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Abstract

Motivation: Network diffusion and label propagation are fundamental tools in computational biology, with applica-
tions like gene–disease association, protein function prediction and module discovery. More recently, several
publications have introduced a permutation analysis after the propagation process, due to concerns that network
topology can bias diffusion scores. This opens the question of the statistical properties and the presence of bias of
such diffusion processes in each of its applications. In this work, we characterized some common null models be-
hind the permutation analysis and the statistical properties of the diffusion scores. We benchmarked seven diffusion
scores on three case studies: synthetic signals on a yeast interactome, simulated differential gene expression on a
protein–protein interaction network and prospective gene set prediction on another interaction network. For clarity,
all the datasets were based on binary labels, but we also present theoretical results for quantitative labels.

Results: Diffusion scores starting from binary labels were affected by the label codification and exhibited a problem-
dependent topological bias that could be removed by the statistical normalization. Parametric and non-parametric nor-
malization addressed both points by being codification-independent and by equalizing the bias. We identified and quan-
tified two sources of bias—mean value and variance—that yielded performance differences when normalizing the
scores. We provided closed formulae for both and showed how the null covariance is related to the spectral properties
of the graph. Despite none of the proposed scores systematically outperformed the others, normalization was preferred
when the sought positive labels were not aligned with the bias. We conclude that the decision on bias removal should
be problem and data-driven, i.e. based on a quantitative analysis of the bias and its relation to the positive entities.

Availability: The code is publicly available at https://github.com/b2slab/diffuBench and the data underlying this art
icle are available at https://github.com/b2slab/retroData

Contact: sergi.picart@upc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The guilt by association principle states that two proteins that inter-
act with one another are prone to participate in the same, or related,
cellular functions (Oliver, 2000). This cornerstone fact has moti-
vated the exploration of network algorithms on interaction net-
works for protein function prediction (Sharan et al., 2007).
Network analysis has further proven its usefulness in other compu-
tational biology problems, such as prioritizing candidate disease
genes (Barabási et al., 2011), finding modular structures (Mitra
et al., 2013) and modelling organisms (Aderem, 2005).

Network propagation is a fundamental formalism to leverage
network data in computational biology. Its theoretical basis revolves
around graph spectral theory, graph kernels and random walks
(Smola and Kondor, 2003). The central concept is that nodes carry
abstract labels that, following the guilt by association principle, are
propagated to the neighbouring nodes (Zoidi et al., 2015).
Unlabelled nodes can therefore be inferred a label based on the
available data of their neighbours. Label propagation can be defined
in several ways, such as the heat diffusion, the electrical model or
random walks with restarts (RWR), some of which lead to equiva-
lent formulations (Cowen et al., 2017). While this article tackles
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classical propagation methods, there are more recent and sophisti-
cated algorithms that can alleviate their shortcomings. Those in-
clude adaptive diffusion (Jiang et al., 2017), non-linear diffusions
for semi-supervised graph learning (Ibrahim and Gleich, 2019),
graph convolutional neural networks (Sun et al., 2020) and graph
embeddings (Grover and Leskovec, 2016).

One of the most common diffusion formulations relies on the
regularized Laplacian graph kernel (Smola and Kondor, 2003)—
examples are provided throughout this paragraph. HotNet (Vandin
et al., 2010) is a tool for finding modules with a statistically high
number of mutated genes in cancer, after propagating the labels of
mutated genes. The authors in Bersanelli et al. (2016) have found
relevant modules from gene expression and mutation data, based on
a diffusion process followed by an automatic subgraph mining.
GeneMANIA (Mostafavi et al., 2008) is a web server that predicts
gene function by optimizing a combination of knowledge networks
and running a diffusion process on the resulting network. TieDIE
(Paull et al., 2013) defines two diffusion processes in order to con-
nect two sets of genes, applied to link perturbation in the genome
with changes in the transcriptome. More generally, the predictive
power of label propagation using graph kernels has been bench-
marked in gene–disease association (Guala and Sonnhammer, 2017;
Lee et al., 2011; Valentini et al., 2014).

