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Optimal and human eye movements to clustered low value cues 
to increase decision rewards during search

Miguel P. Eckstein, Wade Schoonveld, Sheng Zhang, Steve Mack, and Emre Akbas
Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 
93106-9660

Abstract

Rewards have important influences on the motor planning of primates and the firing of neurons 

coding visual information and action. When eye movements to a target are differentially rewarded 

across locations, primates execute saccades towards the possible target location with the highest 

expected value, a product of sensory evidence and potentially earned reward (saccade to maximum 

expected value model, sMEV). Yet, in the natural world eye movements are not directly rewarded. 

Their role is to gather information to support subsequent rewarded search decisions and actions. 

Less is known about the effects of decision rewards on saccades. We show that when varying the 

decision rewards across cued locations following visual search, humans can plan their eye 

movements to increase decision rewards. Critically, we report a scenario for which five of seven 

tested humans do not preferentially deploy saccades to the possible target location with the highest 

reward, a strategy which is optimal when rewarding eye movements. Instead, these humans make 

saccades towards lower value but clustered locations when this strategy optimizes decision 

rewards consistent with the preferences of an ideal Bayesian reward searcher that takes into 

account the visibility of the target across eccentricities. The ideal reward searcher can be 

approximated with a sMEV model with pooling of rewards from spatially clustered locations. We 

also find observers with systematic departures from the optimal strategy and inter-observer 

variability of eye movement plans. These deviations often reflect multiplicity of fixation strategies 

that lead to near optimal decision rewards but, for some observers, it relates to suboptimal choices 

in eye movement planning.
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1. Introduction

The varying quality of visual processing across the visual field prompts many animals (Land 

& Nilsson, 2002) to move their eyes to explore the visual environment to make decisions 

about the presence, location and identity of sought objects (targets). For example, for 

humans the visual periphery is limited by reduced spatial resolution (Rovamo, Leinonen, 

Laurinen, & Virsu, 1984), increased crowding effects (Pelli, 2008) and position uncertainty 

(Michel & Geisler, 2011). Thus, scrutinizing the scene with eye movements can improve 

decision accuracy during search. The primate brain has evolved a variety of coding schemes 

and strategies to succeed at search. The human brain utilizes knowledge about target and 

distractor physical properties (Eckstein, Beutter, Pham, Shimozaki, & Stone, 2007; Findlay, 

1997; Malcolm & Henderson, 2009; Peelen & Kastner, 2011; Tavassoli, Linde, Bovik, & 

Cormack, 2009), contextual information and cues predictive of the target locations in the 

environment (Brockmole, Castelhano, & Henderson, 2006; Castelhano & Heaven, 2010, 

2011; Chun & Jiang, 1998; Droll, Abbey, & Eckstein, 2009; Eckstein, Drescher, & 

Shimozaki, 2006; Hayhoe & Ballard, 2005; Jovancevic-Misic & Hayhoe, 2009; Mack & 

Eckstein, 2011; Neider & Zelinsky, 2006; M. S. Peterson & Kramer, 2001; Preston, Guo, 

Das, Giesbrecht, & Eckstein, 2013; Torralba, Oliva, Castelhano, & Henderson, 2006), and 

oculomotor plans (Chen & Zelinsky, 2006; He & Kowler, 1989; Kowler, 2011; Najemnik & 

Geisler, 2005; Zelinsky, 1996) to optimize the probability of finding the searched targets.

Rewards have potent effects on the behavior (Chelazzi et al., 2014; Stritzke, 

Trommershäuser, & Gegenfurtner, 2009; Sullivan, Johnson, Rothkopf, Ballard, & Hayhoe, 

2012; Theeuwes & Belopolsky, 2012; Trommershäuser, Glimcher, & Gegenfurtner, 2009) 

and firing of neurons of animals (Gold & Shadlen, 2002; Platt & Glimcher, 1999; Sugrue, 

Corrado, & Newsome, 2004; Trommershäuser et al., 2009). When two perceptual tasks have 

differential implicit rewards, humans adapt their gaze to the reward structure (Sullivan et al., 

2012). When the environment during visual search presents a complex distribution of 

rewards associated with directing the gaze at various locations or targets, humans tailor their 

oculomotor planning (Liston & Stone, 2008; Navalpakkam, Koch, Rangel, & Perona, 2010) 

to try to maximize the total amount of rewards gathered by biasing their saccades towards 

the location/object with higher reward. If the reward is earned when the observer fixates a 

target that is hard to detect or discriminate, then humans and animals use an optimal 

Bayesian strategy. On each trial the optimal Bayesian strategy is to use the product of the 

reward of each location (Liston & Stone, 2008; Navalpakkam et al., 2010), the prior 

probability that each location contain the target, and the sensory evidence that the target be 

present at the location to make a fixation to the possible target location with the maximum 

product (saccade to maximum expected value; sMEV; Figure 1a). Indeed, this is optimal if 

the reward to the organism requires correct fixation of the target location such as in many 

laboratory tasks (Liston & Stone, 2008; Stritzke et al., 2009). However, in the real world, an 

eye movement to an object (e.g., a fruit) is seldom followed by an immediate reward. It is a 

post-eye movement correct decision to localize the object and to approach it that can result 

in obtaining the reward. The goal of eye movements is not to fixate an object but to gather 

visual information to support follow-up decisions or actions (Najemnik & Geisler, 2005). An 

ideal reward searcher (IS, Figure 1a) considers foveating all possible locations and calculates 
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the expected reward of a decision following the fixation. The ideal reward searcher takes 

into consideration not only target locations, reward structure, and sensory evidence for target 

presence but also includes knowledge of the display configuration and the varying target 

detectability across retinal eccentricities (visibility map; Figure 1b; (Najemnik & Geisler, 

2005) and see Legge, Klitz, & Tjan, 1997; Legge, Hooven, Klitz, Stephen Mansfield, & 

Tjan, 2002; Peterson & Eckstein, 2012; Renninger, Coughlan, Verghese, & Malik, 2005 for 

related models). In many circumstances, the IS will make eye movements to the possible 

target location with highest expected value like the sMEV model (Najemnik & Geisler, 

2009; Zhang & Eckstein, 2010), yet for other scenarios the models’ predictions will diverge.

There have been few studies investigating how rewarding decisions influences human eye 

movements plans (but see, Ackermann & Landy, 2010, 2013; Eckstein, Schoonveld, & 

Zhang, 2010), how the fixation changes impact the total rewards gathered, and how human 

behavior compares to that of an ideal reward searcher that takes into account the distribution 

of rewards and the foveated nature of the human visual system. Ackerman and Landy (2013) 

have shown that inhomogeneous rewards can influence human eye movements, but that their 

strategies are suboptimal relative to an ideal reward searcher. The study did not dissociate an 

eye movement strategy consistent with an ideal reward searcher (IS) from a saccade to 

maximum expected value model (sMEV).

In this paper, we first evaluate whether humans modify their eye movement strategies to 

increase rewards when only the follow-up perceptual decision is rewarded (experiment 1). 

We compare human fixations and decisions to an ideal reward searcher and a model that 

makes eye movements to the location with highest expected value (sMEV). In experiment 2, 

we designed a search display configuration with four clustered low reward target locations, 

which dissociates eye movements of the two models, and assess whether human eye 

movement plans are consistent with saccades to the highest expected value (sMEV) or to 

locations that maximize decision rewards (IS). In experiment 3, we vary the reward 

assignments but maintain the spatial configuration of experiment 2 so that the ideal reward 

searcher frequently fixates the high reward locations. Experiment 3 serves to verify that 

human eye movements towards the clustered cues (experiment 2) are not a fixed strategy 

irrespective of the optimality of such oculomotor plans. Finally, we evaluate models with a 

variety of eye movement strategies in experiment 2 and 3 and suggest that for some displays 

different fixation distributions can lead to near-optimal decision rewards and thus might 

explain why humans adopt variable strategies for such displays.

2. Search task

We used an m-alternative forced choice localization task in which a target (high contrast 

vertical Gabor) appeared in one of m (m =5 for experiment 1 and m=6 for experiment 2 and 

3) locations with equal probability. The remaining m-1 locations contained lower contrast 

vertical Gabor elements. During the brief presentation for the display, the observer searched 

(with no eye movement restrictions) for the higher contrast Gabor target and after the 

presentation of a mask, the observer chose a location for their final perceptual decision. 

Feedback is provided about the correct target location after the trial ends. The associated 

gained reward points for that trial and the entire experiment are displayed. The contrasts of 
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the Gabor elements were independently perturbed with Gaussian contrast noise every 25 ms 

(see methods for theoretical justification). Circular pre-cues (of different colors or the same 

color) around the possible target locations indicated the reward points associated with 

finding the target at that location (see methods for more details). The spatial configuration of 

the cues around a circle remained constant but rotated randomly from trial to trial. We 

informed observers that their average points per trial relative to other participants would 

determine a percentage of total lottery tickets assigned to them for a lottery of a $ 100 prize.

3. Theory

In this section we outline the two main models of eye movements evaluated: the saccade to 

maximum expected value model and the ideal searcher. For each trial, the two models 

generated eye movements, temporally integrating visual information up to 75 ms before 

saccade generation, which is consistent with the information driving saccade planning in 

humans (Caspi, Beutter, & Eckstein, 2004; Ludwig, 2009).

