin dynamics on the
probability simplex. In Advances in Neural Information Processing Systems, 2013.

I. Porteous, A. Ascuncion, and M. Welling. Bayesian matrix factorization with side infor-
mation and dirichlet process mixtures. In AAAI Conference on Artificial Intelligence,
2010.

B. Recht and C. Re. Parallel stochastic gradient algorithms for large-scale matrix completion.
In Mathematical Programming Computation, 2013.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Proceedings of the 25th International Conference on Machine Learn-
ing (ICML), 2008.

I. Sato and H. Nakagawa. Approximation analysis of stochastic gradient langevin dynamics
by using fokker-planck equation and ito process. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages 982–990, 2014.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for online
convex optimization. In M. Meila and X. Shen, editors, Proc. 11th Intl. Conf. Artificial
Intelligence and Statistics (AIstats), pages 436–443, San Juan, Puerto Rico, 2007.

W. Scott. Maximum likelihood estimation using the empirical fisher information matrix.
Journal of Statistical Computation and Simulation, 72(8):599–611, 2002.

M. Seeger. Low rank updates for the cholesky decomposition. Technical report, University
of California Berkeley, 2004. URL http://lapmal.epfl.ch/papers/cholupdate.shtml.

A. Smola and S. Narayanamurthy. An architecture for parallel topic models. VLDB, 2010.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level
performance in face verification. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 1701–1708. IEEE, 2014.

125

http://lapmal.epfl.ch/papers/cholupdate.shtml

C. Teflioudi, F. Makari, and R. Gemulla. Distributed matrix completion. In IEEE 12th
International Conference on Data Mining, 2012.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1:1–305, 2008.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In
International Conference on Machine Learning (ICML), 2011.

D. J. Wilkinson. Parallel bayesian computation. Statistics Textbooks and Monographs, 184:
477, 2006.

Y. Zhuang, W. S. Chin, Y. C. Juan, and C. J. Lin. A fast parallel sgd for matrix factorizatio
in shared memory systems. In Proceedings of the 7th ACM conference on Recommender
systems, 2013.

M. Zinkevich, M. Weimer, and A. Smola. Parallelized stochastic gradient descent. In Neural
Information Processing Systems, 2010.

126

Appendix A

Proofs

A.1 Proof of Theorem 4.3.1

We provide a proof of Theorem 4.3.1 (Chapter 4) about the correctness of the online averaging

procedure for estimating the Fisher Information.

Theorem A.1.1. Consider a sampling algorithm which generates a sample θt from the pos-

terior distribution of the model parameters p(θ|XN) in each iteration t. In each iteration, we

draw a random mini-batch of size n, X t
n = {xt1 ...xtn} and compute the empirical covariance

of the scores V (θt;X
t
n) = 1

n−1

∑n
i=1 {g(θt;xti)− gn(θt)} {g(θt;xti)− gn(θt)}T . Let VT be the

average of V (θt) across T iterations. For large N , as T → ∞, VT converges to the Fisher

information I(θ0) plus O(1
N

) corrections.i.e.

lim
T→∞

[
VT ,

1

T

T∑
t=1

V (θt;X
t
n)

]
= I(θ0) +O(

1

N
) (A.1)

127

Proof. First, note that using a little algebra, we can rewrite V (θt;X
t
n) as:

V (θt;X
t
n) =

1

n

n∑
i=1

g(θt;xti)g(θt;xti)
T

− 1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

g(θt;xti)g(θt;xtj)
T (A.2)

As T → ∞, the averaging of V (θt, X
t
n) across different iterations is equivalent to taking an

expectation of V (θt, X
t
n) w.r.t the posterior distribution of θt. Also, when N is very large,

averaging across the different mini-batches X t
n drawn in different iterations is equivalent to

taking an expectation w.r.t p(x; θ0). Thus we have:

V T = Eθt,Xt
n

[
V (θt, X

t
n)
]

= Eθ,x
[
g(θ;x)g(θ;x)T

]
− Eθ,x,x′

[
g(θ;x)g(θ;x′)T

]
(A.3)

According to the Bernstein-von Mises theorem, θ|XN ∼ N (θ0,
I−1(θ0)
N

) for large N . This

means that we can consider θ ⊥⊥ x|θ0 and the expectations in Eqn. (A.3) can be taken w.r.t

θ and x independently. Also, since most of the posterior density is in a small region around

θ0, we can consider a Taylor series expansion of g(θ;x) around θ0, (treating θ as a scalar for

simplicity):

g(θ;x) =
∞∑
k=0

g(k)(θ0;x)(θ − θ0)k

k!
(A.4)

We will now apply this series expansion to each of the terms in Eqn. (A.3). Thus we have:

128

Eθ,x
[
{g(θ;x)}2] =

∞∑
k=0

Ak(θ0)Eθ
[
(θ − θ0)k

]
(A.5)

where,

Ak(θ0) =
k∑

m=0

Ex
[
g(m)(θ0;x)g(k−m)(θ0;x)

]
m!(k −m)!