Some studies have pointed out biases in diffusion scores and
explored the effect of their removal. The authors of DADA (Erten
et al., 2011) have found that prioritization using RWR favours high-
ly connected genes and suggest several normalization strategies. One
of them computes a z-score that adjusts for the mean value and
standard deviation estimated from propagation scores from random
degree-preserving inputs. Another possibility is to normalize diffu-
sion scores into empirical P-values, as used in the diffusion of t-sta-
tistics derived from gene expression (Cun and Fröhlich, 2013). The
aim was to quantify robust biomarkers, whose diffusion score is un-
likely to arise from a permuted input. In the discovery of enriched
modules (Bersanelli et al., 2016), the effect of the topology has been
mitigated by combining diffusion scores with their empirical P-val-
ues. Similarly, exact z-scores and empirical P-values have been used
for pathway analysis of metabolomics data (Picart-Armada et al.,
2017b). A recent study (Biran et al., 2019) has normalized RWR
into an empirical P-value, obtained from edge rewiring. Specifically,
random degree-preserving networks have been built to re-run the
propagation and draw values from the null distributions of scores.
Another recent manuscript (Hill et al., 2019) highlights biases in cer-
tain network propagation algorithms, related to the node degree.

Overall, a variety of measures to address the bias have emerged,
but a systematic quantification and evaluation of the biases are miss-
ing. The normalization can potentially backfire, for instance by
missing highly connected nodes that are associated with the property
under study (Erten et al., 2011). The goal of this manuscript is to
provide a quantitative way to assess the presence of the bias and its
alignment with the node labels, in order to understand the impact
and adequateness of the normalization.

2 Approach

Here, we address the basic statistical properties of the normalization
of single-network diffusion scores to remove topology-related
biases. We define and quantify two sources of bias. Both are derived
from a statistical standpoint, based on the exact means and varian-
ces of the null distributions of the diffusion scores under input per-
mutation. Differences in mean values between nodes should be the
first indicator of systematic advantages: nodes with the highest
means will often be prioritized over those with the lowest means. In
their absence, differences in variances should be examined instead,
as nodes with highest spread can be more likely to reach extreme
scores. We compare classical and normalized propagation, as imple-
mented in diffuStats (Picart-Armada et al., 2017a), in data with and
without bias. The main results are derived for the commonly used
regularized Laplacian kernel, although most of them apply to other
graph kernels and, to a lesser extent, to random walks with restarts.
Special emphasis is placed on identifying scenarios under which

normalization is beneficial or detrimental and on understanding the
underlying reasons why.

3 Methods

3.1 Diffusion scores

We include seven diffusion scores that are part of the diffuStats

package (Picart-Armada et al., 2017a): fraw, fml, fgm, fbers
, fmc, fz

and fberp
. These scores are variations of the original diffusion

model with a regularized unnormalized Laplacian kernel (Smola

and Kondor, 2003). Labelled nodes are referred to as positives if

they have the property of interest, and negatives otherwise.

3.1.1 Unnormalized scores

The starting point is the fraw score, which requires a graph kernel K
(Smola and Kondor, 2003) and input vector yraw and is computed
as:

fraw ¼ Kyraw (1)

This work focuses on the unnormalized, regularized Laplacian
kernel for K, for being a widespread choice in the computational
biology literature (electrical model, heat or fluid propagation). The
values in yraw reflect the weights of each type of node: 1 for positives
and 0 for negative and unlabelled entities.fml and fgm differ from fraw

by setting a weight of �1 on negative nodes. fgm also weighs un-
labelled nodes with a bias term adapted from GeneMANIA (not to
be confused with the diffusion bias). On the other hand, fbers

meas-
ures the relative change between fraw and yraw, with a moderating
parameter �:

fbers
ðiÞ ¼ frawðiÞ

yrawðiÞ þ �
: (2)