Saccade to maximum expected value (sMEV)

The sMEV model is a natural extension of the saccadic targeting model (or maximum a 

posteriori probability, MAP, Eckstein, Beutter, & Stone, 2001; Najemnik & Geisler, 2008; 

Rao, Zelinsky, Hayhoe, & Ballard, 2002) which directs its eye movement to the possible 

target location with highest sensory evidence for the presence of the target. The sMEV 

model extends the MAP model by taking into account the value of rewards, which is 

integrated with sensory evidence, and like the MAP model only fixates possible target 

locations. The sMEV model directs its saccades on each trial towards the location (among 

the M possible target locations) with the highest product of the reward of each location, υi 

(Liston & Stone, 2008; Navalpakkam et al., 2010), the prior probability that each location 

contain the target, πi, and the sensory evidence that the target be present at the location 

(likelihood ratio LR; (Beutter, Eckstein, & Stone, 2003; Green & Swets, 1989; Navalpakkam 

et al., 2010). The next eye movement, T+1, is to the target location, k*, with the maximum 

product (Figure 1a):

ksMEV
∗ (T + 1) = arg max

i
viPk(T), i = arg max

i
viπi ∏

t = 1

T
LRk(t), i (1)

where Pk(T),i is the posterior probability of the target being at the ith location given the 

current fixation at k(T) and is the product of the likelihood ratio, LRk(t),i, and the prior 

probability (πi). For each fixation, the likelihood ratio for each ith location is given by:

LRi =
pi(xi ∣ s)
pi(xi ∣ n) (2)

where pi(xi| n) and pi(xi|s) are the probability density functions (pdf) modeling the 

likelihoods of the responses (xi) given the noise only (n) and the target (s). For the images in 
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the current paper, the targets and distractors were Gabor elements with contrast perturbed by 

Gaussian random variables. Thus, all probability density functions can be described by 

Gaussian functions (N(μ, σ)) where the target’s pdf has a larger mean:

pi(xi ∣ s) N (dk(t), i′ , 1) and pi(xi ∣ n) n(0, 1)

The index of detectability, d′k(t),i, is for the ith possible target location and for a retinal 

eccentricity given by fixation at k(t).

The term Π LRk(t),i, (Equation 1) for the ith location after T eye movements is the product of 

likelihood ratios from previous fixations and assumes statistical independence. For the case 

of a multiple forced choice localization task, where the stimuli have Gaussian contrast noise, 

taking the logarithm of the posterior probability, Equation 1 becomes (see Appendix for 

derivation, also Green & Swets, 1989)

ksMEV
∗ (T + 1) = arg max

i
log (viπi)

prior × reward

+ ∑
t = 1

T
dk(t), i′ rk(t), i − 1

2(dk(t), i′ )2

sensory evidence

(3)

The saccade endpoint for the T+1 saccade is chosen from the possible target locations (arg 

max across i) by summing the log-likelihood ratios (sensory evidence) across previous 

fixations and the logarithm of the product of the ith location’s prior probability (πi) and the 

reward associated with that location (υi). The term labeled sensory evidence (log-likelihood 

ratio) for each ith location consists of two terms. The first term is calculated by taking the 

product of the internal response of the model to the stimulus (rk(t),i, which is the result of a 

linear template operation on the Gabor stimulus for a given retinal eccentricity determined 

by the, k(t), fixation) for a given ith location and the expected mean response elicited by the 

target (d′k(t),i) at an eccentricity given by k(t) fixation). The second term subtracts half the 

squared target detectability (1/2 d′k(t),i; see Appendix A for derivation).

3.1. Ideal Reward Searcher

An ideal reward searcher (Figure 1a) considers foveating all possible locations in the display 

and calculates the expected decision rewards based on the possible target locations, reward 

structure, the sensory evidence for target presence and varying target detectability across 

retinal eccentricities (visibility map; Figure 1b; Najemnik & Geisler, 2005 and see Legge, 

Klitz, & Tjan, 1997; Legge, Hooven, Klitz, Stephen Mansfield, & Tjan, 2002; Peterson & 

Eckstein, 2012; Renninger, Coughlan, Verghese, & Malik, 2005 for related models). An 

ideal reward searcher chooses as the next fixation the location (k*
IS(T+1)) which maximizes 

the accrued decision reward (see Appendix A for derivation)1 taking into consideration the 

display configuration, the visibility of the target across retinal eccentricities, the sensory 

1As with Najemnik and Geisler (2005), the model looks at one fixation at a time and does not evaluate all combinations of saccades.
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evidence supporting the presence of the target, and the rewards associated with finding the 

target at each location:

kIS
∗ (T + 1) = arg max

k(T + 1)
∑
i = 1

m
Pk(T), iRMk(T + 1), i (4)

where, Pk(T),i is the posterior probability at location i for fixation k(T) (see Equation1) and 

RMk(T+1),i, is an element in a reward map (Figure 1c) describing the expected value of 

decision rewards given that the next fixation is k(T + 1) and that the target location is i, and 

considering the sensory evidence collected. The summation is over all possible m target 

locations. RMk(T+1),i, is given by the probability that the product of reward (υi ) and 

posterior probability for the ith location exceed that of the other locations given the 

hypothesis that the target is at location i (Hi), multiplied by the associated reward to that 

location (υi):

RMk(T + 1), i = viProb viPk(T + 1), i ≥ v1Pk(T + 1), i, ⋯, viPk(T + 1), i ≥ vmPk(T + 1), m ∣ Hi (5)

For the case of statistically independent Gaussian contrast noise, the reward map in Equation 

5 can be written as:

RMk(T + 1), i = vi∫ ϕ yk(T + 1), i ∏
j ≠ i

Φ yk(T + 1), i + ∑
t = 1

T
yk(t), i − yk(t), j + log

viπi
v jπ j

dyk(T + 1)

(6)

where ϕ is the normal probability density function and Φ is the normal cumulative density 

function. Also, the variables yk(t),i and yk(t),j are the logarithm of the likelihood ratios 

computed at the ith location (see Appendix A for detailed expressions).

3.2. Modeling alternative eye movement strategies

Aside from the sMEV and IS models we also evaluated the decision rewards of eye 

movement strategies associated with different relative frequencies of fixations to different 

reward cues. To manipulate the frequency of fixations to various cues, we varied the rewards 

(νi) used by the sMEV model to plan saccades (Equation 1). For example, a ν1 = 1 and νi = 

0 for all i≠ 1 would result in the model making all eye movements to a single reward cue. 

Whereas a ν1 = 0.5 and ν2 = 0.5, and νi = 0 for all i≠ 1,2 would result in the model making 

half the eye movements to one cue and the other half to another reward cue. Note that the 

decision rewards assigned for correct target localizations for these simulations are specified 

by the task rewards and only the models’ internal reward values ruling sMEV’s saccade 

planning are manipulated. These simulations allow us to evaluate how alternative eye 

movement strategies diminish decision rewards below those achieved by optimal eye 

movement planning.
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3.3. Perceptual Decisions

For all models, the final perceptual decision about the target location was obtained by 

combining the prior probability πi, the reward value vi, and the likelihood ratios LRk(t)i, for 

each possible target location across all fixations and choosing the location with the highest 

expected reward (or equivalently sum of logarithms):

argmax
i

viPk(T), i = argmax
i

viπi ∏
t = 1

T
LRk(t), i (7)

All eye movement models integrate information ideally across fixations by multiplying 

statistically independent samples (external noise refreshed every 25 ms) of the likelihood 

ratio across fixations.2 Although the computation to make perceptual decisions is the same 

for the IS and the saccadic targeting model (sMEV), the actual values of the decision 

variables are different across models because their different fixation strategies lead to 

different gathered responses and likelihood ratios. Average reward of the perceptual decision 

in localizing the target was calculated for each model by tallying the outcome reward of the 

model’s perceptual decisions over a finite set of trials (20,000).

3.5 Parameters of the eye movement models

All models require as inputs a function that describes the detectability of the target as a 

function of eccentricity (visibility map). Here, we measured the ability to detect the contrast 

increment of the Gabor as a function of eccentricity in separate psychophysical studies (see 

methods). A Gaussian function was used to fit the d′ vs eccentricity function for each 

individual subject. The model predictions were specific to each observer, using their 

observer’s visibility map. We only obtained a 1-D d′ vs eccentricity function although 

studies have shown that anisotropies are present in human visibility maps (Abrams, Nizam, 

& Carrasco, 2012; Carrasco, Evert, Chang, & Katz, 1995; Najemnik & Geisler, 2005). 