(A.6)

Since θ has a Gaussian distribution, its odd central moments are zero, and the even central

moments are given by:

Eθ
[
(θ − θ0)2r

]
=

(2r)!

2rr!

[
I−1(θ0)

N

]r
(A.7)

Thus, we have:

Eθ,x
[
{g(θ;x)}2] =

∞∑
r=0

A2r(θ0)
(2r)!

2rr!

[
I−1(θ0)

N

]r
(A.8)

Similarly, we can show that:

Eθ,x,x′ [g(θ;x)g(θ;x′)] =
∞∑
r=0

B2r(θ0)
(2r)!

2rr!

[
I−1(θ0)

N

]r
(A.9)

where,

Bk(θ0) =
k∑

m=0

Ex
[
g(m)(θ0;x)

]
Ex
[
g(k−m)(θ0;x)

]
m!(k −m)!

(A.10)

From Eqns. (A.8) and (A.9), we have for large N :

lim
T→∞

VT =
∞∑
r=0

C2r(θ0)
(2r)!

2rr!

[
I−1(θ0)

N

]r
(A.11)

where,

Ck(θ0) = Ak(θ0)−Bk(θ0) (A.12)

129

For example,

C0(θ0) = I(θ0) (A.13)

C2(θ0) =Ex
[
g(θ0;x)g(2)(θ0;x) + g(1)(θ0;x)g(1)(θ0;x)

]
− I2(θ0) (A.14)

Thus for large N,

lim
T→∞

VT = I(θ0)− I(θ0)

N
+

I−1(θ0)

N
Ex
[
g(θ0;x)g(2)(θ0;x) + g(1)(θ0;x)g(1)(θ0;x)

]
+
∞∑
r=2

C2r(θ0)
(2r)!

2rr!

[
I−1(θ0)

N

]r
= I(θ0) +O(

1

N
) (A.15)

A.2 Proof of Propositions and Corollaries in Chapter

5

Definition 1. An estimator f(θ, Z;X), where Z is a set of auxiliary random variables

associated with the estimator, is said to be a valid SGLD estimator if EZ [f(θ, Z;X)] =

ḡ(θ;X), where EZ denotes expectation w.r.t. the distribution p(Z;X) and it has finite

variance VZ [f(θ, Z;X)] <∞.

Proposition A.2.1. For each shard s = 1, . . . , S, given shard size, Ns, and the normalized

shard selection frequency, qs, such that Ns > 0,
∑S

s=1Ns = N , qs ∈ (0, 1), and
∑S

s=1 qs = 1,

130

the following estimator is a valid SGLD estimator,

ḡd(θ;X
n
s)

def
=

Ns

Nqs
ḡ(θt;X

n
s) (A.16)

where shard s is sampled by a scheduler h(Q) with frequencies Q = {q1, . . . , qS}.

Proof. We first decompose the expectation of the estimator E[ḡd(θ;X
n
s)|X] w.r.t. (1) the

shard s and (2) the minibatch Xn
s conditioned on the shard s, as follows

E[ḡd(θ;X
n
s)|X] = Es[EXn

s
[ḡd(θ;X

n
s)|s]|X]. (A.17)

Then, plugging Eqn. (A.16) in Eqn. (A.17) and rearranging, we obtain

= Es

EXn
s

 Ns

nNqs

∑
x∈Xn

s

g(θ;x)

∣∣∣∣s
 ∣∣∣∣X

= Es

 Ns

Nqs
EXn

s

 1

n

∑
x∈Xn

s

g(θ;x)

∣∣∣∣s
 ∣∣∣∣X

 . (A.18)

Note here that given X, the inner expectation w.r.t. the minibatches of shard s, Xn
s , is equal

to the mean score over the shard Xs. That is,

EXn
s

 1

n

∑
x∈Xn

s

g(θ;x)

∣∣∣∣s,X
 =

1

Ns

∑
x∈Xs

g(θ;x). (A.19)

131

Substituting this for the inner expectation, in Eqn. (A.18), we have

Es

[
Ns

Nqs

1

Ns

∑
x∈Xs

g(θ;x)

]
(A.20)

=
1

N
Es

[
1

qs

∑
x∈Xs

g(θ;x)

]
(A.21)

=
1

N

S∑
s=1

p(s)
1

qs

∑
x∈Xs

g(θ;x). (A.22)

Because we choose a shard s by h(Q), p(s) is equal to qs. Thus, by plugging p(s) = qs in

Eqn. (A.22) and rearranging, we obtain

=
1

N

S∑
s=1

qs
1

qs

∑
x∈Xs

g(θ;x)

=
1

N

S∑
s=1

∑
x∈Xs

g(θ;x)