3.1.2 Normalized scores

Normalized scores attempt to equalize nodes that systematically
show low or high scores, regardless of the input and due to the spe-
cific topology of the network. The lynchpin of normalization is the
null distribution of the diffusion scores under a random permutation
p of the labelled nodes. The null scores arise from applying fraw to a
randomized input Xy ¼ pðyrawÞ and comparing, for the ith node,
frawðiÞ to its null distribution Xf ðiÞ, where Xf ¼ KXy. An empirical
P-value can be computed through Monte Carlo trials for the ith
node on N trials:

pðiÞ ¼ ri þ 1

N þ 1
; (3)

where ri is the number of randomized trials having an equal or
higher diffusion score in node i. In order to assign high scores to
relevant nodes, the score is defined as fmcðiÞ ¼ 1� pðiÞ. We also in-
clude a parametric alternative to fmc by computing z-scores for each
node i:

fzðiÞ ¼
frawðiÞ � EðXf ðiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXf ðiÞÞ
p (4)

The expected value and variance of the null distributions are
analytically determined (see Supplementary Material S1). Thus, fz
has a computational advantage over Monte Carlo trials.

Finally, a hybrid combining an unnormalized and a normalized
score is provided, inspired by how (Bersanelli et al., 2016) moder-
ated the effect of hubs: fraw: fberp

ðiÞ ¼ �log10ðpðiÞÞfrawðiÞ.

3.2 Metrics and baselines
Two baseline methods were used. First pagerank (Page et al., 1999),
regarded as an input-naı̈ve centrality measure (default damping fac-
tor of 0.85), to measure the predictive power of a basic network
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property. Second, a random predictor, to set an absolute baseline.
Performances were quantified with two metrics: the area under the
receiver operating characteristic curve (AUROC) and the area under
the precision-Recall curve (AUPRC), as implemented in the precrec
package (Saito and Rehmsmeier, 2017). For clarity, the ranking
(ordering) of the nodes for any given score and instance was normal-
ized to lie in ½0; 1� by dividing it by the number of ranked nodes, so
that top suggestions corresponded to ranks close to 0.

3.3 Bias quantification
The reference expected value of the ith node bKl ðiÞ (equation 7) was
defined as proportional to the expected value of its null distribution
Xf ðiÞ (equation 5). Reference expected values that vary across nodes
can indicate systematic differences in the diffusion scores of such
nodes.

In the absence of differences in the reference expected value,
variance-related bias was analysed instead. The reference variance
of the ith gene bKr2 ðiÞ (equation 8) was defined as, up to an additive
constant, the base 10 logarithm of the variance of Xf ðiÞ, straightfor-
ward to obtain from the covariance matrix (equation 6). The ration-
ale is that the scores of nodes with varying dispersion measures
should not be compared directly.

3.4 Performance explanatory models
Explanatory models have found use in the formal description of dif-
ferences in performance as a function of design factors (Lopez-del
Rio et al., 2019; Picart-Armada et al., 2019). Following (Picart-
Armada et al., 2019), the trends in AUROC and AUPRC were
described through logistic-like quasibinomial models with a logit
link function, as a generalization of logistic models to prevent over
and under-dispersion issues.

Table 1 presents the main model for each case study. The cat-
egorical regressors were: method, metric (AUROC or AUPRC),
biased (refers to the signal, true or false), strat (labelled, unlabelled
or overall), array (ALL or Lym) and the parameters k, r and p_max
for the second case study. path_var_ref was quantitative, equal to
the reference pathway variance bpKr2 (equation 9). The responses
were either AUROC, AUPRC or both mixed, the latter denoted by
performance.

4 Materials

The evaluation of the diffusion scores was performed on three data-
sets of different nature, as described in Table 1: (i) synthetic signals
on a yeast interactome, (ii) pathway-based synthetic signals on a
human network and (iii) real signals on another human network.

4.1 Networks
4.1.1 Yeast network

A small yeast network was used to demonstrate the casuistic of dif-
fusion scores properties. Medium and high confidence interactions
from several sources were provided by the original study (Von
Mering et al., 2002), as found in the igraphdata R package (Csardi,
2015). It contains 2617 proteins and 11 855 unweighted edges, but

we worked only with its largest connected component (2375 pro-
teins, 11 693 edges).