However, given that our reward assignments varied across trials in their location, we 

simplified the model by assuming a single 1-D visibility map. There were

4. Psychophysical Studies

4.1. Experiment 1: Strategizing eye movements to increase search decision rewards

The first study manipulates the rewards awarded to the observer for correctly localizing the 

target at different locations (Figure 2, top left). In one condition, all locations had associated 

values of 17.4 for correct localization for each possible target spatial location. In the second 

condition, the reward values were 1, 10, 1, 25, and 50 points. In the first study, three 

observers searched in a briefly presented display (650 ms) for a high contrast luminance 

Gabor target among dimmer Gabor distractors in one of five locations (equal probability; 

forced choice paradigm; Figure 1c). A brief presentation was used to ensure that the eye 

2We temporally refreshed the external noise to make our model assumption of statistical independence across fixation more likely to 
be valid. We also assume that the dominating eccentricity dependent internal noise is proportional to the external noise (Burgess & 
Colborne, 1988) and follows the same temporal statistics as the external noise. no fitting parameters for the models that were adjusted 
to the multiple eye movement search data (Experiments 1 and 2).
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movement strategies had an important impact on gathered rewards. Highly visible circular 

pre-cues indicated the reward obtained if a target was correctly localized in that cue-position 

(Figure 1c). A response screen was presented after a mask and observers chose a target 

location using the mouse. Critically, in one condition, correct target localization at each 

black circle cue was associated with the equal reward (17.5 points; Figure 2a) while in a 

second condition the rewards were unequal across different color cue locations (1 through 50 

points; Figure 2a). In the unequal reward condition the configuration of colored cues was 

kept constant across trials but chosen from eight random rotations.

4.1.1. Methods

Participants: Three naive observers participated in each search task. All observers were 

between the ages of 18 and 27. Observers had normal or corrected vision.

Apparatus: Stimuli were viewed binocularly on a color Dell CRT monitor at a resolution of 

1024×768 pixels with a refresh rate of 85Hz. The luminance vs. gray level relationship was 

linearized (OptiCal software by ColorVision, Inc.) with a maximum luminance of 50.0 

cd/m2.

Eye Movement Recording: An infrared video-based eye tracker sampling at 250 Hz 

(Eyelink I, SMI/SR Research Ltd., Osgoode, ON, Canada) was used to measure gaze 

position of the left eye. At the beginning of each session, calibration and validation were 

performed by using nine black dots that were arranged in a 16° by 16° grid. A head camera 

compensated for small head movements. In addition, observers were positioned on a chin 

rest and instructed to hold their head steady. Saccades were detected when both eye velocity 

and acceleration exceeded a threshold (velocity greater than 35°/s; acceleration greater than 

9,500°/s2). The saccade terminations were detected when either the velocity or acceleration 

dropped below the thresholds.

Stimuli: The target and the distractors were Gabor patches with a full width at half 

maximum of 0.632° and a spatial frequency of 9 cycles/degree. Their luminance contrast 

amplitudes were randomly changed every 25 ms by sampling from separate normal 

distributions for the target and the distractors. The independent contrast noise was used to 

make the statistical independence assumption in the modeling (see modeling) more likely to 

be valid. Both target and distractor distributions had a standard deviation of 2.94 cd/m2 (root 

mean square contrast: RMS = 0.118). The target’s mean peak amplitude was 38.7 cd/m2 

(RMS = 0.548) and that of the distractors was 35.8 cd/m2 (RMS = 0. 432). Possible target 

locations were evenly spaced (separated by angles of 72°) along an imaginary circle with an 

eccentricity of 9.3°. Each target location was enclosed by a circle with a diameter of 2.5° 

and a thickness of 0.12°. For equal reward trials, all circles were black and the reward was 

17.4 points. For unequal reward trials, each circle was a different color (red, green, blue, 

yellow and magenta). The circle configuration was randomly rotated from trial to trial but 

maintained their spatial relationship to one another (clockwise reward values were 1, 10, 1, 

25, and 50 points). The assignments of colors to reward values were randomized across 

participants but the spatial arrangement of rewards was kept constant.
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Procedure: Observers were instructed that the goal of this task was to earn as many points 

as possible and that they would only receive points whenever they correctly localized the 

high contrast target Gabor. They were also informed that their average points per trial 

relative to other participants would determine a percentage of total lottery tickets assigned to 

them for a lottery of a 100 $ prize. Observers participated in 6 blocks of 100 trials as 

practice. Following, observers performed twenty 100 trial blocks, alternating blocks between 

equal and unequal reward conditions. At the beginning of each block, the running total of 

points for all observers was displayed. At the beginning of each trial, the observer fixated a 

small circle in the center of the screen and pressed the space bar to initiate the trial. A 

fixation cross and empty circles (pre-cues at each possible target location) were displayed 

for a random time ranging from 1 and 1.3 seconds. During the initial fixation, the trial was 

aborted if the observer moved their eyes more than 1.1° from the fixation cross. The fixation 

cross then disappeared and the four distractor Gabors and one target Gabor appeared within 

the empty circles. Target and distractors remained present for 650 ms. Observers were free 

to move their eyes during the search task. The display was then replaced with a white noise 

mask for 1 second followed by a response screen that consisted of the five empty circles. 

Observers selected a choice for target location by placing the mouse at a possible target 

location and clicking. Following the response, a small white dot was presented to indicate 

the correct target location while another screen indicated the points received on that trial and 

the total accrued points in the block of trials. This and all studies in the paper were approved 

by the UC Santa Barbara Human Subjects Committee and conducted in accordance with the 

Code of Ethics of the World Medical Association (Declaration of Helsinki).

Measurement of human visibility maps

Procedure: After the eye movements study, observers performed a 2 interval forced choice 

(IFC) discrimination task designed to measure their ability to discriminate the target Gabor 

from the distractor Gabor at various retinal eccentricities. They performed eight sessions of 

240 trials. Each session consisted of eight blocks of 30 trials at each of the eight possible 

retinal eccentricities (0°, 2°, 4°, 8°, 10°, 14°, 19°) for the Gabor elements. The order of 

eccentricity blocks within a session was randomized. The contrast amplitudes were also 

sampled independently every 25 ms as in the search experiments to ensure that the visibility 

maps measured were valid for the search experiment.

At the beginning of each trial observers fixated a small central circle and pressed the space 

bar to initiate the trial. A fixation cross then appeared on the screen and observers were 

instructed to move their eyes to the cross. Observers were allowed 280ms to move their eyes 

to the fixation cross or the trial would be aborted. The trial was also aborted if they moved 

their eyes more than 1.1° away from the fixation cross at any point during the trial. The 

fixation cross appeared at different random positions along the semi-circumference of an 

invisible circle centered on the Gabor patch with a different radius matching the desired 

retinal eccentricity. Half the measurements were made in the right visual field and the 

remaining half in the left visual field. Given that the search display configuration rotated, we 

assumed, for simplification, an isotropic visibility map and averaged all measurements 

across positions for each retinal eccentricity. Gabor patches were displayed for 125ms. After 

a 500ms inter-stimulus interval a second Gabor was displayed for another 125ms. The 

Eckstein et al. Page 9

Vision Res. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presentation time was chosen to approximately match the visual information processing time 

preceding a saccade (median latency of 200 ms minus 75 ms.). One of the intervals 

contained the bright Gabor while the other presented a dimmer distractor Gabor. Observers 

indicated the interval containing the brighter Gabor. Feedback was provided about the 

correctness of each trial’s decision. For the foveal (eccentricity = 0°) condition we used an 

empty circle as a fixation point to minimize masking effects. The 2-IFC proportion correct 

responses were transformed to an index of detectability using the classic signal detection 

transformation (Green & Swets, 1989) assuming equal variance and unbiased selection of 

each of the alternatives: Pc = ∫
− ∞

+ ∞
g(x − d′)G(x)dx where g(x−d′) is the probability density 

function for a Gaussian distribution and G(x) is the Gaussian cumulative probabilities. This 

is the general MAFC formulation that for the special case of 2-IFC can be reduced to: 

Pc = G( − 1
2d′). For each observer the d′ vs. retinal eccentricity curve was fit with a 

Gaussian function (see Figure 1) centered at zero eccentricity and with the standard 

deviation and the peak amplitude as fitting parameters.

Statistical analysis of frequency distributions of fixations: Model and human eye 

movements can be compared using various methods. For example, one can compare the 

actual spatial distribution of fixations. Although this in principle might seem the most 

adequate comparison, human saccades typically undershoot their goal (hypometric saccades) 

and are also subject to motor noise. Here, we concentrate on comparing the frequency of 

fixations towards various locations (Droll et al., 2009; Navalpakkam et al., 2010) and how 

these frequencies are influenced by reward configurations. We calculated the distance from 

each fixation to the center of all possible target locations and assigned the fixation to the 

location with the minimum distance (Eckstein et al., 2001; Findlay, 1997). Fixations within 

2 degrees of initial central fixation were discarded from the analysis and amounted to less 

than 1 % of all fixations. Frequency distributions for human observers were compared to that 

of the computational search models using a χ2 test and the associated p-values. Statistical 

comparisons of single frequencies across reward conditions were done using simple 

parametric t-tests.