=
1

N

∑
x∈X

g(θ;x)

= ḡ(θ;X). (A.23)

which completes the proof for the validity of the estimator ḡd,

E[ḡd(θ;X
n
s)|X] = ḡ(θ;X). (A.24)

Corollary A.2.2. A trajectory sampler with a finite τ ≥ 1, obtained by redefining the worker

(shard) selection process h(Q) in Proposition A.2.1 by the process h(Q, τ) below, is a valid

SGLD sampler. h(Q, τ) : for chain c at iteration t, choose the next worker sct+1 by

sct+1 =

h̃(Q), if t = kτ for k = 0, 1, 2, . . .

sct , otherwise,

(A.25)

132

where h̃(Q) is an arbitrary scheduler with selection probabilities Q.

Proof. Because the trajectory lengths are all equal to τ for all workers s = 1, . . . , S and h̃(Q)

conforms to the frequencies Q, the worker (shard) selection frequencies of the trajectory

sampling process h(Q, τ) also satisfies Q. As a result, in the proof of Proposition A.2.1, the

probability p(s) = qs is retained even if we replace h(Q) in Proposition A.2.1 by h(Q, τ).

Because changing the worker selection process only affects p(s) in the proof of Proposition

A.2.1, the proof directly applies to the corollary.

Corollary A.2.3. Given τs, where 1 ≤ τs < ∞ for s = 1, . . . , S, the adaptive trajectory

sampler, obtained by redefining the worker (shard) selection process h(Q) in Proposition

A.2.1 by the process h(Q, {τs}) below, is a valid SGLD sampler. h(Q, {τs}) : for chain c at

iteration t, choose the next worker sct+1 by

sct+1 =

h̃(1/S), if t = kτsct for k = 0, 1, 2, . . .

sct , otherwise,

(A.26)

where h̃(1/S) is a scheduler with uniform selection probabilities.

Proof. Because we select the worker uniformly by h̃(1/S), only the trajectory lengths {τs1 , . . . , τsC}

affect the shard selection frequency of the process h(Q, {τs}). Since the trajectory length

τs is proportional to qs (τs
def
= τ̄Sqs), taking τs consecutive updates for uniformly selected

random worker s satisfies the frequency Q. Therefore, the proof of Proposition A.2.1 also

directly applies to the corollary.

133

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Bayesian Inference for Machine Learning
	Advantages of Bayesian Inference
	Large-Scale Machine Learning
	Research Challenges
	Outline of the Thesis

	Markov Chain Monte Carlo
	Monte Carlo Method
	Markov Chains
	MCMC Algorithms
	The Metropolis-Hastings Algorithm
	Gibbs Sampling
	Langevin Monte Carlo

	Scalability of Traditional MCMC

	Stochastic Gradient Langevin Dynamics
	Stochastic Gradient Langevin Dynamics
	SGLD with a constant step-size
	SGLD during burn-in

	Stochastic Gradient Fisher Scoring
	Motivation
	Preliminaries and Notation
	Stochastic Gradient Fisher Scoring
	Sampling from the Gaussian Approximate Posterior
	Stochastic Gradient Fisher Scoring

	Computational Efficiency
	Experiments
	Logistic Regression
	SGFS on Neural Networks
	Discriminative Restricted Boltzmann Machine (DRBM)

	Discussion

	Distributed Stochastic Gradient Langevin Dynamics
	Motivation
	Preliminaries and Notations
	SGLD on Partitioned Datasets
	Distributed Stochastic Gradient Langevin Dynamics
	Traveling Worker Parallel Chains
	Distributed Trajectory Sampling
	Adaptive Load Balancing
	Variance Reduction by Chain Coupling

	Experiments
	Simple Demonstration

	Discussion

	Large-Scale Distributed Inference for Latent Dirichlet Allocation
	Motivation
	LDA and SGRLD
	D-SGLD for LDA
	Experiments
	Perplexity
	Dataset size
	Number of workers
	Load balancing
	Number of topics

	Large-Scale Distributed Bayesian Matrix Factorization
	Motivation
	Bayesian Matrix Factorization
	Bayesian Matrix Factorization using SGLD
	Sampling from P(U,V|R,) using SGLD
	Sampling from P(| U, V) using Gibbs sampling

	Distributed Inference
	Distributed SGLD Update

	Experiments
	Algorithms and Models
	Setup
	Results

	Discussion

	Scalable MCMC for Mixed Membership Stochastic Blockmodels
	Motivation
	Assortative Mixed-Membership Stochastic Blockmodels
	Scalable MCMC for a-MMSB
	Sampling the global parameter
	Sampling the local parameters
	Scalable local updates for a large number of communities

	Experiments
	Results

	Discussion

	Conclusions and Discussions
	Bibliography
	Proofs
	Proof of Theorem 4.3.1
	Proof of Propositions and Corollaries in Chapter 5