4.1.2 HPRD network

The diffuse large B-cell lymphoma study, available in the R package
DLBCL (Dittrich and Beisser, 2010), contains a differential expres-
sion dataset accompanied by a human interactome network
extracted from the Human Protein Reference Database (HPRD)
(Mishra et al., 2006). The original network encompasses 9385 pro-
teins with 36 504 interactions, whose largest connected component
(8989 nodes, 34 325 interactions) was extracted to compute the dif-
fusion scores.

We derived two gene backgrounds based on expression arrays.
The first background (Lym) was taken from the expression data
from 2557 genes (2482 in the network) in the lymphoma study
(Rosenwald et al., 2002). The second background (ALL) was based
on the acute lymphocytic leukaemia array (Chiaretti et al., 2004),
available in the ALL R package (Li, 2009), encompassing 6133
genes (5921 in the network).

4.1.3 BioGRID network

The Biological General Repository for Interaction Datasets
(BioGRID) (Chatr-aryamontri et al., 2017) is a public database with
curated genetic and protein interaction from Homo sapiens and
other organisms. BioGRID was retrieved in January 2017, but only
keeping interactions dating from 2010 or older. The interactions
were weighted according to (Cao et al., 2014), under the assump-
tions that more publications about an interaction boost its confi-
dence and that low-throughput technologies are more reliable that
high-throughput ones. The network encompassed 11 394 nodes and
67 573 edges and was connected.

4.2 Datasets
4.2.1 Synthetic bias-based dataset

One-hundred biased and 100 unbiased instances of positive, nega-
tive and unlabelled nodes were generated in dataset (1) from
Table 1, by sampling positive nodes with probabilities proportional
to biased and unbiased scores. By construction, the frequencies of
the positives drawn for biased signals were positively correlated
with the reference expected value, whereas those of the unbiased sig-
nals were uncorrelated with it.

Nodes were partitioned into three equally sized pools, from
which positive nodes were drawn: (i) labelled nodes that were fed to
the diffusion methods, (ii) target nodes, the ones to be ranked and
whose ground truth was known and (iii) filler nodes that were nei-
ther target nor labelled.

For each instance, a fixed fraction of labelled nodes xe were uni-
formly sampled as positives, the rest of labelled nodes were deemed
negatives and the target and filler nodes were left unlabelled. This
input served two purposes: generate the ground truth in target
nodes, and be the input for all the diffusion scores.

To generate the ground truth in target nodes of biased signals,
the raw diffusion scores were computed from the input above. A
fixed fraction of target nodes xs was sampled with probabilities pro-
portional to their raw scores, i.e. pðiÞ / frawðiÞ, to become positives.

Table 1. Case studies for characterizing biases and benchmarking diffusion scores

Case Network Positive nodes Signal Bias type Purpose Explanatory model for hypothesis testing

(1) Yeast Synthetic Synthetic, bias-

based

Mean value Proof of concept Performance � methodþmethod:

biased þ metric

(2) HPRD KEGG pathways Pathway sub-

sampling

Mean value Background influ-

ence in bias

AUPRC � methodþmethod :

strat þ array þ k þ r þpmax þ fdr

(3) BioGRID KEGG pathways Prospective path-

way prediction

Variance Bias in a common

scenario

AUROC � methodþmethod : pathvarref

Interactions in explanatory models are denoted by a colon.

Statistical normalization on propagation scores 847



The remaining target nodes would remain negatives, completing the
ground truth. The regularized unnormalized Laplacian kernel is
endorsed by physical models that ensure frawðiÞ > 0 provided that
inputs have one or more positives and the graph is connected.
Analogously, unbiased signals were generated by sampling a frac-
tion of target nodes xs, but with probabilities roughly proportional
to the unbiased diffusion scores mc: pðiÞ / fmcðiÞ þ 1

Nþ1. By defin-
ition, the frequency of appearance of the target nodes was independ-
ent of the bias, and the small offset ensured pðiÞ > 0.

In both cases, after sampling the ground truth, the same input
was used again for all the diffusion scores, in order to rank the target
nodes and compute the corresponding AUROC and AUPRC.