4.1.2. Results

Eye movement analysis: Model predictions for the sMEV model (equation 1) and the IS 

(equation 4) were generated for each observer using the separate two interval forced choice 

psychophysical measurements of how the detectability of the target degraded with retinal 

eccentricity (visibility map) and no fitting parameters. Figure 2 shows the distribution of 

saccades across locations for both models based on subject 1’s (S1) visibility map for the 

equal and unequal reward conditions (see Figure A.1. in the Appendix B for S2 and S3 

model predictions which are very similar to those for S1). The numbers next to each location 

in Figure 2 correspond to the percent of 1st saccades directed to each reward cue.3 Figure 3 

shows the percent of saccades for each reward cue for first and second saccades of models 

3We analyzed the accuracy and frequencies based on target spatial location (upper right vs. lower left) rather than cues and did not 
find any systematic differences and thus for the remaining of the paper we present results averaged across spatial locations of the 
target.
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and human observers. Figures 2 and 3 show that, for the equal reward condition, the 

frequency of 1st saccades towards each possible target location did not differ across locations 

for both models and humans (χ2 –test for frequencies; S1: p = 0.48; S2: p = 0.051; S3: p 

=0.58; Figures 2 and 3). A similar pattern was observed for the 2nd saccades (Figure 3). For 

the unequal reward condition and the associated visibility maps, both models resulted in an 

increased number of saccades being directed towards the high-reward locations (50 and 25 

points) for the 1st and 2nd saccades. However, the frequency of first saccades towards the 

highest reward cue was more pronounced for the sMEV model (see Figure 2 and 3; 

percentage of saccades were 88.3, 96.9 and 97.8 % for model predictions specific to each 

observer) while the frequencies were more evenly distributed between the two highest 

reward locations for the ideal reward searcher and human observers (Figure 2 and 3).

All subjects also showed biasing of 1st and 2nd saccades towards high-reward locations 

(frequency towards the two highest reward locations vs. each of the low reward locations: p 

< 0.001 for S1, S2, S3).4 However, the 3rd observer (S3) showed a greater percentage of 

saccades directed to the three lower reward locations (S3 = 16.2 % vs. S1 = 4.1%; S2 = 

1.9 %; Figure 2 and 3) than the models and other human observers. A comparison between 

1st saccade frequencies for the human observers and the IS model for the unequal reward 

condition resulted in significant differences for S3 (p < 0.001), but did not reach significance 

for S2 (p = 0.058) nor S1 (p=0.148). For all three observers the frequency distributions of 1st 

saccades were different from those of the sMEV model (χ2 – test for frequencies: p < 

0.001).

Comparison of earned points per trial: Figure 4a compares the average points per trial 

gathered by the observers in the experiment to that collected by the models. If observers 

disregarded the reward distribution structure in their decision making process, then the total 

points gathered per trial should remain constant across both equal and unequal reward 

conditions. However, all human observers collected significantly more points per trial for the 

unequal reward condition (S1: p < 0.001; S2: p =0.006; S3: p= 0.031). Figure 4a also shows 

the points/trial for the sMEV and IS model using the visibility map of each individual and no 

fitting parameters. Perceptual decisions for both models were obtained by choosing the 

location with the highest product of posterior probability and value and ideally integrating 

all information across time and saccades (see Theory and Appendix A). Both models benefit 

greatly in the number of points per trial garnered in the unequal reward condition. 

Furthermore the points per trial gathered by the model using independently estimated 

visibility maps and no fitting parameters, were comparable to those collected for S1 and S2 

(Figure 4a; only a comparison between S1’s equal reward condition points/trial and the IS 

model reached significance; p = 0.002). In addition, for the current display configuration and 

visibility maps, the earned rewards for both models of eye movements are similar. Although 

S3’s points per trial increased in the unequal reward condition relative to the equal reward, 

the increase was small. S3’s points per trial for the unequal reward condition are 

significantly below the models’ predictions (p < 0.001), consistent with S3’s eye movement 

strategy departing from optimal.

4Third saccades were executed less frequently: 8 % of the trials for the unequal reward condition and 19 % of the trials for the equal 
reward condition.
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Distribution of decision choices across reward cues: In addition to the eye movements, we 

compared the influence of rewards on the perceptual decision strategies of humans to those 

of the models. We analyzed the frequency of decision selections for each cue-reward. For the 

uniform reward condition, human and models’ decision choices were uniformly distributed 

across locations (Figure 3). For the unequal reward condition, human observers and both IS 

and sMEV models’ rank order of frequency of choices corresponded closely to the rank 

order of reward values: high reward locations were chosen more often than low reward 

locations (Figure 4b; p < 0.001 for all observer). In addition, the percentage of trials 

selecting the lowest two reward locations (ν=1) was lower than 1% for the models, S1 and 

S2. However, S3 showed highly suboptimal selection of locations in the final perceptual 

decision (Figure 4b), often choosing the low reward (ν=1) locations. Comparisons of the 

distributions of decision selections in the unequal rewards condition between humans and 

the models resulted in statistically significantly differences with the exception of S1 and the 

IS model selections (p = 0.23; see Figure 4b).

Summary: The results from experiment 1 demonstrate that even when observers’ perceptual 

decisions following visual search (rather than the actual eye movements) are rewarded, 

human observers can adjust their eye movement strategy to optimize the accrued rewards. 

Although the optimality of the frequency of fixation and decision selections of cues vary 

across observers, all subjects showed some degree of change in their eye movements, 

decision selections, and an improvement in accrued rewards.

An additional possible inference from the results is that, at least for S1 and S2, the frequency 

distribution of saccades is more consistent with the IS than the sMEV model. However, such 

a conclusion relies on the assumption that observers’ internal utility values for each cue are a 

linear function of the experimental reward points. An adoption of a different utility function 

in the sMEV model, such as a non-linear function of the experimental rewards (Louie, 

Grattan, & Glimcher, 2011), might make the observed human frequencies consistent with 

the sMEV model (Ackermann & Landy, 2014). In addition, the theoretical simulations show 

that observers could adopt either strategy (sMEV and/or IS) and attain similar decision 

rewards.

4.2. Experiment 2: Saccades to maximum expected value location vs. saccades to 
maximize decision rewards

To clearly dissociate a strategy of executing saccades to the possible target location with 

maximum expected reward (sMEV) from an ideal reward searcher, we designed a 2nd study 

with the same contrast discrimination task but a different arrangement of elements: a 6 

alternative forced choice task with four clustered locations with low reward values (3 points) 

and two spatially more isolated locations with higher reward values (6 and 12 points; Figure 

5a). The spatial configuration of rewards was chosen so that: 1) The eye movements of the 

IS were to the clustered low value cues and thus distinct from the sMEV models; 2) Eye 

movements following a sMEV strategy would lead to significantly lower decision rewards 

than an ideal searcher. The presentation time for this display was purposely shortened (375 

ms) to allow for only one saccade (observers executed 2nd saccades in less than 9 % of the 

trials) and force observers to strategically plan their single saccade.
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4.2.1. Methods

Stimuli: The target and the distractors were Gabor patches with a full width at half 

maximum of 0.632° and a spatial frequency of 9 cycles/deg. Contrast amplitudes were 

randomly changed every 23.5 ms (42.5 Hz) by sampling from separate normal distributions 

for the target and the distractors (standard deviation 0.98 cd/m2, RMS= 0.038). The target’s 

peak amplitude was 34.8 cd/m2 (target peak RMS= 0.392) and that of the distractors was 

30.88 cd/m2. (RMS = 0.235). Target and distractor contrast were adjusted to achieve foveal 

human performance that would lead to dissociation across the theoretical models. The 

spatial layout of the locations is shown in Figure 5 with four locations clustered together and 

two further apart. Locations were 9.04° from central fixation. For the four clustered 

locations 9.04° represented the distance from central fixation to the center of the four 

locations. Each target location was enclosed by a circle with a diameter of 2.5° and a line 

thickness of 0.12°. Each circle had a different color and associated reward. The display was 

randomly rotated from trial to trial by 0°, 90°, 180°, or 270°. Assignment of colors and 

rewards was randomized across participants but spatial arrangement of rewards was kept 

constant.

Procedure: Procedures were very similar to experiment 1 with a few exceptions. The test-

image remained present for 375ms to motivate observers to strategize their eye movements. 

Observers performed 5 blocks of 100 trial blocks. Similar to experiment 1 observers were 

informed that their average points per trial relative to other participants would determine a 

percentage of total lottery tickets assigned to them for a lottery of a $ 100 prize. The lottery 

for experiment 2 was separate than that for experiment 1.

4.2.2. Results—For this display and our subjects’ visibility maps, the sMEV model 

predicted that most 1st saccades should be directed towards the highest reward location 

(Figure 5b; 81.7 %, 68.5 %, 64.0 % for the sMEV model predictions for S1, S2, and S3 

respectively). The sMEV model also predicts the fewest percentages of saccades towards the 

cluster of low reward locations: 1.4 %, 8.5 % and 12.2 % for the visibility maps of S1, S2 

and S3 respectively. In contrast, the IS predicted saccades towards the cluster of low reward 

(υ = 3) locations (Figure 5b). Saccades toward the low reward locations allow the IS model 

to process four of the six locations with high foveal sensitivity. If the target is present at one 

of the four clustered locations then the IS model can choose the target location. On trials in 

which the target is not at one of the clustered locations, the IS can often reject the four 

locations and narrow the possible target location to the remaining two high reward locations. 

Of the three observers tested, two observers showed a strategy that strongly favored the 

clustered four locations with lower rewards (p < 0.001) and thus more closely corresponded 

to the ideal searcher while the third observer saccade endpoints are split between the cluster 

of low reward locations and the highest reward location consistent with a strategy that lies in 

between both models. The two observers (S1 and S2) with more optimal eye movement 

patterns achieved the highest garnered points (Figure 5c), but were still outperformed by IS 

points predictions (with no fitting parameters) by 10%.

We also examined the frequency of choices for the human and model perceptual decision 

choices. The IS model often executes saccades towards the cluster of four low value 
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locations and most of its decision choices correspond to the four low reward locations which 

will contain the target 2/3 of the trials and are often foveated. S1 and S2 also showed this 

bias towards the low value locations but their bias is more pronounced. S3 who gathered the 

least points showed a suboptimal decision choice selecting the high-reward locations in most 

of the trials.

4.3. Experiment 3: Ideal reward searcher vs. eye movements to high density locations

Although experiment 2 suggests that humans can be more consistent with the IS eye 

movement strategy, there is a possibility that the strategy adopted by humans simply reflects 

eye movements to the regions of the image that contain a higher density of possible target 

locations. If observers are adopting a fixed strategy of executing saccades towards high 

density possible target locations, then we should expect that such a strategy should be 

unaltered by the rewards assigned to the cluster of low reward locations in experiment 2. To 

dissociate the IS from a fixed strategy of directing eye movements to clustered locations, we 

conducted a supplementary experiment which retained the same spatial configuration of 

possible target locations of experiment 2 but modified the reward structure by drastically 

lowering the rewards associated with the four clustered locations so that an ideal reward 

searcher rarely executed its saccade towards them. If observers modified their eye movement 

strategy with the new reward structure and stopped directing the majority of their fixations to 

the highly clustered locations, it would further suggest that humans are optimizing their eye 

movements following an IS strategy. The new set of observers also repeated the experiment 

in study 2 to provide within-subject comparisons across both reward conditions.

4.3.1. Methods

Participants: Observers were four new naïve participants (two male) between the ages of 18 

and 23. All observers had normal or corrected to normal vision. The observers were different 

than those participating in experiments 1 and 2.

Stimuli: The stimuli for the four new participants were identical to those used for 

Experiment 2 with the exception of a small increase in the peak signal amplitude (from 34.8 

to 36.7 cd/m2) to approximately match the performance of the original participants.

Procedure: The timing and trial structure for experiment 3 were identical to those of 

experiment 2. Each observer first performed ten 100 trial sessions of the reward condition of 

experiment 2 (6, 12, 3, 3, 3, 3, Figure 6). They then participated in ten 100 trial sessions of 

the new reward condition (9.9, 19.7, 0.1, 0.1, 0.1; see Figure 6) with the exception of Subject 

4, who due to time constraints was only able to perform five sessions of the 2nd reward 

condition. We did not collect visibility maps for the four new observers in experiment 3 and 

thus all model predictions were based on the visibility maps of the observers that 

participated in experiment 2. Model predictions did not vary greatly with the visibility map 

of the different observers in experiment 2 and in the results section we show model 

predictions using the visibility map of S1.

4.3.2. Results—Figure 6 shows the predictions of the distribution of 1st saccade locations 

for the IS model with the visibility map of S1 in experiment 2 (see methods). The results 
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show that lowering the rewards for each of the locations clustered together to 0.1 has a 

dramatic effect on the optimal eye movement strategy. The IS model modifies its 1st eye 

movements which are directed to the higher reward locations rather than the four clustered 

locations. Figure 6 also shows the distribution of 1st saccade locations for the four subjects 

for the two reward conditions. The human results for the 6, 12, 3, 3, 3, 3 points replicate the 

results from experiment 2 with three of the four observers showing a pattern of eye 

movements significantly biased towards the four clustered locations as the IS model (p < 

0.01 for S1, S2, S4). Subject 3 fixation distribution departed significantly from the IS model 

and did not show a significant bias of fixations towards the clustered low reward locations (p 

=0.12).5 Incidentally, Subject 3 also achieved the lower reward points per trial across all four 

observers in experiment 3 (mean ± standard error; S1: 2.42 ± 0.105; S2: 2.86 ± 0.111; S3: 

1.24 ± 0.125; S4: 2.36 ± 0.114). Figure 6 also shows the frequency of 1st saccade endpoints 

for the condition in which the rewards at the four clustered locations were reduced to 0.1 and 

those of the high rewards were increased to 19.7 and 9.9. Three of the four subjects showed 

a significant reduction in the percentage of eye movements towards the four clustered 

locations (p < 0.01) when compared to the 6, 12, 3, 3, 3, 3 reward distribution. Subject 3 

again did not show any statistically significant change in the frequency of saccades directed 

to the low reward locations (p = 0.14) and also showed the lowest points per trials for the 2nd 

reward condition (but not statistically lower than S2; mean ± standard error; S1: 4.67 ± 0.25; 

S2: 2.45 ± 0.2; S3: 2.1 ± 0.25; S4: 4.36 ± 0.229). The overall results of experiment 3 suggest 

that observers do not have a fixed strategy of fixating clustered locations irrespective of the 

reward associated to those target locations. Instead, the observers seem to modify the 

frequency of saccades based on the rewards assigned to the cue-locations and these biases 

are similar to those predicted by the IS. However, even though there is a tendency of 

observers to adjust their eye movements away from the four clustered locations, there is 

large variability across observers in the adopted strategy and departures from the optimal 

strategy in all but one subject (S1) who showed fixation distributions close to IS (p =0.04). Is 

there an explanation for the large variability and departure from the ideal fixation strategy in 

this reward configuration of experiment 3? We assessed the decision rewards of models that 

included the strategies observed in humans (Figure 6) in experiment 3 (rewards: 9.9, 19.7, 

0.1, 0.1, 0.1). These strategies are: 1) Fixate on the highest reward location 100 % of the 

trials (S4); 2) Split the fixations between the two highest reward locations (S3); 3) Fixate 1/3 

of the trials on highest reward, 1/3 on the 2nd highest reward, and 1/3 on the cluster low 

value locations (S2); 4) Fixate all trial on the clustered locations. Note that these models’ 

fixations are still driven by sensory evidence but their internal reward values guiding the 

saccades (within the sMEV model framework) were manipulated to match the fixation 

frequencies listed above (see Theory for more detail).

Figure 7 shows the ratio of points per trial of the different eye movement strategies 

(followed by optimal decisions) and that of an ideal reward searcher. A ratio of 1 indicates 

that the eye movement strategy achieves the same points per trial as an ideal searcher. Our 

results show that for the [9.9, 19.7, 0.1, 0.1, 0.1] reward configuration there are a variety of 

5Note that we do not make statistical comparisons to the IS predictions as reported for experiment 2 because we did not collect 
visibility maps for the observers in experiment 3 and thus not allowing us to make IS predictions specific to the observer in experiment 
3.
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eye movement strategies that result in near optimal decision rewards. In particular, fixating 

100 % on the highest reward (S4) does not lead to any decision rewards cost relative to the 

ideal searcher. This can be understood if one considers that for this reward configuration an 

optimal decision involves mostly deciding between the two high reward locations given that 

the four clustered locations have insignificant rewards (0.1). Thus, fixating one or the other 

high reward location has little effect on the final decision reward: if the model fixates one 

location and there is little sensory evidence for the presence of the target, the model chooses 

the non-fixated location for its perceptual decision. If the display consisted of a third 

location with high reward then the precise location of the 1st fixation among the high reward 

locations would have a larger influence on the search decision reward.

5. Discussion

5.1. Decision rewards influence eye movements

Studies have shown how assigning different rewards to eye movements to various locations 

and element features can influence human saccades in a manner akin to that of an optimal 

Bayesian observer which maximizes the probability of an eye movement towards the 

location with the highest product of sensory evidence and expected reward (Liston & Stone, 

2008; Navalpakkam et al., 2010). However, less is known about the effect of differential 

decision rewards across locations on eye movement strategies, a manipulation that is 

relevant to the real world. Experiment 1 suggests that when rewards vary across locations of 

a searched target, humans change their eye movements and decision selections to increase 

the decision rewards (Ackermann & Landy, 2010, 2013; Eckstein et al., 2010). In general, 

the results are consistent with the saccade choice preferences of an ideal reward searcher that 

executes eye movements to high reward locations to maximize the total subsequent decision 

rewards. Our results are not inconsistent with Ackermann & Landy (2013) who also found 

some similarities, although to a lesser degree, in the influences of reward configurations on 

humans and ideal reward searches. However, they also found significant statistical 

differences when comparing the actual spatial distribution of fixations. Here, we compared 

human and model frequencies of fixations to the various reward cues rather than the precise 

spatial distribution of fixations. A comparison of human vs. model spatial distribution of 

actual fixations for our data would likely reveal statistically significant differences (e.g., see 

Figure 1 IS for S1 vs. S1), consistent with Ackermann and Landy (2013). Our approach here 

was to concentrate on assessing how the different reward configurations influence the 

frequency of saccades towards the various cues. At this level of analysis we found a better 

agreement between the human and ideal reward searcher than a previous study (Ackermann 

& Landy, 2010, 2013). A possible explanation for the difference in optimality of eye 

movements across studies might be related to the intermixed (Ackermann & Landy, 2010, 

2013) vs. blocked (present study) presentation of the uniform and non-uniform reward 

configurations. Observers might have more difficulty in strategizing their eye movements 

when the reward configuration varies across trials.