4.2.2 Pathway sub-sampling dataset

Synthetic gene expression statistics were generated, based on path-
ways in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2017), and on two array-based gene backgrounds
described within the HPRD network. Genes outside the background
were hidden (unlabelled), and genes inside were given P-values for
differential expression.

Each signal derived from k random KEGG pathways. The path-
ways were assumed to be affected as a whole, but only a sampled
portion of r genes showed differential expression patterns. The P-
values of the differential expressed genes were uniformly sampled
from ½0; pmax�, whereas the rest of genes were uniform in ½0;1�, fol-
lowing a previous study (Rajagopalan and Agarwal, 2005).

For both expression arrays, genes with an FDR < 5% or 10%
within their background were used as positives, the remaining back-
ground genes as negatives and the hidden nodes were deemed un-
labelled. Notice that, by definition, this procedure generated false
positives and false negatives among the input genes.

The target genes were those belonging to the k affected path-
ways, including those with no apparent differential expression and
those among the unlabelled nodes. Methods were compared using
the AUROC and AUPRC, computed separately on labelled, un-
labelled genes and overall, on a grid of parameters: k 2 f1; 3;5g; r 2
f0:3;0:5;0:7g and pmax 2 f10�2; 10�3; 10�4g. For each combination
of parameters, N¼50 instances were simulated.

4.2.3 Prospective pathway dataset

The input lists consisted of the genes in 139 KEGG pathways from
March 14, 2011. The target genes were the newly added genes in the
same KEGG pathways in August 18, 2018 release. The 139 path-
ways had new genes in the latter release after mapping to the
network.

AUROC and AUPRC were computed on each pathway, always
excluding the input positive genes. The bias was examined at the
pathway level, assessing whether the properties of their new genes
differed from those of the rest of network genes. It was defined as
the median reference variance of its new genes minus the median ref-
erence variance of all the genes besides old and new pathway genes
(equation 9).

5 Results

5.1 Properties of diffusion scores
Some of the diffusion scores are equivalent in certain scenarios. In
the absence of unlabelled nodes and using kernels based on the
unnormalized graph Laplacian, fraw, fml and fgm lead to an identical
node prioritization. More generally, the results using only two
classes (and therefore two real values yþ > y� as weights) always
lead to the same ranking as fraw. An analogous result holds for the
weights of the positives and the unlabelled, yþ > yu, in the absence
of negative nodes.

The normalized scores fmc and fz are invariant to changes in the
weights of the positive and negative examples, regardless of the pres-
ence of unlabelled nodes and the graph kernel. This property simpli-
fies the diffusion setup and leads to weight-independent results.
Along with equations 5 and 6, this holds even if the matrix K in

equation 1 is not a kernel, like the random walk similarity matrices
in Cowen et al. (2017).

We also provide the closed form of the null expected value and
covariance matrix of the raw scores, governed by the identifiers of
the nl labelled nodes (out of n). If K contains only their correspond-
ing columns from K, and Y is the input vector yraw restricted to
them, then:

EðXf Þ ¼ lYK1nl
(5)

RðXf Þ ¼ r2
YKMnl

KT (6)

lY ¼ 1
nl

Pnl

i¼1 Yi and r2
Y ¼ 1

nl�1

Pnl

i¼1 ðYi � lYÞ2 are the mean and
variance of the labels. Mk ¼ Ik � 1

k 1k1T
k , being Ik the k�k identity

matrix and 1k the column vector with k ones.
If a graph kernel based on the unnormalized Laplacian is used,

the covariance of the null distribution (equation 6) is closely related
to the spectral properties of the labelled nodes. In particular, in the
absence of unlabelled nodes, the leading eigenvector of the null co-
variance is, up to a sign change, the Fiedler-vector, commonly used
for graph clustering (Smola and Kondor, 2003). The statistical nor-
malization is therefore endowed with a topological basis. This sheds
light on prior empirical observations that, even when the bias can re-
late to the node degree, there must be further topological factors
involved (Hill et al., 2019).