Importantly, the increased frequency of eye movements towards high reward locations in 

experiment 1 is consistent with an ideal reward searcher but also a model that executes eye 

movements to the target location with highest expected value (sMEV model). Experiment 2 
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was designed to dissociate these two models. The sMEV model predicts high frequency of 

fixations to the high reward cues while the IS predicts saccades towards the clustered low 

value cues. Consistent with the IS model, we found a tendency to increasingly saccade 

towards the clustered low value cues present in five of the seven tested observers, although 

there are varying deviations from optimality across observers. To verify that the human eye 

movements did not reflect a fixed eye movement strategy to clustered locations (irrespective 

of the optimality of the eye movements), we conducted a control experiment (experiment 3) 

which drastically reduced the rewards (0.1) of the clustered locations so that an ideal reward 

searcher fixated the high reward locations. We found that the three observers that were 

previously fixating the clustered low value cues modified their eye movement plans to 

increase the fixations to the high reward locations. This third control experiment also 

resulted in a great variability of human eye movement strategies which is discussed in detail 

in the next section.

In terms of model and human accrued points per trial, results show that the IS model (with 

no fitting parameters and utilizing each observer’s visibility map) can predict the accrued 

human rewards within 10 % for four of the six observers (reward configuration 1 and 2). The 

differences between model and human accrued rewards for these four observers might be 

explained by a departure from the optimal choice selection in the final human perceptual 

decisions (Figure 3d) for which humans over-select the low reward locations. Alternatively, 

there is the possibility that the visibility of the target measured in isolation (visibility map 

experiment) is not fully representative of the detectability of the target in the presence of the 

other elements in the search array. A recent study has shown that in some circumstances 

visibility maps for targets in isolation are not equivalent to those measured when surrounded 

by search array elements (Verghese, 2012). In addition, the three different observers (S3 for 

reward configuration 1 and S3 and S6 for reward configuration 2) which accrued 

significantly fewer points than that predicted by the IS model, had both decision selections 

and eye movements that departed the most from the optimal.

5.2. Variability in eye movement strategies of humans

Studies assessing the optimality of eye movements during search have resulted in a variety 

of outcomes. Although there are some studies that show how human eye movements 

statistics approximate optimality (Najemnik & Geisler, 2005, 2008), there are numerous 

conditions for which human eye movement plans depart to different degrees from an optimal 

strategy (Ackermann & Landy, 2010, 2013; Morvan & Maloney, 2012; W. A. Schoonveld & 

Eckstein, 2006; Verghese, 2012). In the present study, for fourteen eye movement data sets, 

we found three data sets that seem to reveal suboptimal fixation choices (S3 for reward 

configuration 1; S3 & S66 for reward configuration 2) and three data sets (S2, S3, S4 for 

reward configuration 3) for which observers choose alternative eye movement strategies that 

theoretically lead to near optimal decision rewards.

Together these results contribute to a better understanding of departures from optimal eye 

movement planning. First, if adopting an optimal eye movement strategy will result in little 

6The sixth data set for reward configuration 2 is labeled S3 in Figure 6. reward configuration 3 in the current paper), then it is likely 
that human observers might adopt variable eye movement strategies which depart from the optimal fixation plans.
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performance or reward benefits over other default strategies, then humans simply maintain 

their suboptimal yet over-practiced default strategy, such as fixating at possible target 

locations, at little cost (Schoonveld & Eckstein, 2007; Shimozaki, Schoonveld, & Eckstein, 

2012). Second, if a task and display/reward configurations leads to a multiplicity of eye 

movement strategies attaining near optimal decision rewards (e.g., Third, eye movements 

might be directed to objects that are associated with shorter saccades to allow for cost-

savings in saccade generation (Araujo, Kowler, & Pavel, 2001; Kowler, 2011). In the current 

study we tried to minimize these effects by having the initial fixation to be close to 

equidistant from potential target locations.

Fourth, some fast eye movements seem to be directed towards salient features even if they 

are associated with a lower reward (Stritzke et al., 2009) suggesting a dynamic weighting of 

a saliency and a value-based computations (Schütz, Trommershäuser, & Gegenfurtner, 2012) 

in which saliency is weighted more heavily earlier on. In our current study, saccade latencies 

were short (171 ms mean latency in experiment 1 and 186 ms for experiment 2) but 

observers might have still been able to strategize their eye movements due to the 

presentation of the color cues 500–650 ms prior to the display of the test image (see also, 

Ghahghaei & Verghese, 2014). In addition, recent studies have also shown that humans can 

execute a suboptimal strategy when searching for multiple targets during search (Verghese, 

2012 but see, Janssen & Verghese, 2013), fail to switch from a saccadic targeting strategy 

(Beutter et al., 2003; Findlay, 1997) to a center of mass (ideal searcher) strategy when 

varying the separation between two possible target locations (Morvan & Maloney, 2012), 

and also depart from optimality when presented with faces with uncommon optimal points 

of fixations (e.g., mouth, Peterson & Eckstein, 2013b).

In general, laboratory tasks which probe eye movement strategies that are commonly used 

by humans in perceptual tasks in the real world will more likely reveal human eye movement 

plans close to optimal strategies. These include the distribution of saccades reflecting the 

anisotropy in the visibility map of humans (Najemnik & Geisler, 2005, 2008) and the 

destination of saccades when performing specific tasks with faces (Peterson & Eckstein, 

2012, 2013a) and reading (Legge et al., 1997; Legge et al., 2002). In contrast, more artificial 

laboratory tasks, such as the task in the current paper and previous studies (Ackermann & 

Landy, 2013; Morvan & Maloney, 2012; Shimozaki, Schoonveld, & Eckstein, 2012; 

Verghese, 2012) will likely reveal more inter-observer variability and larger degrees of 

suboptimality in eye movement strategies.

5.3. High reward locations do not always automatically lead to oculomotor capture

The present results also serve as a counterpoint to recent studies suggesting that the 

association of a spatial cue with a high reward will automatically lead to oculomotor capture 

(Anderson, Laurent, & Yantis, 2011; Anderson & Yantis, 2012). Experiment 2 and 3 

illustrate a scenario where the majority observers did not execute eye movements toward the 

highest reward cue but instead moved their eyes to lower value cues in order to maximize 

decision rewards. A tendency of human observers to favor high reward cues and locations is 

expected because such bias typically agrees with that of an optimal eye movement strategy 

for a majority of display configurations. However, our results demonstrate that when the task 
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requires a different strategy to maximize rewards, observers can refrain from looking at high 

reward locations. Although we did not obtain verbal reports from observers, it is likely that 

observers adopted an explicit cognitive strategy to fixate the four clustered target location 

and rule out as many locations as possible with a single fixation.

5.4. Implications for the relationship between perception and action

Our results show the important effects of decision rewards on oculomotor planning. Theories 

supporting the concept that perception and action are two distinct and independent pathways 

(Goodale & Milner, 1992) might predict that rewarding a perceptual decision would not 

optimize eye movement strategies. In contrast, our results are consistent with theories 

suggesting interactions across both pathways (Eckstein et al., 2007; Gegenfurtner, Xing, 

Scott, & Hawken, 2003; Krauzlis, 2005; Krauzlis & Stone, 1999) which would predict that 

eye movements would indeed be optimized even though it is a subsequent perceptual 

decision that is rewarded. The theory would also be consistent with the idea that pathways 

for perception and oculomotor control largely overlap, leading to significant sharing of 

visual information (Dassonville & Bala, 2004; Gegenfurtner et al., 2003; Krauzlis & Stone, 

1999).

5.5. Implications for computations in monkey LIP and biologically plausible 
approximations to IS

Our findings might have some implications for neuro-scientific theories of visual processing. 

Current theories suggest that the lateral intra-parietal area is involved in biologically 

representing a priority map (Bisley & Goldberg, 2010; Bisley, Mirpour, Arcizet, & Ong, 

2011) in which an increasing firing rate to objects represents increasing behavioral priority. 

This priority map has been computationally described as a decision variable measuring 

sensory evidence akin to a likelihood (Gold & Shadlen, 2002) (Equation 2) which correlates 

with behavioral decision confidence and that it is modulated by rewards in a similar manner 

to the sMEV model. Thus, current models of LIP responses would predict that for our 2nd 

experiment (Figure 3b) an LIP neuron would maximally fire (on average) when the highest 

reward stimulus was located within its receptive field. Yet, our psychophysical results 

suggest an alternative prediction that the maximal firing would result when the four 

clustered low rewards (r= 3) were located within the neuron’s receptive field. In principle, 

this could potentially be achieved by larger receptive field LIP cells that performed an 

excitatory spatial pooling of rewards across locations followed by a saccade to the location 

with maximum expected value. We refer to this model as a sMEV with spatial pooling of 

rewards (sMEV). We modfied the sMEV model to either linearly sum the rewards of the 

four clustered locations or to combine them non-linearly (see Appendix A for mathematical 

details on the model). The pooled reward is assigned to each of the four clustered location 

and is used for the sMEV’s saccade planning but not its final perceptual decision which 

utilizes the original rewards. Figure 8 shows the distribution of fixations for the sMEV 

model with spatial pooling and the total number of decision points/trial accrued for the 

model relative to the ideal searcher. The results show that a simple linear summation of 

rewards can reproduce optimal eye movement behavior and a non-linear accelerating 

function can mimic the distribution of saccades of the human observers with the highest 

fixation frequencies (0.99) towards the clustered locations. Thus, the sMEV model with 
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spatial pooling might be a biologically plausible implementation of the ideal searcher in 

areas LIP and other areas which have been shown to code value and probability of 

anticipated rewards in sensory motor tasks (Hikosaka & Watanabe, 2000; Leon & Shadlen, 

1999; Watanabe, 1996).
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Appendix A

Here, we describe the mathematical details for the ideal reward searcher (IS) and the saccade 

to maximum expected value model (sMEV). The supplementary materials are organized in 

the following sections: 1) Linear template theory and decision variables; 2) Modeling the 

visibility maps for a foveated visual system; 3) Computational models of multiple fixation 

visual search. The perceptual decision making after multiple fixations is discussed in the 

main text theory section.

1 Linear templates and decision variables

Both multiple fixation models (sMEV and IS) start with a linear operation based on 

statistical decision theory for forced choice localization tasks in noise [1–4]. Let the vectorg 
denote the grey values of the pixels in a 2-D image patch. In an m alternative forced choice 

(mAFC) task, we refer to a signal-present patch (target present) of the image as g0
+ and to a 

target-absent patch as g j
−, j = 1, 2, ···m −1. In a forced choice trial, a signal, s, is added to the 

image background, b0, in one of m possible locations chosen at random: g0
+ = b0 + s. For 

target-absent locations, the image patch consists of background only or a distractor: g j
− = b j. 

For the task at hand the signal/target is a Gabor with a contrast increment. Note that s is a 

deterministic vector, and image backgrounds are considered to be random with some 

statistical properties.
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The linear model observer forms a response variable, r, as an inner product between g and a 

vector of weights w: r = wTg+ε. The set of weights applied to the image is referred as the 

template. The value, ε, is sample of internal noise drawn from a normal distribution with 

standard deviation proportional to the external noise: ε ~ N(0,kσrext) where σrext is the 

standard deviation of the response variable, r, due to the external noise and k is a constant. 

When presented with g0
+ and g j

−, the observer forms one response variable r0
+ and m −1 

response variables, r j
−. Given these template responses, a calculation that will be useful 

when determining the models’ next fixation and making perceptual decisions is the 

likelihood ratio at each possible ith location (LRi; [1–4]):

LRi =
f s(ri)
f b(ri)

(A1)

where fb(●) and fs(●) are the probability density functions (pdf) modeling the likelihoods 

of the responses given the background only and the target, respectively. To avoid underflow, 

the log likelihood ratio may be used instead of LR. For the images in the current paper, the 

targets and distractors were Gabors with contrast perturbed by Gaussian random variables. 

Thus, all pdfs can be described by Gaussian functions.

2 Modeling the Visibility Map for a foveated visual system

The detrimental effect of retinal eccentricity on the detectability of the target was 

implemented by modeling detectability, d′, as a function of eccentricity (e):

dk, i′ = μ exp − e2

2σ2 , (A2)

where the magnitude μ and standard deviation σ are fit to measured d′ as a function of 

eccentricity for each individual human observer, and the eccentricity e is the distance 

between the fixation k and the template response location, i. We assume a simplified model 

in which the target detectability is dependent in eccentricity but rotationally invariant. This is 

likely not right but given that the display was rotated across different angles, we use a 

simpler model that uses the dependence on eccentricity averaged across different angles.

The template responses can be modeled as random variables sampled from Gaussian 

distributions as:

f s(ri) N (d′, 1) (A3a)

f b(ri) N (0, 1) (A3b)
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(A3b)

Thus, the likelihood ratio becomes

LRi =
f s(ri)
f b(ri)

=

1
2π exp −

(ri − d′)2

2

1
2π exp −

ri
2

2

= exp d′ri − 1
2(d′)2 (A4)

In the following sections, we shall describe how to use LRi to determine the next fixation 

and make perceptual decisions for the IS and sMEV models.

3 Computational models of multiple fixation visual search

3.1 Fundamentals of computational models

Determining the next fixation for both models (IS and sMEV) requires calculating the 

posterior probability that the target is at that location given the template responses at all m 
locations. Suppose Hi is the ith hypothesis which refers to the target being at the ith location. 

The posterior probability P(Hi|r1,..., rm) at the ith location is related to the likelihood and the 

prior probability by Bayes’ rule:

P(Hi ∣ r1, …, rm) =
P(r1, …, rm ∣ Hi)P(Hi)

P(r1, …, rm) , (A5)

where P(r1,..., rm|Hi) is the likelihood of the template responses at all M locations (r1,..., rm) 

given the ith hypothesis; P(Hi) = πi is the prior probability of the target being at the ith 

location. Assuming hypotheses are mutually exclusive, statistical independence across 

locations, one can equivalently replace the likelihood function P(r1,..., rm|Hi) with the 

likelihood ratio (LR) of the response ri given target presence or absence at the ith location 

weighted by ith location’s prior probability of containing the target (πi):

P(Hi ∣ r1, …, rm) ∝ πiLRi = πi
f s(ri)
f b(ri)

. (A6)

which is obtained by dividing the LRi by ∏
i = i

m
f b(ri).

The external noise is independently sampled through time (every 25 ms) and we assume that 

the dominating internal noise is proportional to the external noise standard deviation (ε ~ 

N(0,kσrext)) and is temporally independent, as the external noise. We assume that the 

proportional external noise dominates the constant additive internal noise (Burgess & 
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Colborne, 1988)7. Assuming statistical independence across fixations (given the statistical 

independence across time), we define the dynamic posterior after the Tth eye movement as:

Pk(T), i = ∏
t = 1

T
P(Hi rk(t), 1, …, rk(t), m), (A7)

where rk(t),i is the template response at potential location i for fixation k(t).

Accordingly, the posterior probability after multiple fixations is proportional to the weighted 

product of likelihood ratios:

Pk(T), i ∝ πi ∏
t = 1

T
LRk(t), i (A8)

where LRk(t), i =
f s rk(t), i
f b rk(t), i

 is the likelihood ratio at potential location i for fixation k(t).

3.2. Inclusion of rewards into decisions

When each hypothesis is associated with a different reward (vi),the optimal decision variable 

for non-foveated models is to weight the posterior probability of each location by the 

reward:

νiPk(T), i ∝ νiπi ∏
t = 1

T
LRk(t), i (A9)

Equation A9 considers, consistent with instructions to observers, that there is no penalty for 

incorrect answers, otherwise such penalties need to be considered.

3.3. Saccade targeting (sMEV) model

Given the template response rk(t),i, across eye movements k(t), and reward vi across different 

locations, i, the sMEV model selects as the next fixation the possible target location with the 

highest expected value (product of likelihood ratios, priors and reward for each location):

kMAP
∗ (T + 1) = arg max

i
viPk(T), i = arg max

i
viπi ∏

t = 1

T
LRk(t), i

= arg max
i

log (viπi) + ∑
t = 1

T
log [LRk(t), i] .

(A10)

7Note that the assumption of independence is typically adopted even in displays that do not refresh the external noise (Najemnik & 
Geisler, 2005)
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Using the Gaussian probability density functions for the likelihood ratio in Equation (A4) 

and using the logarithm, the sMEV model determines the next fixation by summing template 

responses weighted by the target detectability at each location’s eccentricity and an additive 

logarithm of the reward and prior:

kMAP
∗ (T + 1) = arg max

i
log (viπi) + ∑

t = 1

T
dk(t), i′ rk(t), i − 1

2(dk(t), i′ )2 (A11)

3.4. Ideal Reward Searcher (IS) model

The ideal searcher (Najemnik & Geisler, 2005), unlike the saccadic targeting (sMEV) 

model, selects as a next fixation the location that will maximize the expected reward in the 

perceptual decision. It first calculates for each possible subsequent fixation location, k(T+1), 

the expected reward of an ideal observer given that the target location is i. The expected 

rewards across all possible fixation locations define a reward map, RMk(T+1),i. The IS model 

selects the next fixation by computing a weighted sum of reward maps across possible target 

locations (i), where the weights correspond to the posterior probabilities that the target is 

present at the ith location:

kIS
∗ (T + 1) = arg max

k(T + 1)
∑
i = 1

m
Pk(T), iRMk(T + 1), i (A12)

A difference between the IS and sMEV model (Equation A11 vs. Equation A12) is that the 

fixations of the IS model are not limited to the potential target locations.