Because lY and r2
Y are multiplicative constants and inherent to

the labels, the topology-related mean value and variance references
of the ith node are defined as follows. We assume nl � 2 because if
nl 2 f0;1g there is nothing to permute.

bKl ðiÞ :¼ ½K1nl
�i1 ¼

Xnl

j¼1

Kij (7)

bKr2 ðiÞ :¼ log10 KMnl
KT

h i
ii

� �
¼ log10

Xnl

j¼1

Kij �
bKl ðiÞ

nl

 !2
0
@

1
A:

(8)

Equation 5 implies that there are two scenarios free of the
expected value bias: lY ¼ 0 (centred input), or nl ¼ n and a kernel K
based on the unnormalized Laplacian, rendering bKl constant (see
Supplementary Material S1). The ith null variance (equation 6) can
be exactly zero, either because r2

Y ¼ 0 (constant input), or because
the topology forces ½KMnl

KT �ii ¼ 0. In practice, the latter is
expected to happen in small connected components without any
labelled nodes. Both cases render the ith score constant, therefore
lacking interest, and leave fz undefined.

A dedicated analysis revealed that the statistical moments in the
yeast and the BioGRID networks were affected by edge pre-filtering
(Supplementary Material S5). When removing lower-confidence
edges, bKl tended to increase in the labelled nodes and to decrease in
the unlabelled ones (p < 10�16 in six comparisons, two-sided
paired Wilcoxon test), thus magnifying the differences between
both.

In the retrospective dataset, the reference of a given pathway P,
conceived to summarize its properties into a single number, was
defined by subtracting the median reference of its new genes,
newðPÞ to that of the genes that never belonged to it, othersðPÞ:

bpKr2 ðPÞ :¼ median
i2newðPÞ

fbKr2 ðiÞg � median
i2otherðPÞ

fbKr2 ðiÞg: (9)

The mathematical proofs of the properties and illustrative exam-
ples can be found in Supplementary Material S1.

5.2 Synthetic signals in yeast
5.2.1 Bias in diffusion scores

Supported by equation 5, the presence of unlabelled nodes origi-
nated different expected values among the nodes. We hypothesized
that fraw would be biased to favour nodes with high bKl , whereas fmc

and fz would prioritize in a more unbiased manner. Figure 1A
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confirms both trends. The data imbalance (negatives outnumbered
positives in the input) had the opposite biasing effect on fml, favour-
ing nodes with low bKl .

5.2.2 Performance

In biased signals, target nodes with higher bKl were sampled as posi-
tives more often (see Supplementary Material S2), which (i) benefit-
ted the unnormalized scores raw over z and (ii) endowed the

pagerank baseline with predictive power. Unbiased signals led to a
uniform density of positives across bKl , which (iii) was better

handled by z than by raw (Fig. 1B). Claims (i), (ii) and (iii) were stat-
istically significant for AUROC and AUPRC (Tukey’s method,
FDR < 10�10 in all cases, see Supplementary Material S2). Also,

fberp
was a good compromise between raw and z.

Based on these results, we suggest a systematic criterion to

choose whether to normalize in the general case, by assessing (i) the
presence of the expected value-related bias by checking if bKl is con-
stant among the nodes to be prioritized and (ii) the expected or

hypothetical dependence between bKl and the labels to be predicted.
In this proof of concept, differences in bKl bias were present and nor-

malization was discouraged when bKl was aligned with the positives.
If bKl is constant, bKr2 should be examined instead, see the retrospect-
ive pathway dataset.

5.3 Simulated differential expression
5.3.1 Bias in diffusion scores

Analogously to the yeast dataset, the presence of unlabelled nodes
led to differences in bKl among nodes, see Figure 2A. We hypothe-
sized that the main source of bias would arise from such heterogen-

eity, i.e. that unnormalized scores would be prone to find positives
among the highest expected values. In both arrays, the nodes belong-

ing to one or more pathways had, compared with nodes outside, (i)
larger bKl within the unlabelled genes, but (ii) lower bKl within the
labelled nodes. Overall, (iii) labelled genes showed larger bKl than

unlabelled genes. Figure 2A portrays the claims (i), (ii) and (iii) in
both arrays—the six statements were significant with p < 10�16,
two-sided Wilcoxon test (see Supplementary Material S3).

5.3.2 Performance

The performance, as predicted by the explanatory models, was influ-
enced by the background used to compute the metrics, especially for
AUPRC. Taking as reference fraw and fz, raw performed best in the
unlabelled background and overall whereas z was preferable in the
labelled background (Fig. 2B). The three claims were significant in
both arrays (Tukey’s method, p < 10�10, see Supplementary
Material S3).

Differences in performance were consistent with the expected
value-related bias: potential positives suffered from lower bKl in the
labelled genes and benefitted from greater bKl in the unlabelled part.
In views of this, the natural choices were z and raw, respectively.

To understand why raw outperformed z in overall performance,
note how by hypothesis the top candidates from raw should come
from the labelled genes due to their high bKl against the unlabelled
genes, whilst z should equalize predictions from both backgrounds.
Predictions from the labelled part were more reliable owing to the
presence of prior data on the genes (Fig. 2B). z equalized both back-
grounds, shuffling reliable and unreliable predictions, and under-
mined overall performance.

Finally, an indirect assessment of the bias (PageRank centrality)
fell short to explain performance differences in (i) and suggested
that biased scores were preferrable in the three cases, see
Supplementary Material S3. This highlights the importance of using
a precise quantification of the bias.

5.4 Prospective pathway prediction
5.4.1 Bias in diffusion scores

Here, bKl was constant among all the nodes, as a consequence of
using the unnormalized Laplacian without unlabelled nodes (see
Supplementary Material S1). Differences still existed in terms of bKr2

(Fig. 3A), implying that the normalization would make a difference.
However, the interpretation of the normalization impact was not

as straightforward as for the expected value bias. With the paradigm
of the z-scores z, deviations from the expected value exacerbate
under small variances and shrink under large variances. Notice how
this does not imply the natural hypothesis that nodes with larger
variances (respectively smaller) must drop (respectively rise) in the
ranking, because ranking modifications take place around the mean.

Fig. 1. Analysis of biased and unbiased synthetic signals on the yeast network. Nodes showed a mean value-related bias, see Supplementary Material S2. (A) Effects of the

mean value bias in on the average node ranking, under biased and unbiased signals. Lines correspond to Generalized Additive Models with y � sðx; bs ¼ ��cs00Þ and 0.95 confi-

dence intervals. raw and ml tended to find positives with high and low bKl , respectively. z found positives in a more uniform manner. (B) Performance in terms of AUROC and

AUPRC. The lower and the higher hinges represent the first and third quartiles, with the median indicated by the intermediate bar. The whiskers extend up to 1.5 times the

interquantile range from the box; more distant data points are displayed as outliers. raw was better suited for biased signals, for which the pagerank baseline also outperformed

a random predictor. Conversely, z worked best on unbiased signals
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Figure 3B reflects how z actually recovered more high-variance posi-
tive nodes than raw.

Similarly to prior observations from Figure 1A, the normalized
scores tended to find the positives in a less-biased manner. Positive
nodes with a high variance were rarely found by raw, whereas z dis-
tributed them more evenly along the ranking (Figure 3B). This im-
provement came at the cost of missing positives with lower
variances.

5.4.2 Performance

The properties of the diffusion scores helped simplify this case study,
as fml, fgm and fbers

were left out for being redundant with fraw. fml

and fgm for using the unnormalized Laplacian without unlabelled
nodes, and fbers

because the genes to be prioritized were always
labelled as negative in the input (see Corollary 1 and Proposition 3
in Supplementary Material S1).

The prospective prediction of pathway genes was a challenging
task, given the low predicted AUPRCs for all the methods (see
Supplementary Material S4). On the other hand, AUROC conveyed
a richer view of the differences between methods. The explanatory
model (Fig. 3C and D) showed that unnormalized scores were more
affected by the presence of bias, reflected in the larger magnitude of
their interaction terms (�1.387 for raw against �0.484 for z,
p < 10�4, Tukey’s method). Overall, the casuistic among the bias
of new pathway genes favoured z over raw (FDR ¼ 5:39 � 10�9,
two-sided paired Wilcoxon test). This conclusion did not apply to
early retrieval, as it could not be proven for AUPRC (FDR ¼ 0:701).