The reward map, RMk(T+1),i, given that the target is at the ith location is equal to the product 

of that ith location’s reward and the probability that the ideal observer makes the correct 

choice (i.e., that the product of reward and posterior probability at the target location, i, take 

a greater value than that at any other location):

RMk(T + 1), i = viProb viPk(T + 1), i ≥ v1Pk(T + 1), 1, ⋯, viPk(T + 1), i ≥ vmPk(T + 1), m ∣ Hi (A13)

To compute the reward map analytically we use Equation (A8):

viPk(T + 1), i ∝ viπi ∏
t = 1

T + 1
LRk(t), i (A14)

Assuming conditional independence, Equation (A13) can be rewritten as the product of 

probabilities.
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RMk(T + 1), i = vi∏
j ≠ i

Prob viPk(T + 1), i ≥ v jPk(T + 1), j ∣ Hi

= vi∏
j ≠ i

Prob viπi ∏
t = 1

T + 1
LRk(t), i ≥ v jπ j ∏

t = 1

T + 1
LRk(t), j ∣ Hi

= vi∏
j ≠ i

Prob
viπi ∏

t = 1

T
LRk(t), iLRk(T + 1), i

v jπ j ∏
t = 1

T
LRk(t), jLRk(T + 1), j

≥ 1 ∣ Hi

= vi∏
j ≠ i

Prob log
viπi
v jπ j

+ ∑
t = 1

T
log

LRk(t), i
LRk(t), j

+ log
LRk(T + 1), i
LRk(T + 1), j

≥ 0 ∣ Hi

= vi∏
j ≠ i

Prob log
viπi
v jπ j

+ ∑
t = 1

T
yk(t), i − yk(t), j + yk(T + 1), i − yk(T + 1), j ≥ 0 ∣ Hi ,

(A15)

for any t > 0, using the logarithm of Equation S4:

yk(t), i = log LRk(t), i = dk(t), i′ rk(t), i − 1
2(dk(t), i′ )2, (A16a)

yk(t), j = log LRk(t), j = dk(t), j′ rk(t), j − 1
2(dk(t), j′ )2, (A16b)

Note that when 1≤t≤T, yk(t),i and yk(t),j, the log-likelihood ratios are deterministic scalar 

values based on detectabilities and acquired template responses only (previous sensory 

evidence), but yk(T+t),i, and yk(T+t),j, are random variables describing loglikelihoods 

assuming a future fixation. 8 Considering the probability density function describing the 

internal response as a function of eccentricity (Equations A3a and A3b) and assuming the 

target is at the ith location

rk(T + 1), i N dk(T + 1), i′ , 1 (A17a)

rk(T + 1), j N 0, 1 . (A17b)

8The derivation is similar to Najemnik & Geisler (2005) but uses the log-likelihood ratio as the decision variable rather than the 
posteriors. The log-likelihoods are Gaussian distributed and allow us to express the log-posteriors from previous fixations as an 
additive term in Equation (A19).
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Thus the log-likelihood ratios, yk(T+t),i, and yk(T+t),j, are also Gaussian

yk(T + 1), i = dk(T + 1), i′ rk(T + 1), i − 1
2(dk(T + 1), i′ )2 N 1

2dk(T + 1), i
′2 , dk(T + 1), i′ (A18a)

yk(T + 1), j = dk(T + 1), j′ rk(T + 1), j − 1
2(dk(T + 1), j′ )2 N − 1

2dk(T + 1), j
′2 , dk(T + 1), j′ (A18b)

where dk(T + 1), i′  is the detectability at target location i, given fixation at location k(T + 1). 

The reward map in Equation (A15) can be rewritten as

RMk(T + 1), i = vi∫ ϕ yk(T + 1), i ∏
j ≠ i

Φ yk(T + 1), i + ∑
t = 1

T
yk(t), i − yk(t), j + log

viπi
v jπ j

dy

(A19)

where ϕ is the normal probability density function in Equation (A18a) and Φ is the normal 

cumulative density function (cdf) in Equation (A18b).

3.5 Saccade targeting (sMEV) model with spatial pooling of reward values

This is a variation of the sMEV model in which reward values of spatially clustered 

locations are pooled together. The equations selecting which possible target location will be 

the next fixation remains the same as the sMEV model except that the assigned rewards at 

the clustered locations are spatially pooled. The pooled reward value (vp) at the four 

clustered locations (vi for i=3, 4, 5, 6) is given by:

vp = ∑
i = 3

6
(vi + c)b

1
b

We considered two pooling methods. A simple linear summation of rewards at the clustered 

locations when c=0 and b =1 and a non-linear pooling when c = 0.25 and b = 1.5. Following 

the pooling operation for the four clustered locations, the location of the saccade is 

determined using the same equation as for the standard sMEV model (Equation A.11) with 

the pooled reward assigned to each of the four clustered locations. The perceptual decision 

for the model is also the same as with the standard sMEV model (Equation 7). Note that the 

model does not pool the rewards for the perceptual decision.
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Appendix B

Figure B.1. 
Predictions of the IS and sMEV models for S2 and S3 using their individual visibility maps 

for equal (left) and unequal reward conditions (right)
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• Reward layouts can lead an ideal reward searcher to fixate clustered low value 

cues.

• Humans can implement search eye movements to low value cues to increase 

decision rewards.

• Multiplicity of near optimal saccade plans related to fixation variability across 

observers.

• Suboptimal eye movements likely more common for non-ecologically valid 

lab tasks.
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Figure 1. 
a. Flow chart for two different models of human eye-movement search for rewards: Ideal 

Bayesian Reward Searcher (IS) and the saccade to maximum expected value (sMEV). b. 

Timeline of a trial for the search of a bright Gabor among dimmer Gabors. c. Reward Maps 

for Ideal Reward Searcher for equal reward condition (left), unequal reward condition 

(center). Right: Visibility map quantifying detectability of the target as a function of retinal 

eccentricity measured separately for each observer. Sample data for one observer.
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Figure 2. 
Endpoints of 1st, 2nd and 3rd fixations for models (IS, sMEV) and human subjects for equal 

and unequal reward search for a bright Gabor target among dimmer Gabor distractors. For 

reference, top left graph shows the points earned for correctly finding the target at each 

location for the equal and unequal reward point conditions. For the unequal reward 

condition, the cue circular configuration was randomly rotated from trial to trial but 

maintained their spatial relationship of color cues to one another Numbers in all other 

images indicate the percentage of 1st fixations directed to each location defined using a 

minimum distance criterion (largest standard errors equal reward = 1.8 %; unequal reward = 

4.5 % for the highest value location, S1).
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Figure 3. 
The y-axis of each graph corresponds to percentage of saccades (first and second eye 

movements) directed to each of the locations for equal and unequal reward locations. Equal 

reward results are shown for Subject 1 (additional subjects are shown in the Appendix). 

Unequal reward results are shown for each subject, for the ideal reward searcher (IS) using 

the visibility map of each observer and the sMEV model for subject 1 (sMEV model 

predictions for the other two observers are similar to those of observer 1 and are included in 

the Appendix B). Error bars for human observers are standard errors of the mean across 

sessions. Legends provide the reward for each location indicated by black cues (equal 

reward cues) or color cues (unequal reward condition).
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Figure 4. 
a. Points/trial for the equal and unequal reward search conditions for each human observer 

and for the models using visibility maps measured separately for each human observer. b. 

Distribution of perceptual decision choices across locations after search for models (IS and 

sMEV) and human observers (HO). Standard errors for humans that are not visible are 

smaller than symbols.
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Figure 5. 
a. Top: Configuration of locations containing the target and distractors and assigned reward 

points for correctly finding the target at each location. Display varied randomly across four 

rotations. Below: Reward map for the Ideal Reward Searcher for the configuration shown 

above. b. First saccade endpoints (blue) for each observer and his/her associated model (IS 

and sMEV) predictions. Numbers correspond to percentages of 1st saccades to each location 

(frequency for the four clustered locations were combined into a single number). Standard 

errors for these percentages ranged from 2.0 % to 4.0 % for the two high reward locations 

and from 0.65 to 6.0 % for the four clustered locations with low rewards. c. Points/trial for 

observers and models (IS and sMEV). d. Percentage of trials in which a location was 

selected in the perceptual decision (% chosen) for human observers and models.
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Figure 6. 
Top: Configuration of locations containing the target and distractors and assigned reward 

points for correctly finding the target at each location for the two conditions in experiment 3. 

Cues were randomly rotated across four rotations. First saccade endpoints (blue) for each 

subject and the IS model predictions. Numbers correspond to percentages of 1st saccades to 

each location (frequency for the four clustered locations were combined into a single 

number). Standard errors for these percentages ranged from 0.4 % to 2.9 % for the two high 

reward locations and from 1.2 to 3.8 % for the four clustered locations with low rewards.
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Figure 7. 
Decision rewards obtained by a specific eye movement strategy relative (ratio) to that 

obtained by an ideal reward searcher. Top: Reward Configuration for the two conditions in 

experiment 3. Left column images show frequency distribution of fixations for alternative 

eye movement strategies.
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Figure 8. 
Distribution of first fixations for two reward configurations for two variations of the sMEV 

model which eye movements (but not decisions) are based on spatial pooling of rewards at 

the clustered locations. Reward values at clustered locations are pooled linearly or non-

linearly and assigned to each of the clustered locations. The sMEV model with spatial 

pooling of rewards can mimic the ideal reward searcher and also predict the range of eye 

movement behaviors in humans.
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