The negative sign of the interaction terms was also insightful: all
the proper methods encountered more difficulties in finding loosely
connected genes. This was expected, since there is less network data
involving such genes, translating into unreliable predictions.

The impact of removing lower confidence edges before the
propagation was explored in Supplementary Material S4. Moderate
and aggressive filtering strategies (confidence thresholds of 0.3 and
0.9) created isolated nodes and lowered the AUROC of raw and z,
justifying the default option of no filtering. Without accounting for
the sign, the impact of deciding to normalize was comparable to
that of switching to the aggressive filtering (95% confidence

intervals of [0.502, 0.747] and [�0.73, �0.432] in logit scale). This

suggests that considering the statistical normalization should be on
par with other standard decisions.

6. Conclusion

In this study, we ratified that diffusion scores are biased due to the

graph topology. We introduced two direct quantifications of the
bias, in terms of the expected value and variance of the null distribu-
tion of the diffusion scores under input permutation. We analysed

the benefits and pitfalls of using unbiased, statistically normalized
scores and discussed several choices of the label weights when defin-

ing the diffusion process.
We proved equivalences between scores under certain condi-

tions, helping simplify the setup of the diffusion, and discovered that
normalized alternatives are invariant under label weights changes.
We found an explicit link between principal directions of the null

covariance and the spectral features of the network.
We applied the diffusion-based prioritization on three scenarios:

two with a mean value-related bias and one with a variance-related
bias. Class imbalance and node topology had an impact in unnor-
malized scores, whereas normalized scores were more robust to both

phenomena given their weight-independent definition. The paramet-
ric normalization requires no permutations compared to Monte

Carlo trials and performed equally or better, providing a convenient
way to normalize. While mean value bias was straightforward to
characterize, variance bias was less intuitive albeit of noticeable im-

pact. In general terms, the statistical normalization is advised if the
positives are not aligned with the bias, and discouraged otherwise.

The statistical background, i.e. which nodes are permuted, is a key
piece that should be clearly stated in every application. Bias assess-
ment should be carried through its direct quantification instead of

indirect indicators, which can be misleading.
We conclude that the statistical normalization can have a notice-

able impact, be beneficial or detrimental, and the decision should
follow from the dependence between the node bias and the hypo-
thetical or desired properties of the new positives. Topology-related

Fig. 2. Performance in the DLBCL dataset. (A) Expected value-related bias. Within the labelled genes of both arrays, those in pathways had lower bKl that those outside.

Within the unlabelled genes, this tendency was inverted. Overall, labelled genes had higher bKl than unlabelled genes. (B) Predicted AUPRC (0.95 confidence interval) using the

explanatory model in Table 1 and Supplementary Material S3. Besides diffusion scores, three baselines were included: original (ranking by the P-values), pagerank and ran-

dom. In both arrays (ALL and Lym), raw outperformed z in unlabelled nodes and overall, while z was preferable in the labelled genes
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bias can manifest in different ways (mean value- or variance-related
bias) and each instance should be properly characterized.
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Fig. 3. Analysis of the prospective dataset. (A) Pathway-wise comparison of new genes against the remaining genes outside the pathway, in terms of bKr2 . Several pathways

showed significant differences in both directions (two-sided Wilcoxon test). The x axis was jittered for clarity. (B) Ranking of the positives using raw and z. Each data point is

the relative ranking of a positive gene in one of the pathways, i.e. before computing pathway-level metrics. Lines correspond to a quasi-logistic fit with a 0.95 confidence inter-

val. raw scores were more sensitive at low standard deviations, whereas z stood more uniform. (C) Coefficients of the model AUROC � methodþmethod : pathvarref with a

0.95 confidence interval, where the interaction term involved the variance bias. The main effect of raw was not depicted because it was the reference level of method. (D)

Predicted AUROC across all the pathways, as a function of the bias. z was less sensitive to the bias, due to its interaction term in (C) being closer to 0. Lines correspond to a

quasi-logistic fit with a 0.95 confidence interval
